
SANDIA REPORT
SAND2013-8361
Unlimited Release
Printed September 2013

Heterogeneous Scalable Framework
for Multiphase Flows

Karla Morris

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2013-8361
Unlimited Release

Printed September 2013

Heterogeneous Scalable Framework
for Multiphase Flows

Karla Morris,
Reacting Flow Research Department

Sandia National Laboratories
P.O. Box 969

Livermore, CA 94551-0969
knmorri@sandia.gov

Abstract

Two categories of challenges confront the developer of computational spray models: those related
to the computation and those related to the physics. Regarding the computation, the trend towards
heterogeneous, multi- and many-core platforms will require considerable re-engineering of codes
written for the current supercomputing platforms. Regarding the physics, accurate methods for
transferring mass, momentum and energy from the dispersed phase onto the carrier fluid grid have
so far eluded modelers. Significant challenges also lie at the intersection between these two cat-
egories. To be competitive, any physics model must be expressible in a parallel algorithm that
performs well on evolving computer platforms.

This work created an application based on a software architecture where the physics and software
concerns are separated in a way that adds flexibility to both. The develop spray-tracking package
includes an application programming interface (API) that abstracts away the platform-dependent
parallelization concerns, enabling the scientific programmer to write serial code that the API re-
solves into parallel processes and threads of execution.

The project also developed the infrastructure required to provide similar API’s to other application.
The API allow object-oriented Fortran applications direct interaction with Trilinos to support mem-
ory management of distributed objects in central processing units (CPU) and graphic processing
units (GPU) nodes for applications using C++.

3

Acknowledgment

This work was funded under LDRD Project Number 158997 and Title "Heterogeneous Scalable
Framework for Multiphase Flows".

I would like to offer special thanks to Nicole Lemaster Slattengren, Michael A. Heroux and
Maher Salloum for their contributions in the software development of the CTrilinos and ForTrilinos
packages. Advice given by Damian Rouson and Joseph Oefelein has been instrumental for the
software design aspects of this project. The assistance provided by Sameer Shende and Salvatore
Filippone was alse greatly appreciated.

This research used resources of the National Energy Research Scientific Computing Center,
which is supported by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.

This work also used hardware resources from the ACISS cluster at the University of Oregon
acquired by a Major Research Instrumentation grant from the National Science Foundation, Of-
fice of Cyber Infrastructure, "MRI- R2: Acquisition of an Applied Computational Instrument for
Scientific Synthesis (ACISS)," Grant #: OCI-0960354.

4

Contents

List of Acronyms 9

Preface 11

Summary 13

1 Introduction 15

2 Hardware Flexibility via Generic Programming 19

2.1 Trilinos Library and C++ Template Metaprogramming . 19

2.2 Fortran Generic Programming . 22

2.3 CTrilinos and ForTrilinos . 23

2.4 Multi-Language Software Structure for
Generic and Template Meta-Programming Support . 25

2.5 Generic and Object-Oriented Programming Paradigms in ForTrilinos 27

3 Platform-agnostic multiphase flow application via Fortran 2008 coarrays 33

4 Results 37

5 Conclusion and Future Work 41

References 43

Appendix

A Source Code For Sample Application 45

5

A.1 Trilinos Sample Application . 45

A.2 CTrilinos Sample Application . 48

A.3 ForTrilinos Procedural Fortran Sample Application . 52

A.4 ForTrilinos Object-Oriented Fortran Sample Application . 56

6

List of Figures

2.1 Software stack for ForTrilinos enable application. 24

3.1 Unified modeling language (UML) class diagram for MPFlows software package. . 35

7

Listings

2.1 Sample template class too. 21

2.2 Use of kind type parameter for double precision integer declaration 22

2.3 Parameterized data type (PDT) class too. 22

2.4 C++ instantiation of templated class . 26

2.5 CTrilinos C definition of an instant of templated class . 26

2.6 ForTrilinos Fortran definition of an instant of templated class 26

2.7 ForTrilinos OO Fortran instantiation of template class . 27

2.8 Module for sample PDT foo. 28

2.9 Module with kind type parameters definitions for PDT foo. 29

2.10 Sample main making use of PDT foo. 29

2.11 Output from running example application using the PDT foo. 30

2.12 Module skeleton for sample PDT foo. 30

3.1 Source code for object-oriented Fortran Multiphase flow application driver. 33

8

List of Acronyms

GPU Graphic processing unit

CPU Central processing unit

OOP Object-Oriented Programming

STL Standard Templated Library

API Abstract programming interface

MPI Message Passing Interface

TBB Threading Building Blocks

TPL Third party library

PDT Parameterized derived types

TBP Type-bound procedure

PGAS Partitioned Global Address Space

9

This page intentionally left blank.

Preface

Computational modeling of turbulent combustion is vital for our energy infrastructure and of-
fers the means to develop, test and optimize fuels and engine configurations. In the case of internal
combustion engines, fuel injection simulations provide insight into phenomena that determine en-
gine efficiency. In modeling the dilute spray regime, away from the injection site and downstream
of the atomization processes, considerable doubts persist regarding how to best parameterize and
predict the various couplings between the spray and the surrounding fluid turbulence. These cou-
plings include mass, momentum, and energy exchanges.

The complexity of the relevant physics places considerable demands on computing resources.
Hence, the developer of computational spray models confronts challenges related to the computa-
tion and those related to the physics. This work developed a spray modeling application to focus
on a subset of the computational issues addressed by Fortran 2008 coarrays. Coarrays follow a par-
titioned global address space (PGAS) model, and provide high-level view of the hardware without
reference to the underlying communication layer. Compiler teams are free to implement this fea-
ture via any of several open-source or proprietary communication protocols. Coarray codes are
therefore able to target multi- and many-core devices with shared and/or distributed memory.

Concurrently with the development of the coarray enable spray modeling application this work
developed a novel software architecture that segregates the data computation and communication
from the physical models. This architecture will increase the versatility of present and future sci-
entific codes by enabling computational scientists to exploit the countless computing hardware
configurations available, and to confront the challenges regarding portability and performance op-
timization.

The project used the capabilities within C++ Trilinos packages to build the infrastructure to
support platform independent, object-oriented Fortran applications. The discrepancies in the fea-
tures of the programming languages involved (C++, C and Fortran) were overcome through the
development of a software infrastructure that emulates generic programming in C and exploits
generic and object-oriented programming in Fortran 2003. As a result the work shows new idioms
that exploit bleeding-edge features of Fortran and mixed-language programming.

11

This page intentionally left blank.

Summary

This project developed a novel approach to generic, object-oriented, mixed-language program-
ming. The approach emulates generic programming in C, and exploits actual generic programming
features in Fortran 2003. The new concepts, and resulting flexibility are illustrated by constructing
a sample application where hardware architecture is encapsulated from the software implementa-
tion.

The sample application makes use of the object-oriented Fortran interface to the Trilinos project
which is comprised of two layers: CTrilinos and ForTrilinos. CTrilinos ensures software portabil-
ity by exploiting Fortran 2003 compiler features that provide interoperability with the C program-
ming language. The project involved extensive refactoring of customized scripts first developed by
Nicole Lemaster Slattengren. The extended version of the scripts automate part of the glue code
generation process by parsing Trilinos C++ source code in the foundational, templated packages
Tpetra, Teuchos and Kokkos, and using the results to create the CTrilinos and ForTrilinos glue
code.

Tpetra, Teuchos, and Kokkos encapsulate support for platform-independent algorithms in Trili-
nos. The refactored CTrilinos provides the infrastructure for emulating generic programing in C,
which is required to support the Fortran interface, where the generic programing model is based
on parameterized derived types (PDTs). ForTrilinos publishes the generic, object-oriented inter-
faces for direct use in end applications. The CTrilinos package now provides robust, compile-time
type checking for ForTrilinos via a unified interface for all instances of a templated class. The
significant investment in infrastructure development resulted in a flexible, intuitive object-oriented
Fortran interface.

In conjunction with the packages previously discussed this project also developed a spray-
tracking application programming interface (API) that abstracts away the platform-dependent par-
allelization concerns. The particle phase of this application is implemented in Fortran, and makes
extensive use of coarrays and object-oriented programming features. Coarrays are a new feature
introduced into the Fortran 2008 compiler standard to enable parallel processing using multiple
copies of a single program, each copy, is called an image. According to the Partitioned Global
Address Space (PGAS) model, each image can access its local data as well as the data from other
images though the use of coindices. Scalability of over 85%, in 16834 images, was obtained for
the software design followed in the software development of the spray-tracking application.

13

This page intentionally left blank.

Chapter 1

Introduction

Ongoing research will determine the ultimate configuration for exascale computing hardware.
This research has created a moving target for software design. Novel software architectures need
to be developed to segregate the data computation and communication from the physical models.
These architectures will enable computational scientists to navigate through this transition and will
increase the versatility of present and future scientific codes.

The main goal of this work was to create an application based on a software architecture
where the physics and software concerns are separated in a way that adds flexibility to both. The
developed spray-tracking application programming interface (API) abstracts away the platform-
dependent parallelization concerns, and enables the scientific programmer to write serial code that
the API resolves into parallel processes and threads of execution. The approach departs from the
predominant practice in combustion simulation, wherein the codes that run on leadership-class
supercomputers intimately intermesh the physical and computational models. The basic units of
data are low-level mathematical constructs, e.g., arrays. Programmers directly manipulate these
constructs with a low-level communication mechanism: Message Passing Interface (MPI).

In this project two different approaches were followed to developed the software to support
the API. The first approach focused on an API that interacts directly with Trilinos1, which han-
dles all software concerns for the application. The Trilinos project is an object-oriented software
framework with the capabilities required for the solution of large-scale complex multi-physics en-
gineering and scientific problems. At the beginning of this work, Sandia’s Trilinos project had the
abstract programming interface to support memory management of distributed objects in hardware
platforms with central processing units (CPU) and graphic processing units (GPU). However, these
capabilities were only accessible to applications using object-oriented C++. The initial stages of
the project concentrated on creating support of that same functionality for object-oriented (OO)
Fortran applications. A sample application was developed to illustrate the use of Trilinos capabili-
ties that are now available to an OO Fortran application.

The second approach concentrated on an API developed with Fortran coarrays. Coarrays are a
partitioned global address space (PGAS) parallel programming model that was incorporated into
the Fortran 2008 compiler standard [9]. This new compiler feature provides the language with
a simple syntax extension to represent distributed data. At the same time it removes from the
programmer all concerns related to how communication takes place in any particular hardware

1http://trilinos.sandia.gov

15

architecture. As part of this work we were able to show excellent scalability results for a partial
differential equation solver used a prove of concept for the architecture developed. In the future
either API can be linking to existing reactive flow codes, most of which are written in Fortran.

This work developed an object-oriented Fortran interface to template base packages in Trilinos:
Tpetra2 and Kokkos3. Tpetra handles the construction and manipulation of distributed objects and
provides basic linear algebra functionality, while Kokkos is an abstract programming interface
with the capability of managing memory in CPU and GPU nodes. The software abstractions that
govern the memory and communication requirements for the tracking of particles in a multiphase
flow can be designed to build upon the functionality of these two packages. In this work we
developed a software architecture to support a platform independent environment for the particle
phase solver using Coarrays. In addition, we have lay the ground work to continue the development
of a computational model for two-way coupling of momentum, mass and energy exchanges in
multiphase flow in the dilute regime under highly loaded conditions.

In addition to software design, the research also focuses on a critical area of spray modeling.
The approach facilitated the complementary development of both software and predictive mod-
els. Focusing on sprays allowed testing and optimization of the scientific software; while at the
same time provide a platform for future advances in the phenomenological treatment of multiphase
flows. Extensive work has been done to date in computational modeling of multiphase reactive and
non-reactive flows. Oefelein’s [13] simulations of particle-laden flow in a coannular combustor
have shown excellent agreement with experimental results for flow conditions similar to those of
Sommerfeld [15]. The predictive capabilities of such simulations are limited to unsteady dilute
sprays with gas and particle phase under low loading conditions. The coupling between the two
phases is then limited to momentum exchange, and the effects of the particles treated as point
sources is confined to a single fluid cell. As the Stokes number increases, particles no longer fol-
low fluid streamlines, and the effects of each particles’ wake propagates through a larger region
in the flow; therefore, the coupling between the gas and particle phase requires accounting for the
flow disturbance in various fluid cells.

Interactions with engine manufacturers suggest that providing a better understanding of spray
dynamics, even in the non-reacting flow regime, will significantly improve the manufacturers’ sim-
ulation capabilities. Interactions with computational fluid dynamics software vendors indicate that
the current generation of commercial codes has difficulty scaling beyond a few dozen cores. This
work developed an application that can be used to address the needs of engine manufacturers by
allowing the development of a more accurate and robust computational model for dilute spray sim-
ulations. At the same time, the algorithms developed to support the desired software architecture
are now available to developers of other applications.

There are technical issues associated with the development of the appropriate software archi-
tecture. The design and modeling of the developed software architecture must be able to provide
memory management and communication capabilities to any object-oriented Fortran application.
This required the creation of an object oriented Fortran interface to Trilinos which is a C++ li-

2http://trilinos.sandia.gov/packages/tpetra/
3http://trilinos.sandia.gov/packages/kokkos/

16

brary. The strategy developed to create the interface deals with a variety of interoperability issues,
including a unified strategy for matching not only the fundamental C++ data types to their corre-
sponding Fortran intrinsic data types, but also user defined classes in C++ to the corresponding
Fortran derived data types.

To achieve a compiler and platform independent interface implementation this project extended
the CTrilinos and ForTrilinos packages to include wrappers for Tpetra, Kokkos and additional
templated classes within Teuchos4. The software design of the wrappers must not only circumvents
mismatches in the object-oriented and generic programming capabilities supported by the two
languages, but do so in a way that does not put any unnecessary burdens on future ForTrilinos
endusers.

The software design of the complete software stack must provide a ForTrilinos interface that
satisfies basic portability and usability requirements. Some of the requirements defined during the
software development process to address portability and usability concerns are:

• The ForTrilinos interfaces used by object-oriented Fortran applications provide users with a
clean syntax to define any specific instantiation of an underlying templated C++ class.

• The ForTrilinos interfaces must provide users with an overloaded single public interface for
type-bound procedures (methods in C++) invoked on any instance of an underlying tem-
plated C++ class.

• The ForTrilinos object-oriented interface must provide a syntax that feels natural to Fortran
developers.

• The ForTrilinos object-oriented interface most provide new idioms for writing classes with
generic programming support.

• The object-oriented Fortran wrappers provide compile time error messages in cases were
undefined data types are used which provided early error detection to the end user.

• The source code use within each software layer is standard compliant so as to avoid porta-
bility problems.

Chapter 2 describes the developed software structure used to construct object-oriented For-
Trilinos interfaces for Trilinos packages, Kokkos, Tpetra and Teuchos. The section details the
configuration of each software layer and explains how the previously listed requirements are sat-
isfied. A sample object oriented Fortran application is used to illustrate the achieved hardware
flexibility.

In developing a multiphase flow model, it is imperative to find a balance between the accuracy
of the physics modeled and the demands the model places on the available computational resources.
The separation of computation and physics of this project should contribute to a robust application,

4http://trilinos.sandia.gov/packages/teuchos/

17

which will accommodate modifications to the model depending on the desired level of accuracy
and the available grid resolution.

Chapter 3 explains the software design of a spray application using Coarray Fortran and chap-
ter 5 presents the conclusions drawn from this work as well as a summary of future work related
to this project.

18

Chapter 2

Hardware Flexibility via Generic
Programming

Scientific software applications are developed and expanded through added functionality not
only in the pursuit of more accurate and complex multi-physics models but also in an attempt to
exploit larger computing platforms of various hardware configurations. High performance com-
puting hardware and algorithm research efforts place scientific software developers in a precarious
position as more specific skills are required not only to address scalability and performance in
available computing platforms but also the development of more complex multi-physic models.

To efficiently leverage the efforts of scientists, software developed should separate physics
and hardware consideration within an application. This separation allows the delegation of each
associated requirement to the person with the right set of expertise. In addition, it provides the
flexibility to address portability of the scientific application to future hardware configurations.

This chapter discuss the software structure developed to provide the aforementioned flexibility
to object-oriented applications. This is accomplished by enabling direct access to capabilities
currently available in the Trilinos library.

2.1. Trilinos Library and C++ Template Metaprogramming

The Trilinos project is an object-oriented software framework that provides algorithms and
technologies to support the development of large-scale complex multi-physics problems. As such
this library encapsulates the implementation of capabilities needed to construct and preform oper-
ations on distributed objects commonly used within linear algebra applications. The fundamental
packages that comprise the Trilinos library include Teuchos, and the new generation packages
Kokkos and Tpetra. These packages abstract from the multi-physics applications all memory man-
agement and communication requirements.

Kokkos1 provides two main capabilities to Trilinos. The first capability is encapsulated in the
Kokkos Node API which handles memory and specifies work for shared-memory parallel nodes.
The second capability is the Kokkos Linear Algebra Kernel Library, which contains a collection

1http://trilinos.sandia.gov/packages/docs/r10.12/packages/kokkos/doc/html/index.html

19

of local distributed linear algebra classes and the kernels required for their parallel functionality.
The Kokkos Node API includes a series of classes with node definitions that provide support to
different hardware configurations:

1. GPU Nodes use for NVIDIA/CUDA graphic processing units (GPUs).

Kokkos::ThrustGPUNode This class provides parallel compute capabilities using the Thrust
library.

2. CPU Nodes use for central processing units (CPUs) standard memory allocation.

Kokkos::SerialNode This class provides a simple node with serial execution kernels

Kokkos::TBBNode This class provides support for multi-core CPUs using the Intel Thread-
ing Building Blocks (TBB) library [14].

Kokkos::TPINode This class provides support for multi-core CPU’s using Pthreads TPL.

Kokkos capabilities can be augmented by providing new user defined data structures and ker-
nels for other hardware or library implementations.

Tpetra2 is a new generation foundational package that has the fundamental data structures and
operations required for serial and parallel linear algebra libraries. This package makes extensive
use of C++ templates and the Standard Templated Library (STL) to increase functionality by en-
abling the creation of classes with any defined data type. The classes in this package are templated
on a set of parameters of which the most commonly used are:

Scalar: Data type of the data stored within the data structure. The types used are float, double,
complex<float> and complex<double>

LocalOrdinal: Data type to store the indices of local IDs (int in most cases).

GlobalOrdinal: Data type to store the indices of global IDs and global properties of a distributed
object. For significantly large distributed objects having different local and global ordinal
types could reduce memory requirements. This type can be long int or int.

Node: Node type defined within Kokkos to enable parallel computation on shared-memory nodes
with multi-core CPUs or GPUs.

Teuchos provides Trilinos developers with a set of common tools including BLAS/LAPACK
wrappers, smart pointers, parameter lists, etc. In addition, memory management classes in Teu-
chos, defined reference-counted smart pointers, reference-counted pointers and array classes that
are extensively used within Tpetra and other Trilinos packages. These classes replace raw C++
pointers and provide not only functionality for save memory management and usage but also run-
time debug checking capabilities [4].

2http://trilinos.sandia.gov/packages/docs/r10.12/packages/tpetra/doc/html/index.html

20

The template metaprogramming technique allows software developers to define classes or func-
tions that are parametrized on a set of template parameters. These generic definitions must be
instantiated to generate the appropriate source code that implements the functionality for a spe-
cific instance of the templated class or function. Metaprograms defer to compile-time, the actual
generation of the instantiated classes as well as the code optimization associate with unrolling of
source code [16]. Different studies have correlated software bugs to the presence of duplicated
code that its difficult to mantain [3]. Such problems are circumvented in programming languages
with full metaprogramming support (i.e. C++ programming language) by the automated source
code generation of each required specific implementation.

The generic definition for a template C++ class, too, with a template parameter T, is shown
in listing 2.1. The class has a method (operations()) for which the implementation would de-
pend on the data type of the template parameter T. The main driver defines an object, obj, of class
too<int>, as a result, the source code of the corresponding implementation for that instantiation
is generated at compile-time. The class generic definition, shown in this code example, is com-
plete, even if the main driver included objects of class too with other data types for the template
parameter.

Listing 2.1: Sample template class too.
1 using namespace std;

2
3 template <class T>

4 class too {

5 public:

6 void operations ();

7 };

8
9 template <class T>

10 void too <T>:: operations ()

11 {

12 /* */

13 }

14
15 int main()

16 {

17 too <int > obj;

18 obj.operations ();

19 }

In the Trilinos packages that were briefly described, the template metaprogramming technique
enables the development of a library that defines generic distributed classes and operations. The
specific implementations are generated at compile-time, base on the instantiated classes within
the application using the library. In the case of vectors for instance, the library defines a generic
class for distributed vectors, and uses the Scalar templated parameter, to allow users access to
distributed vectors of any fundamental data type (double, float, complex<double>, etc). The
approach contributes to the maintainability of the library’s source code, as it avoid manually dupli-
cated code. It also circumvents the need for drastic application refactoring, by supporting applica-
tions that can easily exploit classes and functions with a variety of implementations depending on

21

requirements and available platform configurations.

2.2. Fortran Generic Programming

The Fortran language has generic programming support though not full metaprogramming sup-
port. In some cases, the differences between C++ and Fortran render the use of metaprogramming
unnecessary in the latter language. Fortran, for example, defines intrinsic data types that are pa-
rameterized by a kind parameter that defines the actual precision of the data type, as the sample
code shown in listing 2.2 [2]. C++, on the other hand, defines several fundamental data types in
each data category (Integer data types include int, long, char, short, bool while floating data types
are float, double, long double) [8].

Listing 2.2: Use of kind type parameter for double precision integer declaration
integer , parameter :: dp = selected_int_kind (9)

integer(kind=dp) :: MaxIndex

Fortran generic programing features include parameterized derived types (PDT). This feature
builds on the type parameters, of intrinsic and user-defined Fortran data types. The type parameters
in intrinsic data types provide the actual precision of the data through a specified kind parameter.
In user-defined data types the type parameters can be kind type parameters or length type pa-
rameters. A kind parameter value most be defined at compile type and it is used to resolved the
generic procedure that is referenced. The length type parameter can change during execution so
it does not have to be defined at compile time [1, 10].

Listing 2.3 shows a proposed Fortran implementation, for the C++ too<T> class defined in
listing 2.1. The template parameter T, takes the form of a kind type parameter, in the parame-
terized derived type, too(T), defined in lines 3-8. The C++ method, operations(), is replaced
by a type-bound procedure (TBP) with a generic interface of the same name. In lines 10-13,
the module shows the implementation for the type-bound procedure operations_I, which re-
solves the overloaded type-bound procedure operations() when invoked by an object of type
too with a kind_int type parameter. In the code shown, the main driver does not have access to
an operations TBP if a different kind parameter is used for an object type too.

Listing 2.3: Parameterized data type (PDT) class too.
1 module too_module

2 integer , parameter :: kind_int = selected_int_kind (4)

3 type too(T)

4 integer , kind :: T

5 contains

6 procedure :: operations_I

7 generic :: operations => operations_I

8 end type

9 contains

10 subroutine operations_I(this)

11 class(too(kind_int)), intent(in) :: this

22

12 !

13 end subroutine operations_I

14 end module too_module

15 program main

16 use too_module

17 type(too(kind_int)) obj

18 call obj%operations ()

19 end

As shown in the previous code, PDT and function overloading enable a syntax in object-
oriented Fortran that mimics that of template classes in C++. In Fortran, all instantiations and
procedure implementations for parameterized derive types must appear explicitly in the source
code at compile-time (lines 10-13 in listing 2.3). Due to the lack of compile-time automated
instantiation support for generic declarations, an application or library using the generic program-
ming paradigm as supported by PDT could potentially run into maintainability issues. However,
issues related to maintainability can be properly mitigated if the automated instantiation is some
how emmulated.

2.3. CTrilinos and ForTrilinos

CTrilinos and ForTrilinos are part of the skin packages of Trilinos and provide access to C++
Trilinos functionality from C and Fortran. The original software design of these two packages
provided the infrastructure for creating wrappers to core packages such as Epetra, AztecOO, Pliris,
Galeri, IFPACK and Amesos. A description of the infrastructure for both CTrilinos and ForTrilinos
can be found in previous publications [11, 12]. The original software infrastructure has been
modified to support new generation packages and classes that make extensive use of template
metaprogramming. This is accomplished by exploiting Fortran 2003 compiler standard features
for parameterized data types, and object-oriented programming.

The approach followed to wrap Trilinos, builds on a shadow object interface design, developed
by Gray et al, to interface OO C++ with Fortran 95 [6]. In Gray’s design, code in a server language,
exports a flat interface that grants access to the real object and its functionality. The code in the
client language uses a shadow object, which is just a logical interface that allows for the client
language to access the real object and its functionality with an object that looks like a native object.

The shadow object approach implemented for Fortrilinos, uses Fortran 2003, which allows us
to take advantage of fully object oriented behavior and new C interoperability features. The imple-
mentation of this shadow object approach, incorporates two packages, ForTrilinos and CTrilinos.
These packages work together to support a full OO Fortran interface to C++ packages within
Trilinos. ForTrilinos holds the OO Fortran interfaces that the end user invokes within the For-
tran applications. CTrilinos, on the other hand, exist only as a service to ForTrilinos, it enables
the portability of the software structure by taking advantages of Fortran’s compiler features for
interoperability with C. CTrilinos it is not intended as a end user interface.

23

ForTrilinos

Applications

Object_Oriented Interface

Bind “C” Interface Bodies

CTrilinos

Trilinos

C Header Files

Extern “C” Wrappers

Procedural
bindings

!

"
#

$
#

Wrap distributed C++
objects & methods

Export flattened C++
data structures &
procedures

Pass only
interoperable Fortran/
C IDs.

Export extensible
objects containing ID
tags referencing
underlying C++
objects

Figure 2.1: Software stack for ForTrilinos enable application.

Figure 2.1 shows a high level representation of the software structure developed to support
a ForTrilinos enable application. The OO C++ Trilinos library is at the bottom of the software
stack. In this layer we enclose all the C++ classes use to implement the distributed objects and
their functionality. In the case of Teuchos and the new generation packages Kokkos and Tpetra,
this layer incorporated classes that exploit not only OO class relationships but also classes that use
a template metaprogramming paradigm.

The next layer up is the CTrilinos package. This package flattens all C++ data structures and
procedures and removes OO features that are not supported by the C programming language. This
layer has two sublayers, one with binding C++ code with the extern C attribute, and another with C
headers. The CTrilinos layer is there to assure the portability of the software, which is guaranteed
by the C interoperability features in the Fortran 2003 standard. This layer circumvents the lack of
interoperability support between C++ and Fortran.

The third layer is the ForTrilinos layer, which also has two sublayers. The first sublayer in-
cludes the procedural bindings or interface bodies with the bind(C) attribute, which correspond
to the C headers in the CTrilinos layer. The second Fortrilinos sublayer reintroduces all the OO
design features that were removed by the CTrilinos layer. This is the layer that is exposed to the
end user.

All binding code is generated automatically by a script that was initially develop by Nicole
Lemaster Slattengren. These scripts have undergone extensive modifications to enable the gener-
ation of binding code for templated classes and functions. The only overhead associated with the
various layers is that of the extra procedural call and table lookups. The real data lives only in
the Trilinos layer, ForTrilinos handles only shadow objects. The shadow objects are derived types
with a class hierarchy that mirrows the hierarchy of the Trilinos library. Each shadow object has

24

an ID data member. This ID is a derived data type that holds 3 integers data members with the
information required to identify the underlying C++ Trilinos object.

The top layer in the software stack comprises the object-oriented Fortran application codes a
user writes by instantiating objects (instances of a Fortran "derived type") and invoking methods
("type-bound procedures" in Fortran nomenclature) on those objects. These objects are lightweight
and hold only private identifying information about the underlying C++ objects.

2.4. Multi-Language Software Structure for
Generic and Template Meta-Programming Support

This section describes important aspects of the software design used when implementing the
previously discussed software stack. The reconciliation of several discrepancies between the pro-
gramming languages features was not trivial. However, it was necessary to address portability and
usability requirements in the object-oriented Fortran interfaces developed to grant Fortran applica-
tions access to Trilinos new capabilities.

Design decisions were driven by foreseen needs of end users developing a OO Fortran appli-
cation. The project studied several possible configuration in order to come up with an approach
that provided Fortran developers with similar flexibility already exploited by C++ developers. The
required portability of the software stack is satisfied by the use of C interoperability features in the
Fortran compiler.

The two main interoperability features used are interoperable kind parameters and the bind(C)
attribute. Over 30 interoperable kind parameters for several intrinsic Fortran types are provided by
the intrinsic module iso_c_binding (part of the Fortran 2003 standard). The defined kind param-
eters insure that the bit representation of a Fortran type matches the corresponding C type provided
by the companion C compiler. The bind(C) attribute enable the interoperability of derived types
and procedures. In the case of procedures a binding label is used to identify the name of the C
procedure with the corresponding C function prototype [10].

The flattening of data and procedures in the CTrilinos layer, is required to circumvent the
lack of OO and template meta-programming support, and must be managed to insure a scalable
approach. Therefore, the code required to support both CTrilinos sublayers and the bottom layer of
ForTrilinos (procedural bindings) are created by a customized script. The scripts automate the glue
code generation process and enable wrapping templated classes and functions in the C++ library.
All possible instantiation for all wrapped template classes are documented in a separate file. The
script parses the C++ header files and uses the information to create procedures for each supported
instantiation of the template classes.

All C++ objects are referenced in C by identifiable struct IDs. In CTrilinos there is a unique
struct ID for each instance of a template class. Listing 2.4 for example, shows the template class
Tpetra::MultiVector, and the type definition of its template parameters. The parameters in

25

lines 1-3 are fundamental C++ types and the forth parameter is a Kokkos class. The correspond-
ing CTrilinos type for the previously described instantiation is shown in listing 2.5. The label
_F_I_L_KTPI_ is used to represent each type parameter used in the instantiation (F=float,
I=int32_t, L=int64_t, KTPI=Kokkos::TPINode). Similar labels are used to differentiate be-
tween the procedures that operate on each specific class instantiation.

Listing 2.4: C++ instantiation of templated class
1 typedef float Scalar;

2 typedef int32_t LocalOrdinal;

3 typedef int64_t GlobalOrdinal;

4 typedef Kokkos :: TPINode Node;

5 typedef Tpetra :: MultiVector <Scalar ,LocalOrdinal ,GlobalOrdinal ,Node >Vector;

Listing 2.5: CTrilinos C definition of an instant of templated class
1 typedef struct {

2 CTrilinos_Table_ID_t table; /*!< Table with reference to the object */

3 int index; /*!< Array index of the object */

4 boolean is_const; /*!< Whether or not object was declared const */

5 } CT_Tpetra_MultiVector_F_I_L_KTPI_ID_t;

Compiler-time checking in the CTrilinos layer, provides a layer of safety to the end user, and it
is enable by distinguishing struct IDs for each template class instantiation. To provide support for
other instantiations for a template class the CTrilinos or ForTrilinos developer only needs to add
the instance to the template_class file, used by the script.

The ForTrilinos layer uses struct IDs to reference the underlying C++ objects. In the case of
Fortran a single struct ID is use to represent all possible instances of a template class. Listing 2.6
shows the ForTrilinos struct ID for the template class Tpetra::MultiVector, where the name
used matches that of the CTrilinos layer (minus the template parameters labels). The struct ID
is only directly used by Fortran procedure bindings, in the bottom sublayer of ForTrilinos. In
this layer both the data structures and procedures have been stripped of any OOP features, so their
procedure bindings, which are defined with their corresponding C binding label, keep the necessary
information to enable compile-time checking.

Listing 2.6: ForTrilinos Fortran definition of an instant of templated class
1 type ,bind(C) :: FT_Epetra_MultiVector_ID_t

2 integer(ForTrilinos_Table_ID_t) :: table

3 integer(c_int) :: index

4 integer(FT_boolean_t) :: is_const

5 end type

The OO Fortran syntax that we proposed to support is shown in listing 2.7. Similar to the
C++ implementation, template parameters for intrinsic data types are defined in lines 1-3. In
this case, the values correspond to interoperable kind parameters that guarantee the appropriate
interoperability. The declaration of a parameterized data type must include the value of all kind
parameters. The forth parameter is a derived type, but the declaration can not directly use it as a

26

kind parameter. The lack of support for such functionality can be circumvented, without altering
the desired syntax, by using a parameter value, TPINode_t, to identify the derived data type.

Listing 2.7: ForTrilinos OO Fortran instantiation of template class
1 integer , parameter :: Scalar=c_float

2 integer , parameter :: LocalOrdinal=c_int32_t

3 integer , parameter :: GlobalOrdinal=c_int64_t

4 integer , parameter :: Node=TPINode_t ! type(TPINode) Node Not supported

5 type(MultiVector(Scalar ,LocalOrdinal ,GlobalOrdinal ,Node)) Vector

There are several considerations involved in the implementation of the OO Fortran interface
that enables the MultiVector PDT declaration. The following section provides a code example
that describes the software design of the OO Fortran interfaces and the considerations taken during
their implementation.

2.5. Generic and Object-Oriented Programming Paradigms in
ForTrilinos

The implementation of the OO Fortran interface of ForTrilinos employes features added to
Fortran by the 2003 and 2008 compiler standard. These features include OOP and generic pro-
gramming provided by PDT. The OOP features include inheritance, operator and function over-
loading, derived data types, generic interfaces, type-bound procedures, etc. All these features are
used without violating the portability requirement of all layers of the software stack.

The PDT declaration shown in the previous section uses interoperable kind parameters to de-
fined the parameterized type parameters. The intrinsic kind parameters defined in the iso_c_binding
module, previously mentioned, has values that are compiler and platform dependent, and in some
cases different parameters have the same value. Due to the lack of full template meta-programming
support in Fortran, an explicit procedure implementation is required for each instance of a PDT
class. The compiler must be able to differentiate between the different instances and the procedures
implemented. This requires unique kind parameters for each instance of a PDT class and unique
names for each implementation of the type-bound procedures.

A module implementation for a derived type foo is shown in listing 2.8. This PDT has two type
parameters (param_a and param_b). The derived type foo is defined in lines 8-23, and each of its
available type-bound procedures is defined in lines 11-18. Each type-bound procedure operates on
a specific instance of the PDT foo. Each instance is defined by the appropriate type parameters
values, which are provided by use statement in line 3-5. The name of the subroutine implementing
the type-bound procedures has a label with the type parameters of the instance of foo that invokes
it. The interface for all type-bound procedures is simplified by only publishing a generic interface
(lines 19-22). As a result, an application using this PDT module must know only about two meth-
ods First_TBP, and Second_TBP, and not each of the possible four implementations available for
each of the instantiations.

27

The kind_parameters module, shown in listing 2.9 is defined to encapsulate all kind parame-
ters, and provides a map representation of unique integer values. The unique values are guaranteed
by using the enum construct (lines 5-6). An integer parameter vector is defined with all the in-
teroperable kind parameters supported (lines 7-10) . The enumerated types are use to select the
interoperable kind parameter to be use in an intrinsic data type as shown in line 27 of listing 2.8.
Although this module could use c_int and c_long for kind parameters of int and long int C++
types, the integer data types c_int32_t and c_int64_t are used instead, for clear differentiation.

Listing 2.8: Module for sample PDT foo.
1 module foo_module

2 use iso_c_binding

3 use kind_parameters , only: ft_float_e , ft_double_e , &

4 ft_int_e , ft_long_e , &

5 ft_selected

6 private

7 public :: foo

8 type :: foo(param_a ,param_b)

9 integer , kind :: param_a , param_b

10 contains

11 procedure :: First_TBP_foo_F_I

12 procedure :: Second_TBP_foo_F_I

13 procedure :: First_TBP_foo_F_L

14 procedure :: Second_TBP_foo_F_L

15 procedure :: First_TBP_foo_D_I

16 procedure :: Second_TBP_foo_D_I

17 procedure :: First_TBP_foo_D_L

18 procedure :: Second_TBP_foo_D_L

19 generic :: First_TBP=>First_TBP_foo_F_I , First_TBP_foo_F_L , &

20 First_TBP_foo_D_I , First_TBP_foo_D_L

21 generic :: Second_TBP=>Second_TBP_foo_F_I , Second_TBP_foo_F_L , &

22 Second_TBP_foo_D_I , Second_TBP_foo_D_L

23 end type foo

24 contains

25 subroutine First_TBP_foo_F_I(this ,x)

26 class(foo(param_a=ft_float_e ,param_b=ft_int_e)), intent(in) :: this

27 real(kind=ft_selected(ft_float_e)) ,intent(in) :: x

28 print *,’call to First_TBP_foo_F_I with argument x kind ft_float_e ’

29 end subroutine First_TBP_foo_F_I

30 subroutine Second_TBP_foo_F_I(this ,y)

31 class(foo(param_a=ft_float_e ,param_b=ft_int_e)), intent(in) :: this

32 integer(kind=ft_selected(ft_int_e)) ,intent(in) :: y

33 print *,’call to Second_TBP_foo_F_I with argument y kind ft_int_e ’

34 end subroutine Second_TBP_foo_F_I

35 subroutine First_TBP_foo_F_L(this ,x)

36 class(foo(param_a=ft_float_e ,param_b=ft_long_e)), intent(in) :: this

37 real(kind=ft_selected(ft_float_e)) ,intent(in) :: x

38 print *,’call to First_TBP_foo_F_L with argument x kind ft_float_e ’

39 end subroutine First_TBP_foo_F_L

40 subroutine Second_TBP_foo_F_L(this ,y)

41 class(foo(param_a=ft_float_e ,param_b=ft_long_e)), intent(in) :: this

42 integer(kind=ft_selected(ft_long_e)) ,intent(in) :: y

43 print *,’call to Second_TBP_foo_F_L with argument y kind ft_long_e ’

28

44 end subroutine Second_TBP_foo_F_L

45 subroutine First_TBP_foo_D_I(this ,x)

46 class(foo(param_a=ft_double_e ,param_b=ft_int_e)), intent(in) :: this

47 real(kind=ft_selected(ft_double_e)) ,intent(in) :: x

48 print *,’call to First_TBP_foo_D_I with argument x kind ft_double_e ’

49 end subroutine First_TBP_foo_D_I

50 subroutine Second_TBP_foo_D_I(this ,y)

51 class(foo(param_a=ft_double_e ,param_b=ft_int_e)), intent(in) :: this

52 integer(kind=ft_selected(ft_int_e)) ,intent(in) :: y

53 print *,’call to Second_TBP_foo_D_I with argument y kind ft_int_e ’

54 end subroutine Second_TBP_foo_D_I

55 subroutine First_TBP_foo_D_L(this ,x)

56 class(foo(param_a=ft_double_e ,param_b=ft_long_e)), intent(in) :: this

57 real(kind=ft_selected(ft_double_e)) ,intent(in) :: x

58 print *,’call to First_TBP_foo_D_L with argument x kind ft_double_e ’

59 end subroutine First_TBP_foo_D_L

60 subroutine Second_TBP_foo_D_L(this ,y)

61 class(foo(param_a=ft_double_e ,param_b=ft_long_e)), intent(in) :: this

62 integer(kind=ft_selected(ft_long_e)) ,intent(in) :: y

63 print *,’call to Second_TBP_foo_D_L with argument y kind ft_long_e ’

64 end subroutine Second_TBP_foo_D_L

65 end module foo_module

Listing 2.9: Module with kind type parameters definitions for PDT foo.
1 module kind_parameters

2 use iso_c_binding , only: c_int , c_int32_t , c_int64_t , c_float , c_double

3 integer(c_int) ,parameter :: ft_kind_e = c_int

4 enum , bind(c)

5 enumerator :: ft_int_e=1, ft_long_e , ft_float_e , ft_double_e

6 end enum

7 integer ,parameter ,dimension (4) :: ft_selected =(/ c_int32_t ,&

8 c_int64_t ,&

9 c_float ,&

10 c_double /)

11 end module kind_parameters

An external application using the PDT foo is shown in listing 2.10. All type parameters re-
quired for the instantiation of a PDT foo object are encapsulated in my_types module in lines 1-7.
This provides flexibility to the application since any changes need to access a different instanti-
ation and its corresponding functionality is limited to that module. Main declared two different
instances of a foo object foo_FI_inst and foo_DL_ints. For consistency and again to increase
the flexibility of the overall application helper variables of intrinsic data types are declared using
the kind parameters defined in the PDT instantiation. Lines 18 to 21 show the invocation of the two
type-bound procedures by each instance of foo. A sample output is included in listing 2.11 ver-
ifying that the appropriate TBP implementation was called. The implementation shown provides
compile-time errors in the case of type mismatch.

Listing 2.10: Sample main making use of PDT foo.
1 module my_types

2 use kind_parameters

29

3 integer , parameter :: D=ft_double_e

4 integer , parameter :: L=ft_long_e

5 integer , parameter :: F=ft_float_e

6 integer , parameter :: I=ft_int_e

7 end module

8 program main

9 use my_types

10 use foo_module

11 type(foo(F,I)) :: foo_FI_inst

12 type(foo(D,L)) :: foo_DL_inst

13 real(kind=ft_selected(F)) :: value_F =10.0

14 integer(kind=ft_selected(I)) :: index_I =1

15 real(kind=ft_selected(D)) :: value_D =200.0

16 integer(kind=ft_selected(L)) :: index_L =20

17
18 call foo_FI_inst%First_TBP(value_F)

19 call foo_FI_inst%Second_TBP(index_I)

20 call foo_DL_inst%First_TBP(value_D)

21 call foo_DL_inst%Second_TBP(index_L)

22 end program main

Listing 2.11: Output from running example application using the PDT foo.
1 call to First_TBP_foo_F_I with argument x kind ft_float_e

2 call to Second_TBP_foo_F_I with argument y kind ft_int_e

3 call to First_TBP_foo_D_L with argument x kind ft_double_e

4 call to Second_TBP_foo_D_L with argument y kind ft_long_e

This PDT design supports the desired syntax, but it requires extreme source code duplication.
In the absent of full template metaprogramming support, a script has been developed to automate
source code generation based on a simple interface or skeleton, such as the one shown in list-
ing 2.12. The scripts follow a similar approach to that of the Forpedo3 project. The project was
developed to emulate run time polymorphism in earlier versions of the Fortran compiler. The For-
Trilinos project adopt a similar skeleton syntax and developed a script to expand the skeleton of
the PDT class by providing the implementation for all procedure instantiations. The skeleton re-
quires the definition of a string to be replaced, the label of the type parameter, the value of the type
parameter and the declaration for an intrinsic data type with that kind parameter (see lines 1-4).

Listing 2.12: Module skeleton for sample PDT foo.
1 #definetype FirstType F ft_float_e ft_selected(ft_float_e)

2 #definetype FirstType D ft_double_e ft_selected(ft_double_e)

3 #definetype SecondType I ft_int_e ft_selected(ft_int_e)

4 #definetype SecondType L ft_long_e ft_selected(ft_long_e)

5 module foo_module

6 use iso_c_binding

7 use kind_parameters , only: ft_float_e , ft_double_e , &

8 ft_int_e , ft_long_e , &

9 ft_selected

10 private

3http://fortranwiki.org/fortran/show/Forpedo

30

11 public :: foo

12 type :: foo(param_a ,param_b)

13 integer , kind :: param_a , param_b

14 contains

15 #procedure_start

16 procedure :: First_TBP_foo_ <FirstType >_<SecondType >

17 procedure :: Second_TBP_foo_ <FirstType >_<SecondType >

18 #procedure_end

19 #generic_start

20 generic :: First_TBP=>First_TBP_foo_ <FirstType >_<SecondType >

21 generic :: Second_TBP=>Second_TBP_foo_ <FirstType >_<SecondType >

22 #generic_end

23 end type foo

24 contains

25 #procedure_impl_start

26 subroutine First_TBP_foo_ <FirstType >_<SecondType >(this ,x)

27 class(foo(param_a =~FirstType ,param_b =~ SecondType)), intent(in) :: this

28 real(kind=@FirstType) ,intent(in) :: x

29 print *,’call to First_TBP_foo_ <FirstType >_<SecondType > with argument

x kind ~FirstType ’

30 end subroutine First_TBP_foo_ <FirstType >_<SecondType >

31 subroutine Second_TBP_foo_ <FirstType >_<SecondType >(this ,y)

32 class(foo(param_a =~FirstType ,param_b =~ SecondType)), intent(in) :: this

33 integer(kind=@SecondType) ,intent(in) :: y

34 print *,’call to Second_TBP_foo_ <FirstType >_<SecondType > with argument

 y kind ~SecondType ’

35 end subroutine Second_TBP_foo_ <FirstType >_<SecondType >

36 #procedure_impl_end

37 #conclusion_start

38 end module foo_module

39 #conclusion_end

31

This page intentionally left blank.

Chapter 3

Platform-agnostic multiphase flow
application via Fortran 2008 coarrays

Fortran has always been a language with a focus on high efficiency for numerical computations
on array data sets. Over the past 10-15 years, it has picked up features from mainstream pro-
gramming, such as class abstractions, but also catered to its prime users by developing a rich set
of high-level array operations. Controlling the flow of information allows for a purely functional
style of expressions that is expressions that rely solely upon functions that have no side effects.
Side effects influence the global state of the computer beyond the function’s local variables. Ex-
amples of side effects include input/output, modifying arguments, halting execution, modifying
non-local data, and synchronizing parallel processes. There have been longstanding calls for em-
ploying functional programming as part of the solution to programming parallel computers [5].
The Fortran 2008 standard also includes a parallel programming model based primarily upon the
coarray distributed data structure. The advent of support for Fortran 2008 coarrays in the Cray
and Intel compilers makes the time ripe to explore synergies between Fortran’s explicit support for
functional expressions and coarray parallel programming [7].

A sample main driver that uses the spay tracking application programming interface developed
is shown in listing 3.1. The application is fully distributed even though no explicit library calls are
made. The platform-agnostic multiphase flow application is implemented via coarrays. Coarrays
(new feature introduced into the Fortran 2008 compiler standard) enable parallel processing using
multiple copies of a single program, each copy, is called an image. According to the Partitioned
Global Address Space (PGAS) model, each image can access its local data as well as the data from
other images though the use of coindices. In this programming model all communication is shown
explicitly by the use of a coindices.

Listing 3.1: Source code for object-oriented Fortran Multiphase flow application driver.
1 program main

2 use ForTrilinos_assertion_utility , only : assert ,error_message

3 use math_utility , only : error_within_tolerance

4 use kind_parameters , only : rkind , ikind

5 use math_constants , only : zero , local_pmax , a, b, c, half

6 use cartesian_grid_implementation , only: c_grid

7 use fluid_implementation , only: carrier_fluid

8 use local_particles_implementation , only : local_particles

9 use particles_implementation , only: particles

10 implicit none

33

11 !> @name Time Advanced Particle Test

12 !! @{

13
14 !>
 Runge Kutta 4th order quadrature algorithm

15 !> @brief Time Advanced Particle Phase

16 !> Tracks particle positon and velocity as a function of time using RK4.

17
18 ! Variable declaration

19 type(c_grid) :: grid

20 type(carrier_fluid) :: gas

21 type(particles), save :: spray , k1, k2, k3, spray_temp

22 real(rkind) :: time =0.0 _rkind , dt =0.0165 _rkind , t_final =20

_rkind

23 integer(ikind) :: i, istep=0, istep_final =100

24 character(len=*), parameter :: mesh_filename_root=’CG3D_’

25 character(len =100) :: mesh_filename

26 character(len=*), parameter :: fluid_filename_root=’TG2DF_CG3D_ ’

27 character(len =100) :: fluid_filename

28 character(len=*), parameter :: spray_filename_root=’RandomSpray_CG3D_ ’

29 character(len =100) :: spray_filename

30 character(len=*), parameter :: connectivity_filename=’TG2DF_CG3D_connect

.txt’

31
32 ! Reading intialization data

33 write(mesh_filename ,’(A,I6.6,A)’) mesh_filename_root ,this_image (),’.tec’

34 call grid%new_c_grid(mesh_filename ,connectivity_filename)

35 write(fluid_filename ,’(A,I6.6,A)’) fluid_filename_root ,this_image (),’.

tec’

36 call gas%new_carrier_fluid(grid ,fluid_filename)

37 write(spray_filename ,’(A,I6.6,A)’) spray_filename_root ,this_image (),’.

tec’

38
39 ! Contructing distributed data objects

40 call spray%new_particles(gas ,spray_filename ,time)

41 call spray_temp%new_particles ()

42 call k1%new_particles ()

43 call k2%new_particles ()

44 call k3%new_particles ()

45
46 ! Time advancing multiphase flow

47 do while (time <t_final)

48 call spray%interpolate ()

49
50 ! Implementation of RK4

51 k1 = spray%t()*dt

52 spray_temp = spray + k1*half

53 k2 = spray_temp%t()*dt

54 spray_temp = spray + k2*half

55 k3 = spray_temp%t()*dt

56 spray_temp = spray + k3*c

57 spray = spray + k1*a + k2*b + k3*b + spray_temp%t()*(dt*a)

58
59 time = spray%get_time ()

60 if (this_image ()==1) print * , ’TIME=’, istep , time

34

61
62 ! Distributed object data relocation

63 call spray%all_images_relocate_particles ()

64 sync all

65
66 ! Output file for visualization

67 istep = istep + 1

68 if(mod(istep ,5) ==0) call spray%output(’RandomSpray_CG3D_ ’)

69 enddo

70
71 call spray%output(’RandomSpray_Final_ ’)

72 end

The functional and object-oriented programing approaches used in the implementation of this
spray modeling application contribute to an expressive syntax. The distributed operators imple-
mented (1st derivative with respect to time %t, addition +, multiplication -, etc.) are able to support
the Runge Kutta fourth order method used within the main application driver to time advance the
spray phase (see lines 51-57 in listing 3.1). In addition, these operators can also be used to support
other time advancing schemes with the same expressive syntax. The unified modeling language
class diagram, shown in figure 3.1, provides a high level description of the software design of the
overall software infrastructure. The project has published excellent scalability results (87% weak
scaling for up to 16384 images) for a prototype applications using the a similar software design [7].

c_grid

 - x(:,:,:) : real
 - y(:,:,:) : real
 - z(:,:,:) : real
 - xc(:,:,:) : real
 - yc(:,:,:) : real
 - zc(:,:,:) : real
 - nx : integer
 - ny : integer
 - nz : integer
 - conn(:) : type(conn_face)
 - num_faces=6 : parameter
 - halo=1 : parameter
 - num_dim=3 : parameter

conn_face

 - face_type : character
 - face_bc : integer
 - face_nblk : integer
 - face_axis : character

6 ..
1

 - u(:,:,:) : real
 - v(:,:,:) : real
 - w(:,:,:) : real
 - mesh : type(c_grid)

particles

 - x(:)[:] : real
 - v(:)[:] : real
 - z(:)[:] : real
 - u(:)[:] : real
 - v(:)[:] : real
 - w(:)[:] : real
 - fluid : type(carrier_fluid)

 << constructor >>
 + new_c_grid()
 << methods >>
 + set_cell_centers()
 + locate_points()
 + Jacobian()
 + inverseJacobian()

 << constructor >>
 + new_carrier_fluid()
 << methods >>
 + locate_points()
 + interpolate_points()

 << constructor >>
 + new_particles()
 << methods >>
 + locate_particles()
 + interpolate()
 - image_relocate_particles()

carrier_fluid

Figure 3.1: Unified modeling language (UML) class diagram for MPFlows software package.

35

This page intentionally left blank.

Chapter 4

Results

This report describes the software design used to allow object-oriented Fortran applications
direct access to capabilities within the Trilinos C++ library. Although the outlined approached is
compiler standard compliant, the extensive use of very sophisticated features, not commonly used
by software developers, contributes to the bleeding edge nature of the work and limited compiler
support. The current implementation of CTrilinos and ForTrilinos wrappers for Tpetra, Kokkos
and Teuchos has been tested with the IBM XL compiler, version 13.1. The CTrilinos package and
the ForTrilinos procedural binding, for the aforementioned wrapped packages, work on GNU 4.9.
Due to the lack of PDT support in the GNU Fortran compiler the object-oriented Fortran interfaces
in ForTrilinos are not available for Tpetra, and Kokkos.

The software design approach used throughout this project was mainly driven by an effort to
address portability and usability requirements. These requirements and the aspects of the software
design implemented to satisfy them, can be summarized as follow.

• The ForTrilinos interfaces used by object-oriented Fortran applications must provide users
with a clean syntax to define any specific instantiation of an underlying C++ template class.

The software design of the OO Fortran interfaces uses a PDT for each shadow class used
to access the underlying C++ template class. Each of the kind type parameters in the PDT
shadow class corresponds to a template parameter in the template C++ class.

• The ForTrilinos interfaces must provide users with an overloaded single public interface for
type-bound procedures (methods in C++) invoked on any instance of an underlying template
C++ class.

For each C++ generic method in a template class, the PDT shadow class publishes a corre-
sponding overloaded interface. Within the module implementing the PDT shadow class there
is a type-bound procedure specified for each instantiation or combination of valid kind type
parameters defined in the PDT shadow class. Users access the functionality only through the
overloaded interface, which simplifies the interface of the end user application.

• The ForTrilinos object-oriented interface must provide a syntax that feels natural to Fortran
developers.

There are several issues to address in order to achieve a natural Fortran syntax, without

37

compromising the portability of the software stack. Since C does not support the C++ bool
type, CTrilinos establishes a custom, integer Boolean type for use with C compilers and uses
this type to represent C++ bool values. With this convention, the following CTrilinos code
defines the employed Boolean true and false shown below.

typedef int boolean;

#ifndef TRUE

define TRUE 1

#endif

#ifndef FALSE

define FALSE 0

#endif

Respecting this convention, ForTrilinos avoids the interoperable Fortran 2003 c_bool kind
parameter and instead employs a corresponding FT_boolean_t integer kind parameter within
the procedural bindings. The implementation of the OO Fortran interfaces in ForTrilinos
make the necessary conversions so all published interfaces use the intrinsic Fortran data type
logical.

To achieve a natural Fortran syntax Teuchos::Array classes implemented in Trilinos are not
directly used within the OO ForTrilinos interface. A separate ForTrilinos_PDT_utils.F90
module is implemented to handle all conversions between Teuchos::Array classes and For-
tran allocatable arrays. The use of the module functionality within the implementation of OO
Fortran interfaces once again make all conversions and the end user passes and receives data
using only the allocatable arrays.

• The ForTrilinos object-oriented interface most provide new idioms for writing classes with
generic programming support.

The PDT feature provide for generic programming support in Fortran have been used in
this project to develop Fortran interfaces for C++ template classes. The portability problems
that arise due to kind parameters, compiler and platform dependencies, are circumvented
through the use of enumerated types which provide unique values for each of the PDT type
parameters. The script developed as part of this project to automate the generation of source
code for each PDT instantiation enables a generic programming support that mimics more
closely that of the template metaprograming paradigm supported within the C++ library.

• The object-oriented Fortran wrappers provide compile time error messages in cases were
undefined data types are used which provides early error detection to the end user.

Source code errors can be better addressed if early detection is possible. The were several
software designs considered to implement the object-oriented shadow objects. Some de-
signs were discarded due to their deferred error detection behavior, where the presence of an
unsupported instance of a PDT, type-bound procedure or implementation for an overloaded
procedure is discovered only at run-time. The current design implemented in ForTrilinos
circumvents this behavior and provides users with compile-time error checking features for
all unsupported instances of PDT and procedures.

38

• The source code use within each software layer is standard compliant so as to avoid porta-
bility problems.

The software design implemented in each layer is compiler standard compliant. Special
compiler vendor features are avoided to prevent portability problems. The features used pro-
vide an elegant solution for the multi-programming language environment, however, they
have not been extensively used by developers. Compiler vendor support would increase by
out interaction with different compiler teams.

39

This page intentionally left blank.

Chapter 5

Conclusion and Future Work

Computational modeling of turbulent combustion is vital for our energy infrastructure and of-
fer the means to develop, test and optimize fuels and engine configurations. In the case of internal
combustion engines, fuel injection simulations provide insight into the required calibration for ap-
propriate turbulent mixing and efficient combustion. In modeling the dilute spray regime, away
from the injection site and downstream of the atomization processes, considerable doubts persist
regarding how to best parameterize and predict the various two-way couplings between the dis-
persed phase and the surrounding fluid turbulence. These couplings include mass, momentum, and
energy exchanges.

Two categories of challenges confront the developer of computational spray models: those re-
lated to the computation and those related to the physics. Regarding the computation, the trend
towards heterogeneous, multi- and many-core platforms will require considerable re-engineering
of codes written for the current supercomputing platforms. Regarding the physics, accurate meth-
ods for transferring mass, momentum and energy from the dispersed phase onto the carrier fluid
grid have so far eluded modelers. Significant challenges also lie at the intersection between these
two categories. To be competitive, any physics model must be expressible in a parallel algorithm
that performs well on evolving computer platforms.

This project laid the foundation to tackled these two challenges in scientific software applica-
tions developed with the Fortran programming language. Fortran is the predominant language of
choice within the combustion community. The computational challenges have been addressed by
designing a software infrastructure to allow Fortran application direct access to C++ Trilinos capa-
bilities that encapsulate hardware communication and computation dependencies. Computational
challenges have also been addressed through the concurrent development of a spray modeling ap-
plication using the parallel programming model included in the Fortran compiler standard.

Additional work is required to improve the accuracy of the physical models. The current spray
model application was developed with a set of distributed data structures, but the parametric func-
tions that model the attenuation of fluid turbulent properties due to the presence of the dispersed
particles have not been incorporated. The software design of the application encapsulated the
properties of the particle phase in data structures that don’t need to be modified as the parametric
functions are implemented. The particle phase flow application must be tested when interfaced
with already available fluid phase flow software. The previously mentioned parametric functions
will extend the capabilities of the particle phase to account for deformation and wake effects on
the background fluid affected by large scale particles.

41

The platform-agnostic multiphase flow application developed makes use of several program-
ming paradigms; object-oriented, functional programming and parallel programming. All of which
are currently supported as part of the Fortran 2008 compiler standard. The combination of func-
tional programming and the implementation of data type calculus design pattern provide an ex-
pressive syntax to the application and use objects that support distributed data without third party
library dependencies. This worked was able to obtained great scalability results for a prototype
application developed with the same software design implemented in the spray modeling software
application.

Two sets of scripts were developed in the course of this project. One of the scripts was refac-
tor from Nicole Lemasters Slattengren original CTrilinos and ForTrilinos customized script. The
added functionality of the script enable parsing Trilinos C++ source code in the foundational,
template packages Tpetra, Teuchos and Kokkos, and use the results to create the CTrilinos and
ForTrilinos glue code required to access their provided capabilities. The second script developed
automates the generation of source code for each specific instantiation of a PDT. It does so based
on a provided skeleton file, which can be thought of as a generic interface for all of the PDT and
the corresponding type-bound procedures.

The CTrilinos and ForTrilinos wrappers for Tpetra, Kokkos and Teuchos are available to any
Trilinos library developer, as well as software developers within Sandia. The wrappers have not
been publicly released. The appendix section of this report contains the source code for an end
users application implemented using the OO Fortran interfaces. In the future close interaction
with compiler vendors is required to increase support for all the compiler features use within the
software stack that was developed in this project. This sort of interaction is responsible for the
increase in ForTrilinos compiler support we have experienced in the last couple of years, which
has gone from one compiler vendor supporting the first release to four compilers in the last release.

Taking this work to the next level requires merging the wrappers implementations of CTrilinos
and ForTrilinos into the release branch of Trilinos to make the capabilities available to non Sandia
scientist. The extensive use of both packages would inadvertently contribute to an increase in
compiler vendor support.

42

References

[1] Jeanne C. Adams, Walter S. Brainerd, Richard A. Hendrickson, Richard E. Maine, Jeanne T.
Martin, and Brian T. Smith. The Fortran 2003 Handbook: The Complete Syntax, Features
and Procedures. Springer, 2009.

[2] E. Akin. Object-Oriented Programming via Fortran 90/95. Cambridge University Press,
2003.

[3] Tibor Bakota, Rudolf Ferenc, and Tibor Gyimothy. Clone smells in software evolution. In
Software Maintenance. ICSM 2007. IEEE International Conference, October 2-5 2007.

[4] Roscoe Barlett. Teuchos C++ memory management classes, idioms, and related topics the
complete reference a comprehensive strategy for safe and efficient memory management in
C++ for high performance computing. SANDIA Report 2010-2234, Sandia National Labo-
ratory., 2011.

[5] D. C. Can. Retire Fortra? adebate rekindle. Commun. ACM, 35.

[6] M. G. Gray, R. M. Roberts, and T. M. Evans. Shadow-object interface between Fortran 95
and C++. Computing in Science and Engineering, 1(2):63–70, 1999.

[7] Magne Haveraaen, Karla Morris, and Damian Rouson. High-performance design patterns for
modern fortran. In First International Workshop on Software Engineering for High Perfor-
mance Computing in Computational Science and Engineering, November 22 2013.

[8] Debasish Jana. C++ and Object-Oriented Programming Paradigm. Prentice-Hall, 2005.

[9] ISO/IEC JTC1/SC22/WG5/N1830. Information technology - programming languages - for-
tran - part 1: Base language. ISO/IEC DIS 1539-1, International Organization for Standard-
ization/International Electrotechnical Commission, 2010.

[10] M. Metcalf, J. K. Reid, and M. Cohen. Modern Fortran Explained. Oxford University Press,
2011.

[11] K. Morris, D. W. I. Rouson, and M. N. Lemaster. On the scalable development of portable
object-oriented fortran interfaces to C++: A PDE solver prototype. ACM Trans. Math Soft.,
in review 2013.

[12] K. Morris, D. W. I. Rouson, M. N. Lemaster, and Salvatore Filippone. Exploring capabilities
within fortrilinos by solving the 3D burgers equation. Scientific Programming, 20(3):275–
292, 2012.

[13] Joseph C. Oefelein. Large eddy simulation of turbulent combustion processes in propulsion
and power systems. Progress in Aerospace Science, 42:2–37, 2006.

43

[14] James Reinders. Intel Threading Building Blocks. O’Reilly, 2007.

[15] M. Sommerfeld and H. Qiu. Characterization of particle-laden, confined swirling flows by
phase-doppler anemometry and numerical calculation. International Journal of Multiphase
Flow, 19(6):1093–1127, 1993.

[16] Todd Veldhuizen. Using C++ template metaprograms. C++ Report, 7(4), 1995.

44

Appendix A

Source Code For Sample Application

This section provides the complete source code for a sample application that can use any of the
Kokkos defined nodes. Each example access underlying C++ Trilinos functionality through the
available wrappers in a specific layer of the software stack shown in figure 2.1.

A.1. Trilinos Sample Application

A prototype application for a distributed, scalable and portable vector matrix multiplication
using Trilinos is shown in listing A.1. This prototype application can run on any platform for
which a Kokkos node has been implemented. The application source code does not need to be
refactor for portability since this information is encapsulated in the Node type defined in line 27.
All parameters required by templated classes are defined in lines 22-28. The parameters are used
to instantiate the template classes that implement distributed sparse matrix and vector objects in
lines 29 and 30 respectively. The library informs the application of the platform and build con-
figuration by the Node definition return by the Tpetra::DefaultPlatfrom class (line 40). The
communicator information and functionality is contained within the Teuchos::Comm class (line
41) , which provides wrappers to data communication procedure such as broadcast, reduceAll,
gatherAll, etc.

The data of all objects is distributed base on a map. The Tpetra:Map class holds local/global
indices and properties information required for communication and operations on the data. The
map object is created in line 45-48 by invoking one of the overloaded constructors. Local ar-
ray functionality is provided in the Trilinos library by the Teuchos package. The different array
classes within Teuchos wrap C++ raw pointers with reference counted pointers to manage dynam-
ically allocated memory. These arrays serve as light weight replacements for raw pointers and
are pass and return as arguments to functions. Lines 50 and 51 declare an Array with constant
values of type GlobalOrdinal and populates the array elements with the return value form then
getNodeElementList method respectively. The sparse matrix object is constructed in line 55, and
data is inserted one row at the time (lines 57-75) by using the Tuple class, a compile-time array that
allow the array argument to be constructed and passed to the function on the fly. A vector matrix
multiplication method is invoked in line 92, using the previously constructed distributed vectors
(lines 81-82). Even in the absence of any explicit parallel library call the source code executes
distributed operations.

45

Listing A.1: Source code for sample C++ application using Trilinos library.
1 #include "Teuchos_GlobalMPISession.hpp"

2 #include "Teuchos_oblackholestream.hpp"

3 #include "Teuchos_Array.hpp"

4 #include "Tpetra_DefaultPlatform.hpp"

5
6 #include "Kokkos_DefaultKernels.hpp"

7 #include "Kokkos_DefaultNode.hpp"

8 #include "Kokkos_DefaultSparseOps.hpp"

9
10 #include "Tpetra_Map.hpp"

11 #include "Tpetra_MultiVector.hpp"

12 #include "Tpetra_CrsMatrix.hpp"

13
14 #include "iostream"

15
16 int main(int argc , char *argv [])

17 {

18 Teuchos :: oblackholestream blackhole;

19 Teuchos :: GlobalMPISession mpiSession (&argc ,&argv ,& blackhole);

20
21 // Specify types use in this example

22 typedef double Scalar;

23 typedef int LocalOrdinal;

24 typedef int Ordinal;

25 typedef int GlobalOrdinal;

26 typedef Tpetra :: DefaultPlatform :: DefaultPlatformType Platform;

27 typedef Tpetra :: DefaultPlatform :: DefaultPlatformType :: NodeType Node;

28 typedef Kokkos :: DefaultKernels <Scalar ,LocalOrdinal ,Node >:: SparseOps DSM;

29 typedef Tpetra ::CrsMatrix <Scalar ,GlobalOrdinal ,GlobalOrdinal ,Node ,DSM >

CrsMatrix;

30 typedef Tpetra ::Vector <Scalar ,LocalOrdinal ,GlobalOrdinal ,Node > Vector;

31 using Teuchos ::RCP;

32 using Teuchos ::tuple;

33
34 // Parameter

35 int numGlobalElements = 40;

36 int numVec =1;

37 Scalar alpha =1.0, beta =0.0;

38
39 // Get communicator

40 Platform &platform = Tpetra :: DefaultPlatform :: getDefaultPlatform ();

41 RCP <const Teuchos ::Comm <Ordinal > > comm = platform.getComm ();

42 RCP <Node > node = platform.getNode ();

43
44 // Create map

45 RCP <const Tpetra ::Map <LocalOrdinal ,GlobalOrdinal ,Node > > map;

46 map =

47 Tpetra :: createUniformContigMapWithNode <LocalOrdinal ,GlobalOrdinal ,Node >

48 (numGlobalElements , comm , node);

49 const size_t numMyElements = map ->getNodeNumElements ();

50 Teuchos ::ArrayView <const GlobalOrdinal > myGlobalElements;

51 myGlobalElements = map ->getNodeElementList ();

46

52
53 // Create a CrsMatrix using the map , with a dynamic

54 // allocation of 3 entries per row

55 RCP <CrsMatrix > A = rcp (new CrsMatrix(map ,3));

56 // Add rows one -at-a-time

57 for (size_t i=0; i<numMyElements; i++) {

58 if (myGlobalElements[i] == 0) {

59 A->insertGlobalValues(myGlobalElements[i],

60 tuple <GlobalOrdinal >(myGlobalElements[i],myGlobalElements[i]+1),

61 tuple <Scalar > (2.0 , -1.0));

62
63 }

64 else if (myGlobalElements[i] == numGlobalElements -1) {

65 A->insertGlobalValues(myGlobalElements[i],

66 tuple <GlobalOrdinal >(myGlobalElements[i]-1, myGlobalElements[i]),

67 tuple <Scalar > (-1.0 ,2.0));

68 }

69 else {

70 A->insertGlobalValues(myGlobalElements[i],

71 tuple <GlobalOrdinal >(myGlobalElements[i]-1,

72 myGlobalElements[i],myGlobalElements[i]+1),

73 tuple <Scalar > (-1.0,2.0,-1.0));

74 }

75 }

76
77 // Complete the fill , ask that storage be reallocated and optimized

78 A->fillComplete ();

79
80 // Create MultiVectors

81 RCP <Vector > X = rcp (new Vector (map));

82 RCP <Vector > Y = rcp (new Vector (map));

83
84 // Insert values on MultiVector X

85 for (size_t i=0; i<numMyElements; i++) {

86 const Scalar value =1.0* myGlobalElements[i];

87 X->replaceGlobalValue(myGlobalElements[i],value);

88 }

89
90
91 // Matrix -Vector Multiply

92 A-> apply(*X,*Y);

93
94 // ÂăOutput Y

95 Teuchos ::ArrayRCP <Scalar > Yval;

96 Yval=Y->getDataNonConst (0);

97 for (size_t i=0; i<numMyElements; i++)

98 {

99 std::cout << Yval[i] <<" " << myGlobalElements[i] << std::endl;

100 }

101
102 }

47

A.2. CTrilinos Sample Application

CTrilinos is not intended as a user interface, but for testing purposes an equivalent implemen-
tation of the application shown in listing A.1 was developed using the interfaces defined in the
CTrilinos software layer (see listing A.2). The lack of OOP support in the C language makes the
procedures and arguments in this layer a lot more complex when compared to their C++ counter-
parts. No inheritance and function overloading support forces this layer to create unique names for
each function implementation. Each instantiation of the templated classes and functions must also
have a unique name.

All classes in C++ are identified by a struct id as shown in line 50. The variables that hold
the structs used to identified the underlying C++ objects within the application are declared in
lines 48-70. The struct names have the package and class name followed by a label for the
specific data type of the templated parameters. For example, in line 60, the struct id of type
CT_Teuchos_ArrayRCP_D_ID_t corresponds to an object of type Teuchos::ArrayRCP<double>.

The objects that encapsulate the functionality related to platform configuration and the in-
stantiation of the comm and node objects use for managing data distribution, communication and
operations are created in lines 83-85. The Map and MultiVector objects are created in lines 88 and
100 respectively. In this implementation the local array objects that are passed as arguments to the
function Tpetra_CrsMatrix_D_I_I_KTPI_KDS_insertGlobalValues (insertGlobalValues
method in C++) must be created separately before they are used (see lines 107-113 and 123-129).
The matrix vector multiplication procedure is invoked in line 167. Before exiting the application
all objects are destroyed in lines 176-186.

Listing A.2: Source code for sample C application using CTrilinos library package.
1 #include "assert.h"

2 #include "stdlib.h"

3 #include "stdio.h"

4
5 #include "mpi.h"

6
7 #ifdef HAVE_MALLOC_H

8 #ifndef __APPLE__

9 #include "malloc.h"

10 #else

11 #include "sys/malloc.h"

12 #endif

13 #endif

14
15 #include "CTrilinos_config.h"

16 #include "CTrilinos_enums.h"

17 #include "CTrilinos_flex_enums.h"

18 #include "CTrilinos_table_man.h"

19
20 #include "CTeuchos_Comm.h"

21 #include "CTeuchos_ArrayView.h"

22 #include "CTeuchos_ArrayRCP.h"

23 #include "CTeuchos_Tuple.h"

48

24 #include "CTeuchos_Array.h"

25 #include "CTeuchos_ParameterList.h"

26
27 #include "KokkosClassic_config.h"

28 #include "CKokkos_DefaultNode.h"

29
30 #if defined(HAVE_KOKKOSCLASSIC_THREADPOOL)

31 #include "CKokkos_TPINode.h"

32 #endif

33
34 #include "CTpetra_DefaultPlatform.h"

35
36 #include "CTpetra_MpiPlatform.h"

37 #include "CTpetra_Map.h"

38 #include "CTpetra_MultiVector.h"

39 #include "CTpetra_CrsMatrix.h"

40
41
42 int main(int argc , char *argv [])

43 {

44 #ifdef HAVE_CTRILINOS_KOKKOS

45 #ifdef HAVE_KOKKOSCLASSIC_THREADPOOL

46
47
48 CT_LocalGlobal_E_t lg = CT_LocalGlobal_E_GloballyDistributed;

49
50 CT_Teuchos_Comm_I_ID_t CommID;

51 CT_Kokkos_TPINode_ID_t NodeID;

52 CT_Tpetra_MpiPlatform_KTPI_ID_t id;

53
54 CT_Tpetra_Map_I_I_KTPI_ID_t Map;

55 CT_Tpetra_MultiVector_D_I_I_KTPI_ID_t x,y;

56 CT_Tpetra_CrsMatrix_D_I_I_KTPI_KDS_ID_t A;

57
58 CT_Teuchos_ParameterList_ID_t paramsID;

59
60 CT_Teuchos_ArrayRCP_D_ID_t yout;

61 CT_Teuchos_ArrayView_cI_ID_t myArrayView;

62 CT_Teuchos_ArrayView_cD_ID_t DcViewID;

63 CT_Teuchos_ArrayView_cI_ID_t cViewID;

64 CT_Teuchos_Array_I_ID_t AID;

65 CT_Teuchos_Array_D_ID_t DAID;

66
67 CT_Teuchos_Tuple_I2_ID_t Tuple_I2;

68 CT_Teuchos_Tuple_I3_ID_t Tuple_I3;

69 CT_Teuchos_Tuple_D2_ID_t Tuple_D2;

70 CT_Teuchos_Tuple_D3_ID_t Tuple_D3;

71
72 int IndexBase = 0;

73 boolean zeroOut = TRUE;

74 size_t i;

75 int j;

76 double value;

77 size_t NumGlobalElements = 40;

49

78 size_t numMyElements;

79 const int *MyGlobalElements;

80 double *yy;

81
82 MPI_Init (&argc , &argv);

83 id = Tpetra_DefaultPlatform_getDefaultPlatform ();

84 CommID = Tpetra_MpiPlatform_KTPI_getComm(id);

85 NodeID = Tpetra_MpiPlatform_KTPI_getNode(id);

86
87 /* Creating Map and extracting the numbering of its elements */

88 Map = Tpetra_Map_I_I_KTPI_Create(NumGlobalElements , IndexBase , CommID ,

lg, NodeID);

89 numMyElements = Tpetra_Map_I_I_KTPI_getNodeNumElements(Map);

90 myArrayView = Tpetra_Map_I_I_KTPI_getNodeElementList(Map);

91 MyGlobalElements = (int*) malloc(numMyElements*sizeof(int));

92 if (MyGlobalElements == NULL) {

93 fprintf(stderr ,"Couldn ’t malloc for MyGlobalElements\n");

94 printf("\nEnd Result: TEST FAILED\n");

95 return 1;

96 }

97 MyGlobalElements = Teuchos_ArrayView_cI_getRawPtr(myArrayView);

98
99 /* Creating and filling a Vector */

100 x = Tpetra_MultiVector_D_I_I_KTPI_Create(Map ,1,zeroOut);

101 for (i=0; i<numMyElements; i++) {

102 j = MyGlobalElements[i];

103 value =1.0*(double)j;

104 Tpetra_MultiVector_D_I_I_KTPI_replaceGlobalValue(x,j,0,value);

105 }

106
107 Tuple_I2 = Teuchos_Tuple_I2_Create ();

108 Tuple_I3 = Teuchos_Tuple_I3_Create ();

109 Tuple_D2 = Teuchos_Tuple_D2_Create ();

110 Tuple_D3 = Teuchos_Tuple_D3_Create ();

111
112 AID = Teuchos_Array_I_Create ();

113 DAID = Teuchos_Array_D_Create ();

114
115 /* Creating and filling a sparse matrix */

116 paramsID = Teuchos_ParameterList_Create ();

117 A = Tpetra_CrsMatrix_D_I_I_KTPI_KDS_Create_AllRows

118 (Map ,3, CT_ProfileType_E_DynamicProfile ,paramsID);

119
120 for (i=0; i<numMyElements; i++) {

121
122 if (MyGlobalElements[i] == 0) {

123 Tuple_I2 = Teuchos_Tuple_I2_tuple(MyGlobalElements[i],

MyGlobalElements[i]+1);

124 AID = Teuchos_Array_I_New_FromTuple_2(Tuple_I2);

125 cViewID=Teuchos_ArrayView_I_getConst(Teuchos_Array_I_Iview(AID ,0,2));

126
127 Tuple_D2 = Teuchos_Tuple_D2_tuple (2.0 , -1.0);

128 DAID = Teuchos_Array_D_New_FromTuple_2(Tuple_D2);

129 DcViewID=Teuchos_ArrayView_D_getConst(Teuchos_Array_D_Iview(DAID ,0,2)

50

);

130
131 Tpetra_CrsMatrix_D_I_I_KTPI_KDS_insertGlobalValues

132 (A,MyGlobalElements[i],cViewID ,DcViewID);

133 }

134
135 else if (MyGlobalElements[i] == NumGlobalElements -1) {

136 Tuple_I2 = Teuchos_Tuple_I2_tuple(MyGlobalElements[i]-1,

MyGlobalElements[i]);

137 AID = Teuchos_Array_I_New_FromTuple_2(Tuple_I2);

138 cViewID=Teuchos_ArrayView_I_getConst(Teuchos_Array_I_Iview(AID ,0,2));

139
140 Tuple_D2 = Teuchos_Tuple_D2_tuple (-1.0 ,2.0);

141 DAID = Teuchos_Array_D_New_FromTuple_2(Tuple_D2);

142 DcViewID=Teuchos_ArrayView_D_getConst(Teuchos_Array_D_Iview(DAID ,0,2)

);

143
144 Tpetra_CrsMatrix_D_I_I_KTPI_KDS_insertGlobalValues

145 (A,MyGlobalElements[i],cViewID ,DcViewID);

146 }

147
148 else {

149 Tuple_I3 = Teuchos_Tuple_I3_tuple(MyGlobalElements[i]-1,

MyGlobalElements[i],

150 MyGlobalElements[i]+1);

151 AID = Teuchos_Array_I_New_FromTuple_3(Tuple_I3);

152 cViewID=Teuchos_ArrayView_I_getConst(Teuchos_Array_I_Iview(AID ,0,3));

153
154 Tuple_D3 = Teuchos_Tuple_D3_tuple (-1.0,2.0, -1.0);

155 DAID = Teuchos_Array_D_New_FromTuple_3(Tuple_D3);

156 DcViewID=Teuchos_ArrayView_D_getConst(Teuchos_Array_D_Iview(DAID ,0,3)

);

157
158 Tpetra_CrsMatrix_D_I_I_KTPI_KDS_insertGlobalValues

159 (A,MyGlobalElements[i],cViewID ,DcViewID);

160 }

161
162 }

163
164 Tpetra_CrsMatrix_D_I_I_KTPI_KDS_fillComplete(A,paramsID);

165
166 y = Tpetra_MultiVector_D_I_I_KTPI_Create(Map ,1,zeroOut);

167 Tpetra_CrsMatrix_D_I_I_KTPI_KDS_apply(A,x,y,CT_ETransp_E_NO_TRANS

,1.0 ,0.0);

168
169 yout = Tpetra_MultiVector_D_I_I_KTPI_getDataNonConst(y,0);

170 yy=Teuchos_ArrayRCP_D_get(yout);

171
172 for (i=0; i<numMyElements; i++) {

173 printf("%f\n",yy[i]);

174 }

175
176 Teuchos_Array_I_Destroy (&AID);

177 Teuchos_Array_D_Destroy (&DAID);

51

178 Teuchos_ArrayView_cI_Destroy (& cViewID);

179 Teuchos_ArrayView_cD_Destroy (& DcViewID);

180 Teuchos_ArrayRCP_D_Destroy (&yout);

181 Tpetra_CrsMatrix_D_I_I_KTPI_KDS_Destroy (&A);

182 Tpetra_MultiVector_D_I_I_KTPI_Destroy (&x);

183 Tpetra_MultiVector_D_I_I_KTPI_Destroy (&y);

184 Tpetra_Map_I_I_KTPI_Destroy (&Map);

185 Tpetra_MpiPlatform_KTPI_Destroy (&id);

186 Kokkos_TPINode_Destroy (& NodeID);

187
188 #endif /* HAVE_KOKKOSCLASSIC_THREADPOOL */

189 #endif /* HAVE_CTRILINOS_KOKKOS */

190 }

A.3. ForTrilinos Procedural Fortran Sample Application

The source code shown in listing A.3 illustrates the use of Fortran procedural bindings by
an external application. The interfaces used in this code correspond to the first ForTrilinos sub-
layer shown in figure 2.1. In this layer the procedural interfaces correlate with the headers in the
CTrilinos layer. Since this layer makes no use of object-oriented programming features the end
application seems as complex as the previously shown implementation in listing A.2.

The explicit use of procedural bindings also makes this layer counterintuitive to Fortran pro-
grammers as we are forced to use struct IDs for Teuchos array classes instead of allocatable arrays
which are native Fortran features. Allocatable arrays defer to the compiler memory management
associate with the use of an array, memory is dynamically allocated when the array is created and
is automatically deallocated by the compiler when the variable goes out of scope.

In this implementation, similar to the CTrilinos implementation, the procedures and struct IDs
used to wrap the underlying C++ methods and classes respectively are identified by a label for
the instances of the templated parameters used. This approach allows the compiler to differentiate
between the different implementation but at the same time makes the application source code
less flexible. In contrast to the C++ implementation were the hardware considerations can be
changed by modifying only one line in the code (see line 27 in listing A.1), the CTrilinos and
ForTrilinos procedural bindings implementation (in listings A.2 and A.3 respectively) required the
modification the labels use throughout the application.

The interfaces of both the CTrilinos layer and the ForTrilinos procedural bindings are not in-
tended for the end user, they exist only to guarantee the portability of the software stack as they
support the ultimate object-oriented Fortran interfaces that are part of the ForTrilinos package. The
procedural layer in CTrilinos and ForTrilinos hide the underlying complexity of a software stack
that is both platform and compiler independent and enable OO Fortran interfaces that have idioms
that should feel natural to Fortran programmers.

52

Listing A.3: Source code for sample Fortran procedural application using ForTrilinos Fortran pro-
cedural bindings in the ForTrilinos library package.

1 #include "ForTrilinos_config.h"

2 program main

3 #ifdef HAVE_KOKKOSCLASSIC_THREADPOOL

4 use mpi

5 use iso_c_binding ,only : c_int ,c_double ,c_bool ,c_f_pointer

6 use iso_fortran_env ,only : error_unit ,output_unit

7 use fortrilinos_utils ,only : valid_kind_parameters

8 use fortpetra

9 use forteuchos

10
11 implicit none

12
13 !

14 ! Data declarations

15 !

16
17 integer(c_size_t) :: NumGlobalElements = 40 _c_size_t

18 integer(c_size_t) numMyElements

19 type(c_ptr) :: MyGlobalElements_ptr

20 integer(c_int), pointer :: MyGlobalElements (:) => NULL()

21 type(FT_Teuchos_Comm_ID_t) commID

22 type(FT_Kokkos_TPINode_ID_t) NodeID

23 type(FT_Tpetra_MpiPlatform_ID_t) id

24
25 type(FT_Teuchos_ArrayView_ID_t) myArrayView

26
27 integer(c_int) :: IndexBase = 0_c_int

28 type(FT_Tpetra_Map_ID_t) Map

29
30 type(FT_Tpetra_MultiVector_ID_t) x,y

31
32 type(FT_Tpetra_CrsMatrix_ID_t) A

33
34 type(FT_Teuchos_ParameterList_ID_t) paramsID

35 type(FT_Teuchos_ArrayView_ID_t) cViewID

36 type(FT_Teuchos_ArrayView_ID_t) DcViewID

37
38 type(FT_Teuchos_Array_ID_t) AID

39 type(FT_Teuchos_Array_ID_t) DAID

40
41 type(FT_Teuchos_Tuple_ID_t) Tuple_I2

42 type(FT_Teuchos_Tuple_ID_t) Tuple_I3

43 type(FT_Teuchos_Tuple_ID_t) Tuple_D2

44 type(FT_Teuchos_Tuple_ID_t) Tuple_D3

45
46 integer(c_size_t) i

47 integer(c_int) j

48 real(c_double) value

49
50 type(FT_Teuchos_ArrayRCP_ID_t) yout

51 type(c_ptr) :: yy_ptr

53

52 real(c_double), pointer :: yy(:) => NULL()

53
54 integer :: ierr

55 !

56 ! Executable code

57 !

58
59 call MPI_INIT(ierr)

60 id = Tpetra_DefaultPlatform_getDefaultPlatform ()

61 CommID = Tpetra_MpiPlatform_KTPI_getComm(id)

62 NodeID = Tpetra_MpiPlatform_KTPI_getNode(id)

63
64 !Creating Map and extracting the numbering of its elements

65 Map = Tpetra_Map_I_I_KTPI_Create(NumGlobalElements , IndexBase , CommID , &

66 FT_LocalGlobal_E_GloballyDistributed ,

NodeID)

67 numMyElements = Tpetra_Map_I_I_KTPI_getNodeNumElements(Map)

68 myArrayView = Tpetra_Map_I_I_KTPI_getNodeElementList(Map)

69
70 MyGlobalElements_ptr = Teuchos_ArrayView_cI_getRawPtr(myArrayView)

71 call c_f_pointer(MyGlobalElements_ptr , MyGlobalElements , [numMyElements

])

72
73 x = Tpetra_MultiVector_D_I_I_KTPI_Create(Map ,1_c_size_t ,FT_TRUE)

74 do i=1, numMyElements

75 j = MyGlobalElements(i)

76 value = dble(j)

77 call Tpetra_MultiVector_D_I_I_KTPI_replaceGlobalValue(x,j,0_c_size_t ,

value)

78 enddo

79
80 Tuple_I2 = Teuchos_Tuple_I2_Create ()

81 Tuple_I3 = Teuchos_Tuple_I3_Create ()

82 Tuple_D2 = Teuchos_Tuple_D2_Create ()

83 Tuple_D3 = Teuchos_Tuple_D3_Create ()

84
85 AID = Teuchos_Array_I_Create ()

86 DAID = Teuchos_Array_D_Create ()

87
88 !Creating and filling a sparse matrix

89 paramsID = Teuchos_ParameterList_Create ()

90 A = Tpetra_CrsMatrix_D_I_I_KTPI_KDS_Create_AllRows(Map ,3_c_size_t , &

91 FT_ProfileType_E_DynamicProfile ,paramsID)

92
93 do i=1, numMyElements

94
95 if (MyGlobalElements(i) == 0_c_int) then

96 Tuple_I2 = Teuchos_Tuple_I2_tuple(MyGlobalElements(i),

MyGlobalElements(i)+1 _c_int)

97 AID = Teuchos_Array_I_New_FromTuple_2(Tuple_I2)

98 cViewID=Teuchos_ArrayView_I_getConst(Teuchos_Array_I_Iview(AID ,0

_c_int ,2 _c_int))

99
100 Tuple_D2 = Teuchos_Tuple_D2_tuple (2.0 _c_double ,-1.0 _c_double)

54

101 DAID = Teuchos_Array_D_New_FromTuple_2(Tuple_D2)

102 DcViewID=Teuchos_ArrayView_D_getConst(Teuchos_Array_D_Iview(DAID ,0

_c_int ,2 _c_int))

103
104 call Tpetra_CrsMatrix_D_I_I_KTPI_KDS_insertGlobalValues(A,

MyGlobalElements(i), &

105 cViewID ,DcViewID)

106
107 elseif (MyGlobalElements(i) == NumGlobalElements -1 _c_int) then

108 Tuple_I2 = Teuchos_Tuple_I2_tuple(MyGlobalElements(i)-1_c_int ,

MyGlobalElements(i))

109 AID = Teuchos_Array_I_New_FromTuple_2(Tuple_I2)

110 cViewID=Teuchos_ArrayView_I_getConst(Teuchos_Array_I_Iview(AID ,0

_c_int ,2 _c_int))

111
112 Tuple_D2 = Teuchos_Tuple_D2_tuple (-1.0 _c_double ,2.0 _c_double)

113 DAID = Teuchos_Array_D_New_FromTuple_2(Tuple_D2)

114 DcViewID=Teuchos_ArrayView_D_getConst(Teuchos_Array_D_Iview(DAID ,0

_c_int ,2 _c_int))

115
116 call Tpetra_CrsMatrix_D_I_I_KTPI_KDS_insertGlobalValues(A,

MyGlobalElements(i), &

117 cViewID ,DcViewID)

118
119 else

120 Tuple_I3 = Teuchos_Tuple_I3_tuple(MyGlobalElements(i)-1_c_int ,

MyGlobalElements(i),&

121 MyGlobalElements(i)+1 _c_int)

122 AID = Teuchos_Array_I_New_FromTuple_3(Tuple_I3)

123 cViewID=Teuchos_ArrayView_I_getConst(Teuchos_Array_I_Iview(AID ,0

_c_int ,3 _c_int))

124
125 Tuple_D3 = Teuchos_Tuple_D3_tuple (-1.0 _c_double ,2.0 _c_double ,-1.0

_c_double)

126 DAID = Teuchos_Array_D_New_FromTuple_3(Tuple_D3)

127 DcViewID=Teuchos_ArrayView_D_getConst(Teuchos_Array_D_Iview(DAID ,0

_c_int ,3 _c_int))

128
129 call Tpetra_CrsMatrix_D_I_I_KTPI_KDS_insertGlobalValues(A,

MyGlobalElements(i), &

130 cViewID ,DcViewID)

131
132 endif

133
134 enddo

135
136 call Tpetra_CrsMatrix_D_I_I_KTPI_KDS_fillComplete(A,paramsID)

137
138 y = Tpetra_MultiVector_D_I_I_KTPI_Create(Map ,1_c_size_t ,FT_TRUE)

139 call Tpetra_CrsMatrix_D_I_I_KTPI_KDS_apply(A,x,y,FT_ETransp_E_NO_TRANS ,

&

140 1.0 _c_double ,0.0 _c_double)

141
142 yout = Tpetra_MultiVector_D_I_I_KTPI_getDataNonConst(y,0 _c_size_t)

55

143 yy_ptr=Teuchos_ArrayRCP_D_get(yout)

144 call c_f_pointer (yy_ptr , yy, [numMyElements])

145
146 do i=1, numMyElements

147 print *, yy(i)

148 enddo

149 #endif /* HAVE_KOKKOSCLASSIC_THREADPOOL */

150 end program

A.4. ForTrilinos Object-Oriented Fortran Sample Application

The sample implementation for the end user OO Fortran application is shown in listing A.5.
This corresponds to the top layer of the software stack discussed in section 2.3. In this implemen-
tation, objects are created through class named, overloaded user-defined constructors, making the
interface less complex. As was the case in the C++ implementation, here we are able to mod-
ified hardware configuration for the application by changing lines 12 and 13. The data type of
the templated parameters are declared in module my_parameters. It is done in a separate mod-
ule by design, to isolate the source code which can undergo possible modification. This module
correspond to the typedefs shown in listing A.1.

The specific instances of the PDTs that correspond to the underlying instances of the Trilinos
template classes are declared in lines 29-33. A clean syntax is achieved in this layer by defining
type-bound procedures that are invoked through a unified generic interface (see lines 89 and 92).
The interface is used to overload the implementations associated with a specific instantiation of the
PDT that wraps the corresponding instance of the underlying C++ template class.

In this implementation, variables of intrinsic data types are defined using the kind parameter
that corresponds to the templated parameters used in the application. The variable declaration
shown in line 35 could also be expressed using the syntax shown in listing A.4. In both cases,
the variable MyGlobalElements has the same kind parameter, however, the use of ft_selected
(defined in module ForTrilinos_PDT_enums.F90 not shown) unifies the definitions of all kind
parameters and encapsulate in my_parameters module the required source code modifications
to account for data type changes. The approach followed within the implementation promotes
consistency, avoids interoperability issues, and insures compile-time error checking.

Listing A.4: Alternative syntax for intrinsic data type declaration in OO ForTrilinos enable appli-
cation
integer(kind=c_int64_t), allocatable , dimension (:) :: MyGlobalElements

A utility module (ForTrilinos_PDT_utils.F90 not shown) was developed within ForTrili-
nos to encapsulate special functionality required to simplified the interfaces with which the end
user interacts. The functionality includes the conversion of Teuchos::Array, Teuchos::ArrayView
and Teuchos::ArrayRCP to allocatable Fortran arrays, which are what Fortran users would expect

56

to use as arguments to the different type-bound procedures. The module also includes function-
ality for the inverse conversion to be able to pass ForTrilinos procedural bindings the data in the
expected format. The capabilities within this module address one of the main requirements of this
project, the development of an OO interface that feels natural to Fortran programmers.

Listing A.5: Source code for sample object-oriented Fortran application using ForTrilinos library
package.

1 module my_parameters

2 use ForTrilinos_PDT_enums , only : ft_int_e , ft_long_e , ft_double_e , &

3 ft_size_t_e , ft_TPINode_e , ft_KDS_e , &

4 ft_selected

5 use FKokkos_TPINode , only: TPINode

6 integer , parameter :: Ordinal=ft_int_e

7 integer , parameter :: Scalar=ft_double_e

8 integer , parameter :: LocalOrdinal=ft_int_e

9 integer , parameter :: GlobalOrdinal=ft_long_e

10 integer , parameter :: SizeType=ft_size_t_e

11 integer , parameter :: LocalMatOps=ft_KDS_e

12 integer , parameter :: Node=ft_TPINode_e

13 type(TPINode) :: MyNode

14 end module

15 program main

16 use my_parameters

17 use FTpetra_Map , only : Map

18 use FTpetra_MultiVector , only : MultiVector

19 use FTpetra_CrsMatrix , only : CrsMatrix

20 use FTpetra_DefaultPlatform

21 use FTpetra_MpiPlatform , only : MpiPlatform

22 use FTeuchos_ParameterList , only : Teuchos_ParameterList

23 use FTeuchos_Comm , only : Comm

24 use ForTrilinos_enum_wrappers , only :

FT_LocalGlobal_E_GloballyDistributed , &

25 FT_ProfileType_E_DynamicProfile ,FT_ETransp_E_NO_TRANS

26 implicit none

27
28 ! Specify types use in this example

29 type(Map(LocalOrdinal ,GlobalOrdinal ,Node) :: map

30 type(MultiVector(Scalar ,LocalOrdinal ,GlobalOrdinal ,Node) :: x, y

31 type(CrsMatrix(Scalar ,LocalOrdinal ,GlobalOrdinal ,Node ,LocalMatOps)) :: A

32 class(Comm(Ordinal)), allocatable :: MyComm

33 type(MpiPlatform(Node)) :: Platform

34 type(ParameterList) :: param

35 integer(kind=ft_selected(GlobalOrdinal)), allocatable , dimension (:) ::

MyGlobalElements

36 integer(kind=ft_selected(LocalOrdinal)), allocatable , dimension (3) ::

Indices

37 real(kind=ft_selected(Scalar)), allocatable , dimension (3) :: Val

38 real(kind=ft_selected(Scalar)), allocatable , dimension (:) ::

y_local_vals

39 integer(kind=ft_selected(SizeType)) :: NumMyElements , j, i

40
41 ! Parameters

42 real(kind=ft_selected(Scalar)) :: alpha =1.0, beta =0.0, real_one =1.0,

57

real_two =2.0

43 integer(kind=ft_selected(SizeType)) :: NumGlobalElements =10, VecIndex=1,

NumEntries =3

44 integer(kind=ft_selected(LocalOrdinal)) :: one=1, IndexBase =1

45
46 ! Get communicator

47 Platform = getDefaultPlatform ()

48 MyComm = Platform%getComm ()

49 MyNode = Platform%getNode ()

50
51 !Creating Map and extracting the numbering of its elements

52 map = Map(NumGlobalElements , IndexBase , MyComm , &

53 FT_LocalGlobal_E_GloballyDistributed , MyNode)

54 NumMyElements = Map%getNodeNumElements ()

55 MyGlobalElements = Map%getNodeElementList ()

56
57 ! Create MultiVectors

58 x = MultiVector(map ,VecIndex ,FT_TRUE)

59 y = MultiVector(map ,VecIndex ,FT_TRUE)

60 do i=1, numMyElements

61 call x%replaceGlobalValue(MyGlobalElements(i),VecIndex ,(real_one*

MyGlobalElements(i))

62 enddo

63
64 ! Create a CrsMatrix using the map , with a dynamic allocation of 3

entries per row

65 param = ParameterList ()

66 A = CrsMatrix(map ,NumEntries ,FT_ProfileType_E_DynamicProfile ,param)

67
68 Val(1) = -real_one

69 Val(2) = real_two

70 Val(3) = -real_one

71 do i=1, NumMyElements

72 if (MyGlobalElements(i)==one) then

73 Indices (1) = MyGlobalElements(i)

74 Indices (2) = MyGlobalElements(i) + one

75 call A%insertGlobalValues(MyGlobalElements(i),Indices (1:2) ,Val (1:2))

76 elseif (MyGlobalElements(i)== NumGlobalElements) then

77 Indices (1) = MyGlobalElements(i) - one

78 Indices (2) = MyGlobalElements(i)

79 call A%insertGlobalValues(MyGlobalElements(i),Indices (1:2) ,Val (1:2))

80 else

81 Indices (1) = MyGlobalElements(i) - one

82 Indices (2) = MyGlobalElements(i)

83 Indices (3) = MyGlobalElements(i) + one

84 call A%insertGlobalValues(MyGlobalElements(i),Indices (1:3) ,Val (1:3))

85 endif

86 enddo

87
88 ! Complete the fill , ask that storage be reallocated and optimized

89 call A%fillComplete(param)

90
91 ! Matrix -Vector Multiply

92 call A%apply(x,y,FT_ETransp_E_NO_TRANS ,alpha ,beta)

58

93
94 ! Output Y

95 y_local_vals = y%getDataNonConst(VecIndex)

96 do i=1, NumMyElements

97 print *, y_local_vals(i)

98 enddo

99 end

59

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic copy)
1 MS 0359 D. Chavez, LDRD Office, 1911

60

v1.38

