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Abstract 

 
 

At sufficiently high energies, the wavelengths of electrons and photons are short 
enough to only interact with one atom at time, leading to the popular “independent-
atom approximation”. We attempted to incorporate atomic structure in the generation 
of cross sections (which embody the modeled physics) to improve transport at lower 
energies. We document our successes and failures. This was a three-year LDRD 
project. The core team consisted of a radiation-transport expert, a solid-state 
physicist, and two DFT experts.  
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Uncertainties of weighted 
independent-atom tables 

(LLNL) 

1.  INTRODUCTION  
 
 
General-purpose electron/photon radiation transport codes have been successfully used to 
simulate radiation interactions in the keV-MeV energy range [for example Jenkins et al. (1988), 
Chapters 8, 9, 11 and 13]. With the development of powerful, low-energy radiation sources such 

as the Z facility at Sandia National 
Laboratories [Spielman et al. 1998], there has 
been an increased interest in simulations at 
lower energies. Cross-section data libraries 
have also been generated [Cullen et al. 1997; 
Perkins et al. 1991] but with acknowledged 
large error bars as can be seen in Table 1. 
 
There is nothing magical about 1 keV. Indeed, 
some of the existing cross sections are already 
known to be suspect. Codes such as EGS5 
[Hirayama et al. 2005] have begun to 
incorporate selected measured cross sections to 
help address the problem. While that may 
work well for applications such as medical 
physics with a somewhat restricted material 
database, a more direct question is to what 
extent can such cross sections be calculated to 
be used in general-purpose codes, to produce 
more reliable results? One of the assumptions 
that breaks down is the independent atom 
approximation. Can we incorporate solid-state 
and/or molecular effects into our cross-section 

calculations, given the detail that is now being demonstrated with some atomistic simulations 
[Bondi et al. 2010]? 
 
We had intended to look at four cross sections: photon coherent scattering, electron elastic 
scattering, photo-ionization and electron inelastic scattering. Due to the challenging nature of the 
work, examining photo-ionization was dropped to focus more on the other three. Even then we 
fell short of our ambitious goals.  

Table 1. Specified uncertainties for photo-
ionization cross sections of the Evaluated 
Photon Data Library (Cullen et al. 1997). 
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Figure 1. Existing atomic form factors 
from data within our transport code. The 
abscissa is related to momentum transfer 
(in units of inverse Angstroms), theta is 
angle of scatter and E is photon energy. 

2.  PHOTON COHERENT SCATTERING 
 
 
 
Our radiation-transport code is ITS, the Integrated Tiger Series [Franke et al. 2009]. The existing 
model of photon coherent scattering is the product of the Thomson scattering cross section with 
an atomic form factor [Seltzer, 1991]. For a mixture or compound, a mix of atomic form factors 
is used. This procedure thereby ignores diffraction effects which alters the scattering. Diffraction 
effects can also arise from condensed matter when the wavelength of the photon becomes large 
enough for the photon to interact with more than one atom at a time. 
 
The atomic form factor is essentially a Fourier transform of the electron density of an isolated 
atom. One obvious potential improvement would be to use the Fourier transform of the electron 
density of the material, thereby picking up molecular and/or solid-state effects. This seemed easy 
for a Density-Functional-Theory (DFT) approach, though our attempt failed. Speculation was the 
use of inconsistent assumptions (infinite medium due to repeat cell, “small” sample size, average 
over all orientations). This should be better understood. 
 

While we were trying to come to a consensus of 
terminology, conventions, units, and goals, 
another approach was also attempted. X-ray 
diffraction has been used for a long time to infer 
atomic structure about a material. The idea would 
be to turn this around: to use the atomic structure 
of the material to generate the x-ray diffraction 
(i.e. the photon coherent scattering cross section). 
The simplification (which avoids the need for 
something like DFT) is to essentially use atomic 
electron densities superposed on the distribution 
of nuclei. The resulting Fourier transform will 
then a function of the atomic form factors, which 
are already utilized in our transport code (see 
Figure 1 for sample plots). Such calculations have 
been attempted, with the challenge being 
obtaining a good model of the atomic structure. 
Nowadays this could be obtained from an 
atomistic model of the material.  
 
Good quality atomistic models are not quite 
routine (especially for complicated structures), 
but becoming more so as tools and computing 

resources develop. People who have created such models may be eager to share their work or 
just as likely to guard something in which they invested so much of their time. One of our team 
members, Robert Bondi, had an amorphous  SiO2 model from previous work [Bondi et al. 2010], 
created an amorphous germanium model for this project, and acquired several other models 
including ones for polyethylene (both amorphous [Tsige et al. 2003] and semi-crystalline 
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[Mattson et al. 2010]). I contacted Professor Zbigniew Stachurski who had created a model for 
Lucite about its availability. He encouraged me to use a commercial package called Materials 
Studio and otherwise follow the details in his paper. Although I did not follow up on his 
suggestion (the package is now $2k a year – not appropriate for this project but something to 
keep in mind), I believe this indicates the trend of more available tools. 
 

 
Figure 2, left, shows an atomistic model (repeat cell) of amorphous SiO2 containing 144 atoms.  
The model is large enough to capture amorphous aspects while being small enough to permit 
numerical DFT calculations [Bondi et al. 2010]. Figure 2, center, shows the radial distribution 
function which is commonly used in the literature. This is essentially the average number of 
nuclei per radial distance from any atom in the model and was useful for verifying our 
processing  of the atomic model. Figure 2, right, is the radial density function, which we have 
found more useful. It is the same data as the center plot but now normalized per volume and per 
average atomic density so we can expect the oscillations to dampen out at large radii. The radial 
density function can be broken up into “partial” radial density functions        which give, for 
an atom of type I, the distribution (per volume) of atoms of type J. 
 
The formalism of using x-ray diffraction measurements to infer atomic structure of materials has 
been discussed in [James 1947] and more recently in [Poulsen et al. 1995], which makes use of a 
“sharpening factor” discussed in [Warren 1990]. We reverse the process to obtain the molecular/ 
solid-state form factor from the radial distribution functions from a DeBye-like equation:: 
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∑ ∑
   

   

   

   

    

     
              ∫    [        ]

          

    
    

 

 

 

 

Figure 2. Left: supercell (or repeat cell) of amorphous SiO2 containing 144 atoms. Center: radial 
distribution function, which is essentially the average number of nuclei per radial distance from 
any atom in the model. Right: radial density function, similar to the center plot, normalized per 

volume and per average atomic density (hence goes to unity at large radii). 
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NEL is the number of elements (distinct atoms) in the model repeat cell, NATOM is the total 
number of atoms in the cell, NI is the number of atoms of type I in the cell, NApM is the number 
of atoms per molecule (a normalization constant),       is the atomic form factor of atom type I, 
  (

 

  
)      

 

 
  is related to the momentum transfer, E is the energy of the photon, θ is the 

scattering angle, and        is the partial radial density function for atom of type I having 
neighbors of type J. Again,        is input from the processed atomistic model. 
 
The above integral is handled as follows. From the processing of the model repeat cell, the 
partial radial density functions are tallied as histograms – constant in radius within a radial bin. 
We have finite data for the partials and while        approaches unity for large radii, the 
oscillations never completely stop. So a “convergence factor” of exp[-(a r/rMAX)2] is introduced 
as discussed in [Warren 1990] with a=1.5. Within a radial bin, this is approximated by the value 
at the midpoint, so the remaining parts of the integral may be done analytically. The integral is 
then replaced by a sum over radial bins. The molecular/solid-state form factor is evaluated on a 
grid of x (related to momentum transfer) points. At large x, the assumption is that oscillations die 
out and the usual independent-atom form factor formalism may be used. 
 

 
Figure 3. The square of the form factor for amorphous SiO2, which is related to the 
photon coherent cross section as indicated on the ordinate. The measurement was from 
[Poulsen et al. 1995]. The green dashed curve is from the method described here. The 
smooth blue curve is the independent-atom approach. 
 
Figure 3 show our results for amorphous SiO2. Perhaps the excellent agreement is partly due to 
the use of 1.5 in the convergence factor (which was optimized for SiO2), though it should be of 
order unity. The abscissa is related to the momentum transfer – for a given value of photon 
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energy E, it yields a distribution of scatter angles. Theoretically, there is a narrow spike at small 
momentum transfer – which is for small angles. The spike shown is likely an artifact of the 
numerical procedure utilizing (necessarily) finite radial information. 

To test this out on a more complicated case, we obtained atomic models for polyethylene, shown 
in Figure 4. It turns out common polyethylene is semi-crystalline, so that is the model we ended 
up using. There are 168 chains of C44H88 which is too large for a present-day DFT calculation, 
but can still be handled in the present formalism.  
 
The form factor for polyethylene is quite narrow. It was recommended that one needs good radial 
distribution functions out to large radii to capture this. We attempted to go out to 100 Angstroms 
by repeating the unit cell as needed. Examining the distribution near 100 Angstroms, to see how 
flat it was, revealed an interesting spike as shown in Figure 5.  

 
Figure 5. Anomalous spike in radial density function. 

222
zyx sss 

Figure 4. Atomic models for polyethylene. Left: a single chain of an amorphous 
model. Center: all chains of the amorphous model. Right: a poly-crystalline model. 
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This is an artifact of repeating the unit cell within this procedure. When one atom sees a copy of 
itself, all of the atoms in that cell also see a copy of itself at the same distance. In fact, the spike 
near 100 Angstroms was due to a copy kitty-corner as shown as an insert in Figure 5. Once 
understood, it was easy to locate other such spikes corresponding to neighboring cells laterally 
and diagonally. 

 
Figure 6. Form factor squared for polyethylene computed and compared with experiment. 
 
Figure 6 shows our results for semi-crystalline polyethylene compared with experiment [King et 
al. 2011] and the independent-atom model. While the agreement is not as good, the trend is 
certainly more in agreement than the independent-atom model. 
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3.  ELECTRON ELASTIC SCATTERING  
 
Much work has been done on electron elastic scattering [ICRU 2007] and code is available 
which can even treat small molecules [Salvat et al. 2005]. We decided to use this as a starting 
point of our investigations. It turns out DFT calculations are not appropriate for electron cross 
sections. 

 
Figure 7. Electron elastic scattering cross sections for U to verify use of ELSEPA code. 
 
We obtained the code and generated electron elastic scattering cross sections from 1-256 keV 
electrons on U. We compared those with existing cross sections used in our ITS transport code – 
in fact we tried to use comparable options in ELSEPA to mimic how the ITS cross sections were 
generated. Agreement was excellent with a maximum disagreement of a couple percent. 
 
We were aware of some measurements [Brunger and Menz 1965] on Ge (both amorphous and 
crystalline) demonstrating diffraction effects. An amorphous atomistic 
model of Germanium was created for this project. The ELSEPA code 
was modified to take the coordinates of the atoms as input (essentially 
increasing appropriate array sizes). The code treated the supercell as 
one large molecule. The results in Figure 9 were promising (for such a 
simple change) as far as capturing oscillations corresponding to the 
oscillations shown in the measurements (and completely missing in 
the independent-atom model calculation).  

Figure 8. Atomistic 
model of amorphous 

Ge. 
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The next step was to attempt to improve the magnitude of the cross sections. Notice the 
calculations are essentially following the independent-atom curve. The method of solution within 
the ELSEPA code involves solving the radial Dirac equations for phase-shifts which create the 
cross section. The potential used for the wave functions are still those of individual atoms. The 
idea was to use a radially averaged potential which is due to more than just a single atom, but 
that seen in our atomistic model. This produces a net potential which changes sign as 
neighboring nuclei are passed. We convolved a muffin-tin electron density for a single atom with 
the radial distribution function of the Ge nuclei. However, we were unsuccessful in 
demonstrating any positive effect in the resulting calculations. 
 

Figure 9. Electron elastic scattering cross sections. Red curves for amorphous Ge. Green 
curves for crystalline Ge. Smooth blue curve is independent-atom model.  
Left: Measurements [Brunger and Menz 1965]. Right present calculations.  
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Figure 10. Electron elastic scattering cross sections in N2 for various energies generated 
with ELSEPA and compared with measurements [Jansen et al. 1976]. Calculations are 
with (solid curves) and without (dashed curves) the molecular logic in ELSEPA. 
  
We also looked at electron elastic scattering in nitrogen (an application of some interest to us)  
and compared with measurements as shown in Figure 10. Here, we could use ELSEPA with no 
modifications. The intent was to demonstrate better results by using the built-in algorithms to 
handle small molecules. However, the results were quite disappointing. While at large angles 
(Figure 10 Left) indicated little difference, the differences apparent in the small-angle plot 
(Figure 10 Right) suggest it may be better to avoid using the molecular logic at least for this data 
set. 
 
 
  

1000 eV 

500 eV 

100 
eV
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4. PHOTO-IONIZATION CROSS SECTIONS 

 
Due to underestimating the difficulties encountered for our challenging goals, we made a course 
correction and decided not to spend time investigating photon-ionization cross sections. We did 
obtain the FEFF9 code [Rehr et al. 2010] which and generate such cross sections and indeed can 
calculate such things as fine structure near edges. Other papers [Jorissen et al. 2010] [Sorini et al. 
2006] have used it to generate results related to low-energy electron cross sections (which 
motivating our obtaining the tool). We did reproduce a copper example of fine structure. 
 
However, apparently FEFF9 does not get the branching ratios correct for, say L shell transitions 
and there are cautions for generating say M-shell transitions. Also, we were having trouble 
generating the results we wanted (though this could simply be our inexperience with the code). 
So we still have much to learn to be able to confidently apply the tool. 
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5. ELECTRON INELASTIC SCATTERING 
 
Electron inelastic scattering cross sections are doubly differential in energy loss and scattering 
angle. In principle this can be obtained from the generalized oscillator surface (GOS) which, in 
turn, is related to the imaginary part of the reciprocal of the dielectric function. For illustrative 
purposes, the GOS for hydrogen (the only atom for which an analytic result is possible) is shown 
in Figure 11. 

 
Figure 11. The generalized oscillator strength surface for hydrogen. 
 
The curve at zero momentum transfer is related to the energy loss function. This is the reciprocal 
of the dielectric function at zero momentum transfer and can be expressed in terms of the real 
and imaginary parts of the index of refraction (hence “optical” data). A prominent feature of the 
GOS is the “Bethe Ridge” at both large energy loss and large momentum transfer. This is due to 
the close collisions (or “hard” or “catastrophic” collisions).  
 
At first, we thought we could simply perform a DFT calculation to determine the complex 
dielectric function as a function of energy loss and momentum transfer, but as already pointed 
out [Plagemann et al. 2012] “…the ab initio approach is so far only applicable for wavenumbers 
k=0…” This leads to approaches whereby the energy loss function is obtained (traditionally by 
measurement) together with some approach to extrapolate into k>0. While the extrapolation 
procedure is necessarily imprecise, it is constrained to obey certain constraints (sum rules). 
 
Instead of relying on experimental measurements, we intended to calculate the energy loss 
function. This is already being done with the FEFF9 code (as previously mentioned in the section 
on Photoionization). We obtained this code to apply to our SiO2 atomistic model. At the same 
time, we decided to use a DFT calculation to compare the results. (It was pointed out this may 
also be obtained at small energy loss through band-structure calculations.) Figure 12 shows our 
DFT calculations compared with measurements [Palik 1985]. While certainly not perfect, the 
generally good agreement suggests DFT may be a viable option at least for small energy loss. 
We found a practical limit of up to 100 eV. We have also been warned that such DFT 
calculations stop being reliable closer to 40 eV. 
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Figure 12. The energy loss function for SiO2. The red curve is our DFT calculation while 
the blue dots are measurements from [Palik 1985]. 
 
We used FEFF9 to obtain electron energy loss spectra. To compare with the same data, we used 
a procedure [Ashley 1988, Ashley 1990, Dapor 2006] to convert the optical data into the energy 
loss spectra. The results are shown in Figure 13. 

 
Figure 13. Energy loss spectrum for SiO2. Green curves are our attempt to use FEFF9 for 
the various labeled transitions. Blue dots are adapted from [Palik 1985].  
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We acknowledge we have limited experience with FEFF9 and this should be kept in mind in the 
following discussion. Since we had difficulties in obtaining curves which span a large energy 
range, we broke this up into several calculations focusing near the edge transitions. The gaps in 
principle could be filled in with additional information, traditionally from data [Henke et al. 
1993] though the EPDL [Cullen et al. 1997] should work as well. It should be pointed out that 
the imaginary part of the index of refraction is related to photoionization cross sections. 
Unfortunately, we ran out of time before we could perform this task. The normalization is 
spelled out in [Jin et al. 2010] where sum rules are used. 
 
It should be pointed out more experienced FEFF users have been able to compute energy loss 
functions over even larger energy ranges [Sorini 2008]. Figure 14 shows in more detail the 
region near the Si L3 transition, True, FEFF9 is calculating the fine structure near the edge, but 
again the level of agreement seems disappointing. Again, our inexperience with FEFF9 may be 
playing a role here. 

 
Figure 14. The electron energy loss spectra near the edge transition for Si L. The green 
curves are our calculations using FEFF9 for Si L3 (upper) and Si L2 (lower). The blue 
dots are adapted from measurements [Palik 1985] of the total transition. 
 
Finally, in Figure 15, we show our DFT calculation, FEFF9 calculations, and the processed 
measurements. Perhaps we need more experience using FEFF9, or perhaps we can combine DFT 
results with information obtained for photoionization cross sections at higher energies to obtain 
essentially the electron energy loss function.  
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Figure 15. The electron energy loss spectra for SiO2. Red curve is our DFT calculation. 
Green curves are our FEFF9 calculations for individual transitions. Blue dots are adapted 
from measurements [Palik 1985].  
 
Even after this, we would then need to extrapolate into finite momentum transfer. While the sum 
rules (known values for certain integrals) do provide constraints, the assumed form of the 
extrapolation directly ties into the angular distribution of the scattering.  
 
Identifying how much of the GOS surface involves plasmon creation is also important. Plasmons 
eventually decay into electron/hole pairs. This plays an important role when examining 
“secondary electron emission” (SEE) which is defined as those electrons emitted from a material 
with energies less than 50 eV. This provides a strong test for numerical techniques which must 
get the entire cascade right to simulate SEE. Several authors [Dapor 2012, Dapor 2011, Mao 
2008, Walter 2008] are doing just that, with decidedly mixed results. While this may be in part 
due to the chosen extrapolation procedure, other reasons may be modeling other known low-
energy physics such as phonon scattering (bulk and surface), polaron scattering (if this is real), 
surface barrier. There is still plenty to sort out. 
 
It is also interesting to note band-structure calculations have a role to play at low energies 
[Schreiber and Fitting 2002]. 
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7.  CONCLUSIONS 
 
In this project, we have attempted to improve low-energy electron/photon transport by 
incorporating atomic structure into the generation of cross sections. The greatest success was for 
photon coherent scattering resulting in noticeable diffraction modifications to the angular 
distributions. However, the impact should not be oversold as photon coherent scattering rarely 
dominates in most calculations. Also, the methods utilized here start from the assumption that an 
atomistic model of the material of interest can be generated. This may be no easy task for 
complicated structures. Also, we were unsuccessful in performing a DFT calculation with a 
repeat cell, performing the appropriate average over orientation, and comparing with our results. 
This should be better understood. 
 
For electron elastic scattering, we demonstrated solid-state effects could be mimicked by treating 
a chunk of the material as essentially a large molecule. The attempt to modify the radial potential 
in a similar way was unsuccessful, and the root cause has not been identified. This should be 
pursued to at least identify if the idea was simply misguided or if some blunder has been 
overlooked. Things became murkier when we performed a straightforward application which 
was meant to demonstrate the possible importance of including molecular effects in nitrogen 
cross sections. The results seemed to indicate it was better not to use them. This suggests we 
need more experience investigating other molecular effects. 
 
We did demonstrate DFT may play a role in calculating electron energy loss functions at least for 
rather low (up to 40 eV) energy losses. However, this is only one part of a complicated puzzle. 
Much work needs to be done to sort out which physics are important to model and how to do so 
in a reliable way. 
 
We need more experience with the FEFF9 code. Given our level of agreement is quite poor 
compared with others’ results, it is likely our inexperience is playing a role which makes proper 
assessment difficult. 
 
We should better understand the role band-structure can play and what insights it might offer. 
Knowing when and how to transition between the various techniques would be desirable. 
 
It should be pointed out time-dependent DFT may have much to offer in principle. As it stands, it 
is restricted to atomistic models of tens of atoms and to rather low energies, but something to 
keep an eye on. 
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8. PRESENTATIONS: 
 

 International Conference on Transport Theory, Sept 17, 2013 
“Low Energy Radiation Transport Applied to Secondary Electron Emission”,  
H.P. Hjalmarson, R.P. Kensek, R.J. Magyar, R.J. Bondi 
 

 APS March Meeting, 2012 
“Secondary Electron Emission (SEE) Calculations”, 
H.P. Hjalmarson, K.E.Kambour, R.P. Kensek 
 

 Gordon Conference, 2011 
“Exact Time-Dependent Kohn-Sham Potential for Interacting Few-Body Systems” 
Rudolph J. Magyar 
 

 APS March Meeting, 2011 
“Exact Time-Dependent Kohn-Sham Potential for Interacting Few-Body Systems” 
Rudolph J. Magyar 
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