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Abstract

Density Functional Theory (DFT) has emerged as an indispensable tool in materials research,
since it can accurately predict properties of a wide variety of materials at both equilibrium
and extreme conditions. However, for organic molecular crystal explosives, successful appli-
cation of DFT has largely failed due to the inability of current exchange-correlation function-
als to correctly describe intermolecular van der Waals’ (vdWs) forces. Despite this, we have
discovered that even with no treatment of vdWs bonding, the AM05 functional and DFT
based molecular dynamics (MD) could be used to study the properties of molecular crystals
under compression. We have used DFT-MD to predict the unreacted Hugoniots for PETN
and HNS and validated the results by comparison with crystalline and porous experimental
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data. Since we are also interested in applying DFT methods to study the equilibrium volume
properties of explosives, we studied the nature of the vdWs bonding in pursuit of creating
a new DFT functional capable of accurately describing equilibrium bonding of molecular
crystals. In this report we discuss our results for computing shock Hugoniots of molecular
crystals and also what was learned about the nature of bonding in these materials.
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Nomenclature

Dirac The Dirac Equation: The relativistic quantum mechanical wave equation describing
electrons in relativistic matter, such as heavy materials like actinides.

SE The Schrödinger Equation: The non-relativistic limit of the Dirac Equation, su�ciently
accurate to describe electrons in lighter materials.

DFT Density Functional Theory: The formally exact reformulation of the wave-function
based Schrödinger and Dirac Equations in terms of density and currents.

KS The Kohn-Sham Equations: A calculational approach derived from the Dirac/SE using
DFT. These are the equations implemented in DFT codes.

Functional A short name for an approximation for the Exchange-Correlation functional
which is the only part of DFT that needs to be approximated. The functional sets the
possible accuracy of DFT calculations.

LMTO Linear Mu�n Tin Orbital: A calculational method used in the RSPt code.

LAPW Linear Augmented Plane Wave: Another calculational method. It is considered the
implementation method that gives the most accurate DFT results. Other methods are
usually verified against this method.

plane-wave code A code using plane waves as a basis set. This is the computationally most
e↵ective approach because Fourier Transforms can be used. Calculations can also be
systematically improved by increasing the number of basis functions used, usually spec-
ified by the so called ’cut-o↵’. However, describing core electrons accurately requires
a very large cut-o↵, leading to expensive calculations. The plane-wave approach thus
is mostly used together with pseudo-potentials (see below).

all-electron code A code treating all electrons explicitly. LMTO and LAPW codes are
all-electron.

pseudo-potential code The chemically inert core electrons are treated in a collective way
via pseudo potentials, which increases the computational e�ciency considerably. A
number of di↵erent approaches exist; all are verified by comparing to all-electron,
usually LAPW, results.

PAW Projected Augmented Wave: The pseudo potential technique currently considered
the most accurate.

RSPt Relativistic Spin-Polarised test: The name of an all-electron, full potential, LMTO
code developed by Dr. John M. Wills at Los Alamos National Laboratory.
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VASP Vienna Ab-initio Simulation Package: A plane wave, pseudo potential (PAW), DFT
code extensively used at Sandia.

core electron An electron close to the nucleus. In an LMTO or LAPW treatment these
electrons are considered inert and their properties only depend on the closest nuclei.
In a pseudo-potential code the e↵ect of the core electrons on the valence electrons is
included via pseudo potentials.

semi-core electron An electron that is intermediate between a core and a valence electron.
It has the same angular momentum quantum number as some of the valence electrons
but has a lower principal quantum number (it is in a lower shell). For the heavier nuclei
(or for lighter nuclei at high pressure) these electrons need to be treated as valence
electrons.

valence electron The outermost electrons are valence electrons and their properties are
dependent on many nuclei. These electrons are forming bonds that hold a solid or
molecule together.
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Chapter 1

Introduction and Motivation

Density functional theory (DFT) is the preferred computational method for exploring
materials properties, and Sandia scientists are at the forefront of DFT-based equation of
state (EOS) construction, where information from both experiments and computational in-
vestigations are used (See Figure 1.1). DFT8,10 is a formally exact reformulation of the
Schrödinger Equation (SE) for the ground state of an electron system. Since the DFT
equations are far easier to solve than the many-body SE, DFT has become the preferred
computational method for exploring properties of materials. One example of a Sandia e↵ort
in this area is the recent use of DFT results combined with Z experiments to construct a
new Quartz standard leading to resolution of an important discrepancy between flyer plate
and laser driven shock data for deuterium.9 Another example is similar work for Xenon,21 a
material of importance for DOE. Here DFT results helped both in showing that the available
Equation of State (EOS) tables were inaccurate at high pressures and in the construction of
a new, more accurate, EOS.

Accurate equation of state data for energetic materials is scarce, despite many decades of
experimental e↵ort. Yet, this data is critical for building predictive simulations of energetic
component performance. Motivated by the work noted above on, we have explored the
use of DFT methods for predicting the shock properties of molecular crystal explosives. It
is well-known that DFT does not accurately describe the dispersion forces that bind the
equilibrium structure of molecular crystals. This problem has discouraged the use of DFT
for studying the properties of many explosives. However, since our main interest is the
response of explosives under high pressure (shock) loading, we correctly hypothesized that
for this special case small errors in the intermolecular attractive forces could be neglected.
In this report we describe how DFT based molecular dynamics (MD) were applied to predict
the shock Hugoniots of PETN and HNS. We also discuss the limitations of this approach
and the remaining questions associated with DFT and van der Waals’ forces.
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Figure 1.1. The foundation of Science Based Engineering
is to build bridges from the fundamental Laws of Nature up
to the Engineering codes, bridging several length and time
scales. In this figure two di↵erent paths are depicted. The
upper one is quite complicated and illustrates the general
problem of bridging several di↵erent scales. The lower path is
already in use at Sandia. For Equation of State construction,
data provided by Density Functional Theory (DFT) based
calculations are used in addition to experimental data. The
DFT calculations are used in two ways, either directly or as
a provider of forces in a Molecular Dynamics scheme.
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Chapter 2

Density Functional Theory

Density Functional Theory (DFT) is an exact reformulation of the fundamental law of
nature governing the behavior of electrons. If electrons are in materials with heavy ions,
the fundamental law is the Dirac equation. For materials composed of lighter ions, the
non-relativistic limit of the Dirac equation, the Schrödinger equation, might be used.

Density Functional Theory was first developed using the Schrödinger equation. Using
the Hohenberg-Kohn theorem,8 the Schrödinger equation, which decides the electronic prop-
erties of a material via many-body electronic wave-functions, can be cast in the form of the
Kohn-Sham (KS) equations, which instead decide the behavior of ground state electrons
via auxiliary non-interacting single particle Kohn-Sham orbitals forming the true electron
density of the material. The key point is that solving for non-interacting single particles is
a much less demanding task than solving for many-body wave-functions.

Despite the theory in itself being exact, approximations for the Exchange-Correlation
functional still need to be done since the form of this object is unknown. The accuracy
of the approximation for the Exchange-Correlation functional is the factor that decides the
ultimately attainable accuracy of the calculations. No calculations based on DFT can ever
give better results than this approximation allows. If the ’divine’17 functional were known,
however, the KS equations would yield the exact same results as the fundamental law of
nature, the Schrödinger Equation.

The KS equations are often interpreted as the equations of electrons moving in a field
formed by all the other electrons, so called mean-field theory. From a mean-field theory
perspective the KS orbitals can be interpreted as approximations for the true many-body
electron wave-functions. This alternative interpretation of the KS equations can be very
fruitful if handled correctly, but it also has created, and is creating, a lot of confusion in the
field. In Figure 2.1 we try to compare the two views. In addition to the ’pure’ KS equations,
several mean-field theory based schemes are also implemented in VASP.
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from the Schrödinger equation exactly. However, the mean
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properties calculated via density functionals are guaranteed
to be exact. The quality of a functional can thus not be
judged by how well it reproduces wave function derived prop-
erties. From Reference 15.
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Chapter 3

Shock Properties of Molecular Crystal
Explosives

Method

The equilibrium volume inter-molecular physics of PETN and other CHNO molecular
crystal explosives are dominated by van der Waals’ (vdWs’) forces. No currently available
exchange-correlation functional correctly treats vdWs’ forces, which is likely the main rea-
son that application of DFT to energetic molecular crystals hasn’t been very successful.
The other available ab-initio exchange-correlation functionals (e.g. LDA, PBE) have some
amount of spurious vdWs’ like binding. It has been proposed2,18 that under strong com-
pression, inaccurate treatment of the weak attractive forces should become less and less
significant. We feel that for the research presented here, AM05 is particularly suited due to
its unique character of not including any vdWs’ attraction. That is, the lack of treatment is
more tolerable than incorrect treatment. As such, we expect that near equilibrium, there is
some error associated with the lack of vdWs’ attraction, but under some level of compression
the error will become irrelevant and the technique will provide accurate results for studying
material response under strong compression.

Unreacted principle Hugoniots were predicted from first-principles using density func-
tional theory based molecular dynamics (DFT-MD). Our calculations, utilizing the AM051

functional, were performed with the Vienna ab-initio simulation package (VASP 5.2),11–13

using strictly converged settings.19 The plane-wave cut-o↵ was set to 800 eV and k-point
sampling with mean-value point (1/4,1/4,1/4) was used. The ionic time-step was set to 0.4
fs. Because DFT doesn’t accurately describe the equilibrium structure of molecular crystals,
the reference state was taken to be the experimental structure and volume of each mate-
rial studied. For PETN,4 the tetragonal reference state lattice parameters were taken to
be a = 0.93776 and c = 0.67075.For HNS,6 the monoclinic P21/c reference state lattice
parameters were taken to be a = 22.326, b = 5.5706, c = 14.667, and � = 110.04�.

Points along the Hugoniot were found by setting the volume (V < V
0

) and equilibrating
by running an NVT simulation (Nose-Hoover thermostat) for up to six picoseconds. The
temperature of that cell was then instantly increased in three separate trajectories, which
continued for an additional six picoseconds. The pressure and energy from equilibrated
portions of these runs were then used to write equations U(T ) and P (T ). These equations,
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and the conservation of energy Rankine-Hugoniot relation, [U(T )�U
0

] = 1/2[P (T )+P
0

][V
0

�
V ], were then used to solve for the temperature on the Hugoniot. That temperature is then
used to determine the pressure and energy on the Hugoniot for that set volume. Repeating
this with increasing densities allows one to map out the unreacted Hugoniot to very high
pressures, much higher than is achievable experimentally. This method provides everything
that is needed to write a complete equation of state (P, V, T, E).

Results: Pentaerythritol Tetranitrate (PETN)

Figure 3.1 shows the DFT-MD predicted unreacted crystalline principle Hugoniot of
PETN and compares it to experimental data from the LASL shock handbook.16 The veloc-
ity plot in Fig 3.1 illustrates a major weakness in experimentally determined shock data for
explosives, that the data is only available for relatively low shock velocities. It is di�cult to
make measurements at higher impact velocities due to the reactive nature of the material.
Unfortunately, higher pressure data is critical for building predictive simulations since the
material in front of a detonation wave is first shocked to a point on the unreacted Hugo-
niot before it has time to react. The solid line in the plot is the Hugoniot obtained from
extrapolating the experimental data. It clearly doesn’t capture the high pressure curvature
predicted by theory, nor the low pressure curvature evident from experiment, and the re-
sulting discrepancy in pressure may be as much as 10%. There is no reason to believe that
the U

s

u
p

relationship of any material should follow a polynomial of any order. Clearly a
line is inadequate, and a second order polynomial fit to the PETN data has an inflection
before reaching detonation pressure. This is not an indictment of empirical shock data, but
a comment about the danger of extrapolating EoS data wether it is obtained via theory or
experiment.

It is important to note that the described DFT-MD method provides the Hugoniot of
the the perfect crystal, often referred to as the crystalline Hugoniot. Almost all available
shock data for explosives is measured for consolidated powders with densities less than the
crystalline density. However, with a few fairly reasonable assumptions, it is possible to
transform the crystalline Hugoniot to that of any density.

When transforming the crystalline Hugoniot to shock compression of the porous material,
the first assumption is that the stress required to completely crush the pores is negligible
(i.e. the initially porous material becomes completely compacted at negligible stress). We
will use the Rankine-Hugoniot relations for mass, momentum and energy conservation across
a shock jump.

vU
s

= v
0

(U
s

� u
p

) (3.1)

Pv
0

= u
p

U
s

(3.2)

e� e
0

=
1

2
P (v

0

� v) (3.3)
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Figure 3.1. The unreacted Hugoniot of PETN shown in
both pressure-volume and velocity space. Red points are
computed via DFT-MD. Open circles are single-crystal data
from the LASL shock handbook.16 The red-dashed line is a
quadratic fit to the DFT data and the black line is a linear
extrapolation of the experimental data.

If appropriate, the initial pressure and particle velocity can be assumed zero, v
0

is the
initial specific volume, v is the equilibrium volume behind the shock front, U

s

is the shock
velocity, u

p

is the particle velocity, P is the equilibrium pressure behind the shock front
(assume pressure and stress are equal), and e is the internal energy of the material.

The relationship between shock velocity and particle velocity is a material property that,
for lack of a better option, is often expressed as a polynomial,

U
s

= C
0

+ S
1

u
p

+ S
2

u2

p

(3.4)

where C
0

, S
1

, and S
2

are constants which, in our case, have been fit to the DFT-MD
predicted crystalline Hugoniot. In order to find the Hugoniot of the porous material, recall
the definition of the Gruneisen parameter,

� = v
(P � P

0

)

(e� e
0

)
. (3.5)

Next we assume that the solid material and the porous material have the same reference
state,5 P

0

= P ⇤
0

and e
0

=e⇤
0

. This condition is exactly satisfied on the 0 K isotherm,24

however Erkman5 simplified the approach greatly by using the Hugoniot of the solid as the
reference state. It follows from 3.5, that the pressure-energy state relationships for the solid
and porous materials are,

P =
�

v
(e� e

0

) (solid) (3.6)

and

P ⇤ =
�

v
(e⇤ � e

0

) (porous*). (3.7)
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When these two equations are combined the pressure in the porous material can be related
to the pressure in the solid (fully-dense) material at any desired shock jump condition, v, as

P � P ⇤ =
�

v
(e� e⇤). (3.8)

We now substitute equation 3.3 for both the solid and porous materials into equation 3.8 to
obtain

P � P ⇤ =
�

v

✓
1

2
P (v

0

� v)� 1

2
P ⇤(v⇤

0

� v)

◆
, (3.9)

which can be rearranged and solved for the pressure in the porous material,

P ⇤ = P
v
0

� v � 2v

�

v⇤
0

� v � 2v

�

. (3.10)

Solving equation 3.1 for particle velocity in the porous material, u⇤
p

, yields

u⇤
p

=
U⇤
s

(v⇤
0

� v)

v⇤
0

. (3.11)

The shock velocity in the porous martial, U⇤
s

, is then found by substituting equation 3.11
into equation 3.2 and then solving for the shock velocity,

U⇤
s

= v⇤
0

s
P ⇤

(v⇤
0

� v)
. (3.12)

Using these last three equations, the pressure, shock velocity, and particle velocity in the
porous material may be found for any given compressed volume.

Notice that this result does not depend on the microstructure of the porous material
(grain size, morphology, pore size, specific surface area, etc.); it only depends on the initial
density. This derivation is only valid in the regime of stress levels which are much higher
than what is required for compaction. When stress levels required for compaction are not
negligible, then a constitutive compaction model such as proposed by Herrmann7 or Carroll
and Holt3 is required. The constitutive compaction model in general will depend strongly
on the details of the microstructure and the strength of the solid material.

Figure 3.2 shows the unreacted Hugoniot of PETN at three di↵erent densities: theoretical
maximum density (1.74 g/cc), 1.7 g/cc, and 1.0 g/cc. The theoretical maximum density
(TMD) line is a quadratic fit to the DFT-MD data shown previously, and is included here
for reference. The limited low pressure unreacted data at 1.7 and 1.0 g/cc were taken from
the literature.22,23 Considering the assumptions being made, the agreement is excellent and
provides a second confirmation that the pressure and density states computed via DFT-MD
are extremely accurate. In the second plot of Figure 3.2 the 1.0 g/cc data illustrates the
need for including a compaction model for low density and pressure conditions, but such a
model is out of the scope of this work.

The success of applying this method to PETN, where there is crystalline data for vali-
dation, provided the confidence to use this method for other explosives where data doesn’t
exist. After all, the true value of DFT methods in general is for computing material proper-
ties when empirical data is not available.
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Figure 3.2. Transformation of the crystalline Hugoniot
of PETN to that of two lower densities, chosen to match
available experimental data.22,23

Results: Hexanitrostilbene (HNS)

The relatively insensitive and temperature tolerant explosive HNS is technological signif-
icant to the NW stockpile, and is found in several Sandia components. In order to facilitate
predictive simulation of component performance, an accurate EoS for HNS is needed. Like
many other secondary explosives, no crystalline shock data has been collected for HNS. Sev-
eral researchers have measured the U

s

u
p

relationship for porous HNS at low pressures, but
the scatter in the empirical data and the limited range of shock pressures and initial densities
leads to unacceptable uncertainty in an empirically generated EoS for HNS.

The method described above was applied to HNS. The results are shown in Figure 3.3,
represented as both the pressure-volume and U

s

u
p

relationship. Since there is no crystalline
data, the DFT-MD crystalline Hugoniot is truly a prediction. However, by transforming
the crystalline relationship to lower density, using the previously described method, we can
indirectly validate our EoS by comparison with porous experimental data. As with PETN,
the agreement is excellent. Furthermore, considering the scatter in the data, it is evident that
these relationships would be extremely di�cult to generate by fitting a line to the empirical
data. At this point is seems prudent to compute the relationships using our method and then
use a few well chosen experiments for validation. That approach will lead to more accurate
EoSs and be more financially tenable.

Since many people performing simple hydrocode simulations will use a Mie-Gruneisen
EoS, we have fit a quadratic to the DFT-MD predicted Hugoniot, 2755 + 1.871x� 1.152⇥
10�4x2(m/s). At this time we make no recommendation as to the appropriate values of
C

v

and �. For use in CTH the user defined values, for 1.745g/cc HNS, are C
0

= 2.755 ⇥
105(cm/s), S

1

= 1.871, and S
2

= �0.317.
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Figure 3.3. DFT-MD predicted Hugoniot of HNS at TMD
(solid line) and experimental data at 1.7 g/cc (red circles),
1.6 g/cc (blue triangles), 1.0 g/cc (green squares). Dashed
lines are porous transformation of the crystalline prediction
for densities matching the experiments.

Toward a Tabular Equation of State

We previously stated that the described method provides all of the information necessary
to predict a complete equation of state. However, temperature and internal energy are not
easily measured, especially under the temporal time constraints of shocked explosives. Future
work will involve a thorough examination of the DFT-MD predicted temperature, internal
energy, and other thermo-physical properties derived from them. We are also hopeful that
new ultra-fast spectroscopic measurements will provide future data for validation. While we
have created a tabular equation of state (for use in CTH) from the predicted HNS shock
properties, it is currently being tested and not ready for distribution. A future publication
will detail and demonstrate a tabular EoS that will be made widely available.
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Chapter 4

The origins of van der Waals’ forces

Van der Waals’ forces are very weak. In most systems they are negligible compared to
stronger forces and only in a few types of systems do they dominate the physics. One such
type of system is noble gases, composed of elements like helium, neon, or argon, which all
are found in the rightmost column in the periodic table. Noble gases have atoms with all
shells closed, that is, the number of electrons are exactly such that they can pair up in a
very e�cient way, forming very stable and inert neutral atoms.

Another type of systems, of particular interest for this project, are molecular crystals. In
these crystals, fairly inert molecules are held together in a periodic structure by the weak
van der Waals’ forces. However, while this picture is correct at equilibrium, it is not an
appropriate description when the molecular crystal is either heated up or put under pressure
(or both). Under pressure the molecules are forced together to distances that promote
interaction either between the molecules or within a distorted molecule. Heat increases the
internal motion of the atoms in the molecules and make them less inert. Loosely speaking
the van der Waals’ forces are of importance for the safety of a molecular crystal explosive,
while the internal energy stored in the bonds of the molecules are important for the action of
the explosive. Understanding van der Waals’ forces are thus mainly important for questions
related to aging and safety.

The two-hydrogen system

While a hydrogen atom is not a noble gas atom, we can study the importance of electrons
in one part of a system interacting with electrons on another, distant, part. The system we
are investigating is depicted in Figure 4.1. Note the classically forbidden region between the
two systems; we will keep R large enough to always have such a region in the system.

Perturbation theory

As is seen in Figure 4.1 the electrons in the two systems (mostly remaining in the blue
shaded areas) at a large distance R, are virtually unperturbed from their atomic config-
uration (blue shaded area in one system with external potential as the gray dashed line).
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Classically

forbidden

region

R

Figure 4.1. The external potential for a two hydrogen
system (black). The individual hydrogen potentials are gray
dashed and the electrons are predominantly moving in the
shaded blue areas. Note the classically forbidden region be-
tween the individual hydrogen atoms; only electrons with
very high kinetic energy can penetrate this region but it is
also these electrons that have any chance of knowing about
the other half of the system.

Perturbation theory on the unperturbed atoms is thus expected to work well.

Unperturbed single electron system

The system of a single electron moving in a coulombic �Z/r potential (Z is the nuclear
charge or the atomic number), such as the gray dashed one in Figure 4.1, is exactly solvable
analytically. The single electron wave functions are

 
nLM

(r, ✓,�) =

"✓
2Z

n

◆
3 (n� L� 1)!

2n(n+ L)!

# 1
2

e�
Zr
n

✓
2Zr

n

◆
L

L2L+1

n�L�1

(
2Zr

n
)Y M

L

(✓,�) , (4.1)

where r = (r, ✓,�) and the integers n = 1, 2, · · · , L = 0, · · · , n � 1, and M = �L, · · · , L.
Lm

n

is a generalized Laguerre polynomial and Y M

L

is a spherical harmonic. The energy of the
unperturbed system is

E
n

= �Z2

n2

Ry , (4.2)

where Ry is the Rydberg energy unit.
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Unperturbed two electron system

A two electron system should be described by fermionic two-body wave functions:

 
elec

(r
1

, r
2

) =  
1

(r
1

) 
2

(r
2

)�  
1

(r
2

) 
2

(r
1

) . (4.3)

A fermionic wave function should transform into the negative of itself when trading the
positions of the two electrons.

If we restrict ourselves to the hydrogen (Z = 1) 1s-states, that is, n = 1, L = 0, and
M = 0, we have

 
1

(r) =
1p
⇡
e�|r| , and  

2

(r) =
1p
⇡
e�|r�R| , (4.4)

for electrons moving around the left/right nuclear charge respectively.

The density of a two electron system is calculated as

n(r) =

Z
dr

2

| 
elec

(r, r
2

)|2 . (4.5)

The integral obtained from this formula with wave functions as in Equation 4.4 is solvable
and gives

n(r) =
1

⇡

✓
e�2|r| + e�2|r�R| � 2e�(|r|+|r�R|)e�R

✓
1 +R +

R2

3

◆◆
, (4.6)

where R = |R|.

The first two terms are the addition of the two atomic densities while the exponentially
smaller last term is coming from the fermionic nature of the two-electron wave function in
Equation 4.3. The Pauli exclusion principle present in a fermionic system acts as a repulsive
force between the electrons and lowers the electron density between atoms. It is, however,
also evident that if R is large we can neglect this density lowering and the overlap term:

Z
dr  

1

(r) 
2

(r) ⇡ 0 . (4.7)

The perturbation

The first thing to decide in perturbation theory is what the perturbation is. In our case
there are two competing views. One is derived from how the ion at R a↵ects the single
electron hydrogen like system at the origin. As seen in Figure 4.1 adding the two hydrogen
potentials substantially lowers the potential barrier between the two ions. This means that
high kinetic energy electrons can venture somewhat further towards the other ion. The other
view is that the other system, combined of an equal amount of positive charge from the ion
and negative charge from the electrons, is charge neutral and that this screened potential
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does not a↵ect the potential barrier very much, so that the important perturbation instead
is the coulomb potential between the two electrons. It was not evident to the authors of this
report which view to take, so we examined both.

The strategy in the first case is to do a stepwise perturbation theory. First we see how
the bare ionic potential at R a↵ects the wave functions of the single electron around the
ion at the origin. Then we use these perturbed single electron wave functions in a two body
wave function according to Equation 4.3 and calculate the e↵ect of the coulomb potential
between the two electrons. If the unperturbed single electron hamiltonian for the hydrogen
system at the origin is denoted H

1

we have:

1) H
A1

= H
1

� 1

|r
1

�R| +
1

R
(4.8)

2) H = H
A1

+H
A2

+
1

|r
1

� r

2

| �
1

R
, . (4.9)

where factors of 1/R from the ion-ion interaction, retain charge neutrality, in each step
taking away the leading, in the end vanishing, term.

In the other case we have the two electron hamiltonian:

H = H
1

+H
2

� 1

|r
1

�R| �
1

|r
2

| +
1

|r
1

� r

2

| +
1

R
, (4.10)

where the unperturbed two electron wave functions are derived from H
1

and H
2

.

First order perturbation theory

We will now simplify the notations in order to make the following discussion more trans-
parent. We will denote a single particle wave function with | >. So that the single particle
hydrogen like wave function in Equation 4.1 reads

 
nLM

(r) centered on atom 1 = |nL; 1; r > , (4.11)

where we have omitted the index M since it will never enter into our discussion because we
chose the z-axis of our system to be along the R vector. The wave functions in Equation 4.4
are thus denoted |1s; 1; r > and |1s; 2; r >, respectively.

The integral we solved to arrive at the zero order density for the two hydrogen system in
Equation 4.6 looks like

|1; 2; r; r
2

> = |1s; 1; r > |1s; 2; r
2

> �|1s; 2; r > |1s; 1; r
2

> (4.12)

n(r) = < 1; 2; r; r
2

|1; 2; r; r
2

> . (4.13)

We also note that < 1s; 1; r|1s; 1; r >= 1 and that the overlap < 1s; 1; r|1s; 2; r >= 0.
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Energy

In first order perturbation theory, the first order correction to the energy is< |perturbation| >,
which in our case leads to numerous solvable integrals of the type

< 1s; 1; r
2

| 1

|r � r

2

| |1s; 1; r2 >=
1

r

�
1� e�2r (1 + r)

�
, (4.14)

where r = |r|. Using this and neglecting exponentially small terms similarly to ignoring the
overlap, we for the electron-ion interaction terms obtain
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R
(4.15)

(4.16)

and these terms will cancel with the charge neutrality terms that we introduced above.

The electron-electron coulomb repulsion terms in the two-electron picture needs a little
more work:
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again canceling with the charge neutrality term.

It is clear that the first order energy contribution is zero in both the schemes we are
investigating.

Wave functions

While the first order energy contribution is zero, the first order wave function changes
are needed for the next step in the first scheme.

The first order correction to the single electron wave function on atom 1 are

X

nL 6=1s

< 1s; 1; r|� 1

|r�R| +
1

R

|nL; 1; r >

E
n

� E
1

|nL; 1; r >=
X

nL 6=1s

c
nL

|nL; 1; r > . (4.20)

Note that < 1s; 1; r|nL; 1; r >= 0; the eigenstates of the unperturbed hamiltonian are
orthogonal, so the second term in the perturbation potential, the charge neutrality term, is
not contributing to c

nL

.
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The integrals to solve for obtaining a general formula for c
nL

are non-trivial. A good
approximation for c

nL

, valid for n/2R << 1, is

c
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Note that the singularity at n = 1 is fictitious since the 1s state should be excluded in the
sum in Equation 4.20 and it is the only allowed state for n = 1. Also note that this 1s wave
function perturbation has no s components since c

n0

= 0. A formula for larger n has also
been derived, but since it is not vital for the discussion in this report, we omit it.

For the second step in the first scheme we now use the perturbed single electron wave
functions,
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X
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c
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in the two electron wave function in Equation 4.3, and calculate the energy from the hamil-
tonian in Equation 4.9. We should also note that the overlap calculated with this perturbed
wave function still is exponetially small,
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where we have neglected terms involving the exponentially small overlap. By symmetry we
can deduce that all H

A

terms give the same contribution. The last two terms, the electron-

28



electron interaction overlap integrals, can be show to be exponentially small already for the
pure 1s state.

We know from above that terms only containing 1s states will only contribute the non-
perturbed sum of energies from the two individual hydrogen systems. By explicitly solving
the integrals for the perturbed wave function with largest coe�cient, the 2p

z

state
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(n = 2, L = 1, and M = 0), and also noting that states with M 6= 0, such as 2p
x

and 2p
y

will not contribute to the perturbed wave function due to the symmetry of the perturbation,
we conclude that all terms involving only one such state also cancel. When solving these
integrals it is useful to note that they are similar to the integral for the coe�cient c

nL

in
Equation 4.20.

Thus it only remains to evaluate the terms that involve two 2p
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It is evident that the two first integrals cancel. Thus we are left with a term coupling the
p character of the electron on one atom with the s character of the one on the other atom,
via the electron-electron interaction:
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We should note that I have used the 2p state here only to simplify the discussion. The
common view adopts this picture and thus discusses van der Waals’ interactions in terms of
dipoles. However, the perturbation of a spherically symmetric electron density distribution
due to a distant atom also introduces higher order state character into the wave functions
and thus also higher multipoles.

While this two step perturbation theory view gives us insight into the mechanisms of the
van der Waals’ interaction, the uneven treatment of perturbations of equal size, the electron-
ion to second order while the electron-electron only is first order, also complicates the book
keeping and as we will see, gives of the wrong asymptotic behavior. In the next section we
will thus treat all perturbations as one single perturbative potential, following the second
scheme of second order perturbation theory.
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Second order perturbation theory

We have already shown that the first order perturbation theory contribution to the energy
of the two electron system is zero. The second order energy contribution is
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The essential di↵erence from the two-step scheme is that the electron-electron interaction,
the 1/|r

1

�r

2

| term, is included in the perturbation of the wave functions at first order while
the two-step perturbation of the wave function only includes the ion-electron interactions.

In Figure 4.2 we see that the states on the atoms are well localized around each individual
atom as long as R is large. The wave functions will thus naturally limit the integration

Figure 4.2. The states, here illustrated by the 2p
z

states,
on each atom, are well localized and do not overlap.

regions to small regions around each atom. Mathematically, if we have r
1

and r

2

as electron
coordinate on the 1 and 2 atom respectively, r

1

and r

2

�R will be small compared to R.
We can expand the potential terms in Equation 4.29 using
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where R̂ is a unit vector in the R direction and the magnitude of x is small. We note that
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) with the sum of the last two terms small compared to the first
�R term. Straightforward bookkeeping shows that all terms proportional to 1/R2, from the
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second term on the right hand side in Equation 4.30, cancel. This is completely analogous
to all the terms canceling in the two step scheme to eliminate the first order perturbation.
There are cancellations also between the 1/R3 terms, analogous to the one in Equation 4.27,
and only terms with products of the small variables r

1

and r

2

�R remains. We arrive at
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The symmetry of this perturbation potential implies that only states with p symmetry in
both r

1

and r

2

will contribute to the sum in Equation 4.29. Thus, again, we arrive to the
conclusion that we need at least 2 p-states in integrals like in Equation 4.28. However, in the
two-step perturbation theory scheme only the 2p

z

state contributed while the second term in
Equation 4.31 also will be non-zero for 2p

x

and 2p
y

states. This again shows the un-eveness
in the treatment of small perturbations in the two-step scheme. Note that if we had retained
more terms in the expansion in 4.30, we would have obtained contributions also from d, f
and higher states, however with an increasing number of factors of 1/R.

Performing the integrals in Equation 4.29 we arrive at

E(2) / � 1

R6

. (4.32)

Note that the minus sign is coming from the energy di↵erence term in the nominator which
will always be negative, irrespectively of nL. The interaction between the two systems lowers
the energy compared to the separate systems; the van der Waals’ force is attractive.

Returning briefly to the two step perturbation scheme, we note that the terms as in
Equation 4.28 will contribute (c

2p

)2/R3 = 1/R7 to the energy. Again this erroneous result
being due to the electron-electron interaction not being included in the perturbing potential
in the first step.

Summary

As seen from the discussion and derivations above, the van der Waals’ forces arise from a
intricate synchronization between states on two nearby, but separate, systems. By separate
we here mean that electrons are very unlikely to actively hop from one atom to another, so
called tunneling. This picture is also supported by the overlap integrals remaining exponen-
tially small even in the perturbed states.

The common picture is that of fluctuating dipoles : Electrons in one system spontaneously
displace themselves by excitations into non-spherical states (p states) to create a dipole,
which the electrons in the other system respond to, setting up a dipole field in their turn.
This picture, however, implies a time dependence and a non-equilibrium situation that might
not be the correct picture.

From a DFT perspective this strongly suggests non-locality. However, the second order
perturbation picture leads us to consider another picture, based on the close connection
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between e↵ective potential and density. It is possible that the electrons/density in one
system modifies the e↵ective potential, which contains all many-body interactions in DFT
and is local, in a way that influences the electron density in the other system. It is not
evident, however, how such a mechanism would be established, and for the time being it
remains a conjecture.
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Chapter 5

Density Functional Theory
exchange-correlation functionals

As explained in the Introduction in Chapter 1, all many-body interactions present in
a real system can be expressed as an exchange-correlation functional acting on densities
composed from single particle orbitals in the Kohn-Sham picture. There are two main lines
of thought concerning including van der Waals’ forces in an exchange-correlation functional.
One is based on the 1/R6 behavior demonstrated above, and one is based on the non-locality
concept.

1/R6 functionals

This group of functionals is mainly concerned with obtaining a good approximation for
the coe�cient of the 1/R6 term. This coe�cient is the polarizability of an atom. If an atom
is in a environment with other electrons, the bare atomic polarizability will be modified.
Another crucial ingredient in this type of functionals is the ”damping function”; since the
1/R6 term diverges as R ! 0 a function that seamlessly join this attractive term to the
ordinary repulsion at closer distances is needed. As is seen in Figure 5.1, the equilibrium
binding distance is fully set by the damping function, and for our purpose of understanding
molecular crystals at equilibrium, the poor knowledge about how a proper damping function
should look like makes this approach less interesting.

While this approach is widely used since it is quite easy to tune coe�cients and damping
functions to provide decent results for specific materials, the resulting vdWs’ functionals only
work for limited sets of systems. As so often is the case in the functional developing business,
the large number of vdWs’ functionals show how important it is to include vdWs’ forces for
many applications, but also that none of them is generally applicable (if so, everyone needing
a vdWs’ functional would use this generally applicable one).
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Figure 5.1. A Lennard-Jones 6-12 potential approximately
describing the the binding energy of two Ar atoms at distance
r. As is seen, the 1/r6 term diverges as the distance between
the atoms is decreasing and a damping term is needed to turn
the potential upwards for correct binding profile.

Non-local functionals

The other line of development has resulted in a few functionals, mainly designed by
the groups of Langreth and Lundqvist at Rutgers University and Chalmers University of
Technology, Sweden, respectively. While this approach is more rigorous than the one de-
scribed above, it has been plagued by a disconnect between the derivation of the van der
Waals’ terms, and the derivation of the underlying functional describing binding energies at
closer distances, analogous to the damping function. In the last few years Ann Mattsson
has set up collaborations with herself, Rickard Armiento at Linköping University, Sweden,
and Torbjörn Björkman at Alvar Aalto University, Espoo, Finland to explore fundamental
questions in this area. However, the work is progressing slowly since both are doing their
main research e↵orts in other areas.
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Chapter 6

Summary and Conclusion

Despite the lack of proper van der Waals’ treatment, we were successful at using DFT-
MD to predict the unreacted Hugoniots of PETN and HNS. Under compression, errors in
the attractive crystal forces appear to be negligible as we obtained excellent results. This
method provides all of the necessary information to build a complete equation of state, but
validation of predicted temperatures is still needed. Our ultimate goal is to create a tabular
equation of state for use in hydrocode simulations. We are also pursuing research that will
result in a new exchange-correlation functional that will accurately describe van der Waals’
forces and the equilibrium bonding of molecular crystal explosives.

The origins of van der Waals’ forces are an intricate collective of e↵ects due to the
interaction between electrons on one atom and the electrons and ion forming another, distant,
atom. It results in an weak attractive force between the atoms. While it is important to
consider this origin and mechanism when developing new exchange-correlation functionals
for use in DFT, this cannot be the sole focus since the equilibrium distance, for example,
is determined by how the atoms interact at smaller distances. A proper functional needs to
seamlessly be able to include the van der Waals’ forces at large distances while still retaining
the good description of matter under compression currently available in, for example, AM05.
The construction of a generally adequate functional incorporating van der Waals’ forces is
still an elusive goal and future e↵orts from our team will be focused on the duality of the
electron density and the local e↵ective potential.

35



36



References

[1] R. Armiento and A. E. Mattsson. Functional designed to include surface e↵ects in
self-consistent density functional theory. Phys. Rev. B, 72:085108, Aug 2005.

[2] E. F. C. Byrd and B Rice. Ab initio study of compressed 1,3,5,7-tetranitro-
1,3,5,7-tetraazacyclooctane (hmx), cyclotrimethylenetrinitramine (rdx), 2,4,6,8,10,12-
hexanitrohexaazaisowurzitane (cl-20), 2,4,6-trinitro-1,3,5-benzenetriamine (tatb), and
pentaerythritol tetranitrate (petn). J. Phys. Chem. C, 111:2787, 2007.

[3] Michael Carroll and Albert C. Holt. Suggested modification of the p-alpha model for
porous materials. J. Appl. Phys., 43:759, 1971.

[4] J. W. Conant, H. H. Cady, R. R. Ryan, J. L. Yarnell, and J. M. Newsam. The atom
positions of pentaerythritol tetranitrate (petn, c5h8n4o12) determined by x-ray and by
neutron di↵raction. Technical report LA-7756- MS, Los Alamos Scientific Laboratory,
1979.

[5] John O. Erkman and David J. Edwards. Computed and experimental hugoniots for
unreacted porous explosives. In D. J. Edwards and S. J. Jacobs, editors, Sixth Inter-
national Detonation Symposium, pages 766–776, Arlington, VA, 1976. O�ce of Naval
Research.

[6] Par Francios Gerard and Antione Hardy. Structure de l’hexanitro-2,2”4,4”6,6’ stilbene,
hns, et comparaison avec le trinitro-2,4,6 tolu6ne, tnt. Acta Cryst., C44:1283–1287,
1988.

[7] W. Herrmann. Constitutive equation for the dynamic compaction of ductile porous
materials. J. Appl. Phys., 40:2490, 1969.

[8] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–B871,
Nov 1964.

[9] M. D. Knudson and M. P. Desjarlais. Shock compression of quartz to 1.6 tpa: Redefining
a pressure standard. Phys. Rev. Lett., 103:225501, Nov 2009.

[10] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation
e↵ects. Phys. Rev., 140:A1133–A1138, Nov 1965.

[11] G. Kresse and J. Furthmüller. E�cient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Phys. Rev. B, 54:11169–11186, Oct 1996.

[12] G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev. B,
47:558–561, Jan 1993.

37



[13] G. Kresse and J. Hafner. Ab initio molecular-dynamics simulation of the liquid-metal
amorphous-semiconductor transition in germanium. Phys. Rev. B, 49:14251–14269, May
1994.

[14] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmented-
wave method. Phys. Rev. B, 59:1758–1775, Jan 1999.

[15] Rudolph J. Magyar, Ann E. Mattsson, and Peter A. Schultz. Some practical considera-
tions for density functional theory studies of chemistry at metal surfaces. In Thomas C.
Allison, Orkid Coskuner, and Carlos A. González, editors, Metallic Systems: A Quan-
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