

SANDIA REPORT
SAND2013-8274
Unlimited Release
Printed October, 2013

WeaselBoard: Zero-Day Exploit
Detection for Programmable Logic
Controllers

John Mulder, Moses Schwartz, Michael Berg, Jonathan Roger Van Houten, Jorge Mario
Urrea, Michael Aaron King, Abraham Anthony Clements, Joshua Jacob

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

3

SAND2013-8274
Unlimited Release

Printed October 2013

WeaselBoard: Zero-Day Exploit Detection for
Programmable Logic Controllers

John Mulder, Moses Schwartz, Michael Berg,
Jonathan Roger Van Houten, Jorge Mario Urrea, Michael Aaron King,

Abraham Anthony Clements, Joshua Jacob

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-MS0671

Abstract
Critical infrastructures, such as electrical power plants and oil refineries, rely on
programmable logic controllers (PLCs) to control essential processes. State of the art
security cannot detect attacks on PLCs at the hardware or firmware level. This
renders critical infrastructure control systems vulnerable to costly and dangerous
attacks.

WeaselBoard is a PLC backplane analysis system that connects directly to the PLC
backplane to capture backplane communications between modules. WeaselBoard
forwards inter-module traffic to an external analysis system that detects changes to
process control settings, sensor values, module configuration information, firmware
updates, and process control program (logic) updates.

WeaselBoard provides zero-day exploit detection for PLCs by detecting changes in
the PLC and the process. This approach to PLC monitoring is protected under U.S.
Patent Application 13/947,887.

4

ACKNOWLEDGMENTS

WeaselBoard is a product of years of research, building on decades of experience and expertise
at Sandia National Laboratories, and we cannot hope to individually thank everyone who
contributed along the way. We would, however, like to specifically acknowledge Jason Trent,
Regis Cassidy, Cynthia Veitch, and Jennifer Trasti for their parts in this research.

This work was funded under Sandia National Laboratories LDRD Project Number 158752, "PLC
Backplane Analyzer for Field Forensics and Intrusion Detection".

5

CONTENTS

1	 Introduction ... 9	
1.1	 Technical Approach ... 9	
1.2	 Applications ... 10	
1.3	 State of the Art ... 10	

2	 WeaselBoard Implementation ... 12	
2.1	 WeaselBoard CPU Board .. 12	
2.2	 Adapter Boards .. 12	
2.3	 WeaselBoard Firmware ... 12	
2.4	 Siemens S7-300 Backplane.. 13	
2.5	 Allen Bradley Control Logix 5000 Backplane .. 14	

3	 WeaselTalk Protocol ... 15	
3.1	 Header Format ... 15	

3.1.1	 Packet Type .. 15	
3.1.2	 Version ... 15	
3.1.3	 Capture Type .. 15	
3.1.4	 Length ... 15	
3.1.5	 Status .. 16	

3.2	 Capture Packet Format ... 16	
3.2.1	 Status .. 16	
3.2.2	 Length ... 16	
3.2.3	 Capture Packet .. 17	

3.3	 Command and Control Packet Format ... 17	
3.3.1	 Command ... 17	
3.3.2	 Option ... 17	
3.3.3	 Data .. 17	

3.4	 Command and Control Response Packet Format .. 18	
3.4.1	 Command ... 19	
3.4.2	 Option ... 19	
3.4.3	 Data .. 19	

4	 WeaselWare Software ... 20	
4.1	 Bayesian Classifier... 24	
4.2	 Rules Based Detection ... 24	

5	 Discussion ... 25	

6	 Distribution ... 26	

6

FIGURES

Figure 1. WeaselBoard in an industrial control system. WeaselBoard is connected directly to the
PLC backplane and sends captured backplane traffic to a separate analysis workstation. 9	
Figure 2. WeaselBoard in a PLC chassis. ... 10	
Figure 3. WeaselBoard configuration. .. 20	
Figure 4. Control and view packet captures.. 21	
Figure 5. Browse captured packets. .. 22	
Figure 6. Display captured packets statistics .. 23	
Figure 7. Histograms of packet properties. ... 24	

7

NOMENCLATURE

DOE Department of Energy
PLC Programmable Logic Controller
ICS Industrial Control System
SCADA Supervisory Control and Data Acquisition
SNL Sandia National Laboratories
GUI Graphical User Interface
UDP User Datagram Protocol
FPGA Field Programmable Gate Array
I/O Input/Output
IP Internet Protocol
RAM Random-Access Memory
CPU Central Processing Unit
FIFO First-In-First-Out
CIP Common Industrial Protocol
LDRD Laboratory Directed Research and Development
SOC System on a Chip
TRL Technology Readiness Level

8

9

1 INTRODUCTION

Critical infrastructures, such as electrical power plants and oil refineries, rely on PLCs to control
essential processes. State of the art security cannot detect attacks on PLCs at the hardware or
firmware level. This renders critical infrastructure control systems vulnerable to costly and
dangerous attacks.

Most attacks on control systems focus on network communications, Windows PCs, and PLC
logic, but not on PLCs at the hardware or firmware level. PLCs are currently not monitored for
security compromise.

These industrial control system (ICS) components receive little attention as an asset requiring
security monitoring. Recent high profile events like the Stuxnet attack (2010) and Digital Bond's
Basecamp (2012) have highlighted this critical vulnerability.

There is a critical need to inspect and monitor PLC hardware and firmware, and create an
assurance platform for responding to attacks as these systems scale up in the future. Millions of
dollars in equipment damage, lost uptime, and ultimately, casualties among operating personnel
can be prevented by early detection.

1.1 Technical Approach
WeaselBoard captures and analyzes backplane communications between PLC modules.
WeaselBoard connects directly to the PLC backplane either in a chassis or an ICS and forwards
inter-module traffic to an external analysis system.

Figure 1. WeaselBoard in an industrial control system. WeaselBoard is connected
directly to the PLC backplane and sends captured backplane traffic to a separate

analysis workstation.

10

WeaselBoard takes the signals from the backplane and sends them to the analysis workstation
using a custom protocol called WeaselTalk. Analysis software displays the backplane traffic,
which is similar to network traffic, but is based on proprietary physical layer protocols. The
analysis workstation then extracts fields at each protocol layer. These fields have been tested
using mechanisms to identify malicious behavior: a rule set and a machine-learning algorithm.
The rules-based mechanism causes an alert when predetermined behavior is seen, and can be
customized to process-specific limits. The machine-learning algorithm is a Bayesian classifier
trained to alert on traffic classified into known bad states.

Using this system, operators can detect any compromise that affects the process because
WeaselBoard alerts on the effects of the attack in progress, not on signatures of previously
catalogued attacks. This allows zero-day exploits to be detected, unlike systems using signature-
based detection methods.

Processor
Module

Runs Process Logic

PLC Backplane

Comms
Module

Connects the PLC to
the Network

I/O
Module

Connects the PLC
to the Process

Electrical Isolation

WeaselBoard

Detects Intruders

Figure 2. WeaselBoard in a PLC chassis.

1.2 Applications

WeaselBoard detects zero-day exploits against PLCs as soon as the state of the PLC changes
instead of after serious damage has occurred.

WeaselBoard addresses the problem of low-frequency, high-impact attacks from sophisticated
adversaries that use zero-day attacks against PLCs. Backplane analysis provides defenders with
low-level PLC behavior in real time, enabling early detection. By detecting attacks in the early
stages, asset owners can mitigate or stop malicious attacks before damage occurs.

PLC devices control billions of dollars worth of production, manufacturing and utility equipment
in the United States. These processes require high availability and any cyber attack could result
in casualties among operating personnel, lost uptime and costly equipment damage.
Interoperability with existing network monitoring will facilitate integration and minimize the
training needed for WeaselBoard users.

1.3 State of the Art
Many security systems monitor Windows PC activity and network communications. No other
security system monitors and protects PLCs. The benefit of looking at PLCs directly is that they
are simpler and more consistent, so malicious activity is easier to detect.

11

Control system security products provide network firewalls, network intrusion detection, and
assessment scanning. These tools can detect known attacks on PCs and networks, but leave the
systems vulnerable to zero-day exploits that are aimed at the PLCs. There is no tool that provides
direct, real-time monitoring of PLC integrity.

Current industry practice forces critical infrastructure owners to react to malicious attacks after
the damage has occurred, without the ability to detect PLC exploits at the firmware or hardware
level. WeaselBoard detects changes in the PLC and the process. This capability in PLC
monitoring is a unique approach, protected under U.S. Patent Application 13/947,887.
WeaselBoard fills the gap that currently exists for protection of industrial control systems.

12

2 WEASELBOARD IMPLEMENTATION

A WeaselBoard hardware module has a main CPU board and a PLC-specific adapter board. This
modular design reduces the cost of supporting additional PLC’s, as the adapter boards are much
simpler to design and produce compared to the CPU boards. The common design of the CPU
board also reduces the software and FPGA logic development costs as it enables significant reuse
of both.

We have developed adapter boards for the Allen Bradley Control Logix 5000 PLC and the
Siemens S7-300.

2.1 WeaselBoard CPU Board
The CPU board uses a MicroSemi SmartFusion SOC as the primary chip. This SmartFusion
SOC has an ARM Cortex M3 microcontroller and an FPGA. The SmartFusion enables logic to
be implemented in the FPGA to capture the backplane traffic and then easily transfer the data to
the microcontroller. The microcontroller then sends it as UDP packets over Ethernet. In addition
to the SmartFusion SOC the CPU board also provides connectors for the adapter board, an
Ethernet port, a USB to serial adapter for debugging, external RAM, external flash, a
programming port, and test points for debugging.

2.2 Adapter Boards
Two adapter boards were created that enable the WeaselBoard to work with the Allen Bradley
Control Logix 5000 and Siemens S7-300 PLCs. The Allen Bradley adapter board converts the
logic levels of the data pins on the backplane to those used by the SmartFusion, and connects to
the 24V power pins provided by the backplane. The Allen Bradley backplane has 32 data lines,
16 of these lines appear to contain framing data and the other 16 are a parallel data bus. The
Siemens S7-300 backplane has two buses: an RS-485 serial bus, and a proprietary synchronous
serial bus. The Siemens S7-300 adapter board provides logic level conversion of the synchronous
serial bus and an RS-485 to RS-232 converter and connections to the 5V power lines in the
backplane.

2.3 WeaselBoard Firmware
The WeaselBoard firmware main consists of setup and a main control loop. First, the CPU board
is initialized by enabling global interrupts, setting up memory regions, initializing timers, setting
up callback functions, and initializing the UDP/WeaselTalk protocol stack. Since the
WeaselBoard hardware consists of the CPU board paired with a backplane adapter board, there is
also some hardware initialization that depends on what backplane adapter board is plugged in.
After the hardware is initialized and the board is in a state to begin capturing data, the main
control loop takes over.

The WeaselBoard main control loop checks the hardware buffers for capture data and handles
the data if there is any. Data handling consists of removing data from the hardware buffers,
freeing that buffer to again be used by the hardware, and then processing the data using the
relevant internal protocol stack dissector. The result is then packed into a WeaselTalk capture
packet and buffered to be sent when the WeaselTalk buffer is full. The last thing the control loop
does is to check to see if there have been any Ethernet packets buffered that need to be

13

processed. If there are packets to be processed, a call to the Lightweight IP (lwip) library is
invoked. lwip handles responding (or not) to all network traffic that is not WeaselTalk. However,
when there is a WeaselTalk payload, that packet propagates all the through the lwip stack, which
eventually calls the WeaselTalk protocol stack.

The only WeaselTalk packets the WeaselBoard expects to see are command/control packets. If it
sees other WeaselTalk packet types, its behavior is simply to immediately drop the packet.
Otherwise, the WeaselTalk protocol stack will call one of its application function callbacks that
correspond to the command that was sent. That callback is implemented in terms of the specific
WeaselBoard firmware target to perform the action requested by the command/control message.

2.4 Siemens S7-300 Backplane
The Siemens S7-300 backplane has two data buses, the K-bus and P-bus, where K is for
communication (in German) and P is for peripheral. Modules that transfer large amounts of data,
but at infrequently intervals primarily use the K-bus. The K-bus uses the Profibus protocol over
RS-485. The K-bus is also where traffic from remote I/O modules would primarily be seen.
Configuration and programming information is also carried across this bus. Modules that transfer
small amounts of data frequently, primarily use the P-bus. These modules include the I/O
modules and some remote I/O modules. This is primarily where I/O information will be seen.
Little is publicly available about the P-bus. It uses form of synchronous serial communication
with two meta-lines. The two lines appear to indicate whether the data on the data line is
metadata (a command, an address, etc.) or data.

To capture the P-bus, the microcontroller provides the FPGA with an address of a buffer and the
buffer size. The FPGA logic then samples eight pins from the backplane on the rising edge of the
P-bus clock and writes them to the buffer provided by the microcontroller. Eight lines are
sampled, which includes everything other than the power, ground, and K-bus. This is done
because the K-Bus was not fully understood the FPGA logic was initially designed. When the
buffer gets full, the FPGA triggers an interrupt with very high priority in the microcontroller and
continues capturing to an internal buffer in the FPGA. The microcontroller then provides a new
buffer to the FPGA,which the FPGA then transfers the data in it internal buffer to and continues
capturing until the new buffer is full. When the buffer is full it again interrupts the
microcontroller which then gives the FPGA a new buffer again. This repeats indefinitely. When
the microcontroller receives an interrupt indicating that the buffer for the P-bus is full gives a
new buffer to the FPGA and sets a flag indicating that the P-bus has data to send and then returns
from the interrupt. The main loop of the program then takes the buffer, wraps it in WeaselTalk,
and sends it over Ethernet to the configured destination IP using UDP. The analysis workstation
receives the P-bus data and decodes the raw capture into bytes for analysis.

Capturing of the K-bus is a little different. First, the adapter board converts the RS-485 physical
layer to RS-232. Then, a transceiver with auto-baud rate detection in the FPGA captures the data
to an internal FIFO. When the FIFO has data it triggers an interrupt in the microcontroller. The
microcontroller then reads the bytes out of the FPGA to an internal buffer and returns from the
interrupt. The main loop then takes the bytes out of the buffer and provides them to a Profibus
stack running on the microcontroller. The Profibus stack provides packet boundary detection and
some error checking. When a packet is detected, it is put into a WeaselTalk buffer along with a

14

few bytes of header information, indicating both error status and packet length. When the
WeaselTalk buffer gets full it is sent to the analysis workstation over Ethernet. Both the P-bus
and K-bus capturing happen concurrently.

2.5 Allen Bradley Control Logix 5000 Backplane
Capturing of the Allen Bradley backplane traffic is identical to the way the P-Bus is captured on
the Siemens S7-300, except that 32 bits of data are captured with each sample instead of eight
bits, and data is sampled on the falling edge of the clock instead of the rising. Nearly identical
logic in the FPGA and firmware in microcontroller are used. Raw captures are sent to the
analysis workstation over Ethernet, where the data is packetized and parsed. WeaselTalk is used
to wrap the raw captures and indicate what that they are raw Control Logix 5000 captures. The
Control Logix 5000 backplane protocol is similar to the Common Industrial Protocol (CIP), but
the differences are not currently fully understood. Of the 32 bits captured, it appears that 16 are
framing information and 8 or 16 bits contain data depending on the framing bits.

15

3 WEASELTALK PROTOCOL
This WeaselTalk protocol is defined to make available a means to communicate between the
WeaselBoard and an analysis workstation. The protocol assumes that UDP is the underlying
protocol and the physical media is Ethernet. WeaselTalk provides ways to stream captured data
from the WeaselBoard to another computer on the network as well as accept commands to
configure and control the WeaselBoard.

3.1 Header Format

WeaselTalk Header Format
0 3 4 7 8 15
+--------+--------+--------+--------+
| Packet | Version| Capture |
| Type | | Type |
+--------+--------+--------+--------+
| Length |
| |
+--------+--------+--------+--------+
|C| Status |R| Status |
|O| |S| (cont.) |
+--------+--------+--------+--------+

3.1.1 Packet Type

This field defines the format for the body of the WeaselTalk packet. It can be any of the
following values:

Packet Type Value
ERROR 0x00
CC 0x10
CCRESP 0x20
ANALYSIS 0x40

3.1.2 Version

This field specifies the version of the WeaselTalk protocol. Currently it is set to 0x00, to
indicate that it is version 0.

3.1.3 Capture Type
This field defines what type of captured data is being transported in a capture packet. This field
is only valid for the CAPTURE packets and is set to NA for other packet types. It can be any of
the following values:

Capture Type Value
NA 0x00
CIP 0x01
RAW_CIP 0x02
PROFIBUS 0x03
ALL 0xFF

3.1.4 Length

This field describes the length of the rest of the packet. This includes the header status bytes (2)
plus the body of the packet.

16

3.1.5 Status

This field contains status about the state of WeaselBoard and its application. The bits of the byte
are:

Bit Description
0 Capture Overflow Flag
1-7 Reserved
8 Response Success Flag

(0) failure (1) success
9-15 Reserved

3.2 Capture Packet Format

WeaselTalk Capture Packet Body
0 7 8 15
+--------+--------+--------+--------+
| Status |E| Length |
| |R| |
+--------+--------+--------+--------+
| Capture Packet
|
+--------+--------+--------+--------+
| Status |E| Length |
| |R| |
+--------+--------+--------+--------+
| Capture Packet
|
+--------+--------+--------+------
 .
 .
 .
 .

This is the packet format that the WeaselBoard streams out containing the data that was captured.
The body of a WeaselTalk Capture packet is composed of 'x' number of individual packets of the
captured protocol. Each captured packet is lead by a status field and a length of the captured
packet.

3.2.1 Status
This field contains a status about the captured packet. The bits of the byte are:

Bit Description
0-6 Reserved
7 Parsing Error

3.2.2 Length

This is the length of the captured packet

17

3.2.3 Capture Packet
This field is the captured packet read by the WeaselBoard.

3.3 Command and Control Packet Format

Command and Control Packet Body
0 7 8 15
+--------+--------+--------+--------+
| Command | Option |
| | |
+--------+--------+--------+--------+
| Data |
| |
+--------+--------+--------+--------+

3.3.1 Command
This field specifies which command the WeaselBoard is to carry out. The options are:

Command Value
RESET 0x00
SETSRCIP 0x10
SETDESTIP 0x20
SETMAC 0x30
STOPCAP 0x40
STARTCAP 0x50
GETBOARDCONFIG 0x60

3.3.2 Option

This field is obsolete and will be removed in the next version of the protocol.

3.3.3 Data
Each command carries different data. For each command the data fields are as follows:

3.3.3.1 RESET
No Data

3.3.3.2 SETSRCIP

SETSRCIP
0 31
+--------+--------+--------+--------+
| SRC IP |
| ADDRESS |
+--------+--------+--------+--------+
| Subnet Mask |
| |
+--------+--------+--------+--------+
| Default |
| Gateway |

18

+--------+--------+--------+--------+

3.3.3.3 SETDESTIP

SETDESTIP
0 31
+--------+--------+--------+--------+
| DEST IP |
| ADDRESS |
+--------+--------+--------+--------+

3.3.3.4 SETMAC

Each of the six octets of the MAC address are transmitted in network byte order.

SETMAC
0 7 8 15 16 23 24 31 32 39 40 47
+--------+--------+--------+--------+--------+--------+
|Octet 0 |Octet 1 |Octet 2 |Octet 3 |Octet 4 |Octet 5 |
| | | | | | |
+--------+--------+--------+--------+--------+--------+

3.3.3.5 STOPCAP
The Report mode field values are the same as the capture type. They encode a bus on a device to
stop capture on.

STOPCAP
0 7
+--------+
| Report |
| Mode |
+--------+

3.3.3.6 GETBOARDCONFIG

No Data

3.4 Command and Control Response Packet Format

Command and Control
Response Packet Body
0 7 8 15
+--------+--------+
|Command |Option |
| | |
+--------+--------+
| Data
|
+--------+--------+

19

3.4.1 Command
This command is one of the command codes from the command and control packet. In the
response packet it specifies what command is being responded to. The status byte in the header
specifies if the command was a success or a failure.

3.4.2 Option
This field is obsolete and will be removed in the next version of the protocol.

3.4.3 Data
The only command response carrying data is the GETCONFIG response. This field is currently
undefined.

20

4 WEASELWARE SOFTWARE
The WeaselWare software parses, analyzes, and displays PLC backplane traffic, and provides an
interface to configure and control WeaselBoard. Backplane traffic is similar to network traffic,
but tends to be based on proprietary physical layers. The WeaselBoard system takes the signals
from the backplane and pulls out fields at each protocol layer.

The analysis software uses two different approaches to identify malicious behavior: rules and
machine learning. The rules alert on predetermined behavior and can be customized based on
process specific limits. The machine learning is done using a Bayesian Classifier trained on
known system states.

WeaselWare GUI (weasel_gui) is the primary graphical user interface (GUI) for interacting with
the WeaselBoard from the analysis workstation. This GUI has tabs for each of the
command/control/analysis/display functions.

Figure 3. WeaselBoard configuration.

The Command WeaselBoard tab (weaselcommand_gui) sends WeaselTalk command packets on
the network to a WeaselBoard.

21

Figure 4. Control and view packet captures.

The Capture Packets tab (weaselcapture_gui) allows the user to start and stop captures, and
displays received packets.

22

Figure 5. Browse captured packets.

The Browse Packets tab (weaselbrowse_gui) provides a GUI that displays WeaselTalk packets,
with known fields parsed out.

23

Figure 6. Display captured packets statistics

The Statistics tab (weaselstats_gui) provides a GUI for getting basic packet statistics (including
byte frequency, unique packet frequency, etc.) from a capture.

24

Figure 7. Histograms of packet properties.

The Histograms tab (weaselgraph_gui.py) generates histograms of the frequencies of first-bytes
and payloads for all of the backplane packets. Histograms can be written to file or displayed.

4.1 Bayesian Classifier
The analysis workstation implements a simple packet classifier (weaselclassify) using Bayesian
classification. A Bayesian classifier calculates the probability for each feature to exist for each
category based on experience through training. Such a classifier is "naive" if it assumes that the
features are independent of each other. The system trains by taking previous packet captures and
categorizes of that document, extracts the features, and updates the internal feature and category
data structures. The system classifies traffic by calculating the probabilities that the captured set
is in each of the known categories.

4.2 Rules Based Detection
Some packets are only used for particular behavior, such as uploading new logic or firmware. By
detecting those specific packets, we can detect this behavior.

25

5 DISCUSSION
We built the WeaselBoard, a device that connects to modular PLCs, to address the threat of low-
frequency, high-impact attacks from sophisticated adversaries that use zero-day attacks against
PLCs. By connecting directly to the PLC backplane, WeaselBoard has access to all traffic at a
low (hardware) level, and can detect the effect of exploits against PLCs as soon as the state of
the PLC changes, instead of after serious damage has occurred.

WeaselBoard introduces a new capability for PLC monitoring, and has applications for real-time
monitoring of high-assurance process control systems, forensics as part of an incident response
investigation, and periodic system audits and maintenance.

WeaselBoard has been tested in in a variety of systems at Sandia and government laboratories.
WeaselBoard has been validated using control system physical processes to provide realistic
environments, resulting in a Technical Readiness Level (TRL) of 6. Sandia National
Laboratories is continuing to develop this breakthrough technology.

Next steps include exploring alternative hardware platforms and embedded operating systems
that could support traffic analysis on-device instead of processing on an analysis workstation and
transitioning the design to a practical commercial product that could be used in industrial settings
by operators without special training. We are also investigating: correlation between network and
backplane traffic; prevention of some backplane traffic (for use as an intrusion prevention
system), possibly by taking an active role on the backplane; and additional statistical
classification methods for traffic anomaly detection.

26

6 DISTRIBUTION

1 MS0359 D. Chavez, LDRD Office 1911
1 MS0620 David White 5620
1 MS0671 Jennifer Depoy 5628
1 MS1205 James Peery 5600
1 MS0899 Technical Library 9536 (electronic copy)

27

