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Abstract

The goal of this work is to develop a fast computed tomography (CT) reconstruction algo-
rithm based on graphics processing units (GPU) that achieves significant improvement over
traditional central processing unit (CPU) based implementations. The main challenge in
developing a CT algorithm that is capable of handling very large datasets is parallelizing the
algorithm in such a way that data transfer does not hinder performance of the reconstruction
algorithm. General Purpose Graphics Processing (GPGPU) is a new technology that the Sci-
ence and Technology (S&T) community is starting to adopt in many fields where CPU-based
computing is the norm. GPGPU programming requires a new approach to algorithm devel-
opment that utilizes massively multi-threaded environments. Multi-threaded algorithms in
general are difficult to optimize since performance bottlenecks occur that are non-existent in
single-threaded algorithms such as memory latencies. If an efficient GPU-based CT recon-
struction algorithm can be developed; computational times could be improved by a factor
of 20. Additionally, cost benefits will be realized as commodity graphics hardware could
potentially replace expensive supercomputers and high-end workstations. This project will
take advantage of the CUDA programming environment and attempt to parallelize the task
in such a way that multiple slices of the reconstruction volume are computed simultaneously.
This work will also take advantage of the GPU memory by utilizing asynchronous memory
transfers, GPU texture memory, and (when possible) pinned host memory so that the mem-
ory transfer bottleneck inherent to GPGPU is amortized. Additionally, this work will take
advantage of GPU-specific hardware (i.e. fast texture memory, pixel-pipelines, hardware
interpolators, and varying memory hierarchy) that will allow for additional performance
improvements.
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Nomenclature

CT Computed Tomography

GPU Graphics Processing Unit

CPU Central Processing Unit

Device The whole GPU Co-processing unit, this includes the device memory, communica-
tions bus, other hardware on the GPU card.

Irregular Problem Any problem that has an unpredictable data access pattern or that
requires a large amount of communication.

Voxel Three-dimensional pixel, or the smallest resolvable observation in the 3D volumetric
approximation.

Slice Co-planar set voxels perpendicular to the radiation detector plane.

Image Plane See Slice

Slice Block A consecutive set of Image Planes

Texture Memory Read-only region of memory on a device that is created, for the purpose
of this work, to exploit texture cache and hardware interpolation.

CUDA Compute Unified Device Architecture, a parallel computing platform created by
NVIDIA

MIMD Multiple Instruction - Multiple Data
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Chapter 1

Introduction

Problem Statement

The goal of this work is to develop a fast computed tomography (CT) reconstruction
algorithm based on graphics processing units (GPU) that achieves significant improvement
over traditional central processing unit (CPU) based implementations. The main challenge in
developing a CT algorithm that is capable of handling very large datasets is parallelizing the
algorithm in such a way that data transfer does not hinder performance of the reconstruction
algorithm. General Purpose Graphics Processing (GPGPU) is a new technology that the
S&T community is starting to adopt in many fields where CPU-based computing is the
norm. GPGPU programming requires a new approach to algorithm development that utilizes
massively multi-threaded environments. Multi-threaded algorithms in general are difficult
to optimize since performance bottlenecks occur that are non-existent in single-threaded
algorithms such as memory latencies. If an efficient GPU-based CT reconstruction algorithm
can be developed; computational times could be improved by a factor of 20. Additionally,
cost benefits will be realized as commodity graphics hardware could potentially replace
expensive supercomputers and high-end workstations.

Creative and Innovative Nature of R&D

Development of a fully optimized reconstruction algorithm may require a dramatic re-
structuring of the entire algorithm in order to achieve optimal performance. This project
will take advantage of the CUDA programming environment and attempt to parallelize the
task in such a way that multiple slices of the reconstruction volume are computed simulta-
neously. This work will also take advantage of the GPU memory by utilizing asynchronous
memory transfers, GPU texture memory, and (when possible) pinned host memory so that
the memory transfer bottleneck inherent to GPGPU is amortized. Additionally, this work
will take advantage of GPU-specific hardware (i.e. fast texture memory, pixel-pipelines,
hardware interpolators, and varying memory hierarchy) that will allow for additional per-
formance improvements. Many sponsors are not willing to invest in GPGPU algorithms at
this time because the technology is still in its infancy and development environments vary
widely.

13



Technical Approach and Leading Edge Nature of Work

Computed tomography (CT) imaging is an imaging method where a three-dimensional
image of the inside of an object is reconstructed from a large number of X-ray projection im-
ages taken around an axis of rotation. Large sized problems (greater than 5 GB), where the
projection images are high-resolution or the volume to be reconstructed is high-resolution,
or both, CT reconstructions require significant computation and, in many cases, expensive
computing resources. Various methods have been investigated to speed up CT reconstruc-
tions including the use of supercomputers, dedicated hardware, and commodity graphics
processing units (GPU). The GPU is the most cost effective and versatile. The GPU takes
advantage of millions of computation threads run in parallel. This is significantly more than
the 1-12 parallel threads of a typical high-end central processing unit (CPU). The GPU has
the additional advantage that it communicates to the host CPU with a bus rather than a
network. Due to the dramatically different architectural environment of the GPU when com-
pared to a CPU environment, the PI would like to point out that implementation of a CT
reconstructor will most likely differ dramatically in developmental approach compared to tra-
ditional algorithms. Therefore this work is not merely a port of CPU-based code, but rather
an entirely new restructuring of the reconstruction task so that GPU-specific hardware such
as texture memory, fast hardware interpolators, pixel pipelines, and fast memory hierarchies
can be utilized to the advantage of the reconstruction algorithm. This work will start out by
using the FDK reconstruction approach developed by Feldkamp, Davis, and Kress (JOSA A,
Vol.1, Issue 6, 612-619(1984)) which is the standard method used for industrial CT recon-
struction for non-sparse datasets. Additional approaches will be explored that are based on
iterative approaches that can be used for sparse datasets. Iterative reconstructors for large
datasets in CT imaging have always been prohibitively expensive due to the massive amounts
of data necessary as well as the extremely burdensome computational time required to ac-
complish the task. The massively parallel environment of the GPU now makes this approach
potentially approachable. The advantages of an iterative reconstruction algorithm include
corrections for photon noise, multi-energy, and CT artifacts, better image quality, and use
on sparse datasets. The goal of this work will be to develop a GPU-based CT reconstruction
algorithm that realizes speed-up improvements over traditional CPU-based implementations
of arbitrarily sized CT datasets. GPU-based CT reconstruction methods have been imple-
mented for medical imaging applications such as the works of Xu and Mueller (Phys. Med.
Biol. 52(2007) 3405-3419, Trans. Nucl. Sci. 2003, SPIE Electronic Imaging 2007) as well
as the work of Okitsu, Ino, and Hagihari (Parallel Computing 36(2010) 129-141) and have
shown computational speed up of 10-60 times compared to traditional CPU-based implemen-
tations. These implementations do not trivially apply to datasets generated by non-medical
applications. In medical applications, the patients radiation dose must be considered thus
limiting the exposure time to acquire data. This limitation results in low-resolution x-ray
images and thus the overall dataset is small ( 1 GB). These datasets can typically be pro-
cessed in memory on the GPU or Host memory thus data management is not a significant
performance bottleneck. In non-medical applications, radiation dose is typically not as big
of a concern allowing larger higher resolution projections to be taken resulting in datasets
that can be up to 1000 times larger ( 1 TB). Currently, only very large supercomputers can
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process a 1 TB dataset in a reasonable amount of time, but even then analysis can still take
days to complete. Using the medical implementations mentioned above would result in a
large I/O memory and disk bottleneck because the dataset would not fit in the resident host
memory or the GPU device memory, thus performance gains would not be realized. The
FDK reconstruction algorithm is the main focus of this work to implement on the GPU.
Exact three-dimensional reconstruction is not possible without a complete set of Radon
data (continuous projection datasets) regardless of x-ray source trajectory as stipulated by
the Tuy-Smith sufficiency condition. The FDK algorithm is a cone beam-based reconstruc-
tion method that approximates the exact reconstruction problem developed for technical
investigation and provides an exact back projection instruction for the values measured in
a discretized plane (Buzug, Computed Tomography). One of the features that make the
FDK algorithm ideal for GPU implementation is that it is extremely parallalizable to a very
fine-grain level which is ideal for the massively parallel environment of GPUs. Additionally,
much of the imaging system geometry necessary for the computations can be stored in fast
GPU caches that allow for greater efficiency. This work will implement a GPU-based CT
algorithm that takes advantage of the following:

• Hundreds to millions of computational threads available on the GPU to perform the
computationally expensive reconstruction.

• Multiple simultaneous slice reconstruction to maximize data reuse that will minimize
host-to-device and device-to-host memory transfers.

• Asynchronous memory transfers that will allow the GPU to execute commands and
data processing while data is being transferred between the host and device.

• Host pinned memory, if available, to maximize data upload and download speeds be-
tween host and device.

• Dynamic resource allocation to optimize code execution for any given GPU capable of
running CUDA code. This will be accomplished by querying the GPU and evaluating
the parameters of the CT reconstruction task to determine the optimal number of
volume slices to reconstruct simultaneously for a given amount of device memory.

• Utilize multiple GPUs with OpenMP (Open Multi-Processing), when available, to add
another level of parallelism to the reconstruction algorithm.

• GPU specific hardware that is not typically available to CPU algorithms that will allow
for efficient execution of the algorithm as well as data transfer.

The approach outlined above will be successful because it will implement two levels of paral-
lelism. The first level of parallelism is the reconstruction of multiple slices simultaneously on
a single GPU. The second level of parallelism would be to partition a given reconstruction
volume across multiple GPUs on a single host. Another ingredient for success in this work
is an efficient data management protocol by utilizing the memory implementations listed
above to amortize the memory and disk bottlenecks due to data transfer, reads, and writes.
This work comes with four main challenges/concerns:
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1. Efficiently handling disk and memory I/O

2. Developing a GPU-based algorithm that has traditionally been approached in a CPU-
based context.

3. Using NVIDIAs Computed Unified Drive Architecture (CUDA) parallel programming
environment.

4. Utilizing GPU-specific hardware for performance optimizations.

These issues have been acknowledged and are discussed in detail in section 2.3. It is ex-
pected that these issues can be overcome and should not hinder the development of this
work and will be a valuable asset to Sandia National Laboratories. Advancements in the
development of a GPU-based CT reconstruction algorithm would benefit Sandia National
Laboratories and the weapons community as a whole. The potential impact of this work
outside the laboratory and weapons community is enormous. Not only can this CT algo-
rithm be used in the non-destructive evaluation field, but it could easily be utilized in the
medical field, airport facilities, border and port-of-entry facilities as well as other national
security applications that require reconstructions from projection data such as X-ray images.
This work also provides a great opportunity for collaboration with Peter Smith and James
Hunter of Los Alamos National Laboratory as they have a CPU-based reconstruction algo-
rithm called RECON and could be a valuable resource in developing an efficient and usable
algorithm. Peter and James are very well known throughout the Non-Destructive Testing
field as leaders in CT algorithm development and testing. The GPU hardware and software
architecture being investigated in this work will provide expertise in and motivation for an
advanced computing platform that could be a precursor for Sandia National Laboratories
next generation of supercomputers as well as a potential platform for future exascale com-
puting architectures. Creating algorithms and methods that can efficiently utilize thousands
of cores could be used to further understand how to develop algorithms that utilize billions
of cores as Exascale computing dictates. This parallel computing approach mirrors Sandias
future supercomputing development environment and approach. The expected results from
this work are to have an efficient and accurate GPU-based reconstruction algorithm that can
be run in either of two configurations with excellent performance:

1. Single Host / Single GPU

2. Single Host / Multiple GPUs

Technical Risk and Likelihood of Success

Efficiently handling I/O

The first risk associated with this work is the data management. Specifically, efficiently
handling I/O at every level of the system (network, disk, memory, device memory, cache,
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etc.). This will be dealt with by implementing asynchronous memory transfers and high
data reuse by fine-grain multi-threaded parallelism. High data reuse will also minimize disk
I/O.

GPU-based Algorithm Design

Developing a GPU-based algorithm that has traditionally been approached in a CPU-
based environment is certain to be a risk in this work. This work will utilize Nvidia Corpo-
rations CUDA programming environment that allows easier access to GPU programming for
non-graphics programmers. The PI for this project has a background in CUDA programming
and algorithm development in a GPU context.

The CUDA Environment

Using a proprietary programming environment could potentially cause conflict for future
supportability if the company was to stop supporting the environment. Since GPGPU
programming has come into the mainstream, Nvidias CUDA programming environment
has been by far the most popular, mature, and stable environment compared to the other
alternatives for non-graphics programmers (such as OpenCL and DirectCompute). Nvidia
has expressed enthusiasm about its programming environment and support is strong.

Qualification of the Team to Perform This Work

Edward Jimenez received his PhD in Applied Mathematics at the University of Arizona in
2010 and has extensive knowledge in mathematical modeling, optimization, multi-threaded
and high-performance computing. Additionally, Edward was a student intern at SNL (Org.
1522 - Experimental Dynamics/Non-Destructive Evaluation and Model Validation) for 4
years in various CT-related projects under the guidance of Kyle Thompson. Kyle Thompson
has been at SNL for over 25 years and is well known throughout the NDE and weapons
community as an expert in CT imaging. Kyle will provide CT datasets as well as guidance
in determining approaches to the proposed work.

17



18



Chapter 2

An Irregular Approach To Computed
Tomography

Introduction

While much work has been done on applying GPU technology to computed tomography
(CT) reconstruction algorithms, many of these implementations focus on smaller datasets
that are better suited for medical applications. This paper proposes an irregular approach to
the algorithm design which utilizes the GPU hardware’s unique cache structure and employs
small x-ray image data prefetches on the host to upload to the GPUs while the devices are
operating on large contiguous subvolumes of the reconstruction.

This approach will improve the overall cache hit-rates and thus improve the performance
of the massively multi-threaded environment of the GPU. Overall, utilizing small prefetches
of x-ray image data improved the volumetric pixel (voxel) processing rate when compared
to utilizing large data prefetches which would minimize data transfers and kernel launches.
Additionally, this approach does not sacrifice performance on small datasets and is thus
suitable for medical and industrial applications. This work utilizes the CUDA programming
environment and Nvidiaś Tesla GPUs.

Cone-beam Computed Tomography (CT) is an indirect 3D imaging technique in which a
set of 2D x-ray projection images are used to reconstruct the internal and external structure of
the imaged object [2]. Many industrial applications of Cone-beam Computed Tomography
acquire a very large number (usually greater than 900) of x-ray projection images taken
around an axis of rotation [10]. Large-sized reconstructions for this work can mean the x-ray
image projections are numerous, the x-ray projections are high-resolution, the volume to be
reconstructed is high-resolution, or any combination thereof.

CT reconstructions require significant computation and, in many cases, expensive com-
puting resources. The popular FDK (Feldkamp) 3D reconstruction algorithm has compu-
tational complexity O(n4) [8, 25]; work by Xiao et. al. [23] and Axelsson et. al [1] have
reduced the complexity to O(n3 log(n)), but even with this improvement, computation for
large-scale datasets can still require days to weeks to complete using high-end workstations.

Over the past thirty years, various methods have been investigated to improve the com-
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putational speed of CT reconstructions including the use of supercomputers, dedicated hard-
ware (ASIC, FPGA, etc), and commodity graphics processing units (GPU) [24]. Currently,
the GPU is the most cost effective and versatile. Computed Tomography can be thought of
simply as a set of pixel and voxel (volumetric pixel) operations and thus is not a far reach to
consider the massively parallel architecture of the GPU. The GPU employs a SIMD (single
instruction multiple data) programming model with large- and small-grain parallelism[22].
Driven mainly by the Gaming and CAD industry, investment in GPU-technology is unpar-
alleled and has exhibited performance growth that triples Moore’s Law[24].

There has been extensive work done on applying GPU technology to various CT al-
gorithms [17, 26, 25, 24] with tremendous computation time improvements realized when
compared to traditional CPU-based implementations. However, much of the development
of the GPU algorithms focus on medical datasets which are typically an order of magni-
tude smaller than industrial CT datasets. The majority of medical CT datasets consist of
1283 − 10243 voxels and 300-1000 x-ray image projections. The number of acquired x-ray
projection images and the resolution is balanced by the need to minimize radiation exposure
to the patient.

For industrial CT applications, radiation exposure is typically not a concern as it is with
medical applications and often object density will require long exposure times. With the
exposure constraint relaxed, it is not uncommon for industrial datasets to reach 40003 voxels
and approximately 2000 projections. Unfortunately, much of the medical literature on GPU-
based CT assume that either the volume, x-ray projection data, or both can entirely reside
on the GPU device memory simultaneously. This is not possible in most large-scale (i.e.
industrial) reconstructions and thus a blocking algorithm that blocks both the volume and
the x-ray projection data is necessary.

This paper will present a technique for large-scale CT reconstruction that implements
an irregular approach to the pixel and voxel operations that maximizes voxel throughput
for large-scale datasets. Two large synthetic datasets will be presented; the first consists of
1800 16-megapixel x-ray projection images reconstructed into a 4000 × 4000 × 4000 voxel
volume (64 Gigavoxels); this case is representative of real-world industrial CT datasets, the
second consists of 10,000 100-megapixel images reconstructed into a 10000× 10000× 10000
voxel volume (1 Teravoxel); this dataset was chosen to show that this approach is capable
of handling future-sized datasets.

Approach

When approaching a massively parallel problem, one must be aware of the various bot-
tlenecks that are not typically present in single-threaded algorithms. One major bottleneck
in GPU computing is the data transfer between host and device. The typical approach to
alleviate this bottleneck is to minimize the total number of data transfers [4].

If one were to follow this scheme for the reconstruction of a given subvolume, then it
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would be desirable to fit large amounts of x-ray data per kernel launch and thus minimizing
the number of x-ray data uploads to the GPU necessary to reconstruct the given subvolume.
Furthermore, one could utilize host pinned-memory to maximize data transfer speeds [22].
On the surface, this should guarantee minimal interruption during voxel processing.

The issue with the approach described above is two-fold. First, allocating large amounts
of pinned-memory on the host is normally not allowed by the operating system. Second, for
a given subvolume and a relatively large amount of x-ray data, the memory access pattern
on the x-ray data may become scattered and thus hindering kernel performance.

Much of the work done in the past has addressed this by utilizing read-only texture mem-
ory which utilizes texture cache and fast bilinear interpolation [17]. Utilizing this approach
for large-scale reconstruction still results in scattered reads and poor performance as the
texture cache-hit rate is very low. Scattered memory access patterns are mostly caused by
two factors. First, if the geometrical configuration of the imaging system is set up for sig-
nificant magnification, then the interpolation coordinates for neighborhoods of voxels could
be spread out over a large portion of a given x-ray image. Second, thread execution order
could have a measurable effect on computationally efficiency as different threads in a warp
could potentially be accessing x-ray data from different projection images.

Irregular Approach

The combination of large-scale data, blocked x-ray data, and blocked subvolumes sud-
denly makes CT an irregular problem. CT algorithms transfer a large number of bytes from
both the volume and the x-ray data, but are also very computationally expensive at O(n4).
The massively parallel environment and imaging system configuration has the potential to
create little data locality. Additionally, the amount of x-ray data necessary to reconstruct
a given subvolume is dependent on the location of the subvolume with respect to the entire
volume, and thus a dynamic approach to subvolume size determination is necessary. Tra-
ditional CT algorithms typically reconstruct by slices, which are defined as coplanar sets of
voxels. In this work, a subvolume is a set of consecutively ordered slices and will be referred
to as a slice block.

The approach presented does not focus on data transfer minimization, but instead, tex-
ture cache-hit rate improvement by reducing the amount of x-ray image data uploaded at
once combined with data prefetching. A paper by Mowry and Gupta which looked at an
irregular application showed that performance could be improved with an intelligent data
prefetching approach which focused on improving the cache-hit rate of the application [18].
Additionally, work done by Lam et. al. showed that cache interference in blocked algorithms
can have a significant performance degradation for a given machine[15]. Overall, five aspects
of the algorithm design, which uses the CUDA programming environment, will be addressed.
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Massive Parallelism

The computational intensity of the CT algorithm necessitates a massively parallel envi-
ronment. For this application, a slice block with s slices and N voxels per slice will require N
computational threads, where each thread is responsible for processing s voxels in the sub-
volume. More specifically, a thread is responsible for a column of voxels in the subvolume,
one on each slice. The thread will loop over all images in the image subset present in the
GPU memory for given slice before advancing to the next slice. This approach helps to keep
the memory access pattern somewhat coalesced, potentially increasing the cache hit-rate,
and also allows for only one voxel update to global memory per kernel launch.

Texture memory/Texture cache

This approach will utilize the Texture/L2/Global memory hierarchy available on the GPU
to improve the bi-linear interpolations on the x-ray image as this is the main computational
burden in the FDK algorithm. Utilizing texture memory for x-ray image data is not a new
idea and is key to many GPU-based CT algorithms [17, 26, 25, 24]. However, this approach
utilizes small texture memory allocations for the x-ray data in relation to the allocations used
for the subvolumes so that a larger fraction of the texture memory fits within the texture and
L2 caches. As fetches from texture and L2 cache are up to two orders of magnitude faster
than fetches from GPU global memory, this approach will improve overall voxel processing
throughput by decreasing the time to fetch information from the x-ray projection data as
well as reducing memory traffic on the GPU global memory bus. Texture memory also has
the benefit of allowing one to utilize fast hardware-based low-precision bilinear interpolation
to improve computational speed.

Constant Memory

Constant memory on the GPU is another type of cache specific to GPU hardware that
is user-specified. This cache is also orders of magnitude faster than global memory and
is ideal for variables that are shared across threads. For this implementation, geometrical
information about the imaging system that is needed for the reconstruction computation is
stored here, further reducing the demand on the global memory bus.

Data Prefetching to Pinned-Memory

While the GPU device is operating on an x-ray image subset, the CPU is prefetching the
next image subset to a pinned-memory region that will be uploaded to the GPU. The x-ray
image dataset will already be loaded in main memory with the pinned-memory region being
separate from the global x-ray data. Smaller pinned-memory allocations greatly increases
the chance that the allocation will be successful. As mentioned earlier, pinned-memory
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increases data throughput on data transfers, and prefetching while the kernel is executing
will guarantee that pauses between kernel launches are kept to a minimum.

Dynamic Task Partitioning

One desirable feature of this algorithm is for it to be scalable with respect to the number
of GPUs present on the system. In order for this algorithm to be scalable from one to
many GPUs, it must maximize all GPU memory resources to ensure that the GPUs are
as busy as possible. It was mentioned above that the amount of x-ray data varies with
respect to the location of the slices in the global reconstruction. Additionally, GPU memory
values vary greatly between GPU models and configurations. This results in the need for a
dynamic partitioning scheme. The overall partitioning approach will maximize the number of
contiguous slices that can reside on a particular GPU and use the remaining memory available
for the x-ray image data. This will determine the number of kernel launches necessary to
fully reconstruct the subvolume on the GPU. If at least one x-ray projection image does
not fit on the remaining memory, then the number of slices on the GPU is reduced by one
and the process is retried. The minimum requirement for this algorithm is that the GPU fit
at least one slice and its x-ray subimage that contains the partial projection image that is
necessary for the computation.

Computation Ordering

When developing a kernel algorithm, one needs to be aware that accessing a register
consumes zero extra clock cycles per instruction, but latencies may occur due to register
read-after-write dependencies. At approximately 24 clock cycles for Nvidia GPUs, these
latencies could be very significant when processing millions of voxels simultaneously [5].
The massive number of threads helps to cover this latency but may not be enough for all
configurations. The instruction ordering of the kernel is designed such that it minimizes to
the need to immediately access a variable it just computed as well as reducing the Register
pressure to ensure that no values in register are being cached to the GPU global memory.

Implementation

This GPU-based approach is implemented using Nvidiaś CUDA programming environ-
ment and C++. The kernels developed for this application are written such that any Nvidia
graphics processor with at least 1 GB of device memory and at least Fermi architecture is
capable of performing a reconstruction provided at least one slice and one x-ray image subset
(consisting of at least one x-ray subimage) can reside in memory.

Other kernels developed, but not presented in this work, include slightly less efficient
implementations that guarantee a kernel runtime of less than two seconds to allow GPUs that
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are subject to display timeout restrictions to run larger reconstructions. This implementation
can allow for 1 to 8 GPUs to run on a single system using OpenMP 2.0. For this work, assume
that all x-ray image data is resident on the host memory (this work makes no claims on disk
I/O performance and will be addressed in future work).

The dynamic task partitioning is determined by a slice-to-texture ratio (STR) that is
configured using a parameter in an input file. This ratio tells the application to attempt
to fit the data on the device memory in such a way that the number of simultaneously
reconstructed slices to the total number of image subsets satisfies the given ratio as closely
as possible. There are three possible reasons why this ratio may not be satisfied exactly:

• Resource Maximization: The partitioning function will maximize device memory
usage. Any remaining memory after allocation will be utilized for additionally x-ray
image data. This was implemented since some system configurations allow for multiple
GPUs to be connected to a single PCI-E bus and therefore this approach would help
alleviate the pressure on the PCI-E bus. This will not dramatically affect the STR for
most cases, therefore will not be a significant performance hit.

• Reconstruction Size: The minimum requirement for this application in the task
partitioning phase is that at least one x-ray subimage and one volume slice fit on the
device memory. It is possible for the reconstruction configuration to be awkwardly
sized for a particular memory configuration of a GPU. A simple example would be
a GPU with 2GB of available memory with a reconstruction task of one 1 GB slice
with a 700 MB x-ray subimage; although this would easily fit within the 2GB limit,
there is still hundreds of megabytes available but yet not enough to allow for an extra
subimage and/or volume slice.

• Tail-End of Reconstruction: If the remaining work left to be performed by the GPU
is much smaller than what the GPU is capable of computing at once, the resource maxi-
mization requirement would load extra x-ray images onto the device memory. This will
only occur once per reconstruction and has very little impact on large reconstructions.

Algorithm 3 gives a general description to the dynamic task partitioning as well the the
kernel launch approach to the reconstruction of a given slice block. With the exception
of Step 5a, all steps are performed by the CPU. Algorithm 3 executes independently for
each GPU present on the system with the only atomic operation occurring at step 8. No
synchronization between CPU threads (or between GPU threads for that matter) is necessary
allowing for maximum performance.

Algorithm 4 describes the layout of the kernel computation for a given slice block and
x-ray image subset where the ordering of the loops provide improved cache-hit rates as well
as global memory traffic.
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Algorithm 1 Dynamic Determination of GPU Task

while Reconstruction task queue not complete do
Step 1: Query GPU memory resources available
Step 2: Determine task partitioning given GPU memory resources and slice-to-texture
ratio
Step 3: Allocate/Initialize Memory resources on CPU and GPU
Step 4: Upload reconstruction geometry information to GPU constant memory
Step 5:
for all image subsets do
-Upload image subset data from host to device texture memory
-Upon completion of upload, execute (a) and (b) simultaneously:
(a) GPU: Update slice block with image subset information via FDK kernel
(b) CPU: Prefetch next image subset. If last subset, free pinned-memory.
-Synchronize tasks (a) and (b)

end for
Step 6: Download slice block voxel information to host (storage optional)
Step 7: Free GPU memory resources
Step 8: Update reconstruction task queue

end while

Algorithm 2 FDK Kernel Layout

-Get thread id and voxel positions p1, . . . , ps based on id

if Thread id position within ROI then
for Every slice j in slice block do
-Set register value to zero
for Every image i in image subset do
-Determine texture interpolation coordinate within image i

-Update register value with texture fetch and scaling information
end for
-Update voxel pj in global memory with register value

end for
end if

Evaluation

The experiments were performed on a high-end workstation that consists of dual hexacore
Intel Xeon X5690 processors clocked at 3.46GHz with hyper-threading for a total of 24 virtual
CPU cores, 192 GB RAM and 2 Nvidia S2090 devices connected via 4 PCI-E 2.0 x16 host
interface cards. Each S2090 unit contains 4 Tesla M2090 GPUs with 6 GB of GDDR5
memory apiece.

Each M2090 GPU contains 16 streaming multiprocessors (SM) that share a common
L2 cache of 768 KB. The L2 cache services all load, store, and texture operations. Each
SM contains 32 compute cores, 48 KB L1 cache, 8 KB constant memory cache, and 8 KB
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texture cache. Note that for the M2090, the L1 cache and shared memory are configurable
to different sizes that can be determined by the user at compile time. The L1 cache was
maximized in this work (thus minimizing shared memory) as shared memory was not utilized
for the reconstruction algorithm.

Timers used to calculate voxel processing throughput are CPU-based and include the
time needed for all memory transfers, kernel launches, and prefetching operations necessary
to completely reconstruct the given voxel subvolume assigned to the task. Voxel throughput
was measured using two datasets; the first is 4000×4000×4000 voxel (64 Gigavoxels) volume
reconstructed from 1800 16-megapixel x-ray projection images where the measurements were
taken about the center 2000 slices, the second is 10000× 10000× 10000 voxel (1 Teravoxel)
volume reconstructed from 10000 100-megapixel x-ray projection images where the measure-
ments were taken on the center 100 slices of the volume. Measurements were taken for both
datasets using 1 GPU and 8 GPUs. The kernels were compiled using CUDA version 4.1 and
the CPU-based code was written in C++ using the Visual Studio 2008 C++ compiler.

The various cache hit-rates were measured using Nvidiaś performance evaluation tool
NSight. Kernel performance was measured on a single x-ray image subset using the 64-
Gigavoxel dataset. Cache hit-rates could not be measured on the 1 teravoxel dataset due to
NSight software limitations.

Results

Figure 2.1 illustrates voxel processing throughput of various subvolumes in the 64 gi-
gavoxel dataset for various given slice-to-texture ratios (STR). The plot on the left shows
that for one GPU, voxel throughput clearly benefits from small STR values with throughput
peaking at STR ≈ 1.8 with a throughput of 17.5 megavoxels per second. The average voxel
throughput for STR ≤ 10 is 15.84 megavoxels per second and the average voxel throughput
for STR values greater than 10 was 10.21 megavoxels. The plot on the right side of figure
2.1 shows voxel throughput for a various subvolumes on an 8 GPU system. On average,
voxel throughput still benefits from smaller STR values with an average voxel throughput of
13.11 megavoxels per second for STR ≤ 10; for STR > 10, voxel throughput dramatically
decreases to 4.54 megavoxels per second for a subvolume. Note that for the 8 GPUs case
that with large STR values the computation time for a subvolume is highly variable when
compared to smaller STR values so the average values are not necessarily representative of
typical performance. It is likely that the observed variance in data-points in figures 2.1 and
2.2 are due to various systems sources such as thread context switching, PCI-E bus pressure,
and the GPUs themselves.

Figure 2.2 shows voxel processing throughput for subvolumes of the teravoxel dataset
using various STR values. Since this dataset is extremely large (both in projections and
volume), fewer STR values could be realized and therefore results are not as dramatic in
throughput as with the 64 gigavoxel dataset but are still significant. For 1 GPU (left plot
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Figure 2.1. Left: Reconstructed Voxel Throughput for 64
Gigavoxel Dataset using 1GPU, Right: Throughput using 8
GPUs

on figure 2.2), voxel throughput peaks at just under 0.51 megavoxels per second for a STR

value of 0.52. For STR ≤ 0.9, average throughput was about 0.497 megavoxels per second
and 0.471 megavoxels per second for STR values greater than 0.9. On a system with 8 GPUs
(right plot on figure 2.2), the performance is more variable but performance differences can
still be observed with respect to STR size. The average throughput for STR ≤ 0.9 was 0.46
megavoxels per second and 0.40 megavoxels per second with STR values greater than 0.9.

Figure 2.3 shows various GPU cache hit-rate performances on the 64 gigavoxel dataset
for the reconstruction kernel. The upper plot of figure 2.3 shows the L1 cache hit-rate
performance for various STR values. For this application, L1 cache is mostly populated with
voxel values as well as a few kernel input variables that are used to determine loop length.
As mentioned earlier, voxel values are only updated once per kernel launch. Regardless, the
L1 cache hit-rate peaks for small STR values at 2.1% and decreases to 0.1% for STR values
greater than 7.

The lower plot on figure 2.3 shows L2 and texture cache hit-rate performance. Although
the texture cache hit-rate does not vary much with varying STR, it does peak at 70.4% for
the smallest achievable STR of about 0.47. The L2 cache clearly suffers from larger STR

values, for STR values less than 1, L2 hit-rates are between 75 and 60% and as low as 10%
for an STR value of 10.
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Figure 2.2. Left: Reconstructed Voxel Throughput for
Teravoxel Dataset using 1GPU, Right: Throughput using 8
GPUs

Conclusion

When viewed from a traditional approach, CT reconstruction is not an irregular prob-
lem and has excellent spatial locality. However, when utilizing GPU technology, one can
lose spatial locality if the reconstruction is large and entire subvolumes are simultaneously
reconstructed. This is due to the geometrical configuration of the imaging system and the
unpredictable thread execution ordering. This work has shown that a CT reconstruction
algorithm for GPUs can clearly benefit from an irregular approach for large-scale datasets
by prefetching small batches of x-ray projection data and launching many kernels. This
approach increases voxel throughput when compared to a partitioning method that only
seeks to minimize data transfer uploads and kernel launches as is the common practice when
creating GPU-based algorithms.

The main goal was to improve cache hit-rates to improve kernel performance. Utiliz-
ing texture cache exclusively for x-ray projection data as well as utilizing hardware-based
interpolation improves computational performance dramatically but performance is highly
dependent on the cache hit-rates. This method can be used for large and small CT recon-
struction tasks and maximizes performance for arbitrarily sized datasets. This work shows
that smaller STR values are preferable over larger values; however, arbitrary STR values
are not achievable due to various geometrical configurations as well as varying datasets sizes.
It is possible to contrive a diabolical set in which only larger STR values (≥ 1) are possible,
however has not seemed to appear frequently in practice. In practice, maximizing the slice
block in device memory tends to create the lowest STR values.

This work did not present any comparisons of ”medical scale” datasets to other systems
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Figure 2.3. Upper: L1 Cache hit-rate for reconstruction
kernel. Lower: L2 and Texture Cache hit-rate for reconstruc-
tion kernel

since much of the literature on GPU-based medical CT tended to either use older generation
GPU hardware or the algorithms implemented were not the traditional FDK algorithm used
for this work (much of the medical datasets are helical scans). Our algorithm is able to
reconstruct sub-gigabyte datasets (≈ 8003 voxels using 720 projections) at a rate of 30 slices
per second per GPU.

For the general GPGPU community, this work has shown that regular CPU algorithms
that are ported over to GPU environments may not result in a regular GPU algorithm.
Although it is generally recognized that porting software for GPGPU application does not
guarantee optimal performance, much of the literature suggests broad recommendations,
such as minimizing memory transfers, when in fact one should consider possibly entirely
different approaches that may have previously considered inefficient for CPU-based environ-
ments.
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Chapter 3

Rethinking CT Reconstruction and
GPGPU Computing

Introduction

In the previous chapter, claims were made of kernel optimizations without demonstrating
to the reader how significant these optimizations can impact performance metrics. This
chapter will focus on emphasizing the importance of kernel design and how this design
differs from a traditional CPU-based design; this chapter will present the utilization of
the massively multi-threaded environment of graphics processors (GPUs) to improve the
computation time needed to reconstruct large computed tomography (CT) datasets and
the arising challenges for system implementation. Intelligent algorithm design for massively
multi-threaded graphics processors differs greatly from traditional CPU algorithm design.
Although a brute force port of a CPU algorithm to a GPU kernel may yield non-trivial
performance gains, further measurable gains could be achieved by designing the algorithm
with consideration given to the computing architecture. Previous work has shown that CT
reconstruction on GPUs becomes an irregular problem for large datasets (10GB-4TB)[12],
thus memory bandwidth at the host and device levels becomes a significant bottleneck for
industrial CT applications. We present a set of GPU reconstruction kernels that utilize
various GPU-specific optimizations and measure performance impact.

CPU-Based Reconstruction and Porting to GPUs

The CUDA programming environment, as well as other GPU-programming languages
(OpenCL, DirectCompute, etc.), have made GPGPU technology readily accessible to a large
portion of the scientific computing community. Frequently, an honest first attempt to imple-
ment an algorithm on a GPU is to perform a brute force port of a CPU-based approach to a
GPU-based implementation. It has been the experience of the authors that a blind CPU-to-
GPU port of a properly parallelized algorithm will frequently yield a speedup in computation
by a factor between 2× and 6×. This type of performance gain is typically sufficient for many
small-scale applications and thus the added effort to exploit the GPU-specific hardware does
not benefit the user significantly.
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A CPU-based reconstruction will typically loop over the projection data and iteratively
update a single voxel on a given image plane. This process is repeated for every voxel on
every image plane. For a multi-core CPU with n threads, the process is similar with the
exception that n voxels are simultaneously updated. Currently, a typical system has an n

that ranges from 2 to 32.

A simple GPU-ported kernel would allocate a computation thread for every voxel on an
image plane and update each voxel in parallel with the given x-ray projection data iteratively.
A CPU-based routine would loop over the image planes with a nested loop within iterating
over projection data. Thus, for a reconstruction with N image planes and M projections,
the kernel would be launched MN times.

Algorithm 3 CPU Kernel Launcher

Input: Projection Images (P1, P2, . . . , PM), Scan Geometry (G), Voxels Per Image Plane
(n)

Output: Voxelized Volume Reconstruction I1, I2, . . . , IN
for Every image plane Ii do
Allocate memory on GPU Device for Ii
Initialize all values in GPU allocated array Ii to 0
for Every Projection Image Pj do
Allocate memory on GPU Device for Pj

Upload Pj to GPU Device
Launch Ported Kernel with n GPU threads (see algorithm 4)
Free Pj on GPU Device

end for
Download Ii from GPU Device
Free Ii on GPU Device

end for

Algorithm 4 Ported Kernel

Input: Ii,Pj ,G
Output: Ii updated with data from Pj

Get thread id and designated voxel in Ii
if Voxel in Region of Interest then
Calculate back-projection path position, ~b, within Pj

Calculate bilinear interpolation weights, ~w
Calculate 2D interpolation on Pj based on ~w and ~b

Update designated voxel in Ii
end if

Algorithms 3 and 4 are a possible implementation of a ported version of reconstruction.
The largest performance gain is realized from performing the bilinear interpolation for every
voxel in parallel. The most undesirable traits of the implementation is the large amount
of data uploads, downloads, and kernel launches required. Each of these operations has
significant overhead that sacrifices performance [5].
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Exploiting Massive Thread Environments Properly

Algorithms 3 and 4 are an example of a brute force implementation that requires minimal
effort in porting over to a graphics processor. The next reasonable step would be to transplant
the nested for-loop in algorithm 3 into the GPU kernel. Transferring the for-loops over to the
kernel is desirable as this would reduce the number of kernel launches required to complete
the reconstruction task as well as allowing the GPU to execute for longer periods of time
which would improve the voxel processing throughput.

To implement the modification, one must still consider the almost arbitrary scan config-
urations and acquisition hardware. Thus, it is very likely that the entire projection dataset
as well all imaging planes could not entirely reside on the device memory simultaneously.
Therefore, a projection data and subset of image planes will instead be used where the
projection block contains a subset of the relevant projection images and the image plane
block will contain the image planes that will be processed simultaneously. For large-scale
reconstructions, this implementation will iterate over all image plane blocks and projection
data blocks.

Algorithm 5 CPU Kernel Launcher (Block Scheme)

Input: Projection Images (P1, P2, . . . , PM), Scan Geometry (G), Voxels Per Image Plane
(n)

Output: Voxelized Volume Reconstruction I1, I2, . . . , IN
Determine blocking of projection data (BP

1
, BP

2
, . . . , BP

M ′)
Determine blocking of image blocks (BI

1
, BI

2
, . . . , BI

N ′)
for Every image block BI

i do
Allocate memory on GPU Device for BI

i

Initialize all values in GPU allocated array BI
i to 0

for Every Projection image block BP
j do

Allocate memory on GPU Device for BP
j

Upload BP
j to GPU Device

Launch Blocked Kernel with n GPU threads (see algorithm 6)
Free BP

j on GPU Device
end for
Download BI

i from GPU Device
Free BI

i on GPU Device
end for

Algorithms 5 and 6 implement the blocking scheme discussed above, note that the CPU-
based kernel launcher is essentially unchanged except for two-partitioning tasks and the
nested for-loops now iterate over blocks of image planes (sub-volumes) and projection image
blocks. Any blocking scheme can be used to accommodate any data format. The kernel
presented in algorithm 6 will now take in blocked data, each of the n GPU threads launched
will be assigned a subset of voxels to update with the projection data in BP

j . Note that one
could also launch more GPU threads on the GPU so that the outer for-loop in the kernel can
be completely eliminated. We contend that for large-scale data, the performance difference
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Algorithm 6 Blocked Kernel

Input: BI
i ,B

P
j ,G

Output: BI
i updated with data from BP

j

Get thread id and designated voxel in each image plane in BI
i

if Voxels in Region of Interest then
for Each Image Plane Ih in BI

i do
for Each Projection image Pk in BP

j do

Calculate back-projection path position, ~b, within Pk

Calculate bilinear interpolation weights, ~w
Calculate 2D interpolation on Pk based on ~w and ~b

Update designated voxel in Ih
end for

end for
end if

is likely negligible as the management of the increased number of GPU-threads becomes
burdensome and GPU memory bus would be over-saturated.

GPU Hardware Interpolation

As mentioned earlier, the bilinear interpolation in the reconstruction algorithm is compu-
tationally expensive. One of the features of GPUs that differs from CPUs is hardware-based
interpolation capabilities. The potential drawback is that for current technology, hardware-
based interpolation is done in 24-bit precision [4] which differs from the 32- or 64-bit precision
that is frequently used. Fortunately, many imaging and inspection applications only utilize
16-bit precision. Thus, as long as a numerically stable approach is implemented, then preci-
sion will remain adequate.

To utilize the interpolation hardware, the projection data must be uploaded to the GPU
as a read-only texture array. For current state-of-the-art, utilizing texture arrays allows for
the kernel to utilize fast texture cache on the GPU for a potential boost in performance. To
accommodate multiple projection images, one could utilize either multiple textures, a large
texture with tiled projection images, or layered textures [4, 5], depending on the particular
device being utilized.

Algorithms 7 and 8 implement algorithms 5 and 6 except they exploit the hardware
interpolation capabilities of the GPU. Note that in algorithm 7, the projection data block is
now allocated outside of the nested for-loop. The texture array is updated and reused during
reconstruction. This allows for a reduced number of memory allocation and deallocations.
Algorithm 8 has been simplified by eliminating the calculations of the weights ~w and the 32-
or 64-bit interpolation operation and replacing it with a single texture fetch.
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Algorithm 7 CPU Kernel Launcher (HW Interpolation Scheme)

Input: Projection Images (P1, P2, . . . , PM), Scan Geometry (G), Voxels Per Image Plane
(n)

Output: Voxelized Volume Reconstruction I1, I2, . . . , IN
Determine blocking of projection data (BP

1
, BP

2
, . . . , BP

M ′)
Determine blocking of image blocks (BI

1
, BI

2
, . . . , BI

N ′)

Allocate texture memory on GPU Device for largest BP
j ∈

{

BP
1
, BP

2
, . . . , BP

M ′

}

for Every image block BI
i do

Allocate memory on GPU Device for BI
i

Initialize all values in GPU allocated array BI
i to 0

for Every Projection image block BP
j do

Upload BP
j as a texture to GPU Device

Launch Blocked Kernel with n GPU threads (see algorithm 8)
Free texture BP

j on GPU Device
end for
Download BI

i from GPU Device
Free BI

i on GPU Device
end for
Free Texture memory allocated on Device

Algorithm 8 HW Interpolation Kernel

Input: BI
i ,G

Output: BI
i updated with data from texture BP

j

Get thread id and designated voxel in each image plane in BI
i

if Voxels in Region of Interest then
for Each Image Plane Ih in BI

i do
for Each Projection image Pk in BP

j do

Calculate back-projection path position, ~b, within Pk

Perform texture fetch from Pk at position ~b

Update designated voxel in Ih
end for

end for
end if

Register and GPU-Cache Optimization

Our final evolution of the reconstruction task is the implementation presented in Jimenez
et al.[12]. This implementation involves improving algorithmic execution by minimizing
wasted clock cycles on the device. To accomplish this, we exploit the following:

• GPU Memory Utilization

• Register Optimization
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• Constant Memory

• Device Global Memory Fetches

Each will be addressed separately.

GPU Memory Utilization

Instead of uploading entire projection images, only relevant projection image data from
a given projection block is uploaded. Determining relevant data is a trivial calculation and
should have negligible effect on performance. The elimination of irrelevant projection data
will improve the texture cache hit-rates as well as improve the utilization of device resources.

Register Optimization

When calculating ~b, the order in which the calculations are executed as well as how many
variables are utilized could potentially affect performance due to read-after-write dependen-
cies and register pressure. Read-after-write dependencies have a latency of approximately
24 clock cycles for Nvidia GPUs [5]. Additionally, we implement a kernel such that register
pressure is minimized as much as possible. This is achieved implicitly by the combination of
optimizations in the list above.

Constant Memory

Until now, no mention of the parameters contained in ~G have been made. The vector
~G contains the scan geometry information (detector properties, source-to-detector distance,

source-to-object distance, etc.). Throughout the reconstruction, ~G is fixed and is used in the

calculation of ~b. Therefore, we propose moving ~G into constant memory, which is a very fast
user configurable cache that is disjoint from the L1- and L2-cache; thus reducing the traffic
that goes through both cache levels.

Device Global Memory Fetches

When updating voxel information, memory bandwidth can be preserved by only updating
voxel information when necessary. During iteration through projection data, a register will be
updated, after these iterations complete, one voxel update is performed. The improvements
are two-fold, not only is device bandwidth preserved for texture fetches, but also allows the
L2-cache to more effectively feed the texture-cache.
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Final Evolution

Algorithms 9 and 10 show an optimized implementation of the reconstruction task. Note
that the kernel now only requires a single input due to the texture implementation of the
projection data and the constant memory assignment of the scan geometry parameters.
This implementation will reduce the number of wasted clock cycles by providing a memory
access scheme that keeps each GPU multiprocessor occupied with work. The approach to
avoid read-after-write dependencies will be highly variable in its implementation due to the
different schemes for each particular reconstruction algorithm.

Algorithm 9 Final CPU Kernel Launcher Optimized

Input: Projection Images (P1, P2, . . . , PM), Scan Geometry ( ~G), Voxels Per Image Plane
(n)

Output: Voxelized Volume Reconstruction I1, I2, . . . , IN
Determine blocking of projection data (BP

1
, BP

2
, . . . , BP

M ′)
Determine blocking of image blocks (BI

1
, BI

2
, . . . , BI

N ′)

Upload ~G to GPU Constant Memory
for Every image block BI

i do
Allocate memory on GPU Device for BI

i

Initialize all values in GPU allocated array BI
i to 0

Allocate texture memory on GPU Device for largest relevant projection block needed
for Every Projection image block BP

j do

Determine Relevant Projection Data in BP
j , B

′P
j

Upload B′P
j as a texture to GPU Device

Launch Kernel with n GPU threads (see algorithm 10)
end for
Download BI

i from GPU Device
Free BI

i on GPU Device
Free texture on GPU Device

end for
Free constant memory

Evaluation

All kernel implementations were tested on a high-end single node workstation consisting
of a Supermicro X9DRG-QF Motherboard, 512 GB DDR3 System memory, dual Intel Xeon
E5-2687W octo-core processors clocked at 3.1 GHz with hyper-threading for a total of 32
CPU threads, and 2 Nvidia/Next-I/O Tesla S2090 Devices connected via 4 PCI-E 2.0 16x
host interface cards. Each S2090 device consists of 4 Nvidia Tesla M2090 GPUs with 6GB
of GDDR5 device memory and 16 multiprocessors each for a total of 2048 CUDA cores per

37



Algorithm 10 Final Kernel Optimized

Input: BI
i

Output: BI
i updated with data from texture BP

j

Get thread id and designated voxel in each image plane in BI
i

if Voxels in Region of Interest then
for Each Image Plane Ih in BI

i do
Set register to zero
for Each Projection image Pk in BP

j do

Calculate back-projection path position, ~b, within Pk while minimizing read-after-
write dependencies
Perform texture fetch from Pk at position ~b

Update register with texture fetch data
end for
Update designated voxel in Ih with register value

end for
end if

S2090. For this work, only 1 M2090 GPU will be used to minimize performance influence
from the host.

Each kernel’s performance will be measured against two datasets; the first is a 40003

voxel volume reconstruction from 1800 16 mega-pixel (4000× 4000) images, the second is a
trillion voxel reconstruction from 10, 000 100 mega-pixel (10, 000×10, 000) images. All GPU
kernels were written in CUDA (Version 5.0), host code was written in C++ using Microsoft
Visual Studio 2008. Performance metrics consist of minimum, maximum, and average kernel
runtime with respect to image plane position, as well as kernel runtime variance with respect
to image plane position. As this work solely focuses on individual kernel runtime perfor-
mance, other operations such as data transfers between host and device, and data transfers
from host to storage media will not be measured.

Results

Figure 3.1 shows the average, minimum, and maximum kernel run-times for the 40003 for
each implementation of the kernels. As expected, each evolutionary step of the kernel yields
an incremental performance increase. Note that across all implementations, kernel runtime
increases among the central image planes of the volume, this is due to more projection data
being processed per kernel launch and is expected. In order to allow comparisons to the
ported kernel implementation, all performance times were normalized with respect to the
projection blocks used for the other three kernels. Figure 3.2 contains the variances of the
kernel runtimes for each kernel. Notice that the fully optimized kernel (algorithm 10) is
the only kernel with significantly lower variance, this implies that not only is algorithm 10
fast (figure 3.1), but also behaves more consistently across the entire reconstruction volume.
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Figure 3.3 illustrates the incremental performance increase of the fully optimized version
compared to all other implementations. We see that the overall performance improvement
compared to the first implementation was almost a factor of 3.

Figure 3.4 displays the kernel runtimes for the center 100 image planes for the trillion
voxel reconstruction. Runtimes are longer due to the increased computational expense. The
results are still consistent with those observed in figure 3.1. The variance behavior of the
trillion voxel dataset (shown in figure 3.5) is somewhat similar to that displayed for the 40003

dataset in that the fully optimized version exhibits the most consistent performance. Finally,
figure 3.6 shows a slightly better performance improvement for the fully optimized kernel
compared to the other kernels. This is due to the increased computational complexity and
opportunity for parallelization. Also, the trillion voxel reconstruction will stress the limits
of the hardware thus making discrepancies in performance more prevalent.

Conclusion

We have shown that GPUs can achieve a nontrivial increase in performance by properly
utilizing GPU threads, specialized GPU hardware, and exploiting the unique cache structure
to the advantage of the algorithm. This work has the potential to impact GPU applications
in Green Computing, smart algorithm design, and high-performance computing. Many ap-
plications are not realizing the full effect of GPGPU technology, as this work is an example of
the relatively minimal effort needed to redesign an algorithm and achieve significant perfor-
mance gains. Many problems are arising where smart algorithm design will have a significant
impact on power efficiency, performance, and computational time. This is especially true for
new and emerging non-CPU computing architectures.
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Figure 3.1. Average kernel runtimes with respect to image
plane index for the 40003 voxel volume. Error bars represent
the minimum and maximum runtimes
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Figure 3.2. Average kernel runtimes variance with respect
to image plane index for the 40003 voxel volume.
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Figure 3.3. Average kernel performance improvement with
respect to image plane index for the 40003 voxel volume.
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Figure 3.4. Average kernel runtimes with respect to image
plane index for the center image planes of a 100003 voxel
volume. Error bars represent the minimum and maximum
runtimes
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Figure 3.5. Average kernel runtimes variance with respect
to image plane index for the Center image planes of a 100003

voxel volume.
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Figure 3.6. Average kernel performance improvement with
respect to image plane index for the center image planes of a
100003 voxel volume.
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Chapter 4

Reconstructing a Multi-Terabyte CT
Dataset

Introduction

As stated in chapter 1, traditional CT reconstruction algorithms (both GPU- and CPU-
based) focus on reconstructing small-scale medical datasets. Chapters 2 and 3 demonstrated
that the traditional approaches are not sufficient to reconstruct large-scale CT datasets in
a reasonable amount of time. This chapter will look ahead to ”future-sized” datasets. The
high-end for current industrial CT reconstruction tasks typically consist of reconstructing
about 64 billion voxels from 1800 16-megapixel x-ray images. However, current scientific
literature has identified several candidates for 100-megapixel camera; therefore, it may soon
be possible to acquire 10,000 100-megapixel x-ray images as CT input to reconstruct a
teravoxel (1 trillion voxels) volume. This chapter describes a modularized approach which
supports a more efficient utilization of GPU resources and compares performance of this
approach to various CPU- and GPU-based algorithms.

To reconstruct such a massive dataset, such as the one mentioned above, simply adding
extra GPUs would not be an option as memory and storage bottlenecks would result in
prolonged periods of GPU downtime, thus negating performance gains. Additionally, cur-
rent reconstruction algorithms would not be sufficient due to the various bottlenecks in the
processor hardware. Past work has shown that CT reconstruction is an irregular problem for
large-scale datasets on a GPU due to the massively parallel environment. This work proposes
a high-performance, multi-GPU, modularized approach to reconstruction where computa-
tion, memory transfers, and disk I/O are optimized to occur in parallel while accommodating
the irregular nature of the computation kernel. Our approach utilizes a dynamic MIMD-type
of architecture in a hybrid environment of CUDA and OpenMP. The modularized approach
showed an improvement in load-balancing and performance such that a 1 trillion voxel vol-
ume was reconstructed from 10,000 100 megapixel projections in less than a day. While
the reconstruction process is similar in industry and medicine, the datasets used in industry
are around 4, 0003 volumetric pixels (voxels) in size compared to the 1283 − 1, 0003 voxel
volumes in the medical field because medical imaging must limit the patient’s radiation ex-
posure time. The larger datasets require more processing power and computation time and
can require multiple days to complete even on a multi-core, multi-threaded computer. Fur-
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ther, with improvements in Gigapixel camera architecture[6] and new advancements in high
resolution cameras such as those by the European Space Agency[14] and DARPA [7], indus-
trial dataset projections may soon be 100-megapixels (10,000 × 10,000) in size, and, with
our current reconstruction techniques, would not be possible to reconstruct in a reasonable
amount of time.

Many efforts have been attempted to bridge the gap between the processing times of med-
ical and industrial datasets by utilizing the massively parallel architecture of the Graphics
Processor Unit (GPU)[21]. GPUs can provide an orders-of-magnitude performance gain on
highly parallel problems such as CT reconstruction where the same mathematical operations
are done on multiple voxels in parallel[17]. However, even with multiple GPUs, industrial
reconstruction can still take hours to complete, and with larger datasets in the foreseeable
future, the industrial imaging community needs greater processing power and capabilities
to handle such datasets. The näıve solution of adding more GPUs would give diminishing
returns on runtime improvement. This is due to hardware limitations in bandwidth and
memory on both the host and GPU device, adding more GPUs will create a bandwidth
bottleneck and result in prolonged periods of GPU idle time.

One approach described in chapter 2 improves performance on industrial size datasets,
implements an irregular algorithm that exploits the GPUś unique cache structure and exe-
cutes small X-ray data prefetches from the host to the device(s). While this approach, when
using 8 GPUs on a 64 Gigavoxel dataset, roughly tripled voxel throughput compared to a
more direct port of the CPU-based CT reconstruction to GPU kernels, it still experienced
bottlenecks while transferring reconstructed slices from GPU memory onto storage media,
which caused suboptimal GPU utilization since GPUs were idling while waiting for a memory
transfer and storage media write to complete.

This paper will present a further improvement to the previously mentioned irregular
algorithm that takes a modularized, MIMD approach to ameliorate the disk transfer bot-
tleneck and maximize CPU and GPU resource utilization. It will then use the large-scale
(1 Teravoxel), synthetic dataset from Ref. [13] to evaluate the algorithm’s performance and
the GPU scalability in order to predict this method’s applicability to current and future
industrial datasets.

Approach

As mentioned in 4, the approach from Ref. [13] suffered from prolonged GPU idle time
when performing storage operations. The bottleneck was a consequence of stalling GPU
computation while writing the reconstructed image planes to storage media. Although this
freed memory for the next image plane sub-volume, it severely underutilized GPU resources.
The approach outlined in this paper addresses the inefficiency by storing the image planes in
host memory and writing them to storage media in parallel once a GPU has reconstructed its
given sub-volume. After a GPU has transferred its image planes to the host, the next sub-
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volume reconstruction is immediately executed, leading to drastically improved utilization
of the GPU processor.

More specifically, dedicated threads are dynamically allocated on the host machine to
exclusively handle either prefetching the X-ray images from storage media, controlling the
GPUs, or transferring the images planes to storage media. Once the X-ray images are
in host memory, the GPUs reconstruct sub-volume blocks by iteratively requesting X-ray
images from host memory, computing the image planes, and transferring the reconstructed
image planes to host memory. While the GPU controlling threads reconstruct sub-volumes,
the data transfer threads write the image planes stored in host memory to storage media.

To accommodate environments with limited memory, the total volume is partitioned so
that for each section, an appropriate number of X-ray images are prefetched so that all the
X-ray images and reconstructed image planes for that section can fit into host memory. Due
to the varying number of X-ray images needed to reconstruct a single slice throughout the
volume, the number of X-ray images must be dynamically assigned during reconstruction.
Additionally, the GPUs treat each volume block as a total volume and iteratively reconstruct
sub-volumes of that block. Once all the reconstructed image planes for a block are written
to storage media, the host memory is freed and the next batch of X-ray images are read
into host memory for the next volume block. By partitioning the volume to accommodate
a variety of systems, the process is not limited to systems with a massive amount of free
host memory. Note that for industrial applications, if the total volume was entirely stored
on host memory, the memory requirements would be massive, on the order of 100 Gigabytes
to several Terabytes.

Implementation

At a high level, this algorithm runs in two main loops, an outer loop for partitioning
the entire volume into sub-volumes and an inner loop for iterating though each sub-volume
and executing the GPU kernels. The size of each sub-volume is dynamically determined by
maximizing the number of X-ray images that can be prefetched while maintaining that all
relevant X-ray images and reconstructed image planes fit in host memory.

For a given sub-volume, once the X-ray images have been read into host memory from
storage, host threads are allocated to be either GPU controlling or write threads, which allows
for GPU execution and image plane transfer from host memory to storage media to occur
simultaneously compared to the processes being disjoint in the method described in Ref. [13].
Figure 4.1 and Figure 4.2 give a visual representation of how the parallelization affects
execution. Additionally, as first described in Ref. [13], GPU textures are fully exploited
by using small sets of X-ray images to be prefetched from host memory to device memory.
The inner loop finishes once the sub-volume has been successfully written to storage by the
CPU threads, and the outer loop finishes once the entire volume has been reconstructed (see
Algorithm 1 for a high-level description).
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Figure 4.1. Non-Modular Approach (IP = Image Plane)

The key irregular features of this approach are its utilization of GPU textures, dynamic
partitioning of X-ray images to fit into available host memory, and CPU thread allocation
to parallelize computation and image plane transfer to storage media.

GPU Textures

This feature follows the non-modular implementation from Ref. [13]. The fast texture
cache hit rate of the GPUs is exploited by dynamically fitting the number of X-ray images to
transfer to the GPU to a user inputed slice-to-texture ratio. Setting the ratio low (between 0
and 1) implies most of the GPU memory is reserved for storing finished image planes and the
small amount left for X-ray images fits into the texture cache. Although the GPU needs to
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transfer more X-ray images to and from its texture cache to reconstruct all the image planes,
its runtime improves because of a high texture cache hit rate along with an improved L1,
L2, and constant cache hit rate. Overall, performance improves by going against standard
recommendations to maximize data transfer from the host to the GPU[5].

Data Partitioning

In order to accommodate not only workstations with different amounts of system memory
but also the varying number of voxels to reconstruct and differing acquisition geometries, the
number of image planes to reconstruct in the inner loop must be dynamically determined.
The challenge in this determination is in the irregular number of X-ray images needed to
reconstruct a given image plane throughout the volume. In order to maximize performance,
a constant number of image planes per iteration cannot be used.

At the beginning of each outer loop iteration, the number of image planes to reconstruct
is determined by calculating the host memory required to reconstruct all remaining image
planes (the memory must hold the image planes and necessary X-ray images). If the host
memory required is greater than 90 percent of the free memory on the system, the number of
image planes to reconstruct is decremented by one, and the required memory is recalculated.
This process is repeated until the required host memory is less than or equal to 90 percent
of the free host memory. The 90 percent value is used versus 100 percent to account for any
inaccuracies in the calculations and to allow space for OS-specific requirements. Although
this linear search for the maximum number of image planes is not of optimal efficiency, the
extra time to run the search is negligible when compared to the overall performance of the
algorithm.

Once the maximum number of image planes to reconstruct is calculated, CPU threads are
initialized to prefetch the required X-ray images into host memory. Once all X-ray images
are stored in CPU memory, the inner loop begins the reconstruction on that section of image
planes. This process repeats until the entire volume is reconstructed.

CPU Thread Allocation

As detailed above, once the X-ray images necessary for reconstructing a sub-volume
are in system memory, the inner loop begins reconstruction. However, before the inner
loop starts, CPU threads are assigned to be either GPU controlling threads or image plane
transfer threads. Since the number of GPUs available on the system is known a priori, one
CPU thread is assigned to each GPU.1 Then, the remaining number of CPU threads on the
system (total number of CPU threads minus number of GPUs) are assigned to write the

1If there are not as many CPU threads as GPUs on the system, one CPU thread is still assigned to each
GPU and the operating system’s thread scheduler is expected to accommodate the excess CPU threads
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reconstructed image planes from host memory to storage.2

The CPU threads assigned to each GPU communicate to the CPU write threads that
an image plane is ready to be written to disk through an integer array the size of the
number of image planes being reconstructed in a given inner loop.3 Once a GPU is finished
reconstructing, the CPU thread allocated to it sets the associated cells in the communication
array to 1. Each CPU write thread continually loops through a disjoint subset of the array’s
cells to avoid memory collisions and the same image plane being written to storage twice,
checking if any cell is 1. If a cell is 1, then that CPU thread sets that cell back to 0 and writes
the associated image plane to storage media. Once all the image planes from a sub-volume
are transfered to storage, the inner loop ends, host memory is freed, and the outer loop
repeats.

This scheme of dynamic task partitioning allows for modularity between the GPU recon-
struction and image plane writing. Further, the number of CPU threads used is determined
by the limitations of the system, meaning a wider variety of workstations can run this algo-
rithm.

Analysis

Evaluation

The experiments were performed on a workstation running Windows Server 2008 con-
sisting of 2 Intel(R) Xeon(R) E5-2687W octo-core processors clocked at 3.1 GHz with hyper-
threading for a total of 16 CPU cores, 32 threads, 512 GB RAM, and 2 Nvidia S2090 devices
connected via 4 PCI-E 2.0 x 16 host interface cards. Each S2090 contains 4 Tesla M2090
GPUs where each GPU has 6 GB of GDDR5 memory and 16 multiprocessors where each
multiprocessor has 32 CUDA cores. The workstation has an eight drive Raid 0 array man-
aged by an Intel RAID Controller (RS25AB080) with 1 GB of DDR3 Cache. The drives in
the array are 3TB Hitachi 7.2K RPM SATA 6Gb/s Drives.

The CPU-based time collected measured total reconstruction time, which included all
memory transfers, GPU kernel launches, and disk I/O operations. The time was measured for
the non-modular GPU version (version A), the dynamic memory allocation and parallelized
disk I/O GPU version (version B), a OpenMP parallel CPU-based version (version C), and
a single thread CPU-based version (version D). All were run using a 10,000 x 10,000 x
10,000 voxel (1 Teravoxel) volume reconstructed from 10,000 100-megapixel x-ray projection
images. Versions A and B were run using 1, 2, 4, 6, and 8 GPUs. The measurements for the
1 and 2 GPU runs were taken on the first 200 and the middle 200 image planes and then
averaged. The other GPU runs’ measurements were taken on all 10,000 image planes. For
version C and D, due to the extremely long run time per single image plane (about 0.4 hours

2If there are more GPUs than CPU threads, one CPU thread is assigned to be the transfer thread
3Determined as described in 4
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Algorithm 11

numWriteThreads = totalNumThreads− numGPUs

worldSliceDone = 0
while worldSliceDone ≤ worldTotalSlices do
determine totalSlices so X-ray images and output fit in memory
slicesDone = 0
while sliceDone < totalSlices do
read in X-ray images {once per outer loop}
spawn threads with ids from 0 to totalNumThreads− 1
if thread’s id < numGPUs then
assign thread to GPU
run GPU compute kernel
transfer slices to CPU
update write array

else
numWrittenSlices = 0
while numWrittenSlices < totalSlices do
for cell in subset of write array do
if cell is 1 then
set cell to 0
write that image plane from CPU memory to storage

end if
end for

end while
end if

end while
synchronize CPU threads
worldSliceDone += slicesDone

end while
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for C and.0 4.5 hours for D), the measurements were only taken on image planes 300 to 303,
averaged, and then extrapolated for the full 10,000 image planes.

Lastly, the GPU kernels were compiled using CUDA version 5.0, and the CPU code was
written in C++ using Visual Studio 2008’s C++ compiler.

Results

Figure 4.3 illustrates voxel processing throughput of the modular GPU version (version
B) compared to the non-modular version (version A) of the Teravoxel reconstruction using
1, 2, 4, 6, and 8 GPUs. For a single GPU, version B’s voxel throughput is not noticeably
improved compared to A’s (0.27 versus 0.24) because the host system is able to keep up
with the memory transfers and storage I/O required, meaning the GPU does not experience
significant idle time in either version. As the number of GPUs increases, the GPUs in version
A are forced to wait longer to begin processing the next set of X-ray images because of the
increased demand on limited storage I/O. Due to version B’s storage I/O modularization and
parallel GPU kernel launches, it better handles a higher number of GPUs and has improved
scalability with respect to the number of GPUs.

Table 4.1 displays the overall runtime of the 4 versions, including memory transfers, disk
I/O, and GPU kernel launches. The rightmost column displays the speedup of that version
compared to the single thread CPU-based version. The GPU versions clearly outperform
the CPU-based versions with the modular implementation being 2,260 times faster than the
single thread version.

Algorithm Time(hours) Speedup

Single Thread CPU (C) 44,987 N/A

OpenMP CPU (D) 4,039 11.1

Non-Modular 8 GPU (A) 23.3 1,927

Modular 8 GPU (B) 19.9 2,260

Table 4.1. Performance results for all 10,000 image planes
of Teravoxel reconstruction

Conclusion

For CT reconstructions in the industrial field, utilizing the massively parallel architecture
of the GPU can dramatically improve performance. This orders-of-magnitude speedup is
important for industrial applications since the processing times for their larger datasets
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Figure 4.3. Scalability of GPU implementations for Ter-
avoxel reconstruction

(on the order of Gigavoxels) using a CPU-based algorithm can take days to complete. The
algorithm described in Ref. [13] is one such GPU-based CT reconstruction which goes beyond
the direct port of a CPU-based algorithm to GPU kernels and improves performance even
more by taking advantage of the GPU-specific capabilities and hardware.

That implementation, however, does not fully utilize the GPU due to a non-optimal
memory transfer and storage media writing scheme. While this inefficiency may not seem
significant for current reconstructions (Gigavoxels in size), it will noticeably hurt performance
on future-sized datasets (Teravoxels in size). These datasets are soon to be realized due to
the advancements in high performances cameras, and the industrial community needs a CT
reconstruction technique that can handle such massive amounts of data.

The implementation described in this paper modifies the one from Ref. [13] to dynamically
modularize the memory transfers and parallelize the GPU computations and storage media
writing. These improvements cause it to outperform the non-modular version on a future-
sized dataset 1 Teravoxel in size.
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This work has shown that transforming a CPU-based algorithm into one using GPUs in-
volves not only rethinking the nature of the computations but also restructuring the memory
and storage media usage. Future improvements to this implementation include expanding
it to a cluster implementation where each node has access to at least one GPU. The cluster
version will also need to dynamically determine how many image planes each node should
reconstruct in a way that takes into account not only the memory limits of the node but
also the number and type of GPU. This and future work will help prepare the industrial
community for the technological advancements to come in CT reconstruction.
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Chapter 5

Irregular CT on Multiple GPUs
Improves Energy-Efficiency Metrics

Introduction

This chapter will investigate energy-efficiency for various real-world industrial computed-
tomography reconstruction algorithms, both CPU- and GPU-based implementations. Many
of the commercial advertising for graphics processors claim that GPUs have a high performance-
to-watt ratio. Unfortunately, finding verification of this claim in the scientific literature
proved to be a challenge. Additionally, the irregular nature of CT reconstruction algorithms
adds another level of complexity to the characteristics of energy metrics due to the unique
bottlenecks and memory access patterns. We show that the energy required for a given
reconstruction is based on performance and problem size. There are many ways to de-
scribe performance and energy efficiency, thus we will investigate multiple metrics including
performance-per-watt, energy-delay product, and energy consumption. We found that irreg-
ular GPU-based approaches [12] realized tremendous savings in energy consumption when
compared to CPU implementations while also significantly improving the performance-per-
watt and energy-delay product metrics. Additional energy savings and other metric im-
provement was realized on the GPU-based reconstructions by improving storage I/O by
implementing a parallel MIMD-like modularization of the compute and I/O tasks.

Due to the enormous input datasets (usually between 1 gigabyte and 20 gigabytes) and
the computational complexity, reconstruction of industrial datasets can easily consume a
significant amount of energy. Therefore, consideration should be taken in choosing an ap-
propriate computing platform. This work will evaluate multiple implementations of the
standard Feldkamp-David-Kress (FDK) reconstruction algorithm [8] that is routinely used
for non-destructive testing and industrial scale applications. The evaluation will include mul-
tiple energy-efficiency metrics, including energy consumption, performance-per-watt, and the
energy-delay product to obtain a broad understanding of the energy-efficiency characteristics
of this real-world application.
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Energy Efficiency

A very simple way of looking at energy efficiency is to measure the total energy used
by each system. The less energy used by one system in comparison to another, the better.
However, this misses the very important dimension of performance. Two systems may expend
the same amount of energy for a given computation, but the total time required may be very
different. Thus, other metrics are needed in order to include the notions of power and
performance.

One such common measure that incorporates the speed of computation is performance
per watt, often MIPS/W or million instructions per second per watt. This incorporates
the power of the system into the energy efficiency metric. However, this measure is more
appropriate for laptops or mobile devices, where reducing energy consumption is vital to
save the battery. For many integrated circuit designs, power consumption is proportional to
the square of the voltage, and reducing voltage by half reduces the frequency of the circuit
by much less because of this quadratic term [19]. Thus one could easily sacrifice speed to get
a better value for performance per watt. When speed of computation is a more vital factor,
a different metric is warranted.

Gonzalez and Horowitz [9] propose a metric with a greater emphasis on performance,
namely energy × delay, in other words, the total energy used times the amount of time
for the computation, with the lower the number the better. Brooks et al. [3] propose even
squaring or cubing the delay, to give an even greater emphasis on performance.

We will use all three of these metrics to compare energy efficiency of the various imple-
mentations of the FDK reconstruction algorithm we examine in this paper.

Irregular Computed Tomography

CT reconstruction algorithms frequently consist of some variation of a back projection.
The back projection operation in a CPU-based environment is typically coalesced with re-
spect to the x-ray image or sinogram data. Neighboring voxels in the reconstruction volume
will usually access image data from a small neighborhood of pixels of a given x-ray image. In
a multi-threaded CPU-based implementation where the number of threads is on the order of
16 and each thread is updating its individually assigned voxel simultaneously, the memory
access pattern can still be made relatively small (i.e. small enough so that CPU L1 and
L2 cache hit-rates are still acceptable) by assigning neighboring voxels to CPU threads on
the same multiprocessor. Regardless of the position of this neighborhood in the volume, the
magnified projected neighborhood on the x-ray image is still reasonably small for almost any
volume of interest and thus performance is not significantly degraded due to the memory
access pattern.

In a GPU-based environment, hundreds to thousands of threads could potentially update
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hundreds to thousands of voxels simultaneously. The magnified projection data footprint
could be potentially enormous (at least larger than the on-chip cache structure can handle).
Additionally, these thousands of threads do not run in lock-step; the consequence is neighbor-
ing threads potentially accessing entirely different x-ray images, or worse, updating entirely
different image planes from a disjoint subset of images. In the CUDA environment, lock-
step execution only occurs at the warp level (32 threads), with no control on warp execution
ordering [5]. Therefore, the memory access pattern could easily become irregular over the
large projection data neighborhood and throughout the entire reconstruction, thus severely
hindering performance. This problem is exacerbated by the introduction of large-scale data;
this include more projections, large magnifications, large images, large voxel counts, or any
combination thereof. Although GPUs have worked very well on reconstruction algorithms
on smaller scale datasets (medical datasets for example); for large-scale data, the algorithm
would still require hours to days to reconstruct a 64 billion voxel volume.

Implementation

The implementation of this work revolves around the kernel design presented in the work
by Jimenez et. al. [12] in order to achieve a majority of the energy metric improvement.
The kernel design focuses on the general architecture of a graphics processor and exploits
various features of the hardware such as:

1. Fast Device Memory: Data access can be faster and in parallel fetches on Graphics
processors, this allows for faster evaluation of the bilinear interpolation step required
of most back projection algorithms.

2. Massive Multi-threading: This is the most well known feature and appeal of GPGPU
applications. For reconstruction, each thread is assigned a set of voxels to update,
arranged such that no more than one voxel per image plane is assigned to a given
thread.

3. Texture Memory: Fast read-only memory that has its own dedicated on-chip cache.
Reading x-ray subimages through texture memory frees up L1-cache for voxel infor-
mation and thus increasing computational (and ultimately energy) efficiency.

4. Hardware Interpolation: An additional benefit of utilizing texture memory is the ex-
ploitation of hardware-based interpolation. Although GPU-based interpolation is usu-
ally done in a lower precision, it has been shown to not affect numerical stability
noticeably [17].

5. Constant Memory: To further reduce L1-cache pressure, all geometry parameters defin-
ing the arrangement of the CT system are stored in this user customizable on-chip
cache.
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The work by Jimenez et. al. also showed that in order to maximize voxel processing through-
put by a GPU, one must mostly dedicate the device memory to voxel storage and upload
small sets of x-ray projection data.

Implementing the irregular kernel is only half the the task. Energy efficient optimizations
made on the kernel will be moot if the host cannot provide the device with data fast enough
in order to minimize device idling. To address the host side implementation, the method
developed by Orr and Jimenez [20]. This approach attempts to minimize the GPU downtime
by implementing an MIMD-like environment on the host.

Many traditional reconstruction algorithms, both CPU and GPU-based, execute tasks
serially in a SIMD approach where a single thread on a CPU is tasked with storage I/O
and compute/GPU kernel launch tasks. The consequence is that when a CPU thread is
performing I/O tasks, the GPU is idling and not contributing towards the completion of any
tasks while still consuming energy (albeit in a potentially lower power state).

The MIMD-like approach modularizes the read, launch and write tasks. Prior to recon-
struction, threads are assigned a duty; either read/launch or read/write. Once assignments
are made, the algorithm dynamically determines the amount of system memory available
and calculates the number of image planes in the volume to reconstruct simultaneously; al-
lowing for volatile memory storage of the relevant x-ray subimages necessary for the given
subvolume and the subvolume itself. Next, all CPU threads perform the reading and pre-
processing of the relevant x-ray data. Once reading has completed, a subset of threads
(equal to the number of GPUs on the host) each determine its proportion of image planes to
process at once, dependent on the GPUś hardware specifications and launches the required
kernels while feeding necessary input data to the GPU. Once the reconstruction of the set
of image planes is completed, it downloads the image planes to host memory and fetches
the next set of image planes to reconstruct and repeats the process until all image planes of
the subvolume are processed. The complement of host threads each iteratively check if any
image planes are ready to be written. When the thread encounters an image plane that is
ready to be written, it fetches the image plane, performs any required post-processing and
writes the image plane to storage media. This process is repeated until all image planes of
the subvolume are written to storage media. The entire process is repeated until the entire
volume is reconstructed. The benefit of the approach is that the storage bottleneck is ame-
liorated by allowing writing tasks to occur during kernel computation while simultaneously
reducing GPU downtime. The drawbacks to this approach is the additional load required
on the CPUs while the write threads are iteratively checking for image planes to write and
the additional memory required to temporarily store the image planes.

This work will present two implementations of irregular computed tomography; The first
is a serialized approach based on the work of Jimenez et. al. and Jimenez and Orr [12, 11],
the second is the modularized approach of Orr and Jimenez [20] which expands on the
serialized approach by allowing overlapping compute and write tasks. Both implementations
were written in C++ and Nvidiaś CUDA programming environment (Ver. 5.0). For multiple
GPU control, as well as the CPU thread assignment in the modularized approach, OpenMP
2.0 was utilized to implement CPU parallel tasking.
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Evaluation

Three metrics will be measured:

1. Energy Consumption: This will be measured in kilowatt-hours (kWh).

2. Performance-per-Watt: Presented as average voxels reconstructed (and stored) per sec-
ond per watt. Other more well-known performance-per-watt metrics, such as MFLOPs
per watt, were not used as reconstruction is limited by the computation, the irregular
memory access pattern, and the storage media I/O.

3. Energy-Delay Product: This metric is measured to ensure that the algorithm is not
trading off energy savings for a slower reconstruction. In most applications, a delay in
reconstruction is more detrimental than efficiency, we use a square weighting of delay
as suggested by Laros III et. al. [16].

Metrics will be measured for four implementations of CT reconstruction. The first is a
CPU-based multithreaded approach that uses both MPI and OpenMP to implement parallel
processing. The CPU-based implementation is currently used in industrial radiography ap-
plications and will be used for comparison. Additionally, to serve as a GPU-based baseline,
a näıve GPU-based approach is developed which consists of a brute force GPU-porting of
CPU code which reconstructs one image plane per GPU iteratively and does not exploit the
irregular nature of GPU-based reconstruction [12, 11]. The other two implementations are
the serialized and modular approach described in the previous section.

The experiments were performed on a high-end Supermicro workstation that consists of
dual octo-core Intel Xeon E-2687W processors clocked at 3.1 GHz with hyper-threading, 512
GB of system memory, 8 Nvidia Tesla M2090 GPUs (”Fermi”-class) in two Next I/O S2090
units connected via 4 PCI-E 2.0 x16 host interface cards, the storage media made up of 8 x
3GB SATA 6 Gb/s drives in a RAID 0 array controlled by an Intel Controller with 1 GB of
DDR3 cache.

Energy metrics were obtained using several P3 International P4460 Kill-A-Watt EZ Elec-
tricity Usage Monitors directly connected to the workstation and each S2090 device. For
the CPU-based implementation measurements, all GPUs were disconnected from the system
before measurements are started to ensure GPU energy consumption was eliminated from
the measurements.
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Figure 5.1. Energy Consumption in kWh for the 64 gi-
gavoxel reconstruction.

Results

Energy Consumption

Figure 5.1 shows energy consumption for all implementations when reconstructing the
64 gigavoxel dataset with respect to the number of GPUs. It is observed that the GPU-
port actually consumes more energy than the CPU-based method when executed using 8
GPUs while both irregular approaches require approximately 1 kWh. For the GPU-port
method, the GPUs are never fully utilized and as a result, a majority of the time is spent
idling. Figure 5.2 shows energy consumption for the teravoxel dataset. For both irregular
approaches, energy consumption improves with respect to GPUs as the reconstruction is
completed in less time; it is noted that the improvement seems to level off towards 8 GPUs
and is most likely due to PCI-E bus bandwidth limitations. Figures 5.1 and 5.1 show that
overlapping compute and storage tasks does indeed reduce the energy consumption.
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Figure 5.2. Energy Consumption in kWh for the teravoxel
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Performance Per Watt

Figures 5.3 and 5.4 show performance per watt with respect to the number of GPUs on
the 64 gigavoxel and teravoxel datasets respectively. It is observed that while both irregular
approaches significantly outperform the näıve and CPU-based approaches, the metrics do not
improve with respect to GPUs, and in the serialized approach performance actually degrades.
The leveled/degraded performance may be due to the fact that while 64 gigavoxels is indeed
considered a large-scale dataset, the dataset may not properly push the limitations of the
GPUs as is observed in the measurable improvement with respect to GPUs in the teravoxel
dataset.

Energy-Delay Product

Figures 5.5 and 5.6 show the energy-delay product with respect to GPUs on the 64
gigavoxel and teravoxel dataset respectively. These figures validate that the irregular ap-
proaches do not trade off efficiency for delay. In fact, for the 64 gigavoxel dataset, the
energy-delay product increases by over an order of magnitude for the non-irregular GPU-
based approach. Figure 5.5 shows that while the energy-delay product for the modular
approach slightly increases for 8 GPUs, it is still an improvement over all other approaches.
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Figure 5.3. Performance per watt for the 64 gigavoxel
reconstruction

For the teravoxel dataset, the reconstruction pushes all approaches to their limits and
thus we see a continued improvement in the irregular approaches with respect to GPU count.
In both methods, we see that both irregular approaches achieve an improved energy-delay
product by 3 orders of magnitude compared to the CPU-based approach.

Conclusion

It has been well documented that computed tomography reconstruction algorithms can
greatly benefit from the utilization of GPGPU technology. This has been observed by the
remarkable increase in computational performance and reduction in time required to execute
the reconstruction task. We have shown that GPU-based approaches also benefit from
energy efficiency performance; not just in overall energy consumption, but other energy
efficiency metrics as well. As the computing community approaches energy limitations,
intelligent algorithm design will be crucial for the exploitation of optimal performance from
the hardware. The community needs to explore other approaches outside of reconstruction
and investigate whether some algorithms can be further improved by implementing energy
efficient methods.
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Figure 5.4. Performance per watt for the teravoxel recon-
struction
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Figure 5.5. Energy-Delay Product for the 64 gigavoxel
reconstruction
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