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Abstract 

 
This paper proposes a tolerance bound approach for determining sample sizes.  With 
this new methodology we begin to think of sample size in the context of uncertainty 
exceeding margin.  As the sample size decreases the uncertainty in the estimate of 
margin increases.  This can be problematic when the margin is small and only a few 
units are available for testing.  In this case there may be a true underlying positive 
margin to requirements but the uncertainty may be too large to conclude we have 
sufficient margin to those requirements with a high level of statistical confidence.  
Therefore, we provide a methodology for choosing a sample size large enough such 
that an estimated QMU uncertainty based on the tolerance bound approach will be 
smaller than the estimated margin (assuming there is positive margin).  This ensures 
that the estimated tolerance bound will be within performance requirements and the 
tolerance ratio will be greater than one, supporting a conclusion that we have 
sufficient margin to the performance requirements.  In addition, this paper explores 
the relationship between margin, uncertainty, and sample size and provides an 
approach and recommendations for quantifying risk when sample sizes are limited.  
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1 INTRODUCTION 
 
Beginning in 2003, variables data analysis became a part of the Annual Assessment Report 
(AAR) process through the venue of the Stockpile Review Conference.  The formality and scope 
of variables data analysis has slowly increased since that time, mostly taking the form of what is 
known as Quantification of Margin and Uncertainty (QMU).  A main driver in QMU is to 
provide a measure of vulnerability to change.  By knowing the present margin ( ) and 
uncertainty ( ), we have a sense of how vulnerable a particular parameter may be to aging.  A 
parameter with a large margin relative to its uncertainty can tolerate more change before 
jeopardizing performance compared to a parameter with a small margin relative to its 
uncertainty.  Many Sandia activities therefore have revolved around quantifying or baselining [1] 
the margin and uncertainty in our components and their performance characteristics.  This has 
evolved to become one of the main objectives for Integrated Stockpile Evaluation which states 
“develop and maintain baseline knowledge of margins to requirements at the system, subsystem, 
and component levels” [2].  As part of that, Component Material Evaluation (CME) 
Development was introduced and focuses on the generation of new test capabilities and material 
and hardware evaluation with the goal of identifying change in component performance during 
future surveillance activities.  Part of this objective involves understanding and characterizing 
component margin, however, there has been a lack of guidance on how many units must be 
tested to properly characterize the margin and uncertainty.  Additionally, for many systems there 
are serious limitations on the quantity of hardware and/or resources (people, testers, time, and 
budget) available for testing.  As such, great inconsistency exists in the sample sizes used to 
evaluate margin and consequently the confidence we have in the assertions that have been made.  
 
The number of samples used for this characterization directly impacts the confidence in this 
information and ultimately our ability to make statements about performance.  Therefore, it is 
essential to determine the number of samples in such a way that the most information is provided 
about a population, often while adhering to resource restrictions.  When sufficient data is not 
available to achieve a desired confidence level, it is equally critical to document the increased 
risk due to limited resources.  Historically, characterization of component performance via QMU 
has been centered on the calculation of a  -factors.  The  -factor, in general, is defined as margin 
divided by uncertainty where the margin is estimated by the difference between a defined 
requirement and the average response of the data and the uncertainty is estimated by the sample 
standard deviation of the data.  Within this context we can choose sample sizes such that the 
estimated  -factor will be “large enough” to satisfy some requirement assuming there is positive 
margin to requirements in the underlying population [3].  There are however several issues with 
the use of the  -factor for assessing margins and uncertainties.  Newcomer [4] and the QMU 
Handbook [5] outline a new approach to QMU based on the estimation of statistical tolerance 
bounds.  The tolerance bound approach was proposed to alleviate several shortcomings 
associated with the  -factor approach to QMU.  This new approach can be generalized to 
accommodate non-Normal distributions and keeps all measurements of margin and uncertainty 
on the original engineering scale. 
 
This paper provides optimal sample size selection guidance based on the tolerance bound 
approach to QMU.  We provide a methodology for choosing a sample size large enough such 
that an estimated QMU uncertainty based on the tolerance bound approach will be smaller than 
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the estimated margin (assuming there is a true underlying positive margin).  This ensures that the 
estimated tolerance bound will be within performance requirements and the tolerance ratio will 
be greater than one, supporting a conclusion that the performance characteristic has sufficient 
margin to its requirements.  Although this methodology provides an approach for obtaining 
optimal sample sizes, it is understood that actual sample quantities are often limited by hardware 
availability and economic constraints regardless of statistically based recommendations.  
Therefore, we also provide guidance for articulating risk when sample sizes are limited.  With 
this new methodology we begin to think of sample size in the context of uncertainty exceeding 
margin.  As the sample size decreases the uncertainty in the estimate of margin increases.  This 
can be problematic when the margin is small and only a few units are available for testing.  In 
this case there may be positive margin to requirements but the uncertainty may be too large to 
conclude we are meeting those requirements with a high level of statistical confidence.  This 
paper explores the relationship between uncertainty, margin, and sample size and provides 
recommendations for quantifying risk when sample sizes are limited.  We begin with a review of 
the historic  -factor approach for determining sample sizes and outline a need for a new 
approach.  We then provide an overview of the new methodology along with examples and 
tables of sample sizes. 
 
We do note that this proposed method for calculating sample size (and the  -factor approach) 
assumes knowledge of the underlying distribution, a best guess of the margin, and at the very 
least the designed operating range and potential standard deviation of the unit population.  In 
some cases the exact range of the performance characteristic values and the distribution they 
follow may not be known until data is collected.  If this information is not known then we 
recommend starting with a sample of at least 30 units to characterize the distribution.  The 
sample size recommendation of 30 units for cases with no prior information is discussed further 
in Bierbaum [1] and is based on obtaining a sample size large enough to get adequate precision 
on an estimate of the standard deviation [6].  In some cases, a pilot sample of less than 30 could 
be used to assess the distribution, potential margin, and variability of the units.  We could then 
use the information gathered in the pilot study to assess if more samples are needed based on the 
methodology presented here.  The examples presented below show varying levels of prior 
knowledge and gives recommendations on how to apply the sample size calculations in those 
cases.  
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2 A 𝒌-FACTOR APPROACH FOR DETERMINING SAMPLE SIZES 
 
Historically, the language for understanding and determining margin has been  -factors, where   
is the absolute number of sample standard deviations (s) between the sample mean ( ̅) and the 
specification or performance requirement, 
 

   
| ̅              |

 
   

 
If one assumes that the population is normally distributed, the  -factor is one and the same as the 
standard normal z-score and thus can be used directly to estimate the proportion of the 
population above the performance requirement.  Thus after calculating the  -factor, we can 
directly estimate the proportion of the population within the performance requirements, provided 
the data reasonably follow a Normal distribution.  The  -factor methodology can also be used to 
help determine sample size.  Sampling uncertainty can be captured by estimating confidence 
bounds on the  -factor, which are dependent on the sample size.  Approximate confidence 
bounds are given by, 
 

(   
  

√     
)     

 
where   is the sample size and    is the   percentile from a standard Normal distribution.  From 
this equation, it is clear that more samples reduce the uncertainty (also called the relative error).  
However, the relative improvement decreases as the sample size continues to increase.  Using 
this equation a table can be generated to show the relative error for various values of n.  This 
equation and the table below are derived in Crowder [7] in terms of capability index    , which 
is defined as the minimum of the lower and upper  -factor values for a parameter divided by 
three.   
 

Table 2.1.  Samples Sizes and Relative Error in 𝒌 (95% Confidence) 

Sample Size ( ) Lower Relative Error Upper Relative Error 

5 0.29 1.71 
10 0.53 1.47 
30 0.74 1.26 
100 0.86 1.14 
1000 0.96 1.04 

 

 
Recall, a main driver in QMU is to provide a measure of vulnerability to change.  By knowing 
the present margin ( ), uncertainty ( ), and hence the  -factor, we have a sense of how 
vulnerable a particular parameter may be to aging (i.e. if a performance characteristic with low 
margin changes, it will affect performance sooner than a performance characteristic with large 
margin).  A  -factor is determined to be “large enough” when they are greater than a specified 
percentile from a standard Normal distribution.  For example, the 99.5th percentile from a 
standard Normal distribution is                 .  Therefore, to claim that there is sufficient 
margin to conclude 99.5% of the units will meet performance requirements, the  -factor must be 
larger than 2.576.  Or alternatively only 0.5% of the units will fail to meet the requirements.  
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This value of 0.005 was often used historically and was based upon engineering judgment – it 
was large enough to affect the ability to meet system reliability goals (normally rounded to two 
digits), and perhaps affect DoD/NNSA planning as well as allow for “reasonable” quantities of 
samples.  One might ask why the defect level was not set to be equal to the system reliability 
requirement rather than 0.005.  This was because there could be multiple defects of size 0.005, 
and not all would necessarily be found from the same set of tests.  Selection of smaller values 
would result in more samples but reduced risk.  In addition to this we would like to make these 
statements with some level of statistical confidence and therefore we would require a lower 
confidence bound on the  -factor to be greater than 2.576.  Suppose we only have 10 samples 
and the computed  -factor is 4 (considered to be reasonably large), then the lower 95% 
confidence bound on the  -factor would be            , which is less than 2.576.  Therefore, 
due to the low sample size, we could not claim that we are meeting requirements with 95% 
confidence.  More samples would narrow the interval.  For example, if n=30 units were collected 
the lower 95% confidence bound on the  -factor would be            , which is greater than 
2.576.  In this case we would claim that we are meeting requirements with 95% confidence.  
Bierbaum [1] discusses this methodology in more detail.  In addition, Spencer [3] explores the 
mathematical relationship between the  -factor and the sample size and provides a simple 
equation that can be used to determine the sample size based on a current or best guess of the  -
factor and a minimum  -factor that we wish to demonstrate based on the sample size.  This 
equation is given by, 
 

      (
     

           
)

 

  
 

where       is the original or best guess of the  -factor and       is the minimum  -factor to 
which it is desired to maintain protection (i.e. an estimated  -factor less than       would be an 
indication that there is not sufficient margin to the performance requirements).  This provides a 
relatively easy method for determining sample sizes, but is ultimately dependent on the 
assumption of a Normal distribution and can be difficult to interpret and communicate since none 
of these quantities are on the original engineering unit scale.  The next section discusses these 
limitations further.   
 
2.1 A Need for a New Approach  
 
The main issue with  -factor approach described above is that it is limited by the assumption of a 
Normal distribution.  The concept of margin relates directly to the area in the tails of a 
distribution, in most cases the extreme tails.  The  -factor approach can only be used to make 
inferences about the tails of a Normal distribution, which are often inadequate for properly 
characterizing component performance.  When a population is not Normal, these tails often look 
quite different and the  -factor is no longer an accurate communication of the probability of 
failing to meet the performance requirement.  Therefore, sample sizes based on this methodology 
may not accurately characterize margin if the resulting data is non-Normal.  The tolerance bound 
approach, described in the next section, is easily generalized to accommodate non-Normal 
distributions, which are common among component data.  
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In addition, the estimated  -factor is a scaled value requiring a transformation from the original 
engineering units and does not translate back to the original engineering units scale easily, 
making it hard to interpret and explain.  Note that using  -factor (the number of standard 
deviations between the estimated mean and the performance requirement) is very different from 
the physics lab approach of using margin and uncertainty directly in terms of engineering units.  
For the physics lab case,     of one or more than means there is sufficient margin (i.e., the 
entire population is considered to be above the performance requirement).  However a  -factor 
of one means that only 84% of the population is above the performance requirement.  This has 
led to significant confusion at times at Sandia.  This difficulty persists when trying to explain a 
sample size chosen based on an assumed or estimated  -factor and an appropriate minimum 
acceptable value for that  -factor, neither of which exist on the engineering unit scale.  The 
tolerance bound QMU methodology uses the distance between a meaningful percentile of the 
distribution of the performance characteristic and the performance requirement to communicate 
margin.  The interpretation of results using this approach is thus more comparable to the physics 
labs, in that a value greater than one indicates sufficient margin and values less than one are 
indicative of a concern.  This distance is measured on the engineering unit scale of the 
performance characteristic and therefore is easily interpreted and communicated.  The sample 
size methodology developed here utilizes this fact to make interpretation and implementation 
easier.  All procedures developed here can be easily related to margin on the original scale.  
Finally, the tolerance bound approach for expressing margin to a performance requirement has 
been developed and is recommended in the QMU Handbook [5].  Using this approach to 
determine sample size and understand uncertainty and risk adds consistency throughout the 
process from the design of experiments and sample size determination stage to analysis and 
interpretation.    
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3 A MARGIN BASED APPROACH TO DETERMINING SAMPLE SIZE 
 
The tolerance bound approach to QMU was recently introduced to alleviate several shortcomings 
of the  -factor methodology and to add rigor to the overall process.  Using the tolerance bound 
approach to QMU it is possible to determine sample size guidance as well as understand the risk 
incurred when the availability of sample units is limited.  We begin by providing a brief review 
of the tolerance bound methodology and then outline a generic algorithm for determining sample 
size from any known statistical distribution.  We then implement the algorithm for a Normal 
distribution and illustrate how this method can be generalized for other distributions.  Examples 
of this will be shown later utilizing Lognormal, Exponential, and Weibull distributions.   
 
3.1 Review of the Tolerance Bound Methodology 
 
The review presented here and the methodology developed below utilizes an upper tolerance 
bound and upper performance requirement (   ) for example purposes.  Similar derivations can 
be developed for the case of a lower tolerance bound and lower performance requirement (   ) 
as needed.  For data that follows a Normal distribution, or any symmetric distribution, the sample 
sizes will be the same regardless of the analysis being done with respect to a     or    .  For 
asymmetric distributions (e.g. Weibull, Exponential, Lognormal) the sample size calculations 
will be dependent on the side for which the analysis will be performed.  This is because the tail 
widths will be different for each side, which is a key factor in the tolerance bound approach to 
QMU and hence to the sample size calculations developed here.  We will illustrate this in the 
non-Normal sections below. 
 
The QMU methodology based on tolerance bounds defines margin to be the difference between 
a meaningful percentile,   , and the performance requirement,          for an upper 
requirement.  The value   represents some specified proportion of the population that we desire 
to have below the upper performance requirement.  Of course, an ideal case would be where   is 
equal to 100%, however since we must characterize the population of units by sampling, a value 
of less than 100% must be specified for analysis purposes.  If the estimated upper percentile is 
less than the upper performance requirement then this demonstrates positive margin to the upper 
performance requirement.  To account for sampling uncertainty we then calculate a statistical 
confidence bound on the estimated percentile.  Suppose we desire a        confidence bound 
on the estimated percentile.  For an upper percentile,     an upper confidence bound is 
computed, denoted by  ̂   .  The confidence bound accounts for the uncertainty in the estimation 
of the desired percentile and is referred to as a statistical tolerance bound [8].  The tolerance 
interval covers a specified proportion of a population with a certain confidence level.  For an 
analysis with respect to an upper performance requirement      , this tolerance bound,  ̂   , is 
the value that        of the performance characteristic values (the content) will be less than, 
with        confidence.  Therefore, if  ̂        we are able to claim that        of the 
performance characteristic values will be less than the upper performance requirement with 
       confidence.  Therefore, the tolerance bound incorporates information about margin and 
uncertainty and can be compared directly to the performance requirement to draw conclusions.  
This is appealing because all decisions remain on the engineering unit scale, which provides an 
easily interpreted result.  Newcomer [4] provides additional details of this methodology.   
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3.2 A Generic Algorithm for Calculating Sample Size based on Margin 
 
To address the matter of sample size, we explore the question “How many samples do I need to 
collect to demonstrate the performance characteristic has sufficient margin to requirements with 
a high probability, provided the true underlying distribution has positive margin?”  To frame this 
as a statistical question we have, “How many samples do I need to collect to ensure a       
upper tolerance bound,  ̂   , will not exceed the upper performance requirement,    , with a 
probability of at least    , provided the true percentile,   , is less than    ?”  
Mathematically we want     ( ̂       )      given       .  The quantity        
is often referred to as statistical power with   representing the Type II error (false negative rate).  
In general, it is desired that   be less than 0.2 (i.e. we have a 0.80 probability that the estimated 
tolerance bound will be less than the upper requirement if the true percentile is less than the 
upper requirement).  This question ultimately depends on the sample size, n, the estimated 
distance or margin     between the true percentile      and the performance requirement, and 
the variability of the unit population, characterized by the standard deviation    .  We will show 
that as the margin increases the number of samples required to demonstrate that there is 
sufficient margin to the performance requirements decreases, and vice versa as margin decreases 
the sample size must increase to demonstrate there is sufficient margin.   
 
We will assume   , the true percentile, is known or can be estimated using engineering 
judgment or previously collected data.  Assuming this quantity is known will help us determine 
the existing margin, variability of the unit population, and consequently, sample size.  It is 
important to ensure this assumption is as accurate as possible.  If our initial assumption of     is 
wrong, we may never achieve  ̂        based on the chosen sample size (e.g. an extreme 
case would be if    is larger than     (negative margin) then we will never obtain an estimate 
 ̂        regardless of the sample size).  The examples that follow below show varying levels 
of prior knowledge and recommendations for how to proceed with the sample size calculations.   
 
All of these quantities are depicted in Figure 3.1 and Figure 3.2 below.     is the true (assumed) 
percentile and  ̂    is the estimated confidence interval on that percentile (statistical tolerance 
bound).  The margin,  , is the distance between    and    , and the uncertainty,  , is the 
width of the confidence interval for      ̂        which is directly related to sample size.  As 
we collect more samples,  ̂    gets closer to    and therefore   decreases.  Figure 3.1 depicts a 
case where the sample size is large enough (in this case,     ) such that the estimated 
uncertainty is less than the margin and therefore the tolerance bound is less than the upper 
performance requirement indicating that we have demonstrated that there is sufficient margin to 
the performance requirement with        confidence.  In this case the tolerance ratio     
     is greater than 1, which is the QMU decision rule for concluding that        of the 
units meet the specified performance requirement with        confidence.  Figure 3.2, on the 
other hand, shows an example that has the exact same distribution and  th percentile as shown in 
Figure 3.1.  However here, even though the true percentile is again less than the upper 
performance requirement, the uncertainty in the estimation of the percentile is too large, possibly 
due to an insufficient sample size (    ), to conclude that we are meeting the requirements.  
This is clear in Figure 3.2 since    ,  ̂       , and therefore     . 
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Figure 3.1.  Graphical Depiction of  ,  ,   , and  ̂    Showing  ̂       . 

 
 

Figure 3.2.  Graphical Depiction of  ,  ,   , and  ̂    Showing  ̂       . 
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Throughout this paper we will keep the confidence level fixed at        for simplicity.  The 
procedures and algorithms discussed below can easily be adjusted for other confidence levels.  
For higher confidence levels (e.g.       ) more samples will be required.  
 
To characterize the probability that  ̂    will not exceed    , denoted as       ̂        , 
when the true percentile is assumed to be less than    , a Monte Carlo simulation can be 
developed.  This simulation is conducted by drawing n samples from a known, and assumed 
distribution, chosen to ensure that the true percentile is less than the upper performance 
requirement by a margin  .  This process is then repeated   times for each combination of   
and n.  We recommend          for most simulations.  From each sample  ̂    is computed 
and compared to an upper performance requirement,          , to see if it exceeds    .  
Using the   replicates, the probability of  ̂    not exceeding     is calculated as follows: 
 

    ( ̂       )                ̂           . 
 
This can then be repeated for various values of n and   as needed.  Pseudo code for this Monte 
Carlo simulation is given below.  We assume a       upper tolerance bound is desired. 
 

1. Fix Inputs: Determine and fix the desired percentile     and confidence level     and 

 perform the simulation below for a given sample size of   and margin of   
 

2. Assumption Step: We assume the data follows a statistical distribution      with upper  th   

 percentile    and upper performance requirement     such that the  

 margin is          
 

3. Replication Step: Repeat (a)-(c) below   times  
 

a. Sampling Step: Draw a sample of size   from the distribution      

b. Estimation Step: Estimate a       upper tolerance bound  ̂    

c. Comparison Step: Compare the estimated upper tolerance  ̂    to     and record if  

  ̂        (i.e. let      if  ̂        and      otherwise) 
 

4. Probability Step: As noted above, estimate the probability of  ̂    not exceeding     by 

     ( ̂       )                ̂            ∑   
 
       

 

5. Repetition Step: Repeat steps 1-4 above for various values of  ,  ,  , and   as needed 

To determine an acceptable sample size for a given assumed margin  , we choose a minimum 
sample size that achieves an estimated probability greater than some fixed value such as 0.80, 
(i.e. choose the minimum value of   such that     ( ̂       )      ).  The procedures and 
algorithms discussed for calculating sample size can be generalized to any value of   as needed.  
It is important to remember that   is measured on the same scale and in the same units as the 
performance characteristic.  For example, if    was estimated to be 3.6 volts and the upper 
performance requirement was established as 5.1 volts,   would equal 1.5 volts.  The 
implementation of this algorithm will be dependent on the assumed distribution; however it can 
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be easily adapted to account for any standard statistical distribution.  The next section 
implements this algorithm specifically for a Normal distribution and shows examples of how to 
choose an optimal sample size.  We then follow the Normal examples with some cases of non-
Normal distributions to demonstrate how the algorithm can be adapted in those cases. 
 
3.3 Normal Data Case 
 
To implement the algorithm discussed above for a Normal distribution, we simulate data from a 
Normal distribution,                 , and calculate the estimated tolerance bounds based on 
a Normal distribution calculation.  When the data follows a Normal distribution, the upper 
tolerance bound containing    of the population with        confidence can be estimated by 
 ̂      ̅         where           √          √  and          denotes the        
percentile of a non-central  -distribution with df degrees of freedom and noncentrality parameter 
Δ.  Computer code (written in the R programming language) to run these simulations for a 
standard Normal distribution           can be found in the Appendix B of this document.  
For simplicity we only calculate sample sizes for a standard Normal distribution; however the 
sample size will ultimately depend not only on the margin but also the amount of variability in 
the unit population.  This can easily be generalized to other distributions by scaling the margin.  
We refer to a scaled margin as the margin with respect to a standard Normal distribution.  For a 
non-standard Normal distribution (i.e. one with     and/or      the margin must be 
adjusted or scaled appropriately.  Consider a Normal distribution     with mean  , standard 
deviation  , and upper percentile   .  Suppose there is an upper performance requirement     
which gives us a margin, on the original scale, of         .  To transform a Normal 
distribution     to a standard Normal distribution     we have the relationship          .  
Therefore, the scaled margin would be equal to,  
 

          
  

     

 
 

    

 
 

      

 
 

 

 
   

 
where   is the estimated or assumed margin on the original engineering unit scale.  This 
relationship is depicted in Figure 3.3 below.  Here the blue curve depicts the distribution on the 
engineering unit scale              and the purple distribution shows a standard Normal 
distribution           after the transformation.  This also shows the transformed 
percentiles, performance requirement, and margin.  The shaded regions under each curve contain 
           % of the population and the green dashed lines represent the   th percentiles on 
the original and transformed scales.  The red dashed lines represent an upper performance 
requirement.  For this example, suppose the upper performance requirement was set at      .  
Since the distribution is assumed to be Normal with mean     and        the upper 99th 
percentile is                          .  Therefore, the margin on the original scale is 
approximately 1.25.  The scaled percentile and upper performance requirement are obtained 
using the relationship           and are   

       and        respectively.  The 
scaled margin is             which can also be obtained by           

 .  Although 
this method does ultimately require a scaling of the margin, the sample size decision is still 
related directly to the margin on the original scale and can be communicated easily in terms of 
the original engineering units.  The examples that follow will highlight this point.  Note that this 
was done for ease of presentation in this paper.  If desired, the figures and tables that follow 
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could be developed for any specific Normal distribution with mean   and standard deviation  .  
We do note that this scaled margin can be thought of as expressing margin in terms of the 
standard deviation (i.e. the percentile is    standard deviations from the performance 
requirement) which is very similar to the  -factor methodology.   
 

Figure 3.3.  Transformation of a Normal to a Standard Normal 

 
 

Figure 3.4 below shows the probability that the estimated tolerance bound will be less than the 
upper performance requirement versus sample size for various values of a scaled margin   .  
This figure is generated using the Monte Carlo algorithm described above specifically for a 
                tolerance bound.  Here we only show graphs and tables for a    
             tolerance bound.  Additional figures and tables for various values of   and   are 
listed in Appendix A.  Figure 3.4 illustrates the relationship between the margin,  , sample size, 
n¸ and the probability that the estimated tolerance bound will be less than the upper performance 
requirement,       ̂        .  As noted above, to determine an acceptable sample size for a 
given assumed margin  , we choose a minimum sample size that achieves an estimated 
probability greater than some fixed value such as 0.80, (i.e. choose the minimum value of   such 
that     ( ̂       )      ).  Therefore the figure also shows a red dashed line at a 
probability of 80% (statistical power of 0.80).  This is the minimum probability that we 
recommend for choosing an optimal sample size, however larger values may be chosen as 
needed.  For example, suppose we have a scaled margin of      (pink line in Figure 3.4), the 
minimum sample size to satisfy     ( ̂       )       as shown by crossing the red dashed 
line is     .  We can see that as the margin decreases many more samples are needed to 
achieve the desired statistical power of 0.80.  Alternatively, fewer samples are needed if the 
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margin is large.  Note that       ̂        approaches 1 for all curves. This illustrates that 
more samples lead to more information, less uncertainty, and ultimately a higher probability that 
we will be able to demonstrate we are meeting requirements.  However, this will only be the case 
if the assumption of        is correct.  
 

Figure 3.4.  Probability of  ̂    Not Exceeding     versus Sample Size. 

 
 
The minimum sample sizes needed to achieve     ( ̂       )       for various values of 
   are listed in Table 3.1 below.  These are the minimum sample size values in Figure 3.4 where 
each curve crosses the red dashed line.  For example, the sample size entry in Table 3.1 for 
     is     .  More extensive tables showing sample sizes for a range of probabilities are 
available in the appendix with these values highlighted.   
  

Table 3.1.  Minimum Sample Size Needed To Achieve     ( ̂       )      . 

      ,        

   
Minimum sample size for 

    (        )          
Minimum sample size for 

    (        )       
0.5 110 2.5 10 
0.75 55 3.0 8 
1.0 34 3.5 7 
1.25 24 4.0 6 
1.5 19 5.0 5 
2.0 13  6.5 4 
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An alternative view of Figure 3.4 showing the relationship between the scaled margin and the 
statistical power for various sample sizes is shown in Figure 3.5 below.  This graph can be used 
to interpolate between values of    to determine the minimum sample size needed.  For 
example, using the graph (and similar tables in Appendix A), we can use the assumed margin, 
  , to determine the sample size needed to demonstrate that  ̂    will not exceed     with a 
desired probability.  Suppose we want  ̂    to not exceed     with a probability of 0.80 and we 
can assume that the margin, on the original scale, between the true percentile,   , and the upper 
performance requirement,    , is at least      .  Further, we either know or estimate the 
standard deviation of the unit population to be    .  Therefore, we can assume that the scaled 
margin is at least                   (i.e. there are 1.75 standard deviations of margin).  
We can then find         on Figure 3.5 and trace it up to     ( ̂       )       which 
shows that we will need at least 15 samples to have an 80% probability that an estimated 
tolerance bound will be less than the upper performance requirement if the observed margin is at 
least      .  In some cases, curves for additional sample sizes may need to be generated. 
 

Figure 3.5.  Probability of  ̂    Not Exceeding     versus   . 

 
 
In addition, these tables and figures can help interpret the risk incurred when sample sizes are 
limited by cost, test time, hardware availability, etc.  For example, suppose the assumed margin, 
again on the original scale, between    and     is       and the assumed standard deviation 
is      .  Therefore, we can assume the scaled margin is at least               .  Table 
3.1 shows an optimal sample size of      for a scaled margin of       , however assume 
that we cannot acquire the 19 samples as indicated but rather can only obtain 7 samples.  By 
examining either Figure 3.4 or Figure 3.5 we can see that the probability that the tolerance bound 
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will be less than the upper performance requirement is only about 0.33 (depicted in Figure 3.6 
below by tracing the orange line for        to a sample size of    ).  In other words, there is 
a 67% chance that the estimated tolerance bound will be greater than the upper performance 
requirement, indicating that we are not meeting requirements with the chosen level of 
confidence, even if the true percentile is less than the upper performance requirement.  This 
helps express the uncertainty that results from small sample sizes in a way that is tangible and 
easily communicated.  In this context, the risk of concluding we are not meeting requirements 
when the true underlying performance distribution does meet requirements has a direct 
relationship with sample size.  Even if we are ‘certain’ that    is less than    , the estimated 
tolerance bound,  ̂   , may exceed     because the uncertainty is large, due to a small sample 
size, relative to the observed margin.  This highlights the difference between ‘knowing’ and 
‘demonstrating’ performance.  We may ‘know’ or have a strong engineering judgment that the 
true percentile is within the performance requirements but we cannot ‘demonstrate’ or show with 
statistical justification that we have sufficient margin to the requirements without a significant 
sample size in some cases.  When sample sizes are limited there is a risk that we will not be able 
to demonstrate that there is sufficient margin with an adequate level of statistical confidence.  
 

Figure 3.6.  Example Identifying Risk for a Small Sample Size. 

 
 
3.3.1 Example 1 
 
Suppose we are interested in re-characterizing a component (Component A) at some point in its 
lifetime and there was 100% sampling conducted during production (or previous testing).  The 
initial population size consisted of 150 units, all of which were tested.  A histogram of this data 
can be seen in Figure 3.7 below.  From the data collected, this population has a mean of 4.065, 
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standard deviation of 0.726, and an observed 99th percentile of 5.59 (in this example estimated 
by the average of the two largest values in the observed dataset).  The performance characteristic 
in question has an upper performance requirement of 7.1 and the goal is to perform subsequent 
testing (possibly system-level lab testing or component-level evaluations and product 
reacceptance) on a sample of units to evaluate if 99% of the units are still less than the upper 
performance requirement with 95% confidence.  Therefore, based on the historic data we wish to 
choose a sample size that will support this conclusion.  We wish to find a tolerance bound that 
contains 99% of the population with 95% confidence.  Since the upper performance requirement 
is 7.1 and the observed 99th percentile at production was approximately 5.6, there was 
approximately a margin of       at production or at the time of the previous testing.  In 
addition, through engineering judgment, we will assume that the margin should not have 
changed significantly since production.  Since the standard deviation of the unit population was 
0.73 the scaled margin is                 .  We can therefore assume that the scaled 
margin is at least      and use the curves and tables listed above for this margin. 
 

Figure 3.7.  Example 1 Histogram. 

  
 
By examining Figure 3.4 and/or Table 3.1 we see that a sample of size      is required to 
have an 80% probability that the estimated (0.99, 0.95) upper tolerance bound will be less than 
the upper performance requirement if the observed margin is at least       (shown in Figure 
3.8 on the original scale).  Note that if the collected data produces an estimated 99th percentile 
greater than 5.6 (showing reduced margin), the estimated tolerance bound may be greater than 
the upper performance requirement.  This may be an indication that the performance has actually 
shifted, not just a manifestation of limited sampling, and therefore should be investigated further. 
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To further illustrate the notion of the scaled margin and the ability to visualize and communicate 
the sample size recommendations on the original scale, assume it is desired to reproduce several 
sample size curves and reproduce Table 3.1 specifically for a Normal distribution with     
and        to match the example discussed in this section.  These are shown in Figure 3.8 and 
Table 3.2.  Note that these are the exact same values and curves as shown above, but are labeled 
with the margins on the engineering scale for this example.  In addition, the scaled margins are 
shown for reference; however in general these would not need to be shown.  The margins shown 
here for the engineering scale are smaller than the scaled margins because    .  If     then 
the margin on the engineering scale would have to be larger to maintain the same sample sizes. 
 

Figure 3.8.  Probability of  ̂    Not Exceeding     versus Sample Size for a  
Normal             Distribution. 

 
 

Table 3.2.  Minimum Sample Size Needed To Achieve     ( ̂       )       for a 
Normal             Distribution 
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0.375 0.5 110 1.875 2.5 10 
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3.3.2 Example 2 
 
Suppose we are interested in re-characterizing Component B where partial sampling was 
conducted during production (or previous testing).  A sample of 40 units was collected from a 
larger population.  A histogram of this data can be seen in Figure 3.9 below.  From this 
histogram, we conclude the data is Normally distributed with a sample mean of 1.995 and 
sample standard deviation 0.54.  Because we only have a sample from the total population we 
will compute a (0.99, 0.90) upper tolerance bound to use as our estimate or “best guess” of the 
99th percentile.  When the data follows a Normal distribution, the upper tolerance bound 
containing    of the population with        confidence can be estimated by  ̂      ̅      

   where           √          √  and          denotes the        percentile of a non-
central  -distribution with df degrees of freedom and noncentrality parameter Δ.  For this dataset, 
the estimated (0.99, 0.90) upper tolerance bound is,  ̂           .  We are therefore 90% 
confident that 99% of the data is less than 3.5.   
 

Figure 3.9.  Example 2 Histogram. 

 
 
Here we use 90% confidence as an example.  In some cases, the confidence used for the 
estimation of the “best guess” percentile may be desired to be larger or smaller.  Note that this 
does not have to be the same as the confidence level used to determine the sample size, which is 
the confidence level that will be used in the subsequent testing.  Consultation with a statistician 
at this stage is recommended to choose the best confidence level(s).  In this example, suppose the 
upper performance requirement is determined to be 4.6 and therefore               and 
the estimated standard deviation is approximately  ̂      .  Consequently, the scaled margin is 
                .  Further, in the subsequent analysis it is determined that a (0.99, 0.95) 
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upper tolerance bound will be estimated.  Again, by examining Figure 3.4 and/or Table 3.1 we 
see that a sample of size      is required to have an 80% probability that the estimated (0.99, 
0.95) upper tolerance bound will be less than the upper performance requirement. 
 
3.3.3 Example 3 
 
Here we are interested in characterizing Component C however no previous data is available.  
For this component there is a designed operating range of (3.25, 6.25) and therefore using sound 
engineering judgment we can assume the 99th percentile will be at most 6.25.  In most cases, the 
designed operating range is constructed to contain a very high proportion of the possible values 
(often > 0.999), therefore assuming the 99th percentile is at the maximum of this operating range 
is a conservative assumption.  Also, without sufficient evidence about the underlying statistical 
distribution, we recommend using the Normal distribution assumption as a starting point for 
sample size calculations.  If the collected data exhibits a strong deviation from Normality, 
additional data may need to be acquired.  In addition, assume that this performance characteristic 
has an upper performance requirement of         .  For this component, the performance 
requirement is determined to be 6.25 and therefore   is equal to              .   
 

Figure 3.10.  Example 3 Design Range and Margin. 

  
 
Further, we assume that the designed operating range covers at least six standard deviations 
    , which is a common assumption in engineering applications.  Therefore, the best guess 
standard deviation can be estimated by  ̂              .  For this example, we have  
 ̂                   .  Hence, we assume the scaled margin is at least            
   .  By examining Figure 3.4 and/or Table 3.1 we see that a sample of size      is required 
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to have an 80% probability that the estimated (0.99, 0.95) upper tolerance bound will be less than 
the upper performance requirement, provided the observed margin is at least        and the 
observed standard deviation is at most 0.5.   
 
This example assumes knowledge of the designed operating range.  In some cases the exact 
range of the performance characteristic may not be known until data is collected.  In these cases, 
we will not have an estimate of the margin, but we may desire the precision of the resulting 
estimate of the percentile to be at most some value, say  .  To choose a sample size in this case, 
we would set        and use the tables and figures as in the previous examples.  Note that 
this would still require an assumption about the standard deviation of the underlying distribution.  
If this information is not known then we recommend starting with a sample of at least 30 units to 
characterize the distribution.  The sample size recommendation of 30 units for cases with no 
prior information is discussed further in Bierbaum [1] and is based on obtaining a sample size 
large enough to get adequate precision on an estimate of the standard deviation [6].  In these 
cases, if hardware is limited the risk must be communicated in terms of the ability to adequately 
characterize the underlying distribution.  This can be accomplished by showing the uncertainty in 
the estimation of the standard deviation as shown in Crowder [6]. 
 
3.4 Non-Normal Data Case  
 
For non-Normal data there are two common approaches for obtaining tolerance intervals; a 
transformation approach and a direct parametric approach.  The transformation is appropriate 
when a one-to-one relationship exists between the distribution of the data and the Normal 
distribution (e.g. a Lognormal distribution).  However, if the data fit a distribution that does not 
have a one-to-one relationship with the Normal distribution (e.g. a Weibull distribution) the 
direct parametric approach is more appropriate.  Below we provide sample size calculations that 
align with both of these approaches to non-Normal data. 
 
3.4.1 Transformation Approach 
 

In the case of a one-to-one relationship between the data and the Normal distribution, the 
approach described above to estimate sample sizes can be used after transforming the data and 
applicable quantities (   and    ).  Common transformations include (but are not limited to): 
 

           

    √  

         

       

 
One common example is the Lognormal distribution.  If it is known, either through previously 
collected data or engineering judgment, that the performance characteristic will follow a 
Lognormal distribution, we can transform    and     to a Normal scale, calculate a 
transformed margin   , and use the methodology described above to estimate sample size.  For 
example, if   follows a Lognormal distribution with location and scale parameters   and   and 
     th percentile     then          follows a Normal distribution with mean  , standard 
deviation  , and      th percentile   

         .  If the margin on the original lognormal scale 
is         , the transformed margin is              (  )             , 
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however to use the figures and tables from the previous section the margin must still be scaled.  
For this example, the transformed and scaled margin is                       , where 
    and    are the values from the original unit scale.  This relationship is depicted in Figure 
3.11 below.  Here the pink curve depicts the distribution on the engineering unit scale 
(Lognormal with            , the blue distribution shows the Normal transformation 
            , and the purple distribution shows a standard Normal distribution      
     after the scaling transformation.  This also shows the transformed percentiles, 
performance requirement, and margin.  The shaded regions under each curve contain   
         % of the population and the green dashed lines represent the   th percentiles on 
the original and transformed scales.  In addition, the red dashed lines represent the upper 
performance requirement on the various scales.     
 

Figure 3.11.  Transformation of a Lognormal to a Standard Normal. 

 
 
Since the Lognormal, and any other distribution with a one-to-one transformation with a Normal 
distribution, can be related to a standard Normal we can use the curves and values from Figure 
3.4 and Table 3.1 once the margin has been transformed and scaled.  This will be demonstrated 
in Example 4 below.  Here we only show a single example; however similar situations from the 
three Normal examples could be posited and extended to a Lognormal distribution. Also, we 
noted that the sample size calculations for asymmetric distributions will be dependent on the side 
with which the analysis is performed; however since the Lognormal transformation provides a 
Normal distribution (which is symmetric) the sample size calculations for a lower margin will 
use the same figures and tables as for an upper margin (after the transformation).   
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3.4.2 Example 4 (Non-Normal Transformation Approach) 
 
Suppose we are interested in re-characterizing Component D where partial sampling was 
conducted during production (or previous testing).  A sample of 65 units was collected from a 
larger population.  A histogram of this data on the original engineering unit scale can be seen in 
Figure 3.12 below.  From this histogram, we conclude the data is Lognormally distributed with a 
sample location parameter of  ̂       and sample scale parameter of  ̂      .  Because we 
only have a sample from the total population we will compute a (0.99, 0.90) upper tolerance 
bound to use as out estimate or “best guess” of the 99th percentile.  To compute the upper 
tolerance bound we first transform the data to the Normal scale and then use the equations shown 
in the section above for a Normal distribution.  The estimated tolerance bound is then 
transformed back to the Lognormal scale,  ̂         { ̅       }  where    is defined as before 
and  ̅ and   are the sample mean and standard deviation of the data on the transformed Normal 
scale.  For this dataset, the estimated (0.99, 0.90) upper tolerance bound is,  ̂           .  
Again we use 90% confidence as an example.  In some cases, the confidence used for the 
estimation of the “best guess” percentile may be larger or smaller.   
 

Figure 3.12.  Histogram of Lognormal Data.  

 
 

In this example, suppose the upper performance requirement is determined to be         
and therefore              .  In the subsequent analysis it is determined that a (0.99, 
0.95) upper tolerance bound will be estimated.  Again, if it is desired to communicate these 
figures and tables on the engineering unit scale, this can be accomplished by a simple re-scaling.  
Here we must re-scale the      th  percentile and     separately to obtain the margin on the 
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original scale,       {          }     {      
  

  }.  The scaled     can be written as 
              

  , therefore,  
 

      {  (       
  
)   }      {      

  
  }  

 
We illustrate the ability to visualize and communicate the sample size recommendations on the 
original scale by reproducing several sample size curves and Table 3.1 specifically for a 
Lognormal distribution with       ,       , and    

  
                         ,  

to match the example discussed in this section.  These are shown in Figure 3.13 and Table 3.3 
below.  Again, these are the exact same values and curves as shown above, but are labeled with 
the margins on the engineering scale for this example.  Note that the margins must be much 
larger on the Lognormal scale for the same sample sizes.  This should be expected since the 
upper tail of a Lognormal distribution is much fatter than a Normal.  In addition, the scaled 
margins are shown for reference; however in general these would not need to be shown. 
 

Figure 3.13.  Probability of  ̂    Not Exceeding     versus Sample Size for a  
Lognormal                Distribution. 

 
 
Since      , examining Figure 3.13 and/or Table 3.3 we see that a sample of size      is 
required to have an 80% probability that the estimated (0.99, 0.95) upper tolerance bound will be 
less than the upper performance requirement.  Suppose now that we cannot obtain the 55 samples 
recommended above but can only acquire      samples.  By examining Figure 3.13 and 
tracing the red curve for       to      we see that the estimated probability that the 
tolerance bound will be less than the upper performance requirement is about 0.60.  Therefore, 
there is a     chance that the estimated tolerance bound will be greater than the upper 
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performance requirement, preventing us from concluding there is sufficient margin to the 
performance requirements, even if the true underlying distribution supports this claim. 
 

Table 3.3.  Minimum Sample Size Needed To Achieve     ( ̂       )       for a 

Lognormal                Distribution 

      ,        

     
 

Minimum sample size for 

    (        )       
     

 
Minimum sample size for 

    (        )       

90 0.5 110 909 2.5 10 
146 0.75 55 1325 3.0 8 
212 1.0 34 1890 3.5 7 
289 1.25 24 2658 4.0 6 
378 1.5 19 5120 5.0 5 
603 2.0 13  13229  6.5 4 

 
Alternatively, we could use the figures and tables for a standard Normal distribution by 
transforming and scaling the margin.  Here we have  ̂            which is our best guess of the 
99th percentile,        , and  ̂      .  The scaled quantities are    

  
    ( ̂       )  

         ,       {         }       , and                               
    .  This is shown in Figure 3.14 below along with the transformed and scaled data.   
 

Figure 3.14.  Histogram of Lognormal Data after Transformation. 
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By examining Figure 3.4 and/or Table 3.1 we again see that a sample of size      is required 
to have an 80% probability that the estimated (0.99, 0.95) upper tolerance bound will be less than 
the upper performance requirement. 
 
3.4.3 Direct Parametric Approach 
 

To examine the direct parametric approach, we will use the two-parameter Exponential and 
Weibull distributions as examples.  The Exponential and Weibull distributions do not have a 
one-to-one transformation with the Normal distribution.  Therefore, we must generate new 
figures and tables specifically for these distributions.  We begin with the two-parameter 
Exponential distribution which is characterized by a shape parameter   and a location parameter 
  and has the form, 
 

     
 

 
   { 

     

 
}  

 
The      th upper percentile of a standard Exponential distribution, which is a function of the 
scale and location parameters is given by                 and a       upper tolerance 
bound for an Exponential distribution is given by  ̂     ̂   ̂        , where the maximum 
likelihood estimators of the parameters are given by  ̂      ,  ̂   ̅      ,      is the 
minimum observed value of  ,  ̅ is the sample mean, and        is the          th percentile 
of    {  

             }      
 .  Note that   

  and      
  are chi-squared distributions with 

  and      degrees of freedom respectively (which are free of any parameters), hence the 
         th percentile of    can be obtained via Monte Carlo simulation.  Computer code 
(written in the R programming language) to run these simulations for a two-parameter 
Exponential distribution can be found in Appendix B of this document.  For complete details of 
the implementation of a tolerance bound for a two-parameter Exponential distribution, refer to 
Krishnamoorthy and Mathew [8].  The Exponential distribution is generally used for analyses 
with respect to an upper tail, so we only show example of a sample size calculation for an upper 
margin (although a lower margin calculation is possible with minor modifications).  Below, we 
use the Weibull distribution to show the differences between an upper margin sample size 
calculation and a lower margin calculation. 
 
We could implement the generic algorithm discussed above for a specific two-parameter 
Exponential distribution with location parameter   and scale parameter  , however we note that 
there is a one-to-one scaling to a standard Exponential distribution.  The standard Exponential 
distribution is one where     and    .  Consider a two-parameter Exponential distribution 
    with slocation parameter   and scale parameter  .  To transform a two-parameter 
Exponential distribution     to a standard Exponential distribution     we have the relationship 
          (this scaling is very similar to the standard Normal scaling used above).  
Suppose further that there is a known upper percentile    and an upper performance requirement 
    which gives us a margin, on the original scale, of         .  The scaled margin is, 
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This is depicted in Figure 3.15 below.  The blue curve depicts the distribution on the engineering 
unit scale, Exponential         , and the purple distribution shows a standard Exponential 
distribution           after the transformation.  This also shows the transformed 
percentiles, performance requirement, and margin.  The shaded regions under each curve contain 
           % of the population, the green dashed lines represent the   th percentiles on the 
original and transformed scales, and the red dashed lines represent the upper performance 
requirement on both scales.   
 

Figure 3.15.  Two-Parameter Exponential Distribution Transformation. 

 
 
Again, we relate the two-parameter Exponential distribution to a standard distribution so that a 
minimum number of curves can be generated and used for the sample size calculations.  By 
doing this, we can relate any Exponential distribution to these standard set of curves to determine 
sample size.  Therefore, the figures and tables here are generated use the generic algorithm 
discussed above with simulated data from a standard Exponential distribution           
and calculation of the tolerance bounds based on an Exponential distribution calculation.  Table 
3.4 and Figure 3.16 show the results of the sample size calculations for a standard Exponential 
distribution.  As noted above the figures and tables for a standard Exponential distribution can be 
applied for any two-parameter Exponential distribution.  In addition, the Pareto and Power 
distributions have a one-to-one transformation with an Exponential; hence these figures and 
tables can be used to calculate sample sizes for those distributions as well, after an appropriate 
transformation.   
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Figure 3.16.  Probability of  ̂    Not Exceeding     versus Sample Size for a  
Standard Exponential          Distribution. 

  
 

Table 3.4.  Minimum Sample Size Needed To Achieve     ( ̂       )       for a 
Standard Exponential          Distribution. 

   
Minimum sample size for 

    (        )          
Minimum sample size for 

    (        )       
1.5 83 5.0 14 

2.0 50 7.5 9 

2.5 36 10 7 

3.0 28 15 5 

4.0 18  20 4 

 
Next we illustrate the calculations for a Weibull distribution.  The Weibull distribution is 
characterized by a shape parameter   and a scale parameter   and has a probability distribution 
function given by,  
 

      
 

  
       [ (

 

 
)

 

]  

 

The  th percentile from a Weibull distribution is a function of   and  ,               
 

 ⁄ .  
For data that follows a Weibull distribution the estimated lower tolerance bound from a sample 
of size   is of the form, 
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 ̂       ̂      (          ̂)  

 
where          is the          th percentile of                     {      }  and    
and    are the maximum likelihood estimates calculated from a sample of size   from a 
Weibull           distribution.  The distribution of   does not depend on any unknown 
parameters, and so its percentiles can be estimated using Monte Carlo simulation.  For more 
details on the derivation of this tolerance bound, refer to Krishnamoorthy and Mathew [8].  For 
an upper tolerance bound,  ̂     ̂      (      ̂) where      is the      th percentile of 
                             .  A general algorithm for computing          and     , 
and hence the lower and upper tolerance bounds, is shown provided along with computer code in 
the QMU Handbook [5].  The Weibull distribution is not a symmetric distribution and therefore 
the probability that an estimated tolerance bound will be contained by the performance 
requirement ( ̂        or  ̂         ) will be dependent on the side.  An example of a 
Weibull distribution with both upper and lower requirements is shown in Figure 3.17.  In this 
example       , so the green dashed lines in Figure 3.17 represent the 1st and 99th percentiles.   
 

Figure 3.17.  Example Weibull Distribution. 

 
 
Although a Weibull distribution can be related to a standard Exponential distribution (which is a 
Weibull(1,1) distribution) the shape of the Weibull is extremely dependent on its parameters; 
therefore we recommend generating sample size curves for a specific Weibull distribution as 
needed.  Further, the Weibull is an asymmetric distribution and its tails can be very different 
from each other.  Therefore, the sample size calculations will be dependent on the side that the 
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analysis is being performed on.  Figure 3.18 below shows sample size curves for a Weibull 
distribution with shape     and scale     relative to a lower bound analysis with lower 
margin    as shown in Figure 3.17 above.  Here we evaluate the probability that the lower 
tolerance bound will be greater than the lower performance requirement (   ), that is 
    ( ̂         ).  Again we recommend choosing a sample size such that this probability is 
at least 0.80.  The minimum sample sizes satisfying     ( ̂         )       are shown in 
Table 3.5 below.  Again, these figures and table are specific to a Weibull distribution with shape 
    and scale    .  For a Weibull distribution with different parameters, a new set of curves 
and sample size would have to be generated.  Code to generated sample size curves for any 
specified Weibull distribution is given in Appendix B.  These choices of margin sizes were 
chosen to cover a range of roughly 0.5 to 3 standard deviations. The standard deviation of a 
Weibull distribution with shape and scale parameters   and   is given by 
  √                        , where      is the gamma function.  For this example 
with     and    , the standard deviation is       .  Therefore, these sample sizes should 
match somewhat closely to the examples above for the same magnitude margins.  Note that this 
specific example is not overly skewed in one direction or the other.  For extremely skewed 
distributions the sample sizes may be less dependent on the magnitude of the margin relative to 
the standard deviation and more dependent on the shape of the tail.  Again, this is why we 
recommend generating new curves for each specific Weibull distribution. 
 

Figure 3.18.  Probability of  ̂      Not Falling Below     versus Sample Size for a  
Weibull          Distribution. 

 
 

50403020100

1.0

0.8

0.6

0.4

0.2

0.0

1.20

0.20

0.25

0.30

0.35

0.40

0.50

0.60

0.80

1.00

M

Probability vs. Sample Size - Weibull(3,8)
(0.99, 0.95) Lower Tolerance Bound

  

𝐏
𝐫𝐨
𝐛
( 𝐐

𝟏
 
𝐩
 𝛄

 
𝐋
𝐏
𝐑
)  

Sample Size     



37 

Table 3.5.  Minimum Sample Size Needed To Achieve     ( ̂         )       for a 
Weibull          Distribution. 

   
Minimum sample size for 

    ( ̂         )          
Minimum sample size for 

    ( ̂         )       
0.20 120 0.50 23 
0.25 78 0.60 17 
0.30 56 0.80 12 
0.35 44 1.00 9 
0.40 33  1.2 6 

 
As discussed above, these sample sizes are specific to this Weibull distribution with an analysis 
that is with respect to a lower limit.  Next, we show sample sizes for an analysis with respect to 
an upper requirement.  By examining Figure 3.17 it is clear that the upper tail is much shorter 
than the lower tail.  Therefore, we would expect the sample sizes to be smaller for the same 
amount of margin since the relative change in the tail probability will be less (especially for 
smaller margins).  For the same Weibull(       ) distribution we explore the curves and 
recommended samples sizes for an upper bound calculation these are shown in Figure 3.19 and 
Table 3.6 below.  
 

Figure 3.19.  Probability of  ̂      Not Exceeding     versus Sample Size for a  
Weibull          Distribution. 
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Table 3.6.  Minimum Sample Size Needed To Achieve     ( ̂       )       for a 
Weibull          Distribution. 

   
Minimum sample size for 

    ( ̂       )          
Minimum sample size for 

    ( ̂       )       
0.20 74 0.50 20 
0.25 54 0.60 16 
0.30 39 0.80 11 
0.35 32 1.00 8 
0.40 25  1.2 6 

 
As expected, the sample sizes for the upper margin are less than those for the lower margin 
(especially for smaller margins).  As the margin increases however the relative change in the tail 
probabilities become indistinguishable and therefore the sample sizes become very similar 
regardless of the size.  To further illustrate the differences between the sample size calculations 
we show a comparison of the upper (solid lines) and lower (dashed lines) margins in Figure 3.20 
below.  This shows that the upper margins achieve a higher probability for smaller sample sizes 
than the lower margins.  Therefore, if a performance characteristic has both an upper and lower 
requirement we must take the maximum of the two sample sizes calculated to ensure that we can 
achieve the same confidence for both analyses. 
 

Figure 3.20.  Comparison of Upper and Lower Margin Calculations for a  
Weibull          Distribution  

 
 
Next we present examples using both the two-parameter Exponential and Weibull distributions. 
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3.4.4 Example 5 (Direct Parametric Approach - Exponential) 
 
Suppose we are interested in re-characterizing component E at some point in its lifetime and 
there was 100% sampling conducted during production (or previous testing).  The initial 
population size consisted of 270 units.  A histogram of the data can be seen in Figure 3.21 below.  
From the data collected, this population was determined to follow an Exponential distribution 
and has a location of       , scale of       , and an observed 99th percentile of          
(estimated empirically from the observed dataset).  The performance characteristic in question 
has an upper performance requirement of          and the goal is to perform subsequent 
testing (possibly Lab, CME, or product reacceptance) on a sample of units to evaluate if 99% of 
the units are still less than the upper performance requirement with 95% confidence.  Since the 
upper performance requirement is 22.5 and the observed 99th percentile at production was 
approximately 14.35, there is a margin of                   at production or at the time 
of the previous testing.   
 

Figure 3.21.  Histogram of Exponential Data. 

 
 
To use the figures and tables for a standard Exponential distribution we scale the margin as noted 
above.  Here we have          which is our best guess of the 99th percentile,         , 
        and        .  The scaled quantities are    

               ,      

              , and            .  This is shown in Figure 3.14 below along with 
the transformed data.  Since        , we can assume the margin is at least 4 and use the 
curves generated for a standard Exponential in Figure 3.16 and/or Table 3.4 and see that a 
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sample of size      is required to have an 80% probability that the estimated (0.99, 0.95) 
upper tolerance bound will be less than the upper performance requirement. 
 

Figure 3.22.  Histogram of Exponential Data after the Transformation. 

 
 
3.4.5 Example 6 (Direct Parametric Approach - Weibull) 
 
Suppose we are interested in re-characterizing component F at some point in its lifetime and 
there was 100% sampling conducted during production (or previous testing).  The initial 
population size consisted of 235 units.  A histogram of the data can be seen in Figure 3.23 below.   
 
By examining the data collected and through engineering judgment, this population was 
determined to be best represented by a Weibull distribution.  The population has an observed 
shape parameter of      , scale parameter of      , and an observed (empirically estimated) 
upper 99th percentile of        .  The performance characteristic in question has an upper 
performance requirement of         and the goal is to perform subsequent testing (possibly 
Lab, CME, or product reacceptance) on a sample of units to evaluate if 99% of the units are still 
less than the upper performance requirement with 95% confidence.  Therefore, based on the 
historic data we wish to choose a sample size that will support this conclusion.  We wish to find 
a tolerance bound that contains 99% of the population with 95% confidence.  Since the upper 
performance requirement is 4.0 and the observed 99th percentile at production is approximately 
3.65, there is a margin of                  at production or at the time of the previous 
testing.  In addition, through engineering judgment, we will assume that the margin should not 
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have changed significantly since production.  Since       , we can use the curves generated 
for a Weibull(          distribution (with respect to an upper margin) in Figure 3.19 
and/or Table 3.6 and see that a sample of size      is required to have an 80% probability that 
the estimated (0.99, 0.95) upper tolerance bound will be less than the upper performance 
requirement. 
 

Figure 3.23.  Histogram of Weibull Data with Respect to an Upper Requirement. 

  
 
As noted above, asymmetric distributions require the sample size calculations to be dependent on 
the side with which the analysis is performed, although the general algorithm still holds.  We use 
the example in this section to illustrate this point.  Again, suppose we are interested in re-
characterizing component F at some point in its lifetime and there was 100% sampling conducted 
during production (or previous testing).  The initial population size consisted of 235 units.  
Suppose now that the performance characteristic in question has a lower performance 
requirement of          and the goal is to perform subsequent testing (possibly Lab, CME, 
or product reacceptance) on a sample of units to evaluate if 99% of the units are still greater than 
the lower performance requirement with 95% confidence.  Again, this population was 
determined to be best represented by a Weibull distribution with an observed shape parameter of 
     , scale parameter of      , and 1st percentile of           (99% of the data are 
above 1.75).  Since the lower performance requirement is 1.25 and the observed 1st percentile at 
production was approximately 1.25, there is a margin of                   at production 
or at the time of the previous testing.  Therefore, based on the historic data we wish to find a 
lower tolerance bound that contains 99% of the population with 95% confidence.  A histogram of 
the data can be seen in Figure 3.24 below.  Since        , we can use the curves generated for 
a Weibull(          distribution (with respect to a lower margin) in Figure 3.18 and/or 
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Table 3.5 and see that a sample of size      is required to have an 80% probability that the 
estimated (0.99, 0.95) lower tolerance bound will be greater than the lower performance 
requirement. 
 

Figure 3.24.  Histogram of Weibull Data with Respect to a Lower Requirement. 

  
 
If this performance characteristic had both an upper and lower performance requirements then 
both sample sizes would be calculated and the maximum would be chosen to ensure a high 
probability that both the upper and lower tolerance bounds would be contained within the 
performance requirements (assuming the underlying distribution has positive margin to both 
requirements).  In this example a sample size of      was required for the upper margin and a 
sample size of      was required for the lower margin.  Therefore, the sample size of      
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relative to both the upper and lower bounds. 
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4 CONCLUSIONS 
 
This paper proposes a margin based approach for determining sample size.  After briefly 
reviewing the  -factor methodology and its limitations, this new method for determining sample 
sizes was introduced based on an assumed margin and acceptable errors rates.  This provides a 
very general method for calculating sample sizes that can be applied to any known statistical 
distribution.  In addition, this method for sample size determination is more consistent with the 
methodologies described in the QMU Handbook and allows us to use more consistent language 
throughout.  We also view this as an ideal way to set hardware requirements for activities such as 
CME Development where the notion of baselining performance, and in particular margin, is a 
key goal.  In addition to providing guidelines for determining sample size, we also provide a 
streamlined approach to documenting and explaining risk when sample sizes are limited by 
various constraints.  This should facilitate a better understanding by decision makers on why 
certain sample sizes are being recommended.  Most importantly, this method allows the 
communication to remain on the engineering unit scale which will increase interpretability and 
transparency in the decision making process. 
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APPENDIX A:  TOLERANCE BOUND GRAPHS & TABLES 
 
A.1 (0.99, 0.95) Standard Normal Tolerance Bound Graphs 
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A.2 (0.995, 0.95) Standard Normal Tolerance Bound Graphs  
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A.3 (0.999, 0.95) Standard Normal Tolerance Bound Graphs  
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A.4 (0.99, 0.99) Standard Normal Tolerance Bound Graphs  
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A.5 (0.995, 0.99) Standard Normal Tolerance Bound Graphs  
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A.6 (0.999, 0.99) Standard Normal Tolerance Bound Graphs  
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A.7 Supplemental Tables for Standard Normal Sample Sizes 
 

Table A.1.      ( ̂       ) from a Standard Normal for various values of sample size 

   , confidence    , percentile    , and margin       .  

         

                 

                                                        

5 0.0928 0.0863 0.0854 0.0202 0.0205 0.0168 
6 0.0966 0.0942 0.0886 0.0233 0.0174 0.0173 
7 0.1081 0.1068 0.0967 0.0253 0.0243 0.0187 
8 0.1228 0.1162 0.1004 0.0271 0.0269 0.0224 
9 0.1329 0.1193 0.1129 0.0315 0.0294 0.0246 
10 0.1435 0.1371 0.1147 0.0361 0.0326 0.0240 
11 0.1579 0.1404 0.1212 0.0402 0.0326 0.0266 
12 0.1579 0.1538 0.1310 0.0415 0.0385 0.0307 
13 0.1710 0.1625 0.1356 0.0460 0.0430 0.0349 
14 0.1864 0.1647 0.1464 0.0456 0.0414 0.0354 
15 0.1880 0.1733 0.1579 0.0487 0.0448 0.0376 
16 0.1947 0.1760 0.1500 0.0524 0.0443 0.0413 
17 0.2044 0.1826 0.1574 0.0612 0.0542 0.0433 
18 0.2163 0.1961 0.1661 0.0606 0.0558 0.0450 
19 0.2294 0.2048 0.1816 0.0653 0.0544 0.0453 
20 0.2347 0.2116 0.1788 0.0717 0.0624 0.0488 
21 0.2343 0.2192 0.1898 0.0729 0.0670 0.0497 
22 0.2512 0.2379 0.1848 0.0819 0.0666 0.0492 
23 0.2581 0.2376 0.2039 0.0798 0.0700 0.0553 
24 0.2657 0.2452 0.2097 0.0828 0.0774 0.0575 
25 0.2773 0.2576 0.2022 0.0889 0.0819 0.0669 
26 0.2853 0.2571 0.2122 0.0921 0.0803 0.0640 
27 0.3007 0.2636 0.2279 0.0930 0.0841 0.0650 
28 0.2959 0.2753 0.2236 0.1031 0.0841 0.0657 
29 0.3131 0.2808 0.2333 0.1094 0.0924 0.0727 
30 0.3175 0.2815 0.2379 0.1084 0.0958 0.0772 
31 0.3307 0.3029 0.2590 0.1209 0.0998 0.0759 
32 0.3396 0.3012 0.2635 0.1153 0.1057 0.0790 
33 0.3458 0.3185 0.2588 0.1219 0.1036 0.0817 
34 0.3501 0.3109 0.2691 0.1249 0.1123 0.0844 
35 0.3613 0.3224 0.2688 0.1342 0.1114 0.0840 
36 0.3690 0.3332 0.2787 0.1354 0.1180 0.0879 
37 0.3882 0.3342 0.2805 0.1410 0.1236 0.0974 
38 0.3844 0.3439 0.2881 0.1443 0.1290 0.0958 
39 0.3946 0.3471 0.2950 0.1503 0.1269 0.1024 
40 0.3997 0.3726 0.3018 0.1590 0.1283 0.1030 
41 0.4155 0.3668 0.2948 0.1627 0.1387 0.1019 
42 0.4144 0.3817 0.3154 0.1683 0.1445 0.1095 
43 0.4264 0.3778 0.3237 0.1809 0.1507 0.1098 
44 0.4384 0.3990 0.3251 0.1681 0.1509 0.1131 
45 0.4360 0.3992 0.3250 0.1839 0.1576 0.1231 
46 0.4464 0.4026 0.3346 0.1815 0.1609 0.1207 
47 0.4557 0.4125 0.3327 0.1930 0.1618 0.1261 
48 0.4745 0.4196 0.3493 0.1931 0.1738 0.1289 
49 0.4800 0.4197 0.3478 0.2065 0.1699 0.1292 
50 0.4815 0.4357 0.3565 0.2070 0.1816 0.1352 
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Table A.2.      ( ̂       ) from a Standard Normal for various values of sample size 

   , confidence    , percentile    , and margin        .  

         

                 

                                                        

2 0.06532 0.0631 0.0610 0.0134 0.0138 0.0139 
3 0.08333 0.0845 0.0723 0.0171 0.0168 0.0151 
4 0.10144 0.0968 0.0908 0.0209 0.0203 0.0188 
5 0.11948 0.1101 0.1041 0.0267 0.0278 0.0223 
6 0.13942 0.1309 0.1126 0.0341 0.0267 0.0261 
7 0.15879 0.1489 0.1293 0.0364 0.0381 0.0271 
8 0.17691 0.1601 0.1410 0.0421 0.0377 0.0317 
9 0.19344 0.1822 0.1590 0.0526 0.0491 0.0377 
10 0.21116 0.2029 0.1588 0.0555 0.0515 0.0452 
11 0.22908 0.2148 0.1753 0.0646 0.0585 0.0450 
12 0.24708 0.2362 0.1914 0.0687 0.0619 0.0480 
13 0.26887 0.2462 0.2028 0.0774 0.0708 0.0571 
14 0.28682 0.2468 0.2165 0.0865 0.0765 0.0612 
15 0.30348 0.2755 0.2299 0.0952 0.0803 0.0636 
16 0.31855 0.2913 0.2407 0.1036 0.0919 0.0721 
17 0.33764 0.3098 0.2583 0.1139 0.0877 0.0760 
18 0.35421 0.3179 0.2737 0.1233 0.1044 0.0824 
19 0.37226 0.3264 0.2802 0.1358 0.1139 0.0825 
20 0.38901 0.3477 0.2898 0.1412 0.1216 0.0991 
21 0.40185 0.3582 0.2993 0.1525 0.1268 0.0913 
22 0.42334 0.3754 0.3127 0.1635 0.1303 0.1121 
23 0.43452 0.3973 0.3161 0.1715 0.1454 0.1062 
24 0.45196 0.4059 0.3389 0.1884 0.1518 0.1151 
25 0.47192 0.4270 0.3464 0.1914 0.1638 0.1225 
26 0.48479 0.4340 0.3560 0.2021 0.1741 0.1282 
27 0.50100 0.4469 0.3698 0.2095 0.1800 0.1370 
28 0.51496 0.4600 0.3828 0.2265 0.1839 0.1375 
29 0.52804 0.4833 0.4008 0.2271 0.1968 0.1452 
30 0.54007 0.4854 0.4013 0.2390 0.2050 0.1527 
31 0.55535 0.5009 0.4104 0.2506 0.2180 0.1643 
32 0.56782 0.5199 0.4193 0.2652 0.2231 0.1684 
33 0.58216 0.5325 0.4420 0.2720 0.2388 0.1711 
34 0.59295 0.5318 0.4431 0.2970 0.2515 0.1786 
35 0.60498 0.5531 0.4651 0.3079 0.2564 0.1894 
36 0.62134 0.5625 0.4677 0.3172 0.2638 0.2060 
37 0.63024 0.5749 0.4789 0.3202 0.2755 0.1989 
38 0.64434 0.5894 0.4820 0.3423 0.2769 0.2033 
39 0.65542 0.5961 0.4932 0.3492 0.2959 0.2175 
40 0.66538 0.6065 0.4946 0.3545 0.3043 0.2265 
41 0.67555 0.6184 0.5143 0.3699 0.3171 0.2293 
42 0.68842 0.6346 0.5198 0.3862 0.3251 0.2394 
43 0.69733 0.6385 0.5354 0.3880 0.3381 0.2430 
44 0.70851 0.6484 0.5390 0.3999 0.3428 0.2543 
45 0.71736 0.6595 0.5485 0.4150 0.3520 0.2568 
46 0.72671 0.6704 0.5645 0.4309 0.3622 0.2677 
47 0.73554 0.6738 0.5701 0.4308 0.3788 0.2700 
48 0.74487 0.6860 0.5779 0.4413 0.3774 0.2779 
49 0.75427 0.6974 0.5898 0.4568 0.3944 0.2933 
50 0.76373 0.6981 0.6008 0.4704 0.3999 0.2942 
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Table A.3.      ( ̂       ) from a Standard Normal for various values of sample size 

   , confidence    , percentile    , and margin       .  

        

                 

                                                        

2 0.0746 0.0715 0.0654 0.0136 0.0141 0.0120 
3 0.0984 0.0936 0.0876 0.0187 0.0184 0.0191 
4 0.1234 0.1154 0.1051 0.0241 0.0208 0.0225 
5 0.1531 0.1373 0.1231 0.0301 0.0329 0.0258 
6 0.1845 0.1645 0.1470 0.0448 0.0378 0.0345 
7 0.2131 0.1893 0.1688 0.0536 0.0448 0.0403 
8 0.2411 0.2188 0.1862 0.0648 0.0591 0.0488 
9 0.2707 0.2404 0.2145 0.0793 0.0686 0.0518 
10 0.2983 0.2744 0.2275 0.0830 0.0807 0.0594 
11 0.3336 0.3004 0.2367 0.1033 0.0914 0.0680 
12 0.3516 0.3200 0.2652 0.1158 0.0986 0.0774 
13 0.3762 0.3323 0.2758 0.1351 0.1148 0.0836 
14 0.4121 0.3704 0.3048 0.1412 0.1266 0.0933 
15 0.4312 0.3958 0.3192 0.1617 0.1361 0.1021 
16 0.4619 0.4190 0.3447 0.1863 0.1513 0.1125 
17 0.4866 0.4401 0.3546 0.1970 0.1705 0.1251 
18 0.5176 0.4574 0.3832 0.2078 0.1848 0.1393 
19 0.5378 0.4916 0.3986 0.2307 0.1943 0.1372 
20 0.5578 0.5066 0.4120 0.2540 0.2160 0.1536 
21 0.5856 0.5399 0.4361 0.2633 0.2160 0.1635 
22 0.6003 0.5405 0.4476 0.2875 0.2402 0.1753 
23 0.6296 0.5694 0.4746 0.3049 0.2661 0.1943 
24 0.6494 0.5897 0.4850 0.3227 0.2705 0.2017 
25 0.6593 0.6076 0.4991 0.3370 0.3026 0.2143 
26 0.6799 0.6158 0.5159 0.3604 0.2997 0.2253 
27 0.6970 0.6349 0.5364 0.3850 0.3325 0.2338 
28 0.7176 0.6582 0.5511 0.3948 0.3420 0.2563 
29 0.7241 0.6818 0.5631 0.4154 0.3580 0.2632 
30 0.7460 0.6824 0.5869 0.4326 0.3799 0.2663 
31 0.7646 0.6995 0.5916 0.4605 0.3897 0.2859 
32 0.7734 0.7104 0.6002 0.4688 0.4052 0.2994 
33 0.7896 0.7360 0.6111 0.4819 0.4125 0.3173 
34 0.8000 0.7496 0.6316 0.5048 0.4352 0.3298 
35 0.8159 0.7562 0.6467 0.5182 0.4478 0.3416 
36 0.8331 0.7715 0.6592 0.5342 0.4653 0.3550 
37 0.8428 0.7839 0.6734 0.5565 0.4813 0.3573 
38 0.8446 0.7948 0.6812 0.5745 0.4991 0.3749 
39 0.8504 0.8051 0.7008 0.5855 0.5082 0.3945 
40 0.8604 0.8142 0.7076 0.6022 0.5292 0.3972 
41 0.8677 0.8239 0.7167 0.6019 0.5357 0.4115 
42 0.8818 0.8362 0.7327 0.6331 0.5532 0.4262 
43 0.8848 0.8423 0.7362 0.6428 0.5597 0.4396 
44 0.8990 0.8543 0.7450 0.6534 0.5757 0.4492 
45 0.9007 0.8594 0.7597 0.6818 0.6006 0.4603 
46 0.9050 0.8615 0.7670 0.6881 0.6094 0.4699 
47 0.9136 0.8760 0.7800 0.6988 0.6157 0.4845 
48 0.9157 0.8815 0.7898 0.7158 0.6326 0.4877 
49 0.9309 0.8885 0.7942 0.7303 0.6466 0.5151 
50 0.9315 0.8904 0.8080 0.7422 0.6627 0.5168 



54 

Table A.4.      ( ̂       ) from a Standard Normal for various values of sample size 

   , confidence    , percentile    , and margin        .  

         

                 

                                                        

2 0.07717 0.0763 0.0686 0.0192 0.0150 0.0159 
3 0.10997 0.1059 0.0891 0.0223 0.0217 0.0210 
4 0.14604 0.1390 0.1223 0.0335 0.0291 0.0258 
5 0.18954 0.1731 0.1499 0.0435 0.0386 0.0319 
6 0.23113 0.2094 0.1880 0.0567 0.0494 0.0430 
7 0.27538 0.2420 0.2044 0.0753 0.0641 0.0537 
8 0.31477 0.2845 0.2368 0.0881 0.0773 0.0624 
9 0.35393 0.3206 0.2713 0.1098 0.0950 0.0738 
10 0.39308 0.3505 0.2822 0.1310 0.1110 0.0839 
11 0.43341 0.3948 0.3259 0.1456 0.1303 0.0928 
12 0.47390 0.4289 0.3444 0.1747 0.1543 0.1121 
13 0.51208 0.4579 0.3795 0.2017 0.1684 0.1229 
14 0.54096 0.4853 0.4072 0.2328 0.1953 0.1486 
15 0.57416 0.5292 0.4304 0.2516 0.2061 0.1587 
16 0.60747 0.5581 0.4574 0.2877 0.2357 0.1759 
17 0.63780 0.5794 0.4788 0.2984 0.2696 0.1983 
18 0.66766 0.6027 0.5088 0.3336 0.2835 0.2054 
19 0.69179 0.6422 0.5277 0.3549 0.3024 0.2276 
20 0.71739 0.6555 0.5511 0.3834 0.3361 0.2529 
21 0.74017 0.6984 0.5754 0.4128 0.3582 0.2526 
22 0.76548 0.7005 0.5956 0.4373 0.3699 0.2851 
23 0.78428 0.7298 0.6110 0.4702 0.3982 0.2965 
24 0.80161 0.7461 0.6355 0.4854 0.4285 0.3168 
25 0.81993 0.7699 0.6585 0.5179 0.4511 0.3365 
26 0.83582 0.7820 0.6742 0.5362 0.4753 0.3398 
27 0.85019 0.8051 0.6936 0.5631 0.4860 0.3678 
28 0.86323 0.8124 0.7109 0.5922 0.5114 0.3875 
29 0.87593 0.8328 0.7253 0.6086 0.5407 0.4104 
30 0.88852 0.8496 0.7401 0.6276 0.5576 0.4181 
31 0.90084 0.8561 0.7551 0.6519 0.5700 0.4426 
32 0.90958 0.8679 0.7718 0.6731 0.6019 0.4586 
33 0.91743 0.8832 0.7802 0.6922 0.6209 0.4850 
34 0.92651 0.8899 0.7965 0.7130 0.6344 0.5030 
35 0.93289 0.8969 0.8076 0.7261 0.6586 0.5076 
36 0.93902 0.9041 0.8203 0.7453 0.6701 0.5240 
37 0.94440 0.9116 0.8320 0.7647 0.6932 0.5454 
38 0.95088 0.9186 0.8404 0.7819 0.7111 0.5602 
39 0.95506 0.9249 0.8522 0.7957 0.7224 0.5778 
40 0.96038 0.9340 0.8578 0.8103 0.7366 0.5933 
41 0.96409 0.9401 0.8656 0.8256 0.7521 0.6144 
42 0.96878 0.9438 0.8759 0.8321 0.7661 0.6262 
43 0.97111 0.9516 0.8766 0.8460 0.7786 0.6340 
44 0.97496 0.9556 0.8931 0.8566 0.7991 0.6554 
45 0.97781 0.9603 0.8975 0.8639 0.8090 0.6676 
46 0.98014 0.9608 0.8968 0.8761 0.8154 0.6749 
47 0.98071 0.9637 0.9129 0.8831 0.8260 0.7007 
48 0.98332 0.9672 0.9135 0.8912 0.8425 0.6996 
49 0.98591 0.9730 0.9200 0.9067 0.8559 0.7204 
50 0.98683 0.9735 0.9296 0.9097 0.8597 0.7337 
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Table A.5.      ( ̂       ) from a Standard Normal for various values of sample size 

   , confidence    , percentile    , and margin       .  

        

                 

                                                        

2 0.0827 0.0826 0.0722 0.0164 0.0181 0.0160 
3 0.1269 0.1159 0.1017 0.0257 0.0233 0.0215 
4 0.1664 0.1656 0.1373 0.0379 0.0364 0.0310 
5 0.2214 0.2061 0.1841 0.0607 0.0504 0.0405 
6 0.2874 0.2499 0.2173 0.0741 0.0659 0.0509 
7 0.3348 0.3010 0.2561 0.1033 0.0839 0.0667 
8 0.3947 0.3483 0.2889 0.1307 0.1085 0.0828 
9 0.4499 0.3989 0.3258 0.1523 0.1239 0.1005 
10 0.4928 0.4424 0.3590 0.1901 0.1569 0.1166 
11 0.5443 0.4961 0.3979 0.2098 0.1940 0.1368 
12 0.5822 0.5327 0.4327 0.2514 0.2074 0.1616 
13 0.6239 0.5765 0.4772 0.2849 0.2346 0.1816 
14 0.6741 0.6078 0.5028 0.3208 0.2708 0.2030 
15 0.7026 0.6415 0.5350 0.3661 0.3067 0.2323 
16 0.7370 0.6727 0.5612 0.3933 0.3386 0.2471 
17 0.7728 0.7152 0.5994 0.4367 0.3725 0.2778 
18 0.7949 0.7328 0.6294 0.4641 0.4081 0.3005 
19 0.8199 0.7604 0.6591 0.5014 0.4323 0.3276 
20 0.8419 0.7902 0.6798 0.5355 0.4625 0.3497 
21 0.8640 0.8149 0.6942 0.5717 0.4886 0.3743 
22 0.8762 0.8259 0.7357 0.5994 0.5236 0.3968 
23 0.9003 0.8418 0.7433 0.6283 0.5454 0.4233 
24 0.9042 0.8599 0.7758 0.6634 0.5829 0.4468 
25 0.9194 0.8809 0.7766 0.6873 0.6148 0.4693 
26 0.9307 0.8929 0.8013 0.7213 0.6363 0.5025 
27 0.9407 0.9053 0.8233 0.7454 0.6572 0.5278 
28 0.9477 0.9154 0.8264 0.7587 0.6850 0.5397 
29 0.9540 0.9238 0.8467 0.7796 0.7128 0.5653 
30 0.9602 0.9397 0.8539 0.8013 0.7329 0.5907 
31 0.9652 0.9386 0.8740 0.8208 0.7466 0.6022 
32 0.9700 0.9470 0.8882 0.8329 0.7666 0.6192 
33 0.9754 0.9508 0.8909 0.8535 0.7882 0.6500 
34 0.9779 0.9604 0.9002 0.8631 0.8030 0.6704 
35 0.9810 0.9674 0.9139 0.8832 0.8203 0.6793 
36 0.9838 0.9689 0.9197 0.8937 0.8313 0.7083 
37 0.9880 0.9735 0.9236 0.9041 0.8461 0.7162 
38 0.9903 0.9765 0.9360 0.9161 0.8654 0.7377 
39 0.9909 0.9793 0.9409 0.9173 0.8787 0.7494 
40 0.9940 0.9797 0.9429 0.9233 0.8880 0.7695 
41 0.9925 0.9848 0.9544 0.9365 0.8983 0.7817 
42 0.9939 0.9843 0.9496 0.9466 0.9056 0.7932 
43 0.9949 0.9881 0.9539 0.9531 0.9100 0.8051 

44 0.9960 0.9889 0.9610 0.9570 0.9209 0.8170 
45 0.9957 0.9913 0.9645 0.9579 0.9318 0.8247 
46 0.9975 0.9930 0.9698 0.9662 0.9309 0.8406 
47 0.9977 0.9918 0.9695 0.9718 0.9455 0.8540 
48 0.9978 0.9941 0.9757 0.9722 0.9516 0.8611 
49 0.9980 0.9955 0.9759 0.9774 0.9512 0.8706 
50 0.9979 0.9953 0.9794 0.9809 0.9545 0.8784 
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Table A.6.      ( ̂       ) from a Standard Normal for various values of sample size 

   , confidence    , percentile    , and margin       .  

       

                 

                                                        

2 0.0969 0.0898 0.0805 0.0156 0.0185 0.0157 
3 0.1580 0.1432 0.1236 0.0311 0.0305 0.0250 
4 0.2353 0.2183 0.1797 0.0551 0.0474 0.0373 
5 0.3152 0.2810 0.2413 0.0840 0.0746 0.0618 
6 0.4033 0.3693 0.2963 0.1231 0.1082 0.0774 
7 0.4734 0.4287 0.3606 0.1588 0.1401 0.1068 
8 0.5558 0.5123 0.4123 0.2248 0.1805 0.1397 
9 0.6251 0.5699 0.4715 0.2540 0.2228 0.1651 
10 0.6871 0.6258 0.5165 0.3315 0.2742 0.1982 
11 0.7463 0.6846 0.5708 0.3752 0.3194 0.2379 
12 0.7885 0.7383 0.6230 0.4330 0.3647 0.2674 
13 0.8240 0.7795 0.6643 0.4897 0.4197 0.3226 
14 0.8613 0.8151 0.7116 0.5389 0.4679 0.3546 
15 0.8923 0.8366 0.7409 0.5968 0.5230 0.3927 
16 0.9111 0.8741 0.7710 0.6415 0.5670 0.4403 
17 0.9249 0.8964 0.8020 0.6867 0.6108 0.4703 
18 0.9434 0.9080 0.8348 0.7309 0.6498 0.5020 
19 0.9581 0.9263 0.8506 0.7630 0.6900 0.5361 
20 0.9672 0.9396 0.8630 0.7995 0.7242 0.5866 
21 0.9732 0.9521 0.8837 0.8262 0.7559 0.6127 
22 0.9810 0.9632 0.8982 0.8510 0.7914 0.6462 
23 0.9826 0.9658 0.9179 0.8731 0.8170 0.6801 
24 0.9880 0.9747 0.9315 0.8954 0.8446 0.7103 
25 0.9893 0.9768 0.9418 0.9106 0.8629 0.7278 
26 0.9912 0.9857 0.9483 0.9295 0.8830 0.7622 
27 0.9946 0.9867 0.9564 0.9384 0.8940 0.7832 
28 0.9947 0.9906 0.9611 0.9475 0.9105 0.8010 

29 0.9967 0.9918 0.9689 0.9628 0.9289 0.8236 
30 0.9980 0.9933 0.9758 0.9686 0.9375 0.8432 
31 0.9992 0.9953 0.9800 0.9718 0.9479 0.8496 
32 0.9993 0.9958 0.9809 0.9754 0.9584 0.8739 
33 0.9987 0.9973 0.9849 0.9817 0.9586 0.8922 
34 0.9996 0.9980 0.9862 0.9855 0.9645 0.9025 
35 0.9995 0.9985 0.9880 0.9893 0.9711 0.9170 
36 0.9996 0.9984 0.9902 0.9903 0.9775 0.9204 
37 0.9996 0.9993 0.9925 0.9922 0.9819 0.9341 
38 0.9999 0.9989 0.9933 0.9941 0.9829 0.9366 
39 0.9999 0.9993 0.9943 0.9947 0.9869 0.9478 
40 0.9999 0.9996 0.9956 0.9964 0.9899 0.9547 
41 0.9999 0.9995 0.9958 0.9978 0.9915 0.9616 
42 0.9999 0.9995 0.9965 0.9976 0.9920 0.9638 
43 0.9999 0.9998 0.9966 0.9980 0.9952 0.9671 
44 0.9999 0.9998 0.9978 0.9982 0.9953 0.9762 
45 0.9999 0.9998 0.9972 0.9986 0.9959 0.9756 
46 0.9999 0.9999 0.9981 0.9992 0.9976 0.9805 
47 0.9999 0.9999 0.9990 0.9993 0.9977 0.9822 
48 0.9999 0.9998 0.9988 0.9994 0.9977 0.9846 
49 0.9999 0.9999 0.9995 0.9994 0.9979 0.9867 
50 0.9999 0.9999 0.9996 0.9996 0.9982 0.9870 
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Table A.7.      ( ̂       ) from a Standard Normal for various values of sample size 

   , confidence    , percentile    , and margin       .  

        

                 

                                                        

2 0.0971 0.1011 0.0910 0.0184 0.0223 0.0176 
3 0.1946 0.1662 0.1605 0.0376 0.0376 0.0335 
4 0.3026 0.2658 0.2278 0.0760 0.0613 0.0498 
5 0.4072 0.3764 0.3063 0.1219 0.1028 0.0786 
6 0.5229 0.4702 0.3824 0.1737 0.1552 0.1196 
7 0.6320 0.5668 0.4663 0.2501 0.2152 0.1537 
8 0.7113 0.6570 0.5397 0.3205 0.2747 0.2020 
9 0.7771 0.7282 0.6104 0.3983 0.3408 0.2566 
10 0.8449 0.7834 0.6776 0.4787 0.4122 0.3068 
11 0.8773 0.8323 0.7211 0.5515 0.4866 0.3637 
12 0.9089 0.8709 0.7755 0.6290 0.5477 0.4276 
13 0.9383 0.9011 0.8192 0.6932 0.6126 0.4770 
14 0.9574 0.9266 0.8486 0.7404 0.6661 0.5221 
15 0.9702 0.9448 0.8763 0.8044 0.7135 0.5819 
16 0.9788 0.9621 0.8972 0.8378 0.7636 0.6225 
17 0.9858 0.9719 0.9208 0.8722 0.8017 0.6816 
18 0.9903 0.9815 0.9380 0.9021 0.8419 0.7186 
19 0.9945 0.9837 0.9522 0.9241 0.8781 0.7506 
20 0.9954 0.9905 0.9630 0.9387 0.8962 0.7858 
21 0.9978 0.9942 0.9698 0.9561 0.9196 0.8183 

22 0.9973 0.9957 0.9757 0.9656 0.9372 0.8400 
23 0.9988 0.9969 0.9817 0.9713 0.9490 0.8730 
24 0.9994 0.9961 0.9866 0.9807 0.9623 0.8893 
25 0.9994 0.9987 0.9902 0.9853 0.9694 0.9015 
26 0.9993 0.9991 0.9904 0.9896 0.9764 0.9201 
27 0.9997 0.9988 0.9939 0.9933 0.9829 0.9364 
28 0.9998 0.9994 0.9948 0.9954 0.9851 0.9438 
29 0.9999 0.9996 0.9963 0.9968 0.9889 0.9573 
30 0.9999 0.9996 0.9972 0.9971 0.9916 0.9636 
31 0.9999 0.9995 0.9980 0.9982 0.9937 0.9691 
32 0.9999 0.9997 0.9984 0.9986 0.9959 0.9711 
33 0.9999 0.9998 0.9993 0.9990 0.9966 0.9802 
34 0.9999 0.9997 0.9990 0.9999 0.9979 0.9836 
35 0.9999 0.9999 0.9990 0.9995 0.9982 0.9873 
36 0.9999 0.9999 0.9992 0.9999 0.9991 0.9883 
37 0.9999 0.9999 0.9998 0.9996 0.9991 0.9914 
38 0.9999 0.9999 0.9999 0.9999 0.9991 0.9927 
39 0.9999 0.9999 0.9997 0.9998 0.9994 0.9942 
40 0.9999 0.9999 0.9999 0.9999 0.9997 0.9944 
41 0.9999 0.9999 0.9999 0.9999 0.9995 0.9975 
42 0.9999 0.9999 0.9999 0.9999 0.9998 0.9968 
43 0.9999 0.9999 0.9998 0.9999 0.9996 0.9980 
44 0.9999 0.9999 0.9999 0.9999 0.9998 0.9983 
45 0.9999 0.9999 0.9999 0.9999 0.9997 0.9989 
46 0.9999 0.9999 0.9999 0.9999 0.9999 0.9983 
47 0.9999 0.9999 0.9999 0.9999 0.9999 0.9994 
48 0.9999 0.9999 0.9999 0.9999 0.9999 0.9994 
49 0.9999 0.9999 0.9999 0.9999 0.9999 0.9997 
50 0.9999 0.9999 0.9999 0.9999 0.9999 0.9996 
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Table A.8.      ( ̂       ) from a Standard Normal for various values of sample size 

   , confidence    , percentile    , and margin       .  

        

                 

                                                        

2 0.1128 0.1035 0.0998 0.0217 0.0235 0.0176 
3 0.2292 0.2036 0.1779 0.0504 0.0408 0.0339 
4 0.3699 0.3435 0.2764 0.0945 0.0764 0.0668 
5 0.5050 0.4687 0.3859 0.1624 0.1401 0.1055 
6 0.6353 0.5795 0.4843 0.2517 0.2110 0.1593 
7 0.7524 0.6926 0.5812 0.3493 0.2960 0.2087 
8 0.8285 0.7646 0.6673 0.4477 0.3868 0.2953 
9 0.8828 0.8360 0.7375 0.5472 0.4731 0.3635 

10 0.9261 0.8943 0.7986 0.6331 0.5632 0.4372 
11 0.9528 0.9216 0.8460 0.7214 0.6462 0.5084 
12 0.9705 0.9467 0.8882 0.7860 0.7156 0.5696 
13 0.9829 0.9676 0.9148 0.8419 0.7720 0.6290 
14 0.9893 0.9809 0.9344 0.8881 0.8231 0.6944 
15 0.9927 0.9854 0.9556 0.9195 0.8674 0.7448 
16 0.9963 0.9916 0.9665 0.9433 0.8990 0.7892 
17 0.9978 0.9940 0.9767 0.9584 0.9255 0.8280 

18 0.9997 0.9968 0.9812 0.9727 0.9425 0.8622 
19 0.9994 0.9985 0.9867 0.9835 0.9631 0.8937 
20 0.9995 0.9986 0.9914 0.9878 0.9745 0.9104 
21 0.9997 0.9993 0.9927 0.9907 0.9785 0.9288 
22 0.9999 0.9992 0.9972 0.9942 0.9869 0.9491 
23 0.9999 0.9997 0.9979 0.9972 0.9900 0.9597 
24 0.9999 0.9998 0.9986 0.9973 0.9936 0.9655 
25 0.9999 0.9999 0.9989 0.9990 0.9968 0.9761 
26 0.9999 0.9999 0.9993 0.9990 0.9977 0.9817 
27 0.9999 0.9999 0.9994 0.9997 0.9988 0.9867 
28 0.9999 0.9999 0.9997 0.9996 0.9987 0.9899 
29 0.9999 0.9999 0.9997 0.9995 0.9992 0.9922 
30 0.9999 0.9999 0.9997 0.9999 0.9998 0.9936 
31 0.9999 0.9999 0.9998 0.9999 0.9997 0.9958 
32 0.9999 0.9999 0.9997 0.9998 0.9997 0.9966 
33 0.9999 0.9999 0.9999 0.9999 0.9998 0.9973 
34 0.9999 0.9999 0.9999 0.9999 0.9999 0.9980 
35 0.9999 0.9999 0.9999 0.9999 0.9999 0.9982 
36 0.9999 0.9999 0.9999 0.9999 0.9999 0.9989 
37 0.9999 0.9999 0.9999 0.9999 0.9999 0.9993 
38 0.9999 0.9999 0.9999 0.9999 0.9999 0.9992 
39 0.9999 0.9999 0.9999 0.9999 0.9999 0.9996 

40+ 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
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Table A.9.      ( ̂       ) from a Standard Normal for various values of sample size 

   , confidence    , percentile    , and margin       .  

        

                 

                                                        

2 0.1252 0.1212 0.1061 0.0267 0.0243 0.0204 
3 0.2662 0.2331 0.1973 0.0566 0.0511 0.0427 
4 0.4386 0.4027 0.3305 0.1230 0.1058 0.0805 
5 0.6143 0.5541 0.4602 0.2152 0.1786 0.1337 
6 0.7451 0.6839 0.5742 0.3300 0.2814 0.2066 
7 0.8359 0.7865 0.6831 0.4507 0.3846 0.2905 
8 0.9075 0.8601 0.7619 0.5735 0.5088 0.3816 
9 0.9511 0.9188 0.8375 0.6832 0.6018 0.4756 

10 0.9717 0.9490 0.8857 0.7717 0.7005 0.5606 
11 0.9853 0.9699 0.9206 0.8405 0.7795 0.6439 
12 0.9929 0.9831 0.9444 0.8962 0.8367 0.7032 
13 0.9976 0.9898 0.9634 0.9280 0.8858 0.7716 
14 0.9980 0.9948 0.9771 0.9585 0.9245 0.8200 

15 0.9996 0.9963 0.9858 0.9742 0.9481 0.8634 
16 0.9996 0.9984 0.9914 0.9845 0.9654 0.9021 
17 0.9998 0.9993 0.9938 0.9911 0.9780 0.9242 
18 0.9999 0.9992 0.9969 0.9951 0.9859 0.9463 
19 0.9999 0.9998 0.9981 0.9975 0.9896 0.9614 
20 0.9999 0.9999 0.9986 0.9983 0.9950 0.9726 
21 0.9999 0.9999 0.9992 0.9995 0.9969 0.9786 
22 0.9999 0.9999 0.9994 0.9994 0.9988 0.9885 
23 0.9999 0.9999 0.9994 0.9997 0.9993 0.9913 
24 0.9999 0.9999 0.9999 0.9999 0.9993 0.9935 
25 0.9999 0.9999 0.9999 0.9998 0.9994 0.9954 
26 0.9999 0.9999 0.9999 0.9999 0.9998 0.9975 
27 0.9999 0.9999 0.9999 0.9999 0.9999 0.9982 
28 0.9999 0.9999 0.9999 0.9999 0.9999 0.9987 
29 0.9999 0.9999 0.9999 0.9999 0.9999 0.9985 
30 0.9999 0.9999 0.9999 0.9999 0.9999 0.9990 
31 0.9999 0.9999 0.9999 0.9999 0.9999 0.9998 
32 0.9999 0.9999 0.9999 0.9999 0.9999 0.9996 
33 0.9999 0.9999 0.9999 0.9999 0.9999 0.9997 
34 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 

35+ 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
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Table A.10.      ( ̂       ) from a Standard Normal for various values of sample size 

   , confidence    , percentile    , and margin       .  

        

                 

                                                        

2 0.1309 0.1264 0.1109 0.0290 0.0236 0.0251 
3 0.3011 0.2732 0.2325 0.0697 0.0568 0.0536 
4 0.4979 0.4545 0.3744 0.1455 0.1274 0.0987 
5 0.6924 0.6306 0.5346 0.2677 0.2229 0.1675 
6 0.8221 0.7718 0.6751 0.3965 0.3551 0.2613 
7 0.9118 0.8661 0.7692 0.5568 0.4940 0.3663 
8 0.9593 0.9297 0.8468 0.6938 0.6095 0.4785 
9 0.9790 0.9581 0.9069 0.7905 0.7274 0.5760 

10 0.9902 0.9807 0.9418 0.8681 0.8102 0.6768 
11 0.9957 0.9901 0.9633 0.9251 0.8690 0.7515 
12 0.9990 0.9944 0.9791 0.9553 0.9228 0.8212 

13 0.9994 0.9983 0.9907 0.9743 0.9531 0.8721 
14 0.9998 0.9984 0.9929 0.9884 0.9712 0.9051 
15 0.9998 0.9998 0.9963 0.9937 0.9821 0.9407 
16 0.9999 0.9999 0.9982 0.9965 0.9903 0.9571 
17 0.9999 0.9999 0.9996 0.9984 0.9935 0.9754 
18 0.9999 0.9999 0.9995 0.9993 0.9979 0.9825 
19 0.9999 0.9999 0.9999 0.9998 0.9987 0.9887 
20 0.9999 0.9999 0.9999 0.9999 0.9994 0.9915 
21 0.9999 0.9999 0.9998 0.9998 0.9995 0.9954 
22 0.9999 0.9999 0.9999 0.9999 0.9998 0.9981 
23 0.9999 0.9999 0.9999 0.9999 0.9999 0.9989 
24 0.9999 0.9999 0.9999 0.9999 0.9999 0.9990 
25 0.9999 0.9999 0.9999 0.9999 0.9999 0.9992 
26 0.9999 0.9999 0.9999 0.9999 0.9999 0.9997 

27+ 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



61 

Table A.11.      ( ̂       ) from a Standard Normal for various values of sample size 

   , confidence    , percentile    , and margin       .  

        

                 

                                                        

2 0.1494 0.1373 0.1241 0.0312 0.0258 0.0240 
3 0.3424 0.3085 0.2619 0.0783 0.0684 0.0585 
4 0.5711 0.5338 0.4397 0.1796 0.1561 0.1186 
5 0.7635 0.7118 0.5976 0.3193 0.2780 0.2078 
6 0.8891 0.8443 0.7412 0.4968 0.4296 0.3243 
7 0.9524 0.9231 0.8399 0.6531 0.5801 0.4455 
8 0.9808 0.9634 0.9038 0.7798 0.7191 0.5754 
9 0.9943 0.9829 0.9491 0.8780 0.8170 0.6801 

10 0.9976 0.9945 0.9722 0.9394 0.8922 0.7724 
11 0.9991 0.9977 0.9853 0.9660 0.9381 0.8441 

12 0.9996 0.9990 0.9926 0.9844 0.9648 0.8972 
13 0.9999 0.9995 0.9976 0.9925 0.9822 0.9333 
14 0.9998 0.9999 0.9975 0.9976 0.9904 0.9597 
15 0.9999 0.9999 0.9990 0.9985 0.9961 0.9742 
16 0.9999 0.9999 0.9994 0.9993 0.9986 0.9872 
17 0.9999 0.9999 0.9999 0.9994 0.9995 0.9922 
18 0.9999 0.9999 0.9999 0.9999 0.9999 0.9959 
19 0.9999 0.9999 0.9999 0.9999 0.9997 0.9975 
20 0.9999 0.9999 0.9999 0.9999 0.9999 0.9988 
21 0.9999 0.9999 0.9999 0.9999 0.9999 0.9993 
22 0.9999 0.9999 0.9999 0.9999 0.9999 0.9997 
23 0.9999 0.9999 0.9999 0.9999 0.9999 0.9994 

24+ 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
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Table A.12.      ( ̂       ) from a Standard Normal for various values of sample size 

   , confidence    , percentile    , and margin       .  

        

                 

                                                        

2 0.1556 0.1463 0.1269 0.0304 0.0287 0.0249 
3 0.3804 0.3413 0.2872 0.0896 0.0768 0.0653 
4 0.6466 0.5868 0.4965 0.2102 0.1861 0.1365 
5 0.8300 0.7719 0.6731 0.4023 0.3320 0.2540 
6 0.9303 0.9011 0.8177 0.5836 0.5119 0.3917 
7 0.9789 0.9587 0.8939 0.7460 0.6772 0.5370 
8 0.9921 0.9856 0.9507 0.8648 0.7995 0.6665 
9 0.9972 0.9943 0.9762 0.9314 0.8833 0.7694 

10 0.9995 0.9982 0.9891 0.9707 0.9389 0.8596 

11 0.9995 0.9994 0.9954 0.9874 0.9737 0.9111 
12 0.9999 0.9998 0.9988 0.9951 0.9866 0.9493 
13 0.9999 0.9999 0.9990 0.9980 0.9950 0.9713 
14 0.9999 0.9999 0.9996 0.9993 0.9981 0.9830 
15 0.9999 0.9999 0.9996 0.9999 0.9982 0.9909 
16 0.9999 0.9999 0.9998 0.9998 0.9997 0.9953 
17 0.9999 0.9999 0.9999 0.9999 0.9998 0.9989 
18 0.9999 0.9999 0.9999 0.9999 0.9999 0.9993 
19 0.9999 0.9999 0.9999 0.9999 0.9999 0.9995 
20 0.9999 0.9999 0.9999 0.9999 0.9999 0.9998 
21 0.9999 0.9999 0.9999 0.9999 0.9999 0.9998 

22+ 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
 

Table A.13.      ( ̂       ) from a Standard Normal for various values of sample size 

   , confidence    , percentile    , and margin       .  

        

                 

                                                        

2 0.1875 0.1697 0.1559 0.0350 0.0329 0.0302 
3 0.5069 0.4520 0.3707 0.1265 0.1136 0.0928 
4 0.8014 0.7452 0.6518 0.3158 0.2793 0.2108 
5 0.9456 0.9103 0.8300 0.5897 0.5171 0.3926 
6 0.9885 0.9770 0.9349 0.7936 0.7251 0.5884 
7 0.9987 0.9951 0.9819 0.9203 0.8705 0.7590 
8 0.9999 0.9994 0.9933 0.9723 0.9520 0.8701 

9 0.9999 0.9999 0.9981 0.9937 0.9828 0.9392 
10 0.9999 0.9999 0.9994 0.9989 0.9962 0.9747 
11 0.9999 0.9999 0.9998 0.9996 0.9990 0.9891 
12 0.9999 0.9999 0.9999 0.9999 0.9997 0.9961 
13 0.9999 0.9999 0.9999 0.9999 0.9999 0.9987 

14+ 0.9999 0.9999 0.9999 0.9999 0.9999 0.9994 
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APPENDIX B: SIMULATION CODE 
 
B.1 Standard Normal Simulation Code 
 
## Assigning the content, confidence, and assumed margin ## 

p <- 0.999 

gamma <- 0.95 

M <- 5 

 

n <- seq(2, 50, 1) ##Vector of possible sample sizes 

R <- 10000 ## Replicates for Monte Carlo 

PR <- qnorm(p) + M ## Compute PR = percentile + margin 

 

## Creating vectors to store values in ## 

Q_py <- rep(0, R)  

total <- rep(0, 49) 

 

for (ii in 2:50){ 

    data <- matrix(rnorm(ii*R),ncol = ii) ## drawing n random values 

    ncp <- sqrt(ii)*qnorm(p) ## Compute noncentrality param for TB 

    data.m <- apply(data,1,mean) ## mean of simulated data  

    data.s <- apply(data,1,sd) ##std dev of simulated data  

    Q_py <- data.m+(qt(gamma, ii-1, ncp)*data.s)/sqrt(ii)##Compute TB 

    total[ii-1] <- sum(Q_py <= PR)/R ##times TB exceeds PR 

} 

 

data <- cbind(n, total) 

data 
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B.2 Standard Exponential Simulation Code 
 
## Function to generate exponential tolerance bound ## 

tb.exp <- function(p, gamma, scale, n){ 

reps <- 10000   

e <- rep(0, reps) 

 

##Monte Carlos Simulations 

  for (i in 1:reps){ 

    u <- rchisq(1, 2*n-2) 

    e[i] <- ((2*n)*-1*log(1-p))/u 

  } 

 e_gamma <- quantile(e, gamma) 

 TB <- scale*e_gamma 

 return(TB) 

} 

 

 

## Assigning the content, confidence, and assumed margin ## 

p <- 0.99 

gamma <- 0.95 

M <- 15 

 

n <- seq(2, 10, 1)##Vector of possible sample sizes 

R <- 10000 ## Number of Replicates 

PR <- -1*log(1-p) + M ##Compute PR = percentile + margin 

 

## Creating vectors to store values in ##  

Q_py <- rep(0, R)  

total <- rep(0, 9) 

 

for (ii in 2:10){ 

   data <- matrix(rexp(ii*R, 1),ncol = ii)  ## drawing n random values  

   data.m <- apply(data,1,mean) ## Means of each draw of n 

   scale <- 1/data.m ## estimate of scale 

   Q_py <- tb.exp(p,gamma, scale, ii)## Compute TB 

   total[ii-1] <- sum(Q_py <= PR)/R ## times Q_py exceeded PR     

} 

 

data <- cbind(n, total) 

data



65 

  



66 

B.3 Weibull Simulation Code 
 
library(fitdistrplus) ## Loading package with fitdist function 

 

## Function to calculate shape and scale estimates 

returnest <-function(x){ 

  out <- fitdist(x,'weibull', method='mle')$estimate 

  out 

} 

 

## Computes the tolerance bound 

tb_wei <- function(n,p,gamma,scale,shape,side, reps){ 

  w <- rep(0, reps) 

  ## Define the appropriate parameter 

  if (side == 'U') { 

    theta <- -log(1-p) 

  } 

  else { 

    theta <- -log(p) 

  } 

   

  ## Calculate the percentile 

  PCT <- scale*theta^(1/shape) 

   

  ##Monte Carlos Simulations 

  data <- matrix(rweibull(n*reps, 1, 1), ncol=n) 

  estimate <- apply(data, 1, returnest) 

  eta <- estimate[2,] 

  beta <- estimate[1,] 

  w <- beta*(-log(eta)+log(theta)) 

   

  ## Calculate the appropriate percentile from the Monte Carlo 

simulation 

  if (side == 'U'){ 

    Wp <- quantile(w, gamma) 

  }  

  else { 

    Wp <- quantile(w, 1-gamma) 

  } 

  TB <- scale*exp(Wp/shape) 

  out <- c(PCT, TB) 

  return(out) 

} 

 

########################################################### 

 

s <- 1000 

a <- 3 ##scale parameter 
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b <- 8 ##shape parameter 

p <- 0.99 ##content 

gamma <- 0.95 

reps <- 1000 

side <- 'L' 

MM <- c(0.2, 0.4, 0.6) ## Possible Margins  

 

Prob <- matrix(0, 100, length(MM))##Will store probabilities 

results <- matrix(0, s, 3) #Stores Int, Diff, Check 

 

for (j in 1:length(MM)){ 

  M <- MM[j] 

  if (side == 'U') { 

    TruePCT <- a*(-log(1-p))^(1/b) 

    PR <- TruePCT + M } 

  if (side == 'L') { 

    TruePCT <- a*(-log(p))^(1/b) 

    PR <- TruePCT - M  

  } 

   

  for (n in seq(101, 200)) { 

    data <- rweibull(n, a, b) 

    estimate <- returnest(data) 

    shape <- estimate[2] 

    scale <- estimate[1]  

    for (i in 1:s){ 

    if (side =='U'){ 

        Int <- tb_wei(n,p,gamma,scale,shape,side, reps)[2] 

        Diff <- Int - TruePCT 

        Check <- as.numeric(Int < PR) 

      } 

    if (side == 'L') { 

        Int <- tb_wei(n, p, gamma, scale, shape, side, reps)[2] 

        Diff <- TruePCT - Int 

        Check <- as.numeric(Int>PR)  

      }  

    results[i,1:3] <- c(Int, Diff, Check) 

    }  

    Prob[(n-100),j] <- sum(results[,3])/s 

  } 

} 

 

n <- seq(101, 200) 

data <- cbind(n, Prob) 
data 
 
 
  



68 

DISTRIBUTION  
 
 
1 MS0386 R.A. Paulsen 02124 
1 MS0386 D.E. Peercy 00420 
1 MS0428 J.R. Fellerhoff 00400 
1 MS0434 G.J. Bloom 00412 
1 MS0434 J.M. Harris 00412 
1 MS0434 M.C. Foehse 00412 
1 MS0434 L. Varoz 00412 
1 MS0447 P.D. Hoover 02111 
1 MS0447 K.R. Eklund 02111 
1 MS0447 F.M. Cranfill 02111 
1 MS0447 M.V. Martinez 02111 
1 MS0481 C.L. Allen 02115 
1 MS0481 N.J. Dereu 02132 
1 MS0481 S.E. Klenke 02115 
1 MS0481 J.S. Franklin 02115 
1 MS0481 C.E. Davis 02115 
1 MS0481 P.L. Hopkins 02115 
1 MS0481 R.B. Galloway 02132 
1 MS0481 E.J. Connors 02132 
1 MS0482 M.L. Hoover 00420 
1 MS0483 M.M. Contreras 02112 
1 MS0483 N. Brannon 02112 
1 MS0483 D. Wartman 02112 
1 MS0482 J.F. Nagel 00410 
1 MS0490 D.R. McCollister 00414 
1 MS0490 E. Hnath 00414 
1 MS0492 D.A. Hoke 00411 
1 MS0492 E.J. Garcia 00411 
1 MS0492 L.L. Luna 00411 
1 MS0633 J.J. Schwartz 02952 
1 MS0633 N.M. Zenker 02957 
1 MS0634 J.F. Lorio 02951 
1 MS0634 D.R. Sherman 02958 
1 MS0634 B.J. Gomez 02957 
1 MS0634 P.E. O’Guin 02958 
1 MS0634 L.K. Jones 02958 
1 MS0635 L.M. Hickman 02957 
1 MS0635 G.E. Lunsford 02957 
1 MS0636 T.M. Sterk 02956 
1 MS0639 C.A. Cruz 02950 
1 MS0829 J.M. Sjulin 00413 
1 MS0829 J.T. Newcomer 00431 
1 MS0829 B.M. Rutherford 00431 
1 MS0829 E.V. Thomas 00431 



69 

1 MS0829 S.V. Crowder 00431 
1 MS0829 L.L. Halbleib 00431 
1 MS0829 W.C. Moffatt 00413 
1 MS0829 K.P. Dunivan 00413 
1 MS0829 J.M. Clauss 00413 
1 MS0830 C.A. Wenner 00431 
1 MS0830 J.W. Lane 00431 
1 MS0830 S.J. Arp 00413 
1 MS0830 K.B. Sobilik 00413 
1 MS0757 K.W. Mitchiner 06612 
1 MS1390 G.D. Jones 02953 
1 MS9007 R.M. Zurn 08225 
1 MS9007 R.L. Bierbaum 08225 
1 MS9007 A.A. Robertson 08225 
1 MS9013 D.J. Hardin 08231 
1 MS9013 J.P. Lauffer 08231 
1 MS9014 C.C. Wong 08238 
1 MS9014 K.E. Carbiener 08238 
1 MS9014 D.M. Skala 08238 
1 MS9032 J.M. Morris 08531 
1 MS9154 C.A. Nilsen 08238 
1 MS9154 B.M. McLaughlin 08238 
1 MS9154 C.L. Turner 08238 
 
 
1 MS0899 Technical Library 09536 (electronic copy) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



70 

 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


