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Abstract

The goal of most computational simulations is to accurately predict the behavior of a
real, physical system. Accurate predictions often require very computationally expensive
analyses and so reduced order models (ROMs) are commonly used. ROMs aim to reduce the
computational cost of the simulations while still providing accurate results by including all
of the salient physics of the real system in the ROM. However, real, physical systems often
deviate from the idealized models used in simulations due to variations in manufacturing
or other factors. One approach to this issue is to create a parameterized model in order
to characterize the effect of perturbations from the nominal model on the behavior of the
system. This report presents a methodology for developing parameterized ROMs, which is
based on Craig-Bampton component mode synthesis and the use of hyper-dual numbers to
calculate the derivatives necessary for the parameterization.
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Chapter 1

Introduction

The goal of most computational simulations is to accurately predict the behavior of a real,
physical system. High-fidelity computational simulations can often provide very accurate
predictions but they have a very high computational cost. Reduced order models (ROMs)
are often used as surrogates for a full-order model in order to decrease the computational
expense of analysis. A ROM should therefore be much less expensive to evaluate while
retaining a sufficient level of accuracy.

A real, physical system often deviates from the idealized model used for the simulations.
These perturbations from the nominal model are often due to variations in manufacturing of
the physical system. To model these perturbations without a systematic, efficient reduced
order approach would be prohibitively difficult. For example, consider a scenario where it
takes several weeks to develop a high quality mesh for one relatively simple component. To
quantify the aleatoric uncertainty associated with manufacturing, thousands of perturbations
of the ideal geometry are necessary, and each likely requires a new mesh. Even with factoring
in time saved from some automation of the process, the number of man hours required to
construct these meshes is on the order of 20 years. In addition, the computational time to
analyze all of these models is on the order of several years assuming that an entire super
computer can be dedicated to the analysis. Clearly, decades of time are infeasible constraints
to be incorporated into a design cycle. One method of accounting for these perturbations is
to create a parameterized reduced order model (PROM) of the system [1-4]. This allows the
behavior of the system to be inexpensively predicted over a range of perturbations based on
a few simulations distributed about the nominal design.

A standard approach to constructing ROMs for structural dynamics is Craig-Bampton
(C-B) Component Mode Synthesis (CMS) [5]. Figure 1.1 shows two approaches that can be
taken to analyze a system composed of several components. The left branch of the diagram
shows the traditional approach of forming a full-order finite element (FE) model for the
system, which is often prohibitively expensive for assessing aleatoric uncertainty. The right
branch shows the steps when C-B CMS is used. To account for aleatoric uncertainty, PROMs
can be utilized. Simple PROMs can be constructed from a finite Taylor series expansion;
for instance, in computing some scalar quantity of interest, f(z), as a function of some
perturbation to the nominal design, Az, f(z) can be approximated as f(z), which is based
on a Taylor series expansion. For the FE and CMS cases outlined in Fig. 1.1, f(z) could be
elements of the mass and stiffness matrices or it could be the result of the system analysis,



such as displacements or eigenvalues. The perturbations to the nominal design, Az, could
be changes in material properties or geometric variations. A parameterized model can then
be created for a quadratic expansion as

. (Ax)?

Fla + Az) = () + (A2) () + S () (1)
Higher order models, such as a cubic model
2 3
Flo+ Aa) = 1) + (d)f @) + B2L (o) 4 B g, (12

can be created by keeping higher-order terms in the expansion.

Component Matrices

|

Counstruct CMS Matrices

Assemble FE System Assemble CMS System

Analyze FE System Analyze CMS System

Figure 1.1. Two possible approaches for analyzing a sys-
tem composed of several components.

The use of these parameterized models with FE analysis requires the calculation of deriva-
tives at the nominal design. These derivatives can be computed in many ways, such as using
finite-difference approximations. The approach proposed here is to compute the derivatives
using hyper-dual numbers [6]. Hyper-dual numbers produce exact values of the derivatives,
and only require evaluation at the nominal design. This is in contrast to finite-difference
approximations which require evaluations at several perturbed designs and hence can require
the creation of several meshes. The use of hyper-dual numbers only requires the nominal
mesh, but the information on how the mesh would change due to the perturbations needs to
be known or calculated. In practice, this can require the introduction of hyper-dual numbers
into the meshing procedure, which is not likely to be practical for large commercial codes;
however, this may be feasible for a research code such as SIERRA [7].

Parameterized models can be created at several levels in the analysis procedure outlined
in Figure 1.1. The various possibilities are shown in Figure 1.2. One possibility is to construct
parameterized models for the component mass and stiffness matrices. Another possibility is
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to parameterize the output of the system analysis, i.e. displacements or eigenvalues. When
using CMS it is also possible to parameterize the reduced-order mass and stiffness matrices.

One goal of this report is to assess the efficacy of developing PROMs at each level identified
in Fig. 1.2.

Component Matrices

Parameterize Comnponent Matrices

|

Counstruct CMS Matrices

Parameterize CMS Matrices

Assemble FE System Assemble CMS System
Parameterize System Matrices Parameterize System Matrices
Analyze FE System Analyze CMS System
Parameterize Eigenvalues Parameterize Eigenvalues

Figure 1.2. The levels at which parameterized models can
be constructed.

This report discusses the implementation of C-B CMS in MATLAB in Chapter 2. Chap-
ter 3 introduces hyper-dual numbers and discusses the development of PROMs, where the
required derivatives are computed using hyper-dual numbers [6]. Chapter 4 assesses the effi-
cacy of each potential level of developing a PROM, as indicated in Fig. 1.2, and conclusions
are presented in 5.
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Chapter 2

Craig-Bampton Component Mode
Synthesis

Theory

The equation of motion for an unforced and undamped structure with mass matrix [M],
stiffness matrix [K], and displacement {u} is

[M]{a} + [K]{u} = {0} (2.1)

The C-B CMS [5] method is based on a substructuring of the component’s degrees of freedom
(DOFs) into boundary (u;) DOFs and internal (u;) DOFs as {u} = {up, u;}". Boundary
DOFs typically are defined as DOF's where excitations are applied or where output quantities
are desired (such as the displacement of a particular flange), whereas internal DOFs are all
non-boundary DOF's, which generally are inside of the component and thus have no applied
loads. This substructuring is used to recast 2.1 as

i aHE b ] (e

Modal analysis is performed on the internal degrees of freedom,
(K — AeMii) g0 = 0, (2.3)

where )\, are individual eigenvalues and ¢, are the corresponding eigenvectors of the fixed-
interface normal modes. Constraint modes, ¢, are a static deflection shape and are com-
puted by imposing a unit displacement at each individual boundary DOF while holding the
other boundary DOFs fixed at zero displacement. The constraint modes can therefore be
computed as

oo = —K;;' Ky, (2.4)

Subsequently, the physical DOFs (u, and u;) are related to the hybrid set of physical and
modal DOFs (u, and g,,,) by

{Zi}:{qfc q&“;ﬁ} (25)
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where [ is the identity matrix and ¢y is a matrix of the eigenvectors ¢,. This allows the
equation of motion for each component to be written as

R AL o A L SRR
assuming the eigenvectors are normalized with respect to the mass matrix M;;, and with
Mce = My, + Mype + o6 + o6 Mide, (2.7)
Men = Mye = (My + ¢&My) o, (2.8)
Koo = K, + My, (2.9)

where A is a diagonal matrix of the eigenvalues ).

The number of degrees of freedom can be reduced by retaining only enough fixed-interface
normal modes to capture the behavior of interest. In general, keeping more modes results in
a more accurate approximation of the true behavior at the expense of an increased compu-
tational cost. The reduced mass and stiffness matrices for each component can be combined
to form a ROM for the system. This ROM is less expensive to analyze and provides accurate
results given that enough modes are kept to capture the behavior of interest.

Description of MATLAB Files

This section describes the MATLAB analysis routines created to analyze the stepped
beam system described in Chapter 4.

AnalyzePerturbedBeam_FEM.m
This function is called to analyze the simple beam described in Figure 4.1 using the FE
method for a full DOF model. This function takes as inputs the nominal design (com-
ponent properties and geometry) as well as perturbations about the nominal design.
This function analyzes the beam using the following procedure

1. ComputeComponentProperties_FEM.m determines the number of DOF's per com-
ponent.

2. ComputeComponentMatrices.m computes the mass and stiffness matrices for the
three components.

3. AssembleThreeComponents.m creates the mass and stiffness matrix for the as-
sembled beam.

4. ComputeNormalModes.m computes the eigenvalues and eigenvectors.
AnalyzePerturbedBeam_CMS.m
This function is similar to AnalyzePerturbedBeam_FEM.m except that C-B CMS is

performed and the resulting ROM for the system is analyzed. This function analyzes
the beam using the following procedure
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1. ComputeComponentProperties. FEM.m (same as above).

2. ComputeComponentProperties. CMS.m determines various properties for each com-
ponent for use in the C-B CMS procedure.

3. ComputeComponentMatrices.m (same as above).

4. ComputeCraigBamptonMatrices.m computes the reduced mass and stiffness ma-
trices, as shown in 2.6, and the transformation matrices that relate the modal
displacements to the internal DOF's for each component.

5. AssembleCraigBamptonSystem.m combines the component matrices into a ROM
for the system.

6. AnalyzeAssembledSystem.m computes the eigenvalues and eigenvectors for the
ROM.

ComputeComponentProperties FEM.m
This function takes in the geometry of the components and returns the number of
DOFs for each component.

ComputeComponentProperties_CMS.m
This function computes the number of boundary conditions per component and type
of boundary condition (global or attachment).

ComputeComponentMatrices.m
This function takes in the nominal design and perturbation and computes the mass
and stiffness matrices for each component.

ComputeCraigBamptonMatrices.m
This function takes in the component mass and stiffness matrices and returns the
reduced-order mass and stiffness matrices as shown in 2.6 and the transformation
matrices given in 2.5.

AssembleThreeComponents.m
This function takes the full-order component mass and stiffness and assembles them
into system matrices.

AssembleTwoComponents.m
This function takes in two sets of reduced mass and stiffness matrices, as well as the
transformation matrices, and creates matrices for the joined components.

AssembleCraigBamptonSystem.m
This function uses AssembleTwoComponents.m to create reduced mass and stiffness
matrices for the system.

ComputeNormalModes.m
This function computes eigenvalues and eigenvectors for the full-order system.

AnalyzeAssembledSystem.m
This function computes eigenvalues and eigenvectors for the ROM.

15



ApplyBounaryConditions.m
This function eliminates the global boundary DOF's from the full-order system before
computing the eigenvalues and eigenvectors.

eig_Nsort.m

This function calls MATLAB’s built in function eig.m. The purpose of this function is
to sort the eigenvalues in increasing order and normalize the eigenvectors with respect
to the mass matrix. These operations are sometimes carried out by eig.m, but are not
guaranteed. This function returns the smallest NV eigenvalues as a column vector and
their corresponding eigenvectors. This function was created so that the hyper-dual
number versions of the above routines avoid the high computational cost of computing
derivatives of all the eigenvectors when only a few are actually kept.

16



Chapter 3

Parameterization Using Hyper-Dual
Numbers

The PROM method proposed in the present work is derived using hyper dual numbers
because hyper dual numbers allow for exact calculations of derivatives without needing mul-
tiple points at which the derivatives are evaluated. This is achievable due to the definition
of a dual number. A dual number is defined as a class of generalized complex numbers
where the non-real part is defined by the non-zero root of the number zero, as described
in [6]. A hyper-dual number is a dual number defined in more than one dimension. For
example, two dimensional hyper-dual numbers are defined to consist of one real part and
three non-real parts, where the three non-real units €, €5, and €165, have the properties that
€7 = €2 = (e162)> = 0 but €1 # €5 # €165 # 0. Higher dimensional hyper-dual numbers
can also be considered, such as described later in the text. The Taylor series for a real-
valued function subjected to a hyper-dual perturbation of h; and hy truncates exactly at the
second-derivative term

f(I + h1€1 + h2€2 + 06162) = f(l') + hlf/(l')Gl + hgf/(l')EQ + hlhgf”(l')Eleg. (31)

There is no truncation error because all the higher-order terms contain €7 or €2 or higher

powers and are zero by definition. The first and second derivatives are the leading terms of
the non-real parts, and these terms can be found by taking the individual non-real parts and
dividing by the step size. There is no required difference operation, as in finite-difference
approximations, which would lead to subtractive cancelation error. The first and second
derivatives can thus be computed exactly, regardless of the step size.

Hyper-dual numbers have been implemented in C++, CUDA, and MATLAB for second-
derivative calculations. For this parameterization study, higher-order derivatives are desired
since many geometric terms enter into the stiffness matrix in a cubic manner. A hyper-dual
implementation that produces exact third derivatives is created by including €3 terms with
additional perturbation hs. This yields a Taylor series that truncates exactly at the third
derivative term

f(ZL’ + h1€1 + h2€2 + h3€3 + 06162 + 06163 + 06263 + 0616263)
= f(ZL‘) + hlf/(x)el + th/(ZL')EQ + hgf/(x)(-ig + hlhgf”(x)eleg
+ hlhgf//(l')€1€3 + hghgf//(x)ﬁgﬂg + hlhghgf///(.l')ElEQEg. (32)
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The use of hyper-dual numbers requires overloading all of the functions in the analysis
code to operate on hyper-dual numbers instead of on real numbers (that is, creating a new
method for a function that operates on hyper dual numbers instead of the originally intended
data structure). However, there are often cases where functions are used for which the code
is not available and therefore cannot be modified. In these situations it may still be possible
to use hyper-dual numbers, if the effect of computing the derivatives can be achieved. One
example of this is the solution of a linear system, Ay = b, where derivatives can be computed
by several calls to the real-valued routine [8]. First derivatives of the solution of a linear
system, Ay = b, can be computed by solving

dy 0db 0A

A = — ) .
Second derivatives can then be found by solving
2 2 2
APy Ob A 0Ady 0A Dy -
8:151(9:15] 8:151(9:15] 633'1(917] (9:}51 (9:15] 633'] (9:}51
and third derivatives by solving
A Py B b B PA _ A Oy B A dy
0x;0x;0x), N O0x;0x;0xy, (%iaxjﬁxky O0x;0x; Oxy,  Ox;0xy, Ox;
B A dy 0A Py 0A %y 0A %y (3.5)

Using hyper-dual numbers to compute derivatives for the parameterization of eigenvalues
or CMS matrices requires a hyper-dual version of the eigenvalue calculation routine. As
with the solution of a linear system, the effect of using hyper-dual numbers can be recreated
without modifying the real-valued eigenvalue solver.

Derivatives of Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors are solutions of
(K = AeM) ¢ = Fyge = 0, (3.6)
with Fy = (K — A\¢M). This equation can be differentiated to give

OFy 0pe
B, o0 + Fga—xi = 0. (3.7)

Pre-multiplying this equation by the transpose of the eigenvector, and making use of the
fact that Fy¢, = 0, yields

oF,
(9:}51-

K  OM 0\

Op e = b ( M) . (3.8)
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The eigenvectors are orthonormal with respect to M, so ¢! M¢, = 1, and (3.8) can be
rearranged to give the first derivative of the eigenvalue

O\ g (0K  OM
o, 7" (8_:1:2- A axi) be (3:9)

There are several methods for computing the first derivatives of eigenvectors, as sum-
marized by Alvin [9]. The method of Nelson [10] is exact but can be computationally
expensive since it involves solving a linear system for each derivative. The modal superposi-
tion method [11] represents the derivative of an eigenvector as a superposition of the other
eigenvectors and is less computationally intensive than Neslon’s method.

Figure 3.1 shows the first derivative of the second eigenvector with respect to the cross-
sectional height computed using finite differences, Nelson’s method, and modal superpo-
sition. Nelson’s method and the finite-difference calculation are in good agreement. The
first derivative of the eigenvector has sharp corners where the individual components join
together. Modal superposition requires the use of all eigenvectors in order to be exact.
Using a smaller subset results in an approximation. Figure 3.1 shows the result of modal
superposition with 20 modes. The modal superposition method does not capture the sharp
corners, and exhibits Gibb’s phenomena, as would be expected of a method relying on a
finite summation of modes. When the application is CMS, only a few eigenvectors are kept,
so the computational cost of Nelson’s method is not expected to be an issue and is preferred
over modal superposition.
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S 200
©
=
o
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-
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[
=
£ -200
2
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+ —400
E

—600 [ Finite Difference
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—— Modal Superposition
;

-800 ! : !
0 0.2 0.4 0.6 0.8 1

Cross-Sectional Height, mm

Figure 3.1. A comparison of three methods for computing
derivatives of eigenvectors.
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Nelson’s method for computing the first derivative of an eigenvector is to represent it as
a sum of two terms
Iy

al[’i
The quantity z; is found by solving (3.7) with % replaced by z;,

=z; + Ci¢g. (310)

0Fy

Fuzj = —
= 8@

. (3.11)

The contribution of ¢, is added back in by multiplying by ¢;, where ¢; is found by
differentiation the orthonormalization equation

¢JTM¢z' = 045, (3.12)

where 6;; is the Kronecker delta function. The first derivative of the orthonormalization
equation is

oM %,

r 20" M=~ = 0. 3.13
O GO 20T M (3.13)
Substituting Eq. 3.10 into this equation produces
¢T (zi + cie) = (3.14)
and ¢; can then be computed as
1 0M

Expressions for second and third derivatives can be derived following a similar procedure.
The second derivative of an eigenvalue can be computed as

? Ny o K OXg OM 6)\g6M 82
_¢e sz

O0x;0x; N 0z;0x; B 8—% Oz, B Oz Oz, 81‘ 0
3Fe 3@ 3Fz 3@

and the second derivative of the corresponding eigenvector can then be computed as

0?9y

al‘ial‘j = Zij —f- Cijqbg, (317)
where

7 OM 6@ 8]\/[ Oy 6@ Oy T
= —— —M — ¢y M z;;. 1
d)f a 0z Gag %~ 0w; Oz, e O, g, VM (3.18)
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The term z;; is found by solving

0°F, oF, 0 oF, 0
oy — ‘g 1 Oy 7 Oy

B 633'1(917] ¢

— . 1

The expression for the third derivative of an eigenvalue is

PN _ (0K PN OM PN OM PN OM O\ M
LON OM 0N PM M PR D60 0°Fe 00
8xj c%czaxk 8xk c%cﬁx] 8xZ8x]8xk ¢ ¢ 8xj8xk 8952 ¢ 8xZ8xk al‘j
0*F, Oy 7 OF, 0y 7 OF, 0*¢y 7 OF, 9%¢,
— — . 2
aZEZ‘an c%ck + ¢Z 8902 8x]8xk + ¢£ al‘j 8xZ8xk ¢ 8xk 89528% (3 0)

+ oF

The third derivative of the corresponding eigenvector can then be computed as

M—z- + ciind (3.21)
002,01 igh T igkT0 ’

where

1 ., &M r M 9¢, . OPM 3¢y . OPM ¢y
Cijk = —5@ 7@—@

O¢; OM Oy
0x;0x;0x, O0x;0x; Oz, s Ox;0xy, Ox; s O0x;0x), Ox; B Oxy, Ox; Ox;
6T OM s, 067 OP6 06T oMOs, POl | 06 06T 5o
Oxy, Oxj Ox;  Ox,  Ox;0x;  Oxy Oxyp Ox;  Oxj0xy,  Ov;  Oxj

ox,;0xy,
¢T@M sty oM 0*¢, oM 0*¢,
— P

— o0 = — T Mz, (3.22
Ox; Ox;0xy, Z Oz 00y % P Or;0x; b0 Mg, (3.22)

and z;;;, is found by solving

. ___OF  OF 06 F 96 0°F, 6
gk — 8%895]8% ¢ 895]8% 8902 8@8@ 8xj 8@895] al‘k

_O0F Ry, O Ry, _O0F * Py (3.23)

Description of MATLAB Files

This section describes the MATLAB analysis routines used to investigate parameteriza-
tion at the various levels shown in Figure 1.2.

@hyperdual2

Directory containing the class implementation of hyper-dual numbers for second-derivative
calculations.
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@hyperdual3
Directory containing the class implementation of hyper-dual numbers for third-derivative
calculations.

ParameterSweep_FEM.m
This function performs a sweep through the parameter variations calling AnalyzePer-
turbedBeam_FEM.m for each perturbation. The results of this function are used to
assess the accuracy of the parameterization approaches applied to the FEM branch of
Figure 1.2.

ParameterSweep_CMS.m
This function performs a sweep through the parameter variations calling AnalyzePer-
turbedBeam_CMS.m for each perturbation. The results of this function are used to
assess the accuracy of the parameterization approaches applied to the CMS branch of
Figure 1.2.

ParameterizeEigenvalues_ FEM.m
This function computes the eigenvalues and their derivatives for the nominal design,
following the analysis procedure shown in the FEM branch of Figure 1.1. A parame-
terized model of the eigenvalues is then computed using the derivatives at the nominal
design.

ParameterizeEigenvalues_ CMS.m
This function computes the eigenvalues and their derivatives for the nominal design,
following the analysis procedure shown in the CMS branch of Figure 1.1. A parame-
terized model of the eigenvalues is then computed using the derivatives at the nominal
design.

ParameterizeComponentMatrices_ FEM.m
This function computes parameterized versions of the component matrices using hyper-
dual numbers to compute the derivatives. A sweep through the allowable variations is
then performed using the parameterized component matrices.

ParameterizeComponentMatrices_CMS.m
This function computes parameterized versions of the component matrices using hyper-
dual numbers to compute the derivatives. A sweep through the allowable variations is
then performed using CMS with the parameterized component matrices.

ParameterizeCraigBamptonMatrices_CMS.m
This function computes parameterized versions of the C-B reduced matrices for the
components using hyper-dual numbers to compute the derivatives. A sweep through
the allowable variations is then performed using the parameterized CMS matrices.

ParameterizeSystemMatrices_ FEM.m
This function computes parameterized versions of the system matrices using hyper-dual
numbers to compute the derivatives. Eigenvalues are then computed for the allowable
variations using the parameterized system matrices.
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ParameterizeCraigBamptonSystem_CMS.m
This function computes parameterized versions of the C-B system matrices, after the
reduced component matrices have been assembled, with hyper-dual numbers used to
compute the derivatives. Eigenvalues are then computed for the allowable variations
using the parameterized CMS system matrices.
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Chapter 4

Discussion of Results

The example problem being considered is a simply supported beam composed of three
components, as shown in Figure 4.1. The beam has elastic modulus F, density p, width B,
cross-sectional height H, location of the center of the defect ¢, and length of the defect W,
with nominal values given in Table 4.1. The material properties and geometry of the center
section are allowed to be perturbed from their nominal values.

Figure 4.1. A simply supported beam composed of three

components.
Property Value
Property Value
Density, p 2700 kg/m?
Elastic modulus, F 68.9 GPa
Cross-sectional width, B 20 cm
Cross-sectional height, H 5 mm
Location of defect’s center, ¢ 45 cm
Length of the defect, W 30 cm
Length of the beam, L 1m

Table 4.1. Material and geometric properties for the beam.

Two types of parameterizations are considered: quadratic and cubic. These parameteri-
zations are applied at all the levels shown in Figure 1.1, although only results from the CMS
branch are presented here. A parameter sweep was run for each case to determine the true
behavior in order to assess the accuracy of the parameterized models. The CMS calculations
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are performed by keeping only three modes per component. This seems to produce accurate
results although more testing is needed on the effect of varying the number of modes kept.
Parameter variations are considered for each of the variables in Table 4.1, except for L.

The quadratic parameterization given in Eq. 1.1 is used to produce the comparisons
shown in Figs. 4.2-4.4. Detailed comparisons for each case are provided for the first three
eigenvalues in Figs. 4.5-4.10. Quadratic parameterization produces fairly accurate results
for variations in Young’s modulus, material density and cross-sectional width and height.
There are some issues with the CMS parameterizations at the extremes of the parameter
space. For the quadratic parameterization, variations in Young’s modulus, material density
and cross-sectional width are exactly represented to machine precision by parameterizing
the component matrices. Parameterizing the CMS matrices produces slightly less accurate
results, and parameterizing the eigenvalues produces fairly accurate results. Quadratic pa-
rameterization of the full system matrices and CMS matrices is not able to accurately capture
the effects of variations in cross-sectional height. Here, the system matrices are composed
to represent bending stiffness (as opposed to the cross-sectional height). Bending stiffness
relates to the cube of cross-sectional height, whereas the other parameters factor into the
system matrices in a linear manner. For variations in location and length of the center
component the parameterizations are only accurate in a small region around the nominal
design. For these variations, parameterizing the eigenvalues is the most accurate, followed
by parameterizing the CMS matrices, with parameterizing the component matrices the least
accurate.

Cubic parameterizations, as given in 1.2, produce similar trends but are in general more
accurate. The accuracy of the cubic parameterization is shown in Fig. 7?7, with detailed
comparisons for the first three eigenvalues of each case given in Figs. 4.14-4.19. The cubic
parameterization applied to the component matrices is able to accurately represent the effect
of varying the cross-sectional height, and also improves the accuracy of parameterization of
the CMS matrices. The geometric variations, location and length of the center component,
are accurate only in a small region around the nominal design but the accuracy is bet-
ter than the quadratic parameterization. For the geometric variations, parameterizing the
eigenvalues is most accurate, followed by parameterizing the CMS matrices. Parameterizing
the component matrices is the least accurate approach for the geometric variations. These
trends are consistent with those for using real-valued finite difference methods to construct
the parameterizations instead of hyper-dual numbers.

Parameters related to the geometric changes of the system, specifically the center location
and width, are expected to be more difficult to model due to their nonlinear effects on the
stiffness matrix as they are varied. Other parameters, that affect the system in only a bulk
sense such as B or H, or that are material properties such as F or p, are expected to be
easier to parameterize as varying them linearly varies the system matrices linearly as well.
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Figure 4.10. A comparison of quadratic parameterizations
for variations in length of the center section, W, for the CMS
branch of Figure 1.2 where three modes are kept per compo-
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Figure 4.14. A comparison of cubic parameterizations for
variations in Young’s modulus, E, for the CMS branch of
Figure 1.2 where three modes are kept per component.
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Figure 4.16. A comparison of cubic parameterizations for
variations in cross-sectional width, B, for the CMS branch of
Figure 1.2 where three modes are kept per component.
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Figure 4.17. A comparison of cubic parameterizations for
variations in cross-sectional height, H, for the CMS branch
of Figure 1.2 where three modes are kept per component.
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Figure 4.19. A comparison of cubic parameterizations for
variations in length of the center section, for the CMS branch
of Figure 1.2 where three modes are kept per component.
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Chapter 5

Conclusions and Future Work

This work demonstrates that hyper-dual numbers can be used to construct PROMs both
efficiently (in terms of the number of meshes required) and accurately. With these PROMs,
the task of assessing the response of a real system with parametric (aleatoric) uncertainty
due to manufacturing or other sources should now be feasible for the first time. Without
these PROMs, the effort required to analyze or model aleatoric uncertainty in a real system
would be prohibitively expensive. The derivatives necessary for constructing the PROMs
are computed using only the nominal design, eliminating the need to construct more than
one mesh as would be required by finite differencing. However, in order for this approach
to be applied it is necessary to know how the mesh would change as the parameters of the
design are varied. One approach would be to incorporate hyper-dual numbers into the mesh
generation routine. This has been done for fairly simple 2D computational fluid dynamics
meshes; however, this is not likely to be practical for large commercial codes, but it should
be feasible for research codes such as SIERRA. More work therefore needs to be done to
determine if hyper-dual numbers can be used for large scale finite element calculations.

Higher-order parameterizations should better capture the behavior for the geometric
variations. This would require hyper-dual numbers capable of producing exact fourth (or
higher) derivatives. It is fairly straightforward to extend the existing hyper-dual number
formulation to higher derivatives, as evidenced by the extension to third derivatives. A more
general approach, though, in which dual numbers are defined recursively would allow for
easier extensions to arbitrary derivatives. This approach would define a hyper-dual number
as a dual number with dual number components. Third derivatives would then be produced
by going one level further. This approach should be fairly straightforward to implement,
and has been done by others. The complication in the present example is determining how
to handle the differentiation of the eigenvalue calculations and the linear system solve.
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