SANDIA REPORT

SAND2013-8059
Unlimited Release
Printed September 2013

High Performance Graphics
Processor based Computed
Tomography Reconstruction
Algorithms for Nuclear and Other
Large Scale Applications

Edward S. Jimenez, Laurel J. Orr, and Kyle R. Thompson

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s

National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2013-8059
Unlimited Release
Printed September 2013

High Performance Graphics Processor based Computed
Tomography Reconstruction Algorithms for Nuclear and
Other Large Scale Applications

Edward S. Jimenez

Abstract

The goal of this work is to develop a fast computed tomography (CT) reconstruction algo-
rithm based on graphics processing units (GPU) that achieves significant improvement over
traditional central processing unit (CPU) based implementations. The main challenge in
developing a CT algorithm that is capable of handling very large datasets is parallelizing the
algorithm in such a way that data transfer does not hinder performance of the reconstruction
algorithm. General Purpose Graphics Processing (GPGPU) is a new technology that the Sci-
ence and Technology (S&T) community is starting to adopt in many fields where CPU-based
computing is the norm. GPGPU programming requires a new approach to algorithm devel-
opment that utilizes massively multi-threaded environments. Multi-threaded algorithms in
general are difficult to optimize since performance bottlenecks occur that are non-existent in
single-threaded algorithms such as memory latencies. If an efficient GPU-based CT recon-
struction algorithm can be developed; computational times could be improved by a factor
of 20. Additionally, cost benefits will be realized as commodity graphics hardware could
potentially replace expensive supercomputers and high-end workstations. This project will
take advantage of the CUDA programming environment and attempt to parallelize the task
in such a way that multiple slices of the reconstruction volume are computed simultaneously.
This work will also take advantage of the GPU memory by utilizing asynchronous memory
transfers, GPU texture memory, and (when possible) pinned host memory so that the mem-
ory transfer bottleneck inherent to GPGPU is amortized. Additionally, this work will take
advantage of GPU-specific hardware (i.e. fast texture memory, pixel-pipelines, hardware
interpolators, and varying memory hierarchy) that will allow for additional performance
improvements.

Acknowledgment

This work was funded under LDRD Project Number 158182 and Title "High Performance
Graphics Processor based Computed Tomography Reconstruction Algorithms for Nuclear
and Other Large Scale Applications”.

Contents

Nomenclature

1 Introduction

Problem Statement,

Creative and Innovative Nature of R&D o

Technical Approach and Leading Edge Nature of Work

Technical Risk and Likelihood of Success

Efficiently handling I/O

GPU-based Algorithm Design

The CUDA Environment e

Qualification of the Team to Perform This Work

2 An Irregular Approach To Computed Tomography

Introduction,

Approach

Irregular Approach

Massive Parallelism

Texture memory/Texture cache.
Constant Memory
Data Prefetching to Pinned-Memory.
Dynamic Task Partitioning

Computation Ordering i

Implementation

11

13
13
13
14
16
16
17
17

17

19

Evaluation, 25

Results 26
Conclusion 28
Rethinking CT Reconstruction and GPGPU Computing 31
Introduction 31
CPU-Based Reconstruction and Porting to GPUs 31
Exploiting Massive Thread Environments Properly 33
GPU Hardware Interpolation 34
Register and GPU-Cache Optimization............ 35
GPU Memory Utilization. 36
Register Optimization 36
Constant Memory 36
Device Global Memory Fetches 36
Final Evolution 37
Evaluation 37
Resultso 38
Conclusion 39
Reconstructing a Multi-Terabyte CT Dataset 45
Introduction 45
Approach 46
Implementation 47
GPU Texturesot e 48
Data Partitioning 50
CPU Thread Allocation e 50
Analysis . ..o 51

Evaluation
Results .. oo

ConcClUSION . . o vt

5 Irregular CT on Multiple GPUs Improves Energy-Efficiency Metrics
Introduction
Energy Efficiency
Irregular Computed Tomography
Implementation
Evaluation
Results

Energy Consumptiont
Performance Per Watt
Energy-Delay Product

ConClUSION . . . o oo e,

References

Appendix

A Technology Advances

B Publications and Presentations

57
o7
o8
o8
99
61
62
62
63
63
64

67

71

73

List of Figures

2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

4.1
4.2

4.3

5.1

5.2

5.3

Left: Reconstructed Voxel Throughput for 64 Gigavoxel Dataset using 1GPU,
Right: Throughput using 8 GPUs 27

Left: Reconstructed Voxel Throughput for Teravoxel Dataset using 1GPU,
Right: Throughput using 8 GPUs. 28

Upper: L1 Cache hit-rate for reconstruction kernel. Lower: L2 and Texture
Cache hit-rate for reconstruction kernel 29
Average kernel runtimes with respect to image plane index for the 4000? voxel

volume. Error bars represent the minimum and maximum runtimes 40

Average kernel runtimes variance with respect to image plane index for the
40002 voxel volume.o 41

Average kernel performance improvement with respect to image plane index
for the 40003 voxel volume. 41

Average kernel runtimes with respect to image plane index for the center
image planes of a 10000® voxel volume. Error bars represent the minimum
and maximum Tuntimes 42

Average kernel runtimes variance with respect to image plane index for the
Center image planes of a 10000% voxel volume. 43

Average kernel performance improvement with respect to image plane index

for the center image planes of a 10000% voxel volume. 43
Non-Modular Approach (IP = Image Plane) 48
Modular Approach (IP = Image Plane) 49
Scalability of GPU implementations for Teravoxel reconstruction 54
Energy Consumption in kWh for the 64 gigavoxel reconstruction. 62
Energy Consumption in kWh for the teravoxel reconstruction. Note: vertical

axis is presented in a log-scale 63
Performance per watt for the 64 gigavoxel reconstruction 64

8

5.4 Performance per watt for the teravoxel reconstruction

5.5 Energy-Delay Product for the 64 gigavoxel reconstruction

5.6 Energy-Delay Product for the teravoxel reconstruction

List of Tables

4.1 Performance results for all 10,000 image planes of Teravoxel reconstruction .. 53

10

Nomenclature

CT Computed Tomography
GPU Graphics Processing Unit
CPU Central Processing Unit

Device The whole GPU Co-processing unit, this includes the device memory, communica-
tions bus, other hardware on the GPU card.

Irregular Problem Any problem that has an unpredictable data access pattern or that
requires a large amount of communication.

Voxel Three-dimensional pixel, or the smallest resolvable observation in the 3D volumetric
approximation.

Slice Co-planar set voxels perpendicular to the radiation detector plane.
Image Plane See Slice
Slice Block A consecutive set of Image Planes

Texture Memory Read-only region of memory on a device that is created, for the purpose
of this work, to exploit texture cache and hardware interpolation.

CUDA Compute Unified Device Architecture, a parallel computing platform created by
NVIDIA

MIMD Multiple Instruction - Multiple Data

11

12

Chapter 1

Introduction

Problem Statement

The goal of this work is to develop a fast computed tomography (CT) reconstruction
algorithm based on graphics processing units (GPU) that achieves significant improvement
over traditional central processing unit (CPU) based implementations. The main challenge in
developing a CT algorithm that is capable of handling very large datasets is parallelizing the
algorithm in such a way that data transfer does not hinder performance of the reconstruction
algorithm. General Purpose Graphics Processing (GPGPU) is a new technology that the
S&T community is starting to adopt in many fields where CPU-based computing is the
norm. GPGPU programming requires a new approach to algorithm development that utilizes
massively multi-threaded environments. Multi-threaded algorithms in general are difficult
to optimize since performance bottlenecks occur that are non-existent in single-threaded
algorithms such as memory latencies. If an efficient GPU-based CT reconstruction algorithm
can be developed; computational times could be improved by a factor of 20. Additionally,
cost benefits will be realized as commodity graphics hardware could potentially replace
expensive supercomputers and high-end workstations.

Creative and Innovative Nature of R&D

Development of a fully optimized reconstruction algorithm may require a dramatic re-
structuring of the entire algorithm in order to achieve optimal performance. This project
will take advantage of the CUDA programming environment and attempt to parallelize the
task in such a way that multiple slices of the reconstruction volume are computed simulta-
neously. This work will also take advantage of the GPU memory by utilizing asynchronous
memory transfers, GPU texture memory, and (when possible) pinned host memory so that
the memory transfer bottleneck inherent to GPGPU is amortized. Additionally, this work
will take advantage of GPU-specific hardware (i.e. fast texture memory, pixel-pipelines,
hardware interpolators, and varying memory hierarchy) that will allow for additional per-
formance improvements. Many sponsors are not willing to invest in GPGPU algorithms at
this time because the technology is still in its infancy and development environments vary
widely.

13

Technical Approach and Leading Edge Nature of Work

Computed tomography (CT) imaging is an imaging method where a three-dimensional
image of the inside of an object is reconstructed from a large number of X-ray projection im-
ages taken around an axis of rotation. Large sized problems (greater than 5 GB), where the
projection images are high-resolution or the volume to be reconstructed is high-resolution,
or both, CT reconstructions require significant computation and, in many cases, expensive
computing resources. Various methods have been investigated to speed up CT reconstruc-
tions including the use of supercomputers, dedicated hardware, and commodity graphics
processing units (GPU). The GPU is the most cost effective and versatile. The GPU takes
advantage of millions of computation threads run in parallel. This is significantly more than
the 1-12 parallel threads of a typical high-end central processing unit (CPU). The GPU has
the additional advantage that it communicates to the host CPU with a bus rather than a
network. Due to the dramatically different architectural environment of the GPU when com-
pared to a CPU environment, the PI would like to point out that implementation of a CT
reconstructor will most likely differ dramatically in developmental approach compared to tra-
ditional algorithms. Therefore this work is not merely a port of CPU-based code, but rather
an entirely new restructuring of the reconstruction task so that GPU-specific hardware such
as texture memory, fast hardware interpolators, pixel pipelines, and fast memory hierarchies
can be utilized to the advantage of the reconstruction algorithm. This work will start out by
using the FDK reconstruction approach developed by Feldkamp, Davis, and Kress (JOSA A,
Vol.1, Issue 6, 612-619(1984)) which is the standard method used for industrial CT recon-
struction for non-sparse datasets. Additional approaches will be explored that are based on
iterative approaches that can be used for sparse datasets. Iterative reconstructors for large
datasets in CT imaging have always been prohibitively expensive due to the massive amounts
of data necessary as well as the extremely burdensome computational time required to ac-
complish the task. The massively parallel environment of the GPU now makes this approach
potentially approachable. The advantages of an iterative reconstruction algorithm include
corrections for photon noise, multi-energy, and CT artifacts, better image quality, and use
on sparse datasets. The goal of this work will be to develop a GPU-based CT reconstruction
algorithm that realizes speed-up improvements over traditional CPU-based implementations
of arbitrarily sized CT datasets. GPU-based CT reconstruction methods have been imple-
mented for medical imaging applications such as the works of Xu and Mueller (Phys. Med.
Biol. 52(2007) 3405-3419, Trans. Nucl. Sci. 2003, SPIE Electronic Imaging 2007) as well
as the work of Okitsu, Ino, and Hagihari (Parallel Computing 36(2010) 129-141) and have
shown computational speed up of 10-60 times compared to traditional CPU-based implemen-
tations. These implementations do not trivially apply to datasets generated by non-medical
applications. In medical applications, the patients radiation dose must be considered thus
limiting the exposure time to acquire data. This limitation results in low-resolution x-ray
images and thus the overall dataset is small (1 GB). These datasets can typically be pro-
cessed in memory on the GPU or Host memory thus data management is not a significant
performance bottleneck. In non-medical applications, radiation dose is typically not as big
of a concern allowing larger higher resolution projections to be taken resulting in datasets
that can be up to 1000 times larger (1 TB). Currently, only very large supercomputers can

14

process a 1 TB dataset in a reasonable amount of time, but even then analysis can still take
days to complete. Using the medical implementations mentioned above would result in a
large I/O memory and disk bottleneck because the dataset would not fit in the resident host
memory or the GPU device memory, thus performance gains would not be realized. The
FDK reconstruction algorithm is the main focus of this work to implement on the GPU.
Exact three-dimensional reconstruction is not possible without a complete set of Radon
data (continuous projection datasets) regardless of x-ray source trajectory as stipulated by
the Tuy-Smith sufficiency condition. The FDK algorithm is a cone beam-based reconstruc-
tion method that approximates the exact reconstruction problem developed for technical
investigation and provides an exact back projection instruction for the values measured in
a discretized plane (Buzug, Computed Tomography). One of the features that make the
FDK algorithm ideal for GPU implementation is that it is extremely parallalizable to a very
fine-grain level which is ideal for the massively parallel environment of GPUs. Additionally,
much of the imaging system geometry necessary for the computations can be stored in fast
GPU caches that allow for greater efficiency. This work will implement a GPU-based CT
algorithm that takes advantage of the following:

e Hundreds to millions of computational threads available on the GPU to perform the
computationally expensive reconstruction.

e Multiple simultaneous slice reconstruction to maximize data reuse that will minimize
host-to-device and device-to-host memory transfers.

e Asynchronous memory transfers that will allow the GPU to execute commands and
data processing while data is being transferred between the host and device.

e Host pinned memory, if available, to maximize data upload and download speeds be-
tween host and device.

e Dynamic resource allocation to optimize code execution for any given GPU capable of
running CUDA code. This will be accomplished by querying the GPU and evaluating
the parameters of the CT reconstruction task to determine the optimal number of
volume slices to reconstruct simultaneously for a given amount of device memory.

e Utilize multiple GPUs with OpenMP (Open Multi-Processing), when available, to add
another level of parallelism to the reconstruction algorithm.

e GPU specific hardware that is not typically available to CPU algorithms that will allow
for efficient execution of the algorithm as well as data transfer.

The approach outlined above will be successful because it will implement two levels of paral-
lelism. The first level of parallelism is the reconstruction of multiple slices simultaneously on
a single GPU. The second level of parallelism would be to partition a given reconstruction
volume across multiple GPUs on a single host. Another ingredient for success in this work
is an efficient data management protocol by utilizing the memory implementations listed
above to amortize the memory and disk bottlenecks due to data transfer, reads, and writes.
This work comes with four main challenges/concerns:

15

1. Efficiently handling disk and memory 1/0

2. Developing a GPU-based algorithm that has traditionally been approached in a CPU-
based context.

3. Using NVIDIAs Computed Unified Drive Architecture (CUDA) parallel programming

environment.

4. Utilizing GPU-specific hardware for performance optimizations.

These issues have been acknowledged and are discussed in detail in section 2.3. It is ex-
pected that these issues can be overcome and should not hinder the development of this
work and will be a valuable asset to Sandia National Laboratories. Advancements in the
development of a GPU-based CT reconstruction algorithm would benefit Sandia National
Laboratories and the weapons community as a whole. The potential impact of this work
outside the laboratory and weapons community is enormous. Not only can this CT algo-
rithm be used in the non-destructive evaluation field, but it could easily be utilized in the
medical field, airport facilities, border and port-of-entry facilities as well as other national
security applications that require reconstructions from projection data such as X-ray images.
This work also provides a great opportunity for collaboration with Peter Smith and James
Hunter of Los Alamos National Laboratory as they have a CPU-based reconstruction algo-
rithm called RECON and could be a valuable resource in developing an efficient and usable
algorithm. Peter and James are very well known throughout the Non-Destructive Testing
field as leaders in CT algorithm development and testing. The GPU hardware and software
architecture being investigated in this work will provide expertise in and motivation for an
advanced computing platform that could be a precursor for Sandia National Laboratories
next generation of supercomputers as well as a potential platform for future exascale com-
puting architectures. Creating algorithms and methods that can efficiently utilize thousands
of cores could be used to further understand how to develop algorithms that utilize billions
of cores as Exascale computing dictates. This parallel computing approach mirrors Sandias
future supercomputing development environment and approach. The expected results from
this work are to have an efficient and accurate GPU-based reconstruction algorithm that can
be run in either of two configurations with excellent performance:

1. Single Host / Single GPU
2. Single Host / Multiple GPUs

Technical Risk and Likelihood of Success

Efficiently handling I/0

The first risk associated with this work is the data management. Specifically, efficiently
handling I/O at every level of the system (network, disk, memory, device memory, cache,

16

etc.). This will be dealt with by implementing asynchronous memory transfers and high
data reuse by fine-grain multi-threaded parallelism. High data reuse will also minimize disk

1/0.

GPU-based Algorithm Design

Developing a GPU-based algorithm that has traditionally been approached in a CPU-
based environment is certain to be a risk in this work. This work will utilize Nvidia Corpo-
rations CUDA programming environment that allows easier access to GPU programming for
non-graphics programmers. The PI for this project has a background in CUDA programming
and algorithm development in a GPU context.

The CUDA Environment

Using a proprietary programming environment could potentially cause conflict for future
supportability if the company was to stop supporting the environment. Since GPGPU
programming has come into the mainstream, Nvidias CUDA programming environment
has been by far the most popular, mature, and stable environment compared to the other
alternatives for non-graphics programmers (such as OpenCL and DirectCompute). Nvidia
has expressed enthusiasm about its programming environment and support is strong.

Qualification of the Team to Perform This Work

Edward Jimenez received his PhD in Applied Mathematics at the University of Arizona in
2010 and has extensive knowledge in mathematical modeling, optimization, multi-threaded
and high-performance computing. Additionally, Edward was a student intern at SNL (Org.
1522 - Experimental Dynamics/Non-Destructive Evaluation and Model Validation) for 4
years in various CT-related projects under the guidance of Kyle Thompson. Kyle Thompson
has been at SNL for over 25 years and is well known throughout the NDE and weapons
community as an expert in CT imaging. Kyle will provide CT datasets as well as guidance
in determining approaches to the proposed work.

17

18

Chapter 2

An Irregular Approach To Computed
Tomography

Introduction

While much work has been done on applying GPU technology to computed tomography
(CT) reconstruction algorithms, many of these implementations focus on smaller datasets
that are better suited for medical applications. This paper proposes an irregular approach to
the algorithm design which utilizes the GPU hardware’s unique cache structure and employs
small x-ray image data prefetches on the host to upload to the GPUs while the devices are
operating on large contiguous subvolumes of the reconstruction.

This approach will improve the overall cache hit-rates and thus improve the performance
of the massively multi-threaded environment of the GPU. Overall, utilizing small prefetches
of x-ray image data improved the volumetric pixel (voxel) processing rate when compared
to utilizing large data prefetches which would minimize data transfers and kernel launches.
Additionally, this approach does not sacrifice performance on small datasets and is thus
suitable for medical and industrial applications. This work utilizes the CUDA programming
environment and Nvidias Tesla GPUs.

Cone-beam Computed Tomography (CT) is an indirect 3D imaging technique in which a
set of 2D x-ray projection images are used to reconstruct the internal and external structure of
the imaged object [2]. Many industrial applications of Cone-beam Computed Tomography
acquire a very large number (usually greater than 900) of x-ray projection images taken
around an axis of rotation [10]. Large-sized reconstructions for this work can mean the x-ray
image projections are numerous, the x-ray projections are high-resolution, the volume to be
reconstructed is high-resolution, or any combination thereof.

CT reconstructions require significant computation and, in many cases, expensive com-
puting resources. The popular FDK (Feldkamp) 3D reconstruction algorithm has compu-
tational complexity O(n?) [8, 25]; work by Xiao et. al. [23] and Axelsson et. al [1] have
reduced the complexity to O(n?log(n)), but even with this improvement, computation for
large-scale datasets can still require days to weeks to complete using high-end workstations.

Over the past thirty years, various methods have been investigated to improve the com-

19

putational speed of CT reconstructions including the use of supercomputers, dedicated hard-
ware (ASIC, FPGA, etc), and commodity graphics processing units (GPU) [24]. Currently,
the GPU is the most cost effective and versatile. Computed Tomography can be thought of
simply as a set of pixel and voxel (volumetric pixel) operations and thus is not a far reach to
consider the massively parallel architecture of the GPU. The GPU employs a SIMD (single
instruction multiple data) programming model with large- and small-grain parallelism[22].
Driven mainly by the Gaming and CAD industry, investment in GPU-technology is unpar-
alleled and has exhibited performance growth that triples Moore’s Law[24].

There has been extensive work done on applying GPU technology to various CT al-
gorithms [17, 26, 25, 24] with tremendous computation time improvements realized when
compared to traditional CPU-based implementations. However, much of the development
of the GPU algorithms focus on medical datasets which are typically an order of magni-
tude smaller than industrial CT datasets. The majority of medical CT datasets consist of
1283 — 10242 voxels and 300-1000 x-ray image projections. The number of acquired x-ray
projection images and the resolution is balanced by the need to minimize radiation exposure
to the patient.

For industrial CT applications, radiation exposure is typically not a concern as it is with
medical applications and often object density will require long exposure times. With the
exposure constraint relaxed, it is not uncommon for industrial datasets to reach 4000% voxels
and approximately 2000 projections. Unfortunately, much of the medical literature on GPU-
based CT assume that either the volume, x-ray projection data, or both can entirely reside
on the GPU device memory simultaneously. This is not possible in most large-scale (i.e.
industrial) reconstructions and thus a blocking algorithm that blocks both the volume and
the x-ray projection data is necessary.

This paper will present a technique for large-scale CT reconstruction that implements
an irregular approach to the pixel and voxel operations that maximizes voxel throughput
for large-scale datasets. T'wo large synthetic datasets will be presented; the first consists of
1800 16-megapixel x-ray projection images reconstructed into a 4000 x 4000 x 4000 voxel
volume (64 Gigavoxels); this case is representative of real-world industrial CT datasets, the
second consists of 10,000 100-megapixel images reconstructed into a 10000 x 10000 x 10000
voxel volume (1 Teravoxel); this dataset was chosen to show that this approach is capable
of handling future-sized datasets.

Approach

When approaching a massively parallel problem, one must be aware of the various bot-
tlenecks that are not typically present in single-threaded algorithms. One major bottleneck
in GPU computing is the data transfer between host and device. The typical approach to
alleviate this bottleneck is to minimize the total number of data transfers [4].

If one were to follow this scheme for the reconstruction of a given subvolume, then it

20

would be desirable to fit large amounts of x-ray data per kernel launch and thus minimizing
the number of x-ray data uploads to the GPU necessary to reconstruct the given subvolume.
Furthermore, one could utilize host pinned-memory to maximize data transfer speeds [22].
On the surface, this should guarantee minimal interruption during voxel processing.

The issue with the approach described above is two-fold. First, allocating large amounts
of pinned-memory on the host is normally not allowed by the operating system. Second, for
a given subvolume and a relatively large amount of x-ray data, the memory access pattern
on the x-ray data may become scattered and thus hindering kernel performance.

Much of the work done in the past has addressed this by utilizing read-only texture mem-
ory which utilizes texture cache and fast bilinear interpolation [17]. Utilizing this approach
for large-scale reconstruction still results in scattered reads and poor performance as the
texture cache-hit rate is very low. Scattered memory access patterns are mostly caused by
two factors. First, if the geometrical configuration of the imaging system is set up for sig-
nificant magnification, then the interpolation coordinates for neighborhoods of voxels could
be spread out over a large portion of a given x-ray image. Second, thread execution order
could have a measurable effect on computationally efficiency as different threads in a warp
could potentially be accessing x-ray data from different projection images.

Irregular Approach

The combination of large-scale data, blocked x-ray data, and blocked subvolumes sud-
denly makes CT an irregular problem. CT algorithms transfer a large number of bytes from
both the volume and the x-ray data, but are also very computationally expensive at O(n?).
The massively parallel environment and imaging system configuration has the potential to
create little data locality. Additionally, the amount of x-ray data necessary to reconstruct
a given subvolume is dependent on the location of the subvolume with respect to the entire
volume, and thus a dynamic approach to subvolume size determination is necessary. Tra-
ditional CT algorithms typically reconstruct by slices, which are defined as coplanar sets of
voxels. In this work, a subvolume is a set of consecutively ordered slices and will be referred
to as a slice block.

The approach presented does not focus on data transfer minimization, but instead, tex-
ture cache-hit rate improvement by reducing the amount of x-ray image data uploaded at
once combined with data prefetching. A paper by Mowry and Gupta which looked at an
irregular application showed that performance could be improved with an intelligent data
prefetching approach which focused on improving the cache-hit rate of the application [18].
Additionally, work done by Lam et. al. showed that cache interference in blocked algorithms
can have a significant performance degradation for a given machine[15]. Overall, five aspects
of the algorithm design, which uses the CUDA programming environment, will be addressed.

21

Massive Parallelism

The computational intensity of the CT algorithm necessitates a massively parallel envi-
ronment. For this application, a slice block with s slices and N voxels per slice will require N
computational threads, where each thread is responsible for processing s voxels in the sub-
volume. More specifically, a thread is responsible for a column of voxels in the subvolume,
one on each slice. The thread will loop over all images in the image subset present in the
GPU memory for given slice before advancing to the next slice. This approach helps to keep
the memory access pattern somewhat coalesced, potentially increasing the cache hit-rate,
and also allows for only one voxel update to global memory per kernel launch.

Texture memory/Texture cache

This approach will utilize the Texture/L2/Global memory hierarchy available on the GPU
to improve the bi-linear interpolations on the x-ray image as this is the main computational
burden in the FDK algorithm. Utilizing texture memory for x-ray image data is not a new
idea and is key to many GPU-based CT algorithms [17, 26, 25, 24]. However, this approach
utilizes small texture memory allocations for the x-ray data in relation to the allocations used
for the subvolumes so that a larger fraction of the texture memory fits within the texture and
L2 caches. As fetches from texture and L2 cache are up to two orders of magnitude faster
than fetches from GPU global memory, this approach will improve overall voxel processing
throughput by decreasing the time to fetch information from the x-ray projection data as
well as reducing memory traffic on the GPU global memory bus. Texture memory also has
the benefit of allowing one to utilize fast hardware-based low-precision bilinear interpolation
to improve computational speed.

Constant Memory

Constant memory on the GPU is another type of cache specific to GPU hardware that
is user-specified. This cache is also orders of magnitude faster than global memory and
is ideal for variables that are shared across threads. For this implementation, geometrical
information about the imaging system that is needed for the reconstruction computation is
stored here, further reducing the demand on the global memory bus.

Data Prefetching to Pinned-Memory

While the GPU device is operating on an x-ray image subset, the CPU is prefetching the
next image subset to a pinned-memory region that will be uploaded to the GPU. The x-ray
image dataset will already be loaded in main memory with the pinned-memory region being
separate from the global x-ray data. Smaller pinned-memory allocations greatly increases
the chance that the allocation will be successful. As mentioned earlier, pinned-memory

22

increases data throughput on data transfers, and prefetching while the kernel is executing
will guarantee that pauses between kernel launches are kept to a minimum.

Dynamic Task Partitioning

One desirable feature of this algorithm is for it to be scalable with respect to the number
of GPUs present on the system. In order for this algorithm to be scalable from one to
many GPUs, it must maximize all GPU memory resources to ensure that the GPUs are
as busy as possible. It was mentioned above that the amount of x-ray data varies with
respect to the location of the slices in the global reconstruction. Additionally, GPU memory
values vary greatly between GPU models and configurations. This results in the need for a
dynamic partitioning scheme. The overall partitioning approach will maximize the number of
contiguous slices that can reside on a particular GPU and use the remaining memory available
for the x-ray image data. This will determine the number of kernel launches necessary to
fully reconstruct the subvolume on the GPU. If at least one x-ray projection image does
not fit on the remaining memory, then the number of slices on the GPU is reduced by one
and the process is retried. The minimum requirement for this algorithm is that the GPU fit
at least one slice and its x-ray subimage that contains the partial projection image that is
necessary for the computation.

Computation Ordering

When developing a kernel algorithm, one needs to be aware that accessing a register
consumes zero extra clock cycles per instruction, but latencies may occur due to register
read-after-write dependencies. At approximately 24 clock cycles for Nvidia GPUs, these
latencies could be very significant when processing millions of voxels simultaneously [5].
The massive number of threads helps to cover this latency but may not be enough for all
configurations. The instruction ordering of the kernel is designed such that it minimizes to
the need to immediately access a variable it just computed as well as reducing the Register
pressure to ensure that no values in register are being cached to the GPU global memory.

Implementation

This GPU-based approach is implemented using Nvidia§ CUDA programming environ-
ment and C++4. The kernels developed for this application are written such that any Nvidia
graphics processor with at least 1 GB of device memory and at least Fermi architecture is
capable of performing a reconstruction provided at least one slice and one x-ray image subset
(consisting of at least one x-ray subimage) can reside in memory.

Other kernels developed, but not presented in this work, include slightly less efficient
implementations that guarantee a kernel runtime of less than two seconds to allow GPUs that

23

are subject to display timeout restrictions to run larger reconstructions. This implementation
can allow for 1 to 8 GPUs to run on a single system using OpenMP 2.0. For this work, assume
that all x-ray image data is resident on the host memory (this work makes no claims on disk
I/O performance and will be addressed in future work).

The dynamic task partitioning is determined by a slice-to-texture ratio (ST R) that is
configured using a parameter in an input file. This ratio tells the application to attempt
to fit the data on the device memory in such a way that the number of simultaneously
reconstructed slices to the total number of image subsets satisfies the given ratio as closely
as possible. There are three possible reasons why this ratio may not be satisfied exactly:

¢ Resource Maximization: The partitioning function will maximize device memory
usage. Any remaining memory after allocation will be utilized for additionally x-ray
image data. This was implemented since some system configurations allow for multiple
GPUs to be connected to a single PCI-E bus and therefore this approach would help
alleviate the pressure on the PCI-E bus. This will not dramatically affect the ST R for
most cases, therefore will not be a significant performance hit.

e Reconstruction Size: The minimum requirement for this application in the task
partitioning phase is that at least one x-ray subimage and one volume slice fit on the
device memory. It is possible for the reconstruction configuration to be awkwardly
sized for a particular memory configuration of a GPU. A simple example would be
a GPU with 2GB of available memory with a reconstruction task of one 1 GB slice
with a 700 MB x-ray subimage; although this would easily fit within the 2GB limit,
there is still hundreds of megabytes available but yet not enough to allow for an extra
subimage and/or volume slice.

e Tail-End of Reconstruction: If the remaining work left to be performed by the GPU
is much smaller than what the GPU is capable of computing at once, the resource maxi-
mization requirement would load extra x-ray images onto the device memory. This will
only occur once per reconstruction and has very little impact on large reconstructions.

Algorithm 3 gives a general description to the dynamic task partitioning as well the the
kernel launch approach to the reconstruction of a given slice block. With the exception
of Step bHa, all steps are performed by the CPU. Algorithm 3 executes independently for
each GPU present on the system with the only atomic operation occurring at step 8. No
synchronization between CPU threads (or between GPU threads for that matter) is necessary
allowing for maximum performance.

Algorithm 4 describes the layout of the kernel computation for a given slice block and
x-ray image subset where the ordering of the loops provide improved cache-hit rates as well
as global memory traffic.

24

Algorithm 1 Dynamic Determination of GPU Task
while Reconstruction task queue not complete do
Step 1: Query GPU memory resources available
Step 2: Determine task partitioning given GPU memory resources and slice-to-texture
ratio
Step 3: Allocate/Initialize Memory resources on CPU and GPU
Step 4: Upload reconstruction geometry information to GPU constant memory
Step 5:
for all image subsets do
-Upload image subset data from host to device texture memory
-Upon completion of upload, execute (a) and (b) simultaneously:
(a) GPU: Update slice block with image subset information via FDK kernel
(b) CPU: Prefetch next image subset. If last subset, free pinned-memory.
-Synchronize tasks (a) and (b)
end for
Step 6: Download slice block voxel information to host (storage optional)
Step 7: Free GPU memory resources
Step 8: Update reconstruction task queue
end while

Algorithm 2 FDK Kernel Layout
-Get thread id and voxel positions pq, ..., ps based on id
if Thread ¢d position within ROI then
for Every slice j in slice block do
-Set register value to zero
for Every image ¢ in image subset do
-Determine texture interpolation coordinate within image ¢
-Update register value with texture fetch and scaling information
end for
-Update voxel p; in global memory with register value

end for
end if

Evaluation

The experiments were performed on a high-end workstation that consists of dual hexacore
Intel Xeon X5690 processors clocked at 3.46GHz with hyper-threading for a total of 24 virtual
CPU cores, 192 GB RAM and 2 Nvidia S2090 devices connected via 4 PCI-E 2.0 x16 host
interface cards. Each S2090 unit contains 4 Tesla M2090 GPUs with 6 GB of GDDR5
memory apiece.

Each M2090 GPU contains 16 streaming multiprocessors (SM) that share a common
L2 cache of 768 KB. The L2 cache services all load, store, and texture operations. Each
SM contains 32 compute cores, 48 KB L1 cache, 8 KB constant memory cache, and 8 KB

25

texture cache. Note that for the M2090, the L1 cache and shared memory are configurable
to different sizes that can be determined by the user at compile time. The L1 cache was
maximized in this work (thus minimizing shared memory) as shared memory was not utilized
for the reconstruction algorithm.

Timers used to calculate voxel processing throughput are CPU-based and include the
time needed for all memory transfers, kernel launches, and prefetching operations necessary
to completely reconstruct the given voxel subvolume assigned to the task. Voxel throughput
was measured using two datasets; the first is 4000 x 4000 x 4000 voxel (64 Gigavoxels) volume
reconstructed from 1800 16-megapixel x-ray projection images where the measurements were
taken about the center 2000 slices, the second is 10000 x 10000 x 10000 voxel (1 Teravoxel)
volume reconstructed from 10000 100-megapixel x-ray projection images where the measure-
ments were taken on the center 100 slices of the volume. Measurements were taken for both
datasets using 1 GPU and 8 GPUs. The kernels were compiled using CUDA version 4.1 and
the CPU-based code was written in C++ using the Visual Studio 2008 C++ compiler.

The various cache hit-rates were measured using Nvidias performance evaluation tool
NSight. Kernel performance was measured on a single x-ray image subset using the 64-
Gigavoxel dataset. Cache hit-rates could not be measured on the 1 teravoxel dataset due to
NSight software limitations.

Results

Figure 2.1 illustrates voxel processing throughput of various subvolumes in the 64 gi-
gavoxel dataset for various given slice-to-texture ratios (STR). The plot on the left shows
that for one GPU, voxel throughput clearly benefits from small ST R values with throughput
peaking at ST R =~ 1.8 with a throughput of 17.5 megavoxels per second. The average voxel
throughput for ST R < 10 is 15.84 megavoxels per second and the average voxel throughput
for ST R values greater than 10 was 10.21 megavoxels. The plot on the right side of figure
2.1 shows voxel throughput for a various subvolumes on an 8 GPU system. On average,
voxel throughput still benefits from smaller ST R values with an average voxel throughput of
13.11 megavoxels per second for STR < 10; for ST R > 10, voxel throughput dramatically
decreases to 4.54 megavoxels per second for a subvolume. Note that for the 8 GPUs case
that with large ST R values the computation time for a subvolume is highly variable when
compared to smaller ST R values so the average values are not necessarily representative of
typical performance. It is likely that the observed variance in data-points in figures 2.1 and
2.2 are due to various systems sources such as thread context switching, PCI-E bus pressure,
and the GPUs themselves.

Figure 2.2 shows voxel processing throughput for subvolumes of the teravoxel dataset
using various ST R values. Since this dataset is extremely large (both in projections and
volume), fewer ST R values could be realized and therefore results are not as dramatic in
throughput as with the 64 gigavoxel dataset but are still significant. For 1 GPU (left plot

26

Voxel Throughput (4? Voxels/1 GPU) Voxel Throughput (4I€’ Voxels/8 GPUs)

18
16} &%
14+
(8] * o
& & *
% 12 'gt '& ™ . * % é §§
é e o Kok 0k K é ol §§
© ©
g 100 " g E
= s *
& X f *
8r ¥ *
. o« %
*
6 * * *
* * * %
o %g
» e il %
4
0 10 20 30 40 50 60 70 30 40 50 60 70
Slice to Texture Ratio Slice to Texture Ratio

Figure 2.1. Left: Reconstructed Voxel Throughput for 64
Gigavoxel Dataset using 1GPU, Right: Throughput using 8
GPUs

on figure 2.2), voxel throughput peaks at just under 0.51 megavoxels per second for a STR
value of 0.52. For STR < 0.9, average throughput was about 0.497 megavoxels per second
and 0.471 megavoxels per second for ST R values greater than 0.9. On a system with 8 GPUs
(right plot on figure 2.2), the performance is more variable but performance differences can
still be observed with respect to ST R size. The average throughput for ST R < 0.9 was 0.46
megavoxels per second and 0.40 megavoxels per second with ST R values greater than 0.9.

Figure 2.3 shows various GPU cache hit-rate performances on the 64 gigavoxel dataset
for the reconstruction kernel. The upper plot of figure 2.3 shows the L1 cache hit-rate
performance for various ST R values. For this application, L1 cache is mostly populated with
voxel values as well as a few kernel input variables that are used to determine loop length.
As mentioned earlier, voxel values are only updated once per kernel launch. Regardless, the
L1 cache hit-rate peaks for small ST R values at 2.1% and decreases to 0.1% for ST R values
greater than 7.

The lower plot on figure 2.3 shows L2 and texture cache hit-rate performance. Although
the texture cache hit-rate does not vary much with varying STR, it does peak at 70.4% for
the smallest achievable ST R of about 0.47. The L2 cache clearly suffers from larger STR
values, for ST R values less than 1, L2 hit-rates are between 75 and 60% and as low as 10%
for an ST R value of 10.

27

Voxel Throughput (10k3 Voxels/1 GPU) Voxel Throughput (10l§ Voxels/8 GPUs)

051 — 05
* i :
05 0.45}
* 1 ! ' !
. 0.49} . 0.4 . ¥ %
% 0.48 % 035 *
> 0471 2 0.3f %
= = i
0.46} * 0.25f ; .
*
0.451 § 1 0.2
* *
0.44 : : : : : : : : : : : :
0.4 0.6 0.8 1 12 14 1.6 18 0.4 0.6 0.8 1 1.2 1.4 16 18
Slice to Texture Ratio Slice to Texture Ratio
Figure 2.2. Left: Reconstructed Voxel Throughput for
Teravoxel Dataset using 1GPU, Right: Throughput using 8
GPUs
Conclusion

When viewed from a traditional approach, CT reconstruction is not an irregular prob-
lem and has excellent spatial locality. However, when utilizing GPU technology, one can
lose spatial locality if the reconstruction is large and entire subvolumes are simultaneously
reconstructed. This is due to the geometrical configuration of the imaging system and the
unpredictable thread execution ordering. This work has shown that a CT reconstruction
algorithm for GPUs can clearly benefit from an irregular approach for large-scale datasets
by prefetching small batches of x-ray projection data and launching many kernels. This
approach increases voxel throughput when compared to a partitioning method that only
seeks to minimize data transfer uploads and kernel launches as is the common practice when
creating GPU-based algorithms.

The main goal was to improve cache hit-rates to improve kernel performance. Utiliz-
ing texture cache exclusively for x-ray projection data as well as utilizing hardware-based
interpolation improves computational performance dramatically but performance is highly
dependent on the cache hit-rates. This method can be used for large and small CT recon-
struction tasks and maximizes performance for arbitrarily sized datasets. This work shows
that smaller ST R values are preferable over larger values; however, arbitrary ST R values
are not achievable due to various geometrical configurations as well as varying datasets sizes.
It is possible to contrive a diabolical set in which only larger ST R values (> 1) are possible,
however has not seemed to appear frequently in practice. In practice, maximizing the slice
block in device memory tends to create the lowest ST R values.

This work did not present any comparisons of "medical scale” datasets to other systems

28

L1 Cache Hit-rate

=
o
N

©

Cache Hit-rate Percentage
=
o
1

Slice to Texture Ratio
L2 and Texture Cache Hit-rate

—<— Texture Cache

40 —*— L2 Cache

20

Cache Hit-rate Percentage

o

2 4 6 8 10
Slice to Texture Ratio

Figure 2.3. Upper: L1 Cache hit-rate for reconstruction
kernel. Lower: L2 and Texture Cache hit-rate for reconstruc-
tion kernel

since much of the literature on GPU-based medical CT tended to either use older generation
GPU hardware or the algorithms implemented were not the traditional FDK algorithm used
for this work (much of the medical datasets are helical scans). Our algorithm is able to
reconstruct sub-gigabyte datasets (& 800% voxels using 720 projections) at a rate of 30 slices
per second per GPU.

For the general GPGPU community, this work has shown that regular CPU algorithms
that are ported over to GPU environments may not result in a regular GPU algorithm.
Although it is generally recognized that porting software for GPGPU application does not
guarantee optimal performance, much of the literature suggests broad recommendations,
such as minimizing memory transfers, when in fact one should consider possibly entirely
different approaches that may have previously considered inefficient for CPU-based environ-
ments.

29

30

Chapter 3

Rethinking CT Reconstruction and
GPGPU Computing

Introduction

In the previous chapter, claims were made of kernel optimizations without demonstrating
to the reader how significant these optimizations can impact performance metrics. This
chapter will focus on emphasizing the importance of kernel design and how this design
differs from a traditional CPU-based design; this chapter will present the utilization of
the massively multi-threaded environment of graphics processors (GPUs) to improve the
computation time needed to reconstruct large computed tomography (CT) datasets and
the arising challenges for system implementation. Intelligent algorithm design for massively
multi-threaded graphics processors differs greatly from traditional CPU algorithm design.
Although a brute force port of a CPU algorithm to a GPU kernel may yield non-trivial
performance gains, further measurable gains could be achieved by designing the algorithm
with consideration given to the computing architecture. Previous work has shown that CT
reconstruction on GPUs becomes an irregular problem for large datasets (10GB-4TB)[12],
thus memory bandwidth at the host and device levels becomes a significant bottleneck for
industrial CT applications. We present a set of GPU reconstruction kernels that utilize
various GPU-specific optimizations and measure performance impact.

CPU-Based Reconstruction and Porting to GPUs

The CUDA programming environment, as well as other GPU-programming languages
(OpenCL, DirectCompute, etc.), have made GPGPU technology readily accessible to a large
portion of the scientific computing community. Frequently, an honest first attempt to imple-
ment an algorithm on a GPU is to perform a brute force port of a CPU-based approach to a
GPU-based implementation. It has been the experience of the authors that a blind CPU-to-
GPU port of a properly parallelized algorithm will frequently yield a speedup in computation
by a factor between 2x and 6x. This type of performance gain is typically sufficient for many
small-scale applications and thus the added effort to exploit the GPU-specific hardware does
not benefit the user significantly.

31

A CPU-based reconstruction will typically loop over the projection data and iteratively
update a single voxel on a given image plane. This process is repeated for every voxel on
every image plane. For a multi-core CPU with n threads, the process is similar with the
exception that n voxels are simultaneously updated. Currently, a typical system has an n
that ranges from 2 to 32.

A simple GPU-ported kernel would allocate a computation thread for every voxel on an
image plane and update each voxel in parallel with the given x-ray projection data iteratively.
A CPU-based routine would loop over the image planes with a nested loop within iterating
over projection data. Thus, for a reconstruction with /N image planes and M projections,
the kernel would be launched M N times.

Algorithm 3 CPU Kernel Launcher
Input: Projection Images (P, Ps, ..., Py), Scan Geometry (G), Voxels Per Image Plane
(n)
Output: Voxelized Volume Reconstruction Iy, Io, ..., Ix
for Every image plane I; do
Allocate memory on GPU Device for I;
Initialize all values in GPU allocated array I; to 0
for Every Projection Image P; do
Allocate memory on GPU Device for P;
Upload P; to GPU Device
Launch Ported Kernel with n GPU threads (see algorithm 4)
Free P; on GPU Device
end for
Download I; from GPU Device
Free I; on GPU Device
end for

Algorithm 4 Ported Kernel
Input: [;,P;,G
Output: I; updated with data from P;
Get thread id and designated voxel in I;
if Voxel in Region of Interest then
Calculate back-projection path position, 5, within P;
Calculate bilinear interpolation weights, w
Calculate 2D interpolation on P; based on w and b
Update designated voxel in I;
end if

Algorithms 3 and 4 are a possible implementation of a ported version of reconstruction.
The largest performance gain is realized from performing the bilinear interpolation for every
voxel in parallel. The most undesirable traits of the implementation is the large amount
of data uploads, downloads, and kernel launches required. Each of these operations has
significant overhead that sacrifices performance [5].

32

Exploiting Massive Thread Environments Properly

Algorithms 3 and 4 are an example of a brute force implementation that requires minimal
effort in porting over to a graphics processor. The next reasonable step would be to transplant
the nested for-loop in algorithm 3 into the GPU kernel. Transferring the for-loops over to the
kernel is desirable as this would reduce the number of kernel launches required to complete
the reconstruction task as well as allowing the GPU to execute for longer periods of time
which would improve the voxel processing throughput.

To implement the modification, one must still consider the almost arbitrary scan config-
urations and acquisition hardware. Thus, it is very likely that the entire projection dataset
as well all imaging planes could not entirely reside on the device memory simultaneously.
Therefore, a projection data and subset of image planes will instead be used where the
projection block contains a subset of the relevant projection images and the image plane
block will contain the image planes that will be processed simultaneously. For large-scale

reconstructions, this implementation will iterate over all image plane blocks and projection
data blocks.

Algorithm 5 CPU Kernel Launcher (Block Scheme)
Input: Projection Images (P, Ps, ..., Py), Scan Geometry (G), Voxels Per Image Plane

(n)

Output: Voxelized Volume Reconstruction Iy, Io, ..., In
Determine blocking of projection data (BY', BY ... BF))
Determine blocking of image blocks (B}, BL, ..., BL))
for Every image block B! do

Allocate memory on GPU Device for B

Initialize all values in GPU allocated array B! to 0

for Every Projection image block BJP do
Allocate memory on GPU Device for B
Upload Bj-D to GPU Device
Launch Blocked Kernel with n GPU threads (see algorithm 6)
Free BI" on GPU Device

end for

Download B from GPU Device

Free B! on GPU Device

end for

Algorithms 5 and 6 implement the blocking scheme discussed above, note that the CPU-
based kernel launcher is essentially unchanged except for two-partitioning tasks and the
nested for-loops now iterate over blocks of image planes (sub-volumes) and projection image
blocks. Any blocking scheme can be used to accommodate any data format. The kernel
presented in algorithm 6 will now take in blocked data, each of the n GPU threads launched
will be assigned a subset of voxels to update with the projection data in BJP . Note that one
could also launch more GPU threads on the GPU so that the outer for-loop in the kernel can
be completely eliminated. We contend that for large-scale data, the performance difference

33

Algorithm 6 Blocked Kernel
Input: B{,BJP,G
Output: B! updated with data from BJP
Get thread id and designated voxel in each image plane in B’
if Voxels in Region of Interest then
for Each Image Plane [, in B! do
for Each Projection image Py in B;-D do

-

Calculate back-projection path position, b, within P,
Calculate bilinear interpolation weights,
Calculate 2D interpolation on Py based on @ and b
Update designated voxel in [},

end for

end for
end if

is likely negligible as the management of the increased number of GPU-threads becomes
burdensome and GPU memory bus would be over-saturated.

GPU Hardware Interpolation

As mentioned earlier, the bilinear interpolation in the reconstruction algorithm is compu-
tationally expensive. One of the features of GPUs that differs from CPUs is hardware-based
interpolation capabilities. The potential drawback is that for current technology, hardware-
based interpolation is done in 24-bit precision [4] which differs from the 32- or 64-bit precision
that is frequently used. Fortunately, many imaging and inspection applications only utilize
16-bit precision. Thus, as long as a numerically stable approach is implemented, then preci-
sion will remain adequate.

To utilize the interpolation hardware, the projection data must be uploaded to the GPU
as a read-only texture array. For current state-of-the-art, utilizing texture arrays allows for
the kernel to utilize fast texture cache on the GPU for a potential boost in performance. To
accommodate multiple projection images, one could utilize either multiple textures, a large
texture with tiled projection images, or layered textures [4, 5], depending on the particular
device being utilized.

Algorithms 7 and 8 implement algorithms 5 and 6 except they exploit the hardware
interpolation capabilities of the GPU. Note that in algorithm 7, the projection data block is
now allocated outside of the nested for-loop. The texture array is updated and reused during
reconstruction. This allows for a reduced number of memory allocation and deallocations.
Algorithm 8 has been simplified by eliminating the calculations of the weights « and the 32-
or 64-bit interpolation operation and replacing it with a single texture fetch.

34

Algorithm 7 CPU Kernel Launcher (HW Interpolation Scheme)
Input: Projection Images (P, Ps, ..., Py), Scan Geometry (G), Voxels Per Image Plane

(n)
Output: Voxelized Volume Reconstruction Iy, Io, ..., In
Determine blocking of projection data (BY', BY ... BY))
Determine blocking of image blocks (Bf, BE,..., BL)
Allocate tezture memory on GPU Device for largest Bl € {B{D ,BY ..., Bﬁj,}

for Every image block B! do
Allocate memory on GPU Device for B!
Initialize all values in GPU allocated array B! to 0
for Every Projection image block BJP do
Upload Bj-D as a texture to GPU Device
Launch Blocked Kernel with n GPU threads (see algorithm 8)
Free texture B!’ on GPU Device
end for
Download B from GPU Device
Free B} on GPU Device
end for
Free Texture memory allocated on Device

Algorithm 8 HW Interpolation Kernel
Input: B/.G
Output: B/ updated with data from texture Bf
Get thread id and designated voxel in each image plane in B}
if Voxels in Region of Interest then
for Each Image Plane [, in B! do
for Each Projection image Py in B;-D do

Calculate back-projection path position, 5, within Py
Perform texture fetch from P, at position b
Update designated voxel in [},

end for

end fo