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Abstract 
 
People responding to high-consequence national-security situations need tools to help them make 
the right decision quickly. The dynamic, time-critical, and ever-changing nature of these 
situations, especially those involving an adversary, require models of decision support that can 
dynamically react as a situation unfolds and changes. Automated knowledge capture is a key part 
of creating individualized models of decision making in many situations because it has been 
demonstrated as a very robust way to populate computational models of cognition. However, 
existing automated knowledge capture techniques only populate a knowledge model with data 
prior to its use, after which the knowledge model is static and unchanging. In contrast, humans, 
including our national-security adversaries, continually learn, adapt, and create new knowledge 
as they make decisions and witness their effect. This artificial dichotomy between creation and 
use exists because the majority of automated knowledge capture techniques are based on 
traditional batch machine-learning and statistical algorithms. These algorithms are primarily 
designed to optimize the accuracy of their predictions and only secondarily, if at all, concerned 
with issues such as speed, memory use, or ability to be incrementally updated. Thus, when new 
data arrives, batch algorithms used for automated knowledge capture currently require significant 
recomputation, frequently from scratch, which makes them ill suited for use in dynamic, time-
critical, high-consequence decision making environments.  In this work we seek to explore and 
expand upon the capabilities of dynamic, incremental models that can adapt to an ever-changing 
feature space. 
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1.  INTRODUCTION 
 
 
In the first year of this project, we accomplished the primary goal of establishing a benchmark 
for existing incremental learning algorithms. To do this, we developed novel ways of measuring 
and comparing batch and incremental algorithms by developing experimental procedures that 
mimic typical contexts in which incremental algorithms are used for automated knowledge 
capture. We implemented a software harness for comparing algorithms using a wide variety of 
datasets and evaluation metrics. As part of this harness, we created a capability to handle a wide 
variety of datasets in different data formats. Within this harness, we implemented a large suite of 
classic and contemporary incremental learning algorithms for categorization and have 
benchmarked them on several real-world datasets.  
 
In the second year of this project, we have investigated novel ways of combining incremental 
and batch algorithms, such as updating a knowledge model incrementally after batch learning has 
occurred on it with an iterative approach.  Work has focused on leveraging streaming random 
forest algorithms to prepare experiments that seek to find balance between batch and incremental 
approaches.  As part of this effort, internal Sandia optimization code is being leveraged to 
perform large-scale parameter optimization in order to characterize the behavior of the 
algorithms across a broad array of tasks.  As before, we have leveraged data from the machine 
learning community, to include a variety of learning tasks hosted on Kaggle.  
 
In the final year of the project, we focused specifically on streaming random forests as a learning 
construct in which to perform experiments.  Additionally, we explored the space of unsupervised 
machine learning algorithms, focusing on variants of the K-Means algorithm. 
 
All work is developed and deployed in Sandia’s open source Cognitive Foundry software 
package, providing direct utility of the research to current and future users.  A streaming data 
pipeline has been created within the Foundry, and is quickly reaching maturity as a platform for 
working with incremental data from a variety of sources. 
 
This project supports the national security missions of DOE, DOD and DHS by providing 
science and technology in support of the human element that is critical to many mission areas. It 
addresses a fundamental barrier to using computational models of cognition by updating models 
with relevant knowledge in a timely manner to support a human’s ability to understand and act in 
urgent and uncertain situations with nationally significant consequences. This will also increase 
their applicability to environments such as physical and cyber security that involve adversaries 
who constantly adapt tactics and strategies by also enabling the models to adapt. 
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2.  ALGORITHMS 
 
2.1. Overview 
 
In investigating the space of incremental learning algorithms, we began with algorithms that are 
popular among researchers and practitioners. Initial benchmarking of these algorithms was 
performed as described in the Experiments section below.  We then proceeded to investigate 
streaming random forest based algorithms and k-means based unsupervised incremental 
algorithms.  Each of these is described in turn in this section.  All code was implemented in the 
open source Cognitive Foundry library, discussed in the Infrastructure section below. 
 
2.2. Supervised Incremental Learning Algorithms 
 
For the purposes of benchmarking, we implemented a number of incremental learning algorithms 
from the literature, which we list here.  
 
2.2.1 Perceptron-Like Algorithms 

 Online	Perceptron	
 Margin	Infused	Relaxed	Algorithm	(MIRA)	[Crammer,	2003]	
 Relaxed	Online	Maximum	Margin	Algorithm	(ROMMA)	[Crammer,	2003]	
 Aggressive	Relaxed	Online	Maximum	Margin	Algorithm	(AROMMA)	[Crammer,	

2003]	
 Approximate	Large	Margin	Algorithm	(ALMA)	[Gentile,	2002]	
 Passive	Aggressive	Perceptron	(multiple	variants)	[Crammer,	2006]	[Wang,	2010]	
 Shifting	Perceptron	[Cavallanti,	2007]	
 Ballseptron	[Shalev‐Shwartz,	2005]	

 
2.2.2 Confidence Weighted Algorithms 

 Variance	Drop	[Dredze,	2008]	
 Variance	Project	[Dredze,	2008]	
 Standard	Deviation	Drop	[Dredze,	2008]	
 Standard	Deviation	Project	[Dredze,	2008]	
 Adapative	Regularization	of	Weights	(AROW)	[Crammer,	2009]	

 
2.2.3 Bounded Kernel Algorithms 

 Stoptron	[Orabona,	2009]	
 Remove	Oldest	Kernel	Perceptron	(ROKP)		
 Randomized	Budget	Perceptron	[Cesa‐Bianchi,	2006]	
 Forgetron	(multiple	variants)	[Dekel,	2008]	
 Projectron	(multiple	variants)	[Orabona,	2009]	

 
2.2.4 Bayesian Algorithms 

 Online	Naïve	Bayes	
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2.3. Streaming Random Forests 
 
Streaming random forests are a relatively new concept in the area of machine learning. Being in 
its infancy, there are many new areas of study, though a few salient paradigms are emerging. For 
the purposes of our research, we wanted to create an architecture that would support current 
developments in streaming random forests, while giving us the flexibility to explore and 
implement new algorithms in the area. The components of our design are listed below: 
 
2.3.1 OnlineCategorizationTree 
 
The OnlineCategorizationTree is a decision tree classifier structure that can grow incrementally 
as new data arrives. The main difference between the nodes in this tree and a normal 
categorization tree is that, in our case, the frontier nodes store category counts and weak learners 
(NodeSplitters) which can be used by the overall streaming random forest learner 
(OnlineCategorizationTreeLearner) in the tree growing process. This allows for intra-node 
decision mechanisms that are more intricate than using something like the Gini coefficient 
(CART) or information gain (ID3, C4.5). This style of incremental tree has been described in 
papers such as [Domingos, 2000], [Saffari, 2009], and [Abdulsalam, 2011]. 
 
An alternate design could use standard CategorizationTreeNodes throughout the tree, and store 
frontier node state in the learner object, for example in a Map<Node, FrontierState>. 
 Additional sub-components of the OnlineCategorizationTree are as follows: 

 OnlineCategorizationNode: an extension of CategorizationTreeNode to hold an 
online split (OnlineNodeSplitter), as well as count data. 

 OnlineNodeSplitter: an interface for an object that decides when a node is ready 
to be split, and returns a BranchDecider that defines the split.  

 OnlineNodeSplitterFactory: an object that creates OnlineNodeSplitters when the 
tree learner needs a new one (for newly-created frontier nodes). 
 

The flexibility in the current design comes from OnlineNodeSplitter and 
OnlineNodeSplitterFactory, which let you plug in new strategies for determining node splits. The 
design breaks this down into two sub-packages: 

 staticfunc: static functions – node splits come from a pool of pre-determined split 
functions like axis-aligned splits (standard CART) or random projections 

o OnlineHistogramSplits: uses an online histogram to keep track of each 
class distribution for determining split threshold.  

o ExtremelyRandomSplits: In the spirit of Extremely Randomized Trees 
[Geurts, 2006], selects the split point randomly within the feature range 
[min,max] that has been observed so far. It therefore needs a “warmup” 
stage to establish initial feature ranges. 

 dynamicfunc: dynamic functions – the split function is updated dynamically over 
time, allowing the insertion of algorithms such as the Passive Aggressive learner 
[Crammer, 2006]. Linear learners in this role are sometimes called “oblique” 
decision trees. 
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o BinaryLearnerSplitterFactory: produces OnlineNodeSplitters that use an 
underlying SupervisedIncrementalLearner on an (optional) subspace of 
features. 

 
2.3.2 OnlineCategorizationTreeLearner 
 
This class is responsible for growing an OnlineCategorizationTree instance. It does this by 
accumulating statistics at frontier nodes and using a SplitDecision object to determine when to 
make a new split. When a frontier node is split, it is replaced in the tree with a normal 
CategorizationTreeNode, and new child frontier nodes are added to it as children. These new 
frontier nodes are given a set of competing NodeSplitter (weak learner) options by the 
NodeSplitterFactory. Nodes will not be split when they reach maxDepth. 
 
2.3.3 OnlineCategorizationForestLearner 
 
This is the top-level forest class that holds the individual tree learners. During learning, this 
module passes samples down to the relevant frontier in the tree. 
 
2.4. Unsupervised Incremental Algorithms 
 
This section describes our implementation of an incremental k-means in which clustering is done 
incrementally.  Our implementation begins with the Online Lloyd’s Algorithm and also adds 
optional modifications including K-Means++ [Arthur 2007] and Mini-batch K-Means [Sculley 
2010].   
 
2.4.1 Lloyd’s Algorithm 
Lloyd’s Algorithm is an iterative refinement technique used for grouping data points into 
clusters.  The first step in the algorithm is to obtain an initial set of k means.  There are numerous 
methods that can be used for the initialization step such as the Forgy methods or the Random 
Partition method [Andberg, 1973].  The algorithm then repeats two steps until it converges.  The 
first of these steps is an assignment step in which each data point is assigned to a cluster whose 
mean results in the least within-cluster sum of squares (WCSS): 

arg	min෍෍‖࢞ െ ࢛௜‖ଶ

࢞∈ௌ೔

௞

௜ୀଵ

 

where ௜ܵ is the set of data points assigned to cluster i, ࢞ is the data point represented as a vector, 
and ࢛௜ is the mean of the points in ௜ܵ.  
 
The next step is to update the means for each cluster by assigning it to be the centroid of all of 
the data points assigned to the cluster using the following formula: 

݉௜
ሺ௧ାଵሻ ൌ

1

ห ௜ܵ
௧ห
෍ ࢞
࢞∈ௌ೔

೟

 

where i is the index of the cluster, t is the current iteration, , and ࢞ is the data point represented as 
a vector.   The algorithm reaches convergence when no data points change clusters during the 
assignment step.   
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The online version of Lloyd’s algorithm behaves in a similar way, but data points are received 
one point at a time rather that all at once.  Each time a cluster is updated, it is updated from only 
one data point.  The first step is again to create an initial set of k means.  Then, for each new data 
point, two steps are followed which are very similar to above.  In the assignment step, the new 
data point is assigned to the nearest cluster, which minimizes the WCSS.  The next step then 
updates only the cluster that the data point was assigned to.  The resulting cluster mean is 
updated according to   

ࢉ ൌ ࢉ ൅ ൬
1
௖ݒ
൰ ሺ࢞ െ  ሻࢉ

where ࢉ is the cluster center, ݒ௖ is the count of points the cluster has been updated by, and ࢞ is 
the sample vector.   
 
2.4.2 K-Means++ 
K-Means++ is an augmented version of k-means in which the first step of seeding the algorithm 
with the initial clusters is modified.  This algorithm has been shown to be O(log k)—competitive 
with the optimal clustering.  As previously mentioned, K-Means++ follows all of the steps of the 
standard k-means algorithm except for the first step.  In K-Means++, the first cluster to use is 
chosen uniformly at random from the full set of data points.  The next step is to choose another 

cluster from the set of data points with probability 
஽ሺ௫ሻమ

∑ ஽ሺ௫ሻమೣ∈೉
 where D(x) is the shortest distance 

to any of the cluster centers already chosen.  This step is then repeated until k data points have 
been selected to be the initial clusters.  From this point on, K-Means++ follows the exact same 
steps as k-means.   
 
2.4.3 Mini-batch K-Means 
Mini-batch k-means is a hybrid of the standard batch k-means algorithm and the stochastic 
gradient descent (SGD) variant of k-means developed by [Bottou, 1995].  The mini-batch 
algorithm, as described by [Sculley, 2010], attempts to improve upon the O(kns) computation 
time of the standard batch k-means where n is the number of data points and s is the maximum 
number of non-zero elements in a data point’s vector while avoiding the early convergence of 
SGD due to stochastic noise.  The algorithm begins by initializing the set of k means as done in 
Lloyd’s algorithm.  The following steps are then repeated for the specified number of iterations.  
First, b samples are selected from the full set of data points where b is the size of the mini-batch.  
For each of the selected samples, the nearest center is calculated and cached.  Next, each of the 
samples update the cached closest center using the following update: 

ࢉ ൌ ቆ1 െ ቀ ଵ
௩೎
ቁቇ ࢉ ൅ ቀ ଵ

௩೎
ቁ ࢞  

where ࢉ is the cluster center, ݒ௖ is the count of points the cluster has been updated by, and ࢞ is 
the sample vector.   
 
2.4.4 Incremental K-Means Implementation 
Our implementation of the incremental k-means algorithm follows the standard online Lloyd’s 
algorithm where data points are fed one at a time and the nearest cluster to that point is updated.  
As previously mentioned, there are numerous methods that can be used to create the initial 
clusters.  Our implementation extracts an interface allowing for easy swapping out of the way the 
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initial clusters are created.  Currently, there is a basic implementation of the interface in which 
the first k points are used as the initial cluster centers.  There is also a slightly modified version 
of the k-means++ initialization method.  Our k-means++ implementation differs from the 
original implementation due to the fact that we are learning incrementally and do not have the 
full data set up front.  To handle this, we buffer a specified number of data points before 
initializing the clusters.  Once enough data points have been buffered, the k-means++ algorithm 
is run as described by [Arthur and 2007] except that instead of choosing points from the full data 
set, points are chosen from the buffered set of points.   
 
We also implemented a slightly modified version of the mini-batch k-means algorithm similar to 
the one described by [Sculley 2010].  Again, the modification that was made is due to the fact 
that the algorithm was designed for when all of the data points are obtained upfront, while our k-
means implementation feeds data in incrementally.  To account for not having all of the data up 
front, a buffer needs to be created to store the received data points until the batch size has been 
reached.  Once the batch size is reached, the buffer can be fed into the mini-batch method to 
update the clusters as previously described.  The main difference in our implementation being 
that instead of randomly selecting points to be included in the batch, each batch is the next b 
obtained points where b is the batch size.   
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3.  EXPERIMENTS 
 
3.1. Overview 
 
Experiments were performed to baseline performance of incremental algorithms, and to vet the 
capabilities of algorithms coming out of research and development.  All work was performed 
within the open source Cognitive Foundry library, described in the Infrastructure section below. 
 
3.2. Performance of Incremental Algorithms 
 
In an effort to understand how incremental algorithms perform empirically and to provide a 
guidepost for algorithm research and development, the team performed a number of experiments 
with data sets from Kaggle.com.  Experiments with two such data sets are presented here.  In 
addition, data from another SNL project’s binary classification problem was used for 
experiments.  In the Infrastructure section below, we discuss the additions made to the Cognitive 
Foundry to support data streaming, feature extraction, and experiment harnesses. 
 
3.2.1 Windowing and Evaluation Techniques 
 
To facilitate comparison of incremental algorithms to their batch counterparts, and to provide a 
mechanism for evaluating performance continuously (simulating a streaming set of data) 
multiple approaches were devised for running training – testing cycles. 
 
3.2.1.1 Batch Cross Block Performance Battery 
 
As opposed to a traditional cross fold based analysis, cross block does not randomize the order of 
the data before dividing it into equal sized blocks.  The intent is to maintain the temporal nature 
of a data stream, to include concept drift over time, allowing incremental algorithms to leverage 
their ability to adapt over time to changing inputs.  In addition, for each block, a portion of the 
data is withheld as test data.  Thus, the algorithm is trained on a given block’s training data, then 
tested on that block’s test data, and then the process is repeated with the next block. 
 
3.2.1.2 Growing Batch Performance Battery 
 
The growing batch methodology is similar to the batch cross block methodology, but each 
subsequent block of training data is larger in size than the previous one. 
 
3.2.1.3 Interleaved Performance Battery 
 
In the interleaved methodology, we do not attempt to mimic batch learning through repeated 
bulk train and test iterations, but instead evaluate the algorithm’s performance after the algorithm 
updates on each data point. 
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3.2.1.4 Evaluation Techniques 
 
Our primary measure of performance was area under the receiver-operator characteristic curve 
(AUC).  In addition, overall accuracy (including a full confusion matrix), memory usage, and 
wall clock run time were measured.  Student’s T with a 0.95 confidence level was used to derive 
confidence intervals for results. 
 
3.2.2 Ford Challenge 
 
In the “Stay Alert! The Ford Challenge” on Kaggle, the stated task was to “design a classifier 
that will detect whether the driver is alert or not alert, employing data that are acquired while 
driving”.  The data consists of 30 real-valued features per sample, plus binary alert labels for the 
training data.  Approximately 120,000 data samples were made available.  Results for the top 
performing algorithms from the suite implemented during this project are shown in the figure 
below, with variants on the Passive-Aggressive algorithm showing the best overall performance.  
The results shown are for a Batch Cross Block Performance Battery. 
 

 
 

Figure 1.  Performance of algorithms on Ford Challenge data 
 
3.2.3 Grant Prediction 
 
In the “Predict Grant Applications” challenge on Kaggle, the stated task was to “predict the 
outcome of grant applications for the University of Melbourne”.  The data consists of 
approximately 8,700 binary labeled samples (1 = grant won, 0 = grant not won) with 
approximately 250 features per sample, although there are many missing values.  Features 
include relative value of the grant, information about the people on the grant application, dates 
associated with the grant, and information about the past performance of the people on the grant 
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in terms of receiving grants and publishing papers.  Results for the top performing algorithms 
from the suite implemented during this project are shown in the figure below, with variants on 
the Passive-Aggressive algorithm again showing good overall performance, with good 
performance also seen from the Perceptron-like algorithm class of MIRA, ROMMA, and 
AROMMA.  The results shown are for a Batch Cross Block Performance Battery. 
 

 
 

Figure 2.  Performance of algorithms on Grant Prediction data 
 
3.2.4 SNL Binary Classification Problem 
 
An internal SNL project provided us with data for a binary classification problem.  In this data 
set, approximately 5% of the labels were Class A, with the remainder being Class B.  In such an 
unbalanced data set, a significant challenge is in minimizing the number of errors made in 
labeling Class A instances, typically at the tradeoff of mislabeling instances of Class B.  Within 
class accuracy (rather than overall accuracy) was used as a performance metric in order to avoid 
the pitfall of perceived high accuracy for an unbalanced data set.  As can be seen in the figure 
below, using Most Frequent as a baseline gets a 100% accuracy rate for Class B (purple X), as 
would be expected, but in this case Class A accuracy is the worst it can be, at 0% (green 
triangle).   To give a sense for overall performance, we also measure the overall class average 
accuracy (blue diamond).  Thus, our goal is to find an algorithm that maximizes our ability to 
correctly label Class A instances (get the green triangle as high as possible) while minimizing the 
tradeoff of reduced accuracy of Class B labeling (minimize how far the purple X falls).  As can 
be seen from the results, Perceptron like algorithms (MIRA, ROMMA, AROMMA) provide the 
best overall performance.  The relatively poor performance of the confidence weighted class of 
algorithms is somewhat surprising, but may be attributed to the relatively small size of the data 
set used.   
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Figure 3.  Performance of algorithms on SNL Binary Classification Problem 
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4.  INFRASTRUCTURE 
 
4.1. Overview 
 
The Cognitive Foundry [Basilico, 2008] is a Java software library designed for the research and 
development of intelligent systems. It is composed of several packages, each targeted toward 
different research and application domains. In this work we expanded the Cognitive Foundry’s 
Machine Learning package, an open-source Java library of machine learning algorithms designed 
to be easily embedded into applications. We initially created the Machine Learning package to 
quickly build new applications that require learning as a core component and to facilitate 
experimentation with a wide variety of machine-learning algorithms within a variety of new and 
existing applications. As the Foundry has grown, the Machine Learning package has matured 
into a complete framework for common aspects of machine learning and has become our most 
used package, based on the need for adaptive, data-driven behaviors in many systems. 
 
A variety of libraries for data mining and machine learning already exist. Many of the most well-
known, such as Weka [Hall, 2009] and RapidMiner [Mierswa, 2006], are primarily designed for 
data-mining experts to interactively explore existing data, although they also provide 
development interfaces. Our Machine Learning package takes a different approach that focuses 
on learning rather than data mining by specifically aiming to make it easy to use learning within 
the critical processing loop of applications, thus emphasizing the development interface as the 
primary use. One of the most similar libraries is Java- ML [Abeel, 2009], however we take a 
different design approach, provide a wider variety of learning algorithms, and provide 
multithreaded implementations. The Foundry’s emphasis on interfaces and generics makes it 
easier for developers to use learning algorithms with their own application-specific data 
structures, rather than enforcing a predetermined data model. Furthermore, it supports the 
research of new machine learning algorithms by providing a large collection of common 
algorithmic building blocks. Lastly, the Foundry provides extensive developer documentation for 
every public class and method along with thorough unit tests to verify the quality of each 
algorithm’s implementation. 
 
The Cognitive Foundry is designed in an object-oriented manner to be reusable in a variety of 
applications, thus its design focuses on the concepts of modularity, componentization, 
extensibility, and embedability. For machine learning, these concepts are embodied in the design 
pattern of algorithm-as-object: the learning algorithm is separate from both the data and from the 
output that learning produces, such as a categorizer. To facilitate embedding in applications, the 
Foundry is designed to be interface-centric while providing default implementations and makes 
use of Java generics and common Java Development Kit (JDK) classes. Our design emphasizes 
implementations with composition, serialization, clear parameterization, and state-encapsulation 
in mind. 
 
4.2. Data Streaming and Feature Extraction 
 
For the purposes of supporting streaming data, a data streaming framework was added to the 
Coginitive Foundry.  This framework allows for the mapping of data in Comma Separated Value 
(CSV) format into feature vectors with both labels (for classification problems) and identifiers.  
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A collection of utility classes provide for one-to-one, one-to-many, many-to-many, and many-to-
one mappings on the fly from input data columns to elements of the feature vector.  For example, 
an input column containing simple text based state descriptions can be automatically mapped to 
multiple real valued features using a binary coding methodology.  This mapping infrastructure 
allows for on the fly mapping of input data files into a streaming data source.  The 
implementation is abstract and generic, supporting the easy expansion beyond support for CSV 
files as inputs. 
 
4.3. Experiment Harnesses 
The Cognitive Foundry, through it’s algorithm-as-object design pattern, makes it straightforward 
to swap in and out building blocks of an experiment, including the data to be used, algorithm to 
be tested, and methodology for evaluating performance.  Multiple performance battery classes 
were created, one per type of data windowing, in order to support running a battery of algorithms 
through a test suite with a given set of input data.  As an example, the execution code for 
Interleaved Performance Battery follows: 
 
final OnlineLearnerValidationExperiment<InputOutputPair<Vectorizable, Boolean>, LearnedType, 
Map<String, Object>, Map<String, Object>> experiment = 
            new OnlineLearnerValidationExperiment<InputOutputPair<Vectorizable, Boolean>, 
LearnedType, Map<String, Object>, Map<String, Object>>(); 
 
        CompositeSupervisedPerformanceEvaluator<Vectorizable, Boolean, Boolean> 
supervisedCompositeEvaluator = 
            new CompositeSupervisedPerformanceEvaluator<Vectorizable, Boolean, Boolean>(); 
        supervisedCompositeEvaluator.add("error", new MeanZeroOneErrorEvaluator<Vectorizable, 
Boolean>()); 
        supervisedCompositeEvaluator.add("confusion", new 
ConfusionMatrixPerformanceEvaluator<Vectorizable, Boolean>()); 
 
        CompositePerformanceEvaluator<LearnedType, Collection<? extends 
InputOutputPair<Vectorizable, Boolean>>> compositeEvaluator = 
            new CompositePerformanceEvaluator<LearnedType, Collection<? extends 
InputOutputPair<Vectorizable, Boolean>>>(); 
 
        compositeEvaluator.add("supervised", supervisedCompositeEvaluator); 
        compositeEvaluator.add("target-estimate", SingletonPerformanceAdapter.create( 
            new BinaryEstimateAsDoubleEvaluator<Vectorizable>())); 
        compositeEvaluator.add("memory", new MemoryUsageEvaluator(false)); 
        experiment.setPerformanceEvaluator(compositeEvaluator); 
 
        CompositeSummarizer supervisedCompositeSummarizer = 
            new CompositeSummarizer(); 
        supervisedCompositeSummarizer.add("error", new StudentTConfidence.Summary(0.95), 
"error"); 
        supervisedCompositeSummarizer.add("confusion", new 
DefaultConfusionMatrix.CombineSummarizer<Boolean>(), "confusion"); 
        supervisedCompositeSummarizer.add("accuracy-windowed", WindowedSummarizerAdapter.create( 
            windowSize, new ConfusionMatrixAccuracySummarizer<Boolean>()), "confusion"); 
        CompositeSummarizer compositeSummarizer = 
            new CompositeSummarizer(); 
        compositeSummarizer.add("auc", new AreaUnderCurveSummarizer(), "target-estimate"); 
        compositeSummarizer.add("supervised", supervisedCompositeSummarizer, "supervised"); 
        compositeSummarizer.add("memory", new StudentTConfidence.Summary(0.95), "memory"); 
        compositeSummarizer.add("auc-windowed", WindowedSummarizerAdapter.create( 
            windowSize, new AreaUnderCurveSummarizer()), "target-estimate"); 
 
        experiment.setSummarizer(compositeSummarizer); 
 
        InterleavedPerformanceExperimentListener listener = new 
InterleavedPerformanceExperimentListener( 
            experiment); 
        experiment.addListener(listener); 
 
        Map<String, Object> summary = experiment.evaluatePerformance(learner, data); 
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4.4. Hyperparameter Optimization 
This section provides a description of the tool developed using the Cognitive Foundry in 
combination with internal Sandia software to do parameter studies on the hyperparameters used 
in machine learning algorithms contained in the Cognitive Foundry.  This was developed to be 
easily configurable and setup for use on Sandia’s high performance capacity clusters.  The tool 
consists of several python scripts, configuration files, and xml files used for configuration. 
 
4.4.1 Inputs 
The configuration for this tool is in a series of xml files, which will be discussed in turn.  The 
first of these files is the parameter study configuration file.  This file is broken up into four main 
sections:  a section for defining the dataset, a section for defining how the algorithms are 
evaluated, a section for defining the behavior on the cluster, and a section for configuring the 
different algorithms.  This file is updated with each new parameter study as the algorithms and/or 
parameters to study are adjusted.   
 
The dataset section defines what data source to use for the study.  The only thing required for 
this section is the path to where the data source, which is typically a file of comma-separated 
values, is located.  Example configuration files are provided in an appendix. 
 
The next section defines how the algorithms are to be evaluated for the study.  In this section, the 
main class for running the study is defined, along with the performance measure used to evaluate 
the algorithms.  The main class is defined simply by the fully qualified path to the class, but the 
performance measure is a path to an xml file.  This xml file is used by XStream, a third party 
library that serializes to/from xml, to instantiate an evaluator for use in the study.  To allow use 
of a new performance measure, the only setup required is the creation of an xml file in the proper 
XStream format for the new performance measure along with the Java class it represents.   
 
The section for configuring the cluster behavior simply consists of two parameters.  The first of 
these is the number of nodes to allow the optimizer to use on the cluster.  This number is on a per 
algorithm basis because each algorithm is scheduled as a different job.  If there are, for example, 
three algorithms configured in this study, then up to thirty nodes could be used.  The second of 
the parameters is the wall clock time, which is the maximum amount of time the cluster will 
allow the job to run.  This, again, is on a per algorithm basis due to each algorithm being a 
different job.   
 
The last section is where the actual behavior of the study is configured through defining which 
algorithms and parameters are to be studied.  For each of the algorithms to be studied, there is a 
sub section where the parameters to study for that algorithm are defined. A grid search option is 
used to study these parameters and the values are defined in each sub section.  For each 
parameter that is to be studied, there are two different options for defining the values: explicitly 
define each value to use or define a min/max and how many values you want to sample from in 
between.  When defining a min/max, the values can either be sampled linearly (i.e. 1, 2, 3, 4, 5) 
from the min to max or on a log scale (i.e. 10-3, 10-2, 10-1).   
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The rest of the input to the tool is in more xml files in XStream format for creating the machine 
learning algorithms and the performance measures.  These files need only be created once and 
then don’t need to be changed again unless the class the xml is representing changes.   
 
4.4.2 Running the tool 
The tool consists of three python scripts: one to run the study, one to post-process the results, and 
one to generate a template configuration file.  The first step in running the tool is to create the 
input configuration file as described above.  As a starting point, a copy can be made of a 
previously used configuration file or the python script can be run to generate one.  If the python 
script is used to generate one, every machine learning algorithm that is configured for use will be 
included and the sections that aren’t needed for the study can simply be removed.   
 
The next step is to run the main python script to schedule the jobs on the cluster.  This script will 
parse the xml configuration file and schedule the jobs to be run on the cluster.  As mentioned 
above, each algorithm to be scheduled has a different job and will be subject to the job queue.  
As the jobs begin to finish, the results will be output into different folders for each algorithm in 
an internal output format.  Each of the resulting output files has every combination of parameters 
that the optimizer used and the resulting objective function value as defined by the performance 
measure.  If the number of parameters and algorithms used in the study gets too large, it can be 
hard to find the best set of parameters and determine which algorithm performed the best on the 
dataset.  The last of the python scripts seeks to solve this by aggregating the results into a single 
file.  This output file contains the best combination of parameter values for each algorithm that 
was run with the resulting objective function value. 
 
4.5. Optimized Matrix Math 
 
When this work began, the Foundry codebase contained built-in matrix arithmetic codes built on 
the Matrix-Toolkit Java (MTJ) codebase.  We were leveraging this code for a relatively large 
system of equations (15K by 15K), and found that the code was running very slowly.  When 
investigating, we found that the problem was in sparse and diagonal matrix multiplications.  We 
found this very odd as sparse and diagonal matrix multiplications should be far faster than dense 
matrix multiplications.  This section is organized as follows: First, we briefly describe matrices 
and the reason for sparse and diagonal matrix implementations.  We then describe each of the 
implementations we built.  We provide a brief analysis of the results of our implementations.  
Finally, we discuss further improvements that could be made to our implementations 
 
4.5.1 Matrices – Dense, Sparse, and Diagonal 
 
Matrices are a mathematical abstraction for representing a system of equations on a set of 
unknowns.  In general, there are m equations and n unknowns (variables).  Matrices store the 
multiplier applied to each variable in the same order for each equation as an element in a two-
dimensional array.  This results in each equation being stored in one row of the matrix, and all 
equations’ multipliers for a single variable being stored in one column of the matrix. 
 
In general, any element of this two-dimensional array can be non-zero.  In many applications, 
nearly all of them are non-zero.  These types of matrices are called “dense” and they require the 
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full two-dimensional array for storage.  However, many very interesting problems are not dense.  
Two common classes are “diagonal” and “sparse”. 
 
Diagonal matrices are systems of equations where each equation only has one unknown, and all 
equations have a different variable.  Thus, the matrix has only one non-zero element in each 
column and has only one non-zero element in each row.  Specifically, this matrix is set up so that 
the non-zero elements are stored down the main diagonal (from the upper-left corner to the 
bottom-right corner) and these matrices are square (m = n).  Solving these matrices is trivial – 
and yet they are often a crucial component of a matrix problem. 
 
Sparse matrices arise in many real-world matrix problems (for instance, graph representations, 
finite-element systems, and “bag of word” document representations).  In a sparse matrix system, 
most equations have more than one unknown, but far fewer than n.  The problem is still quite 
difficult to solve as the various equations overlap in which variables have non-zero multipliers, 
and so all equations are interdependent.  However, since most elements of the two-dimensional 
representation are zero, storing a sparse matrix in a dense format is very memory intense and 
results in considerable wasted computation – multiplying or adding with zeroes.  By switching to 
a sparse representation – implicitly storing the zeroes, you can solve a much larger system of 
equations on the same computer. 
 
Returning to our original problem: We wanted to solve large problems (tens of thousands of 
equations of tens of thousands of unknowns).  Building the system of equations required matrix 
multiplication and addition between various sparse and diagonal matrices.  However, MTJ’s 
implementation was orders of magnitude slower for sparse and diagonal operations than it was 
for dense operations.  We decided to see if we could build something faster than MTJ in a few 
days’ work. 
 
We were able to build something far faster in a few days and then spent a few weeks making it 
robust, and adding all of the further features (matrix inversion, determinant, etc.) supported by 
MTJ’s matrices.  Our final implementation was added to the Foundry as the “optimized” matrix 
package.  We were unable to replace all of the Foundry’s dependencies to the MTJ matrices 
before funding ended, although future implementations and improvements can now depend on a 
more efficient matrix library. 
 
4.5.2 Dense Implementation 
 
Our dense matrix implementation is relatively straightforward.  We represent the matrix as a 
two-dimensional array of double-precision floating-point values.  We use Java’s fundamental 
double type instead of its Object-based Double type, as we don’t require the additional 
functionality from the Object-based type, and it requires considerably more memory per value. 
 
To further speed up implementation, we rely on the Basic Linear Algebra Subprogram (BLAS) 
package for the operations it supports.  BLAS is a set of operations that have been optimized for 
performance on various machines.  There is a Java implementation that is our default package. 
BLAS can be optimized to specific machines – callable as native codes from Java.  Those codes 
can be considerably faster than their Java counterparts.  If you want the fastest versions of matrix 
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multiplication, you should follow the instructions in the appendix for compiling and integrating 
these versions locally on your machine. 
 
We provide the same Java interface for the dense matrix class as that provided by MTJ’s matrix 
classes.  We found some further operations necessary to implement required functionality (QR 
decomposition for matrix inversion, SVD and LU for determinant), and provide those operations 
as non-interface methods.  For these decompositions, we rely on the Linear Algebra Package 
(LAPACK).  Unfortunately, we were unable to integrate machine-specific optimized versions of 
LAPACK before funding ended. 
 
To further optimize this code, we created optimized codes for all operations by dense matrices on 
sparse or diagonal matrices.  These codes are able to execute faster than Java’s BLAS between 
two dense matrices. 
 
4.5.3 Diagonal Implementation 
 
As a diagonal matrix can only store non-zero entries along its main diagonal, we store only those 
entries as a one-dimensional array of double elements.  Although the diagonal matrix class 
implements the same interface as all other matrix classes, some operations are not supported 
(such as setting off-diagonal elements to be non-zero).  This class uses O(n) storage, and O(n) or 
O(n2) operations (compared to dense which is O(n2) storage, and O(n2) or O(n3) operations). 
 
All code in this class is implemented in our own code (no calls to BLAS or LAPACK).  This is 
possible as all diagonal operations are trivial. 
 
4.5.4 Sparse Implementation 
 
Sparse matrices can be non-zero at any element in the matrix, but are zero at most elements in 
the matrix.  To allow this flexibility, our sparse matrix has m sparse rows.  The sparse rows are 
represented as a map of integer/double pairs (the integer specifies which column is non-zero, and 
the double specifies the value).  This layout allows quick setting of elements of the matrix.  
However, we found that when operating with this matrix, the code was very slow.  The slowness 
is due to two issues: First, Java’s map class requires Object-based Double and Integer 
classes.  This increases the size of each element considerably.  Second, the map stores each 
element in a different place on the heap, so running through the elements of the matrix requires 
jumping about in memory – removing the benefits of hardware caching for large matrices. 
 
Because of these issues, we transform the matrix to the Yale format before any operation (see 
http://en.wikipedia.org/wiki/Sparse_matrix#Yale_format).  The Yale format stores the non-zero 
elements in a row-order array of doubles, and the columns for those elements in a row-order 
array of integers.  A third array stores the index into the first two arrays for the first element of 
each row.  The benefit of this format are that it allows for memory-contiguous, and primitive-
type double and int representations – significantly improving caching performance.  The 
negative is that the matrix cannot be altered in this format.  Thus, before operating with a matrix, 
we make sure it is in the Yale format, and before altering a matrix, we make sure it is the map-
based format.  There is a one-time cost when transitioning between the formats, but as long as 
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multiple operations are being performed in-a-row, or if the operation is a multiplication (which 
passes over all the elements multiple times), the transformation leads to a considerable savings. 
 
We coded nearly all operations ourselves.  However, some operations (such as inverting the 
matrix, and solving for the determinant) would result in dense intermediate formats.  In such 
cases, we convert the sparse matrix to a dense matrix and call the dense-matrix-equivalent 
function.  We realize that sparse matrices are often used for problems so large that a dense matrix 
can’t represent them in memory – and so transitioning to a dense matrix to solve the system of 
equations is not practical.  However, with sparse matrices, generally the system of equations is 
not directly solved – an iterative approximation solver (such as Steepest Descent or Conjugate 
Gradient) is used.  We implemented these solvers for any matrix in the Foundry as well 
[Shewchuk, 1994].  If you are trying to solve a sparse system of equations that are symmetric 
positive definite (many are), we recommend these sparse solvers.  If your system of equations is 
not symmetric positive definite, you can still use our Conjugate Gradient Minimizer solver that 
minimizes the error of ATAx = b.  If A is square and nonsingular, this still provides the solution 
to Ax = b. 
 
4.5.5 Results 
 
We performed some simple tests to see how quickly our operations are performing.  We focused 
on matrix-matrix multiplication between all three matrix types.  The below figure shows the 
wall-clock execution time for different size matrices and different types.  When we tried 
repeating this with the MTJ matrix classes, we found their dense-dense multiplication was 
slightly faster (~3%), but that their dense-sparse multiplication on the smallest size didn’t finish 
in minutes.  We decided at that point to stop testing MTJ’s multiplication speeds. 
 
The following graph shows the log-log plot of square-matrix size (one dimension shown) and 
execution time.  All matrices were filled with random numbers.  The sparse matrices were 25% 
filled (75% zeroes) – a rather full sparse matrix compared to finite element matrices.  Even so, 
dense-matrix/dense-matrix multiplication was consistently the slowest, with significant speedups 
for adding any sparse matrices, and massive speedups for diagonal matrices.  In a separate study 
(not shown) we demonstrated that as the density of the sparse matrix decreases, the execution 
time also decreases. 
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Figure 4.  Performance of Optimized Matrix Operations 
 
 
4.5.6 Further Improvements 
 
Although we called the package containing our matrix classes optimized, we realize it can still be 
optimized further.  Specifically, we recommend the following optimizations: 

1) Use native LAPACK to optimize the dense-matrix decomposition methods if native 
LAPACK is available. 

2) Multithreading most matrix operations should be trivial.  Parallelizing to 4 or 8 threads 
should cause 3+ or 7+ times speedups (less than 4 or 8 due to overhead). 

3) We did not have time to dig into machine-specific, cache-layout improvements.  If we 
could discover the cache-page size for the resident machine, we might be able to layout 
the matrix in memory for more efficient operations. 
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APPENDIX B:  INSTALLING OPTIMIZED BLAS 
 
You may wish to stop using Java's unoptimized implementations of BLAS.  The following 
instructions assume Mac OSX.  If you're using a different OS, these may not work. (These 
instructions derived from http://jeshua.me/blog/NetlibJavaJNI.) 

We believe similar steps could be done to improve LAPACK functionality, but were unable to 
implement and validate those improvements by the end of funding. 

1. Download and get into the latest Cognitive Foundry 
a. Download from http://foundry.sandia.gov/download.html 
b. Unzip it 
c. Open Terminal 
d. cd CognitiveFoundry-X.X.X/Dependencies/netlib-java-X.X.X/ 

2. Download and set up the correct paths for elements 
a. cp arpack-combo-0.1.jar arpack-combined.jar 
b. cp netlib-java-0.9.3.jar netlib-java-dev.jar 
c. cd jni 
d. JNI_DIR=/System/Library/Frameworks/JavaVM.framework/Versions/A/Headers/ 

(NOTE: Make sure jni.h is in that folder.  If it's not do a search for jni.h on your machine 
and replace with the correct path.) 

e. Download http://www.caam.rice.edu/software/ARPACK/SRC/arpack96.tar.gz and http://
www.caam.rice.edu/software/ARPACK/SRC/patch.tar.gz 

f. mv ~/Downloads/arpack96.tar.gz . 
g. mv ~/Downloads/patch.tar.gz . 
h. sh configure 
i. jni_replacement=$(printf "%s\n" "$JNI_DIR" | sed 's/[\&/]/\\&/g') 
j. sed -i -e "s/CPPFLAGS=/CPPLAGS= -I${jni_replacement} -I. /g" Makefile.incl 
k. sed -i -e "s/CFLAGS=/CFLAGS= -I${jni_replacement} -I. /g" Makefile.incl 

3. Make sure you have the right Fortran tools (and link to the right ones in the code) 
a. sudo port install g95 
b. edit Makefile.incl change the FORTRAN_LIBS line to say the following –> 

FORTRAN_LIBS=-L/opt/local/lib -lf95 -Wl,-single_module 
4. Compile 

a. make 
5. Move the jnilib files to the right spot 

a. sudo cp libjni*.jnilib /System/Library/Java/Extensions/ 
6. In Java code, check to see if you're using the native version of BLAS (vs. Java's JVM 

version) – Foundry does this automatically. 
a. "org.netlib.blas.NativeBLAS".equals(BLAS.getInstance().getClass().getName()); 
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