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Abstract

The objective of this work was to describe several of the ductile failure criteria com-
monly used to solve practical problems. The following failure models were considered:
equivalent plastic strain, equivalent plastic strain in tension, maximum shear, Mohr-
Coulomb, Wellman’s tearing parameter, Johnson-Cook and BCJ MEM. The document
presents the main characteristics of each failure model as well as sample failure predic-
tions for simple proportional loading stress histories in three dimensions and in plane
stress. Plasticity calculations prior to failure were conducted with a simple, linear
hardening, J2 plasticity model. The resulting failure envelopes were plotted in prin-
cipal stress space and plastic strain space, where the dependence on stress triaxiality
and Lode angle are clearly visible. This information may help analysts select a ductile
fracture model for a practical problem and help interpret analysis results.
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Nomenclature

Table 1: General Variables

Symbol Definition

E Young’s modulus
Ep
t Plastic tangent modulus

f Yield function
I1, I2, I3 Stress invariants
J1, J2, J3 Deviatoric stress invariants
sij Deviatoric stress components
sx, sy, sz Principal deviatoric stress components
s Prescribed value of sx
sc Calculated value of s at failure
T Absolute temperature
α Deviatoric stress proportionality factor
β Stress proportionality factor in plane stress
εpx, ε

p
x, ε

p
x Principal plastic strain components

εpe Equivalent plastic strain
εpet Equivalent plastic strain in tension
εpf Uniaxial plastic strain at failure

η Stress triaxiality (σm/σe)
θ Lode angle
µ Shear modulus
ν Poisson’s ratio
σij Stress tensor components
σx, σy, σz Principal stress components
σ1, σ2, σ3 Principal stress components, ordered as σ1 ≥ σ2 ≥ σ3
σ Prescribed value of σx in plane stress
σc Calculated value of σ at failure
σe Equivalent stress
σec Calculated value of σe at failure
σf Uniaxial stress at failure
σm Mean or hydrostatic stress
σo Initial uniaxial yield strength
σy Current uniaxial yield strength
σo Value of σ at initial yield
τmax Maximum shear stress
φ Triaxiality angle
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Table 2: Model Specific Variables

Symbol Definition

A,B, n, C,m Parameters of the Johnson-Cook strength model
c1, c2 Mohr-Coulomb failure criterion constants
d1, d2, d3, d4, d5 Parameters of the Johnson-Cook failure criterion

Tr, Tm, T̂ Reference, melting, and homologous temperature
ψ Tearing parameter
ψf Critical tearing parameter value at failure
ξ Tearing parameter exponent
v BCJ MEM damage parameter
vo BCJ MEM damage parameter value at initialization
vf BCJ MEM damage parameter value at failure
m BCJ MEM damage exponent
Rd BCJ MEM dynamic recovery parameter
w BCJ MEM equivalent plastic strain flow rate parameter
r BCJ MEM equivalent plastic strain flow rate exponent
τf Failure value of τmax in maximum shear criterion
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1 Introduction

Many practical problems of interest at Sandia are concerned with the response of engineering
structures1 to high intensity loads that may take them well beyond their design limits. In
the case of metallic structures, this raises the possibility of tearing after large deformations
have exhausted the ductility of the material. This type of failure is commonly called ductile
failure or ductile tearing.

Ductile failure in metals is a topic that has received significant attention in the literature
for over 50 years. Tearing is the macroscopic result of deformation and failure phenomena
that occur at the micro-structural level of the material. Calculations at the micro-structural
level still seem beyond the realm of possibility for engineering-level applications. Currently,
most calculations make use of phenomenological failure models instead. This type of model
describes phenomena observed at the macro scale without explicitly considering microscopic
factors such as the physics of atomic lattices, etc. A good example is classical plasticity,
which is constructed to represent observed plastic deformation of metals without explicitly
modeling dislocation motion in atomic lattices that are in turn embedded in polycrystalline
media.

It must be noted as well that macroscopic effects such as the presence of stress concen-
trators and the development of local instabilities are important in the prediction of failure
because they can locally induce large strains that exhaust the ductility of the material. Since
the strain in the material depends on the loading history and the material behavior, the pre-
diction of failure depends not only on the conditions at failure, but also on the adequate
calculation of the stress and material deformation histories prior to failure.

1.1 Background

The field of ductile failure of metals is vast and can be very complex. See, for example, the
survey article by Garrison and Moody (1987), which discusses various aspects of this topic.
Factors that can influence material failure include, for example, the current states of stress
and strain, the loading history, the strain rate, the temperature and the properties of the
material. Each of these items can be sub-divided into more specific quantities. For example,
the effect of the state of stress can be attributed to the value of the hydrostatic mean stress
and the invariants of the deviatoric stress. In the case of material properties, the yield stress,
the dependence of the plastic tangent modulus on equivalent strain, the dependence of the
strain-to-failure on the stress invariants, and the initial yield anisotropy plus its evolution
with deformation can affect the results of failure calculations. Parameters related to the
thermo-mechanical and strain-rate dependencies of the constitutive and failure models are
also in this category.

The work presented in this report was conducted over a period of a few months, and

1The term structures is used here to denote general objects made of solid materials.
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therefore can only begin to scratch the surface of this important field. Its focus will be
on current thinking from the mechanics of solids perspective and on some of the common
failure models used in the finite element analysis of structures. Analysts must be aware that
a significant gap exists between the leading edge of research and the use of failure models
in practical applications. Also, experts in the field believe that significantly more research
is necessary before ductile failure can be reliably predicted in everyday engineering analysis.
As is often the case, however, applied engineering and design require the use of models that,
although they may not be entirely accurate, provide at least some realistic estimate of the
load levels that are likely to induce failure in a structure. This insight can then be used to
suggest appropriate testing and to recommend design margins.

One of the seminal observations regarding the ductility of metals was published by Bridg-
man (1945), who carried out experimental studies where uniaxial tension tests were con-
ducted on steel specimens while under hydrostatic pressure. The most striking effect that
he observed was a great increase in ductility with increasing pressure. In other words, the
specimens could support significantly larger strains and much more severe necking prior to
failure when pulled in the presence of pressure. The implication of Bridgman’s observation
is that the ductility of metals is strongly dependent on the hydrostatic component of the
stress tensor. The higher the hydrostatic stress (defined as positive when tensile) the lower
the strain at failure.

Bridgman also observed that, to a first approximation, the flow stress for a given value of
strain was independent of pressure. In fact, classical plasticity theory assumes that plastic
deformation depends only on the deviatoric stress components and is incompressible.

Early theoretical treatment of the effect of the hydrostatic stress on the observed ductility
of metals was conducted by McClintock (1968) and by Rice and Tracey (1969). Their work
was motivated by evidence of growth and coalescence of voids observed in experiments. Both
works used micro-mechanics to look at void growth during plastic deformation and showed
that the void growth rate in an elastic-plastic material depends strongly on the value of the
far-field hydrostatic stress. The larger the hydrostatic stress, the faster the voids can grow.
Since they attributed ductile failure to the coalescence of voids, a higher mean hydrostatic
stress correlates with decreased ductility.

Currently, it is generally accepted that the mechanisms behind ductile failure occur at the
grain scale. These mechanisms are heavily influenced by inclusions introduced by alloying, as
described in the introduction of the paper by Ghahremaninezhad and Ravi-Chandar (2012).
The differences in stiffness between the inclusions and the bulk material, as well as the
fracture of the inclusions, can provide the “seeds” for the nucleation of voids under favorable
macroscopic states of stress. Once nucleated, the voids can grow and coalesce to produce
macroscopic cracks and induce ductile tearing of the material.

One current topic of research concerns the stage at which the voids nucleate and how fast
they grow. Recent experimental work presented in Ghahremaninezhad and Ravi-Chandar
(2011) and Ghahremaninezhad and Ravi-Chandar (2012) for polycrystalline OFHC copper
and Al 6061-T6 respectively showed that, at least for these two materials, the growth of voids
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remained subdued even after very large strains had accumulated. Furthermore, post-failure
SEM imaging revealed very little void growth just a short distance (30 µm) away from the
fracture plane for Al 6061-T6. These observations suggest ductile failure is caused by sudden,
highly localized, void nucleation and growth that occur after significant plastic deformation.
This is in contrast to images of sectioned specimens shown by Puttick (1959) where significant
voiding is visible over relatively large regions. Ghahremaninezhad and Ravi-Chandar (2011),
however, caution that the characteristics of void nucleation and growth can depend on the
specific material considered.

Another area that warrants attention is ductile failure under shear-dominated states of
stress, where the mean hydrostatic stress is near zero. Observations have shown evidence
of growth and coalescence of voids in these cases (see, for example, SEM fractographs in
Ghahremaninezhad and Ravi-Chandar (2013)). Thus, the dependence of failure on the
hydrostatic stress can be more complex than has been suggested by the work of Rice and
Tracey (1969). In fact, failure models that tie void growth to a positive hydrostatic mean
stress must be modified to predict shear dominated failure (see Nashon and Hutchinson
(2008), for an example).

Another issue that has received significant attention in the last 10 years is a curious trend
that was found by Bao and Wierzbicki (2004). They performed tests on 2024-T351 aluminum
alloy specimens of various shapes all cut from the same block of material. The specimens
included smooth and notched tension specimens, flat shear specimens and compression round
upsetting specimens. Bao and Wierzbicki then matched a finite element model of each
test to the measured engineering stress strain curve, and used the model to determine the
equivalent plastic strain to failure. When plotting the equivalent plastic strain to failure
against triaxiality across all the tests, they found the trend shown in Fig. 1. Clearly, the
resulting curve does not monotonically decrease with triaxiality, as suggested previously.
Rather, it exhibits a cusp at a triaxiality of 0.4 and a range between 0 and 0.4 where the
strain to failure increases with triaxiality. The presence of the cusp has also been reported
by Barsoum and Faleskog (2007) for Weldox 420 and Weldox 960 steel notched tubular
specimens under tension and torsion. The values of triaxiality where the cusps occurred,
however, varied between 0.8 and 1.0, and experiments were not shown for triaxialities below
0.3.

Recent work by Ghahremaninezhad and Ravi-Chandar (2013) on 6061-T6 aluminum
alloy under shear-dominated loading induced in an Arcan-like specimen, however, indicated
a simpler trend where the strain to failure monotonically decreases with triaxiality. These
observations were further reinforced for the same material by Haltom et al (2013), who
conducted a series of tension-torsion experiments on thin-walled tubular specimens. Their
results are shown in Fig. 2.

Whether the differences between the two sets of data are due to the different materials
used in the studies or to other causes is an outstanding issue in the field. In a recent
publication, Beese et al (2010) found a trend similar to that in Fig. 1 for Al 6061-T6 sheets
using a series of tests on specimens with different geometries. This is nominally the same
alloy investigated by Haltom et al (2013). The products from which the specimens were
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Figure 1: Strain to failure vs. triaxiality trend found by Bao and Wierzbicki (2004) for Al
2024-T351.

machined, however, were different; sheet vs. tube. The trend shown in Fig. 1, prompted
Weirzbicki and several of his students at MIT to propose that the strain to failure must
depend not only on triaxiality, but also on the Lode angle2 and to develop models where the
strain to failure depends on these two factors. See, for example, Bai and Wierzbicki (2008).
The idea of including Lode angle dependence in failure models has gained some traction and
was implemented in the 6.12 version of Abaqus. The calibration of such models, however,
requires significant work that is not straight-forward and for which more guidance needs to
be developed.

The issue of calibration brings another aspect of great importance when using ductile
failure models that has been demonstrated by the work presented in Ghahremaninezhad and
Ravi-Chandar (2011), Ghahremaninezhad and Ravi-Chandar (2012), Ghahremaninezhad
and Ravi-Chandar (2013) and Haltom et al (2013). These works show that the strains
to failure measured in tests are highly sensitive to the ‘gage length’ used to make strain
measurements. The reason for this is that failure tends to occur in regions undergoing strain
localization within relatively narrow bands. Therefore, strains measured inside the localiza-

2See Section 2 for definitions of terms used in this report.
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Figure 2: Strain to failure vs. triaxiality trend found by Haltom et al (2013) for Al 6061-T6
from tension-torsion tests on tubular specimens.

tion regions using the grain size as the gage length will be much higher than strains measured
over a larger gage length that includes the localization zone and some material outside of
it that is less strained. This issue is not only important for experimentalists reporting their
measurements but also for analysts who need to calibrate their finite element models because
it demonstrates the role that element size can play in failure calculations. Ideally, finite ele-
ment models used in the calibration of ductile failure models and in the solution of problems
should have element sizes that can resolve the localization and failure phenomena observed
in both the calibration tests and the applications of interest. This allows the strain to be
calculated locally in the failure region. If it is impossible to utilize small enough elements
to meet this recommendation, then allowances need to be made for the larger element size,
most likely involving smaller strains to failure. Keep in mind, however, that making this
kind of allowances may diminish the ability to capture ductile failure accurately.

1.2 Deformation/Failure Model Coupling

Although it may be possible to construct micromechanics models that explicitly model voids
or other damage mechanisms, alternative approaches must be considered when addressing
practical engineering problems at the macroscopic scale to keep the analysis tractable. It
appears that two categories of models are currently available to model plastic deformation
and ductile failure: coupled and uncoupled.
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Coupled Models: In these models the calculation of the plastic deformations is coupled
with calculations of material damage, which can be taken to represent the growth of
voids in the material. As a result, the development of damage influences the inelastic
response and vice-versa. In these models, the material response may soften after suf-
ficient damage has accumulated, and failure can be taken to occur when the material
damage reaches a critical value. Examples include models based on the work of Gurson
(1977) such as the model presented by Tvergaard (1981) and the BCJ-MEM model
(Sierra Solid Mechanics Team, 2013) developed at SNL-CA. As discussed earlier, these
models in general predict little void growth when the state of stress is shear dominated,
thus delaying or preventing the onset of failure in this regime. Modifications like the
one developed by Nashon and Hutchinson (2008) have been proposed to remedy this
issue.

Uncoupled Models: In these models the calculation of plastic deformation is conducted
assuming no damage in the material. A failure criterion is evaluated during plastic
deformation based on the stress and strain histories. Material failure is taken to occur
when the failure criterion reaches a critical value. In these models the material response
typically hardens, or is perfectly plastic, until failure. In most engineering structural
analyses, the J2 flow theory of plasticity is used to calculate the plastic deformation.
Examples of these models include the Johnson-Cook model (Johnson and Cook, 1985)
and the MLEP-Failure model developed by Wellman (2012).

The present work will concentrate on models likely to be considered by analysts at SNL.
These include several uncoupled failure models that can be used in conjunction with J2
plasticity as well as the BCJ-MEM coupled model.

1.3 Implementation in Finite Element Analysis

Finite element analysis of solids and structures has become commonplace in engineering
work. Naturally, some analyses relate to the calculation of loads that may cause ductile
failure in structures. Therefore is it highly desirable to implement available failure criteria
in finite element codes to enable the failure predictions.

The calculation of material failure in finite element analysis can be considered to consist
of three stages as follows:

1. From the time that plastic yielding is first detected, a state variable is calculated that
represents the amount of damage that has been induced in the material. This variable
is calculated at each integration point in the model. The state variable may represent
void nucleation and growth in coupled models, or simply a quantity related to the
state of stress or plastic strain accumulation in uncoupled models. At each step of the
calculations, the value of this state variable is compared to a critical value. As long
as the current value of the state variable is below critical, the material has not failed.
Material failure is declared when it reaches a critical value.
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2. Once it has determined that material failure has occurred at an integration point, a
decision must be made regarding whether to declare failure at the element level. If the
element has a single integration point, then this decision is straight-forward and failure
can be declared at the element level. For elements with multiple integration points,
the number of integration points that must fail before element failure is declared must
be prescribed in advance.

3. After failure is declared at the element level then the mesh must be modified to reflect
the initiation or propagation of a crack. Several methods have been proposed to modify
the mesh such as cohesive zone insertion, the extended finite element method (x-FEM)
and element death. The latter is the easiest to implement and seemingly the one most
frequently used one at SNL and elsewhere. In this method, the stress in the element
must first be reduced to zero. This is followed by the removal of the element from the
mesh to simulate the presence of a crack. If necessary, the element may be converted
to a particle to conserve mass and to represent fragments. If not, the element and
its mass are simply removed. The stress reduction can happen instantaneously or, as
is often recommended, over additional straining as illustrated in Fig. 3. If the stress
decays with further straining, more energy must be dissipated before the element is
deleted. It is often recommended that the energy dissipated during the stress decay
be adjusted to minimize the dependence of the failure calculations on the mesh as
discussed by Wellman (2012).

Failure Criterion
Satisfied

ε
p
e ε

p
d

σe

Element
Delete

Decay
Stress

Figure 3: Sketch of an equivalent stress-plastic-strain curve showing the failure point and
the subsequent stress decay over an additional strain εpd.
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1.4 Objectives

The original objective of the present work was to conduct a survey of ductile failure models
available in the literature, and how they could be applied in problems involving thin-walled
structures. Given the relative inexperience of the authors on the topic, however, the work
soon became more of a learning experience. In order to better understand the models,
the scope was extended to consider failure under three-dimensional states of stress. This
change required that the number of models reviewed be reduced. In the end, this report is
still written as a survey that considers a few commonly used failure criteria from a three-
dimensional perspective. Simple, proportional load histories are used in the examples. This
is followed by presentations of how the failure criteria project onto a plane stress state,
which is characteristic of thin-walled structures. The report represents the current level of
understanding by the authors, and the hope is that it will be a useful ductile failure reference
for analysts working in the field.
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2 Useful Concepts in Ductile Failure

The purpose of this section is to briefly list useful concepts that are needed to better follow
the material to be presented in the next few sections. The intent is for readers to review the
concepts that will be used in the discussions and results that follow. For the most part, no
derivations from basic principles will be presented.

In-depth treatises of the topics of interest here can be found in many books in plasticity
or continuum mechanics. In order to present concepts in as simple form as possible, an
orthonormal basis is assumed and index notation will be used. For details on notation as
well as continuum mechanics and plasticity concepts see, for example, Fung (1965) and
Mendelson (1983).

Stress and traction: The components of the stress tensor are σij = σji giving six inde-
pendent components. The traction components on a surface with unit normal n are
Ti = σijnj.

Principal stresses: The principal stress components σx, σy, σz are the roots of the charac-
teristic cubic equation

− σ3 + I1σ
2 + I2σ + I3 = 0 (1)

where I1, I2 and I3 are the stress invariants given by

I1 = σii

I2 = −1

2
(σiiσjj − σijσji)

I3 =
1

6
εijkεpqrσpiσqjσrk,

where εijk is the Levi-Cevita tensor (also known as the alternating symbol).

Normal and shear traction components: The traction vector on a surface can be de-
composed into normal and shear components. Given a surface with unit normal com-
ponents ni with respect to the prinicipal stress frame, the normal component is

σn = σ1n
2
1 + σ2n

2
2 + σ3n

2
3, (2)

while the shear component is

τ =
√
n2
1n

2
2(σ1 − σ2)2 + n2

2n
2
3(σ2 − σ3)2 + n2

3n
2
1(σ3 − σ1)2. (3)

Maximum shear stress: If the principal stresses are ordered such that σ1 ≥ σ2 ≥ σ3 then
the maximum shear stress is

τmax =
σ1 − σ3

2
. (4)
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Mean hydrostatic stress: The mean hydrostatic stress (also called mean stress or hydro-
static stress) is given by

σm =
1

3
σii =

1

3
I1. (5)

Deviatoric stress: The plastic deformation of metals is generally taken to be unaffected
by the mean hydrostatic stress, so it is useful to decompose σij into hydrostatic and
deviatoric components as follows:

σij = sij + σmδij (6)

where sij are the components of the deviatoric stress and δij is the Kronecker delta.

Invariants of the deviatoric stress: The three invariants of the deviatoric stress are:

J1 = 0

J2 =
1

2
sijsij

J3 =
1

6
εijkεpqrspisqjsrk.

Equivalent von-Mises stress: The equivalent von-Mises stress is given by

σe =
√

3J2 =

√
3

2
sijsij. (7)

Stress triaxiality: The stress triaxiality is defined by

η =
σm
σe
. (8)

Principal stress space: For ease of visualization, it is often convenient to refer to principal
stress space, a three-dimensional space where the three principal stresses are plotted
in orthogonal coordinates as shown in Fig. 4. Here, the state of stress represented by
the vector OP can be decomposed into a component along the hydrostatic axis QP —
along the direction (1,1,1) — and a component orthogonal to it, OQ. The magnitudes
of these vectors are

|QP| =
√

3σm

|OQ| =
√

2J2 =

√
2

3
σe.

The π-plane and Lode angle: The π-plane is defined in principal stress space as having
unit normal along the hydrostatic axis ( 1√

3
, 1√

3
, 1√

3
). The vector OQ in Fig. 4 lies on

the π-plane as shown in Fig. 5. The polar angle θ shown is known as the Lode angle.
It is given by √

3 tan θ = (2σz − σy − σx)/(σy − σx) (9)
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Figure 4: Principal stress space.

and has the range −π
6
≤ θ ≤ π

6
in the example shown where σy > σz > σx. Note that

the π-plane has six segments where the ordering of the principal stresses is different.
The range of the Lode angle is the same, but the order of the stress components in
(9) changes. For isotropic failure models the contours of the failure surface on planes
parallel to the π-plane have the same shape in each of the segments. For these models
it is sufficient to calculate their shape over one segment. The shapes in the other
segments can be obtained by reflections about the stress axes.

Plasticity: Plasticity concerns the development of permanent deformations of the material.
It depends on not only the current state of stress, but also the history of loading. As
a result, flow theories of plasticity are formulated in an incremental fashion. Classical
flow theories of plasticity have three principal components: a yield criterion, a flow
rule and a hardening rule.

Yield criterion: A yield criterion is a hypersurface in stress space that encloses the
states of stress where the material behavior is elastic (called the elastic region).
Many yield criteria have been proposed for metals. In general, yielding in metals
is taken to be insensitive to the mean hydrostatic stress. As a result, the surfaces
representing the yield criteria are cylinders aligned parallel to the hydrostatic
axis when plotted in principal stress space. The most common yield criterion
used for metals is the von-Mises criterion. It can be written as f = σe−σo, where
σo is the yield stress. Plastic deformation becomes possible when the current
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stress is on the yield surface, that is when f = 0. Under these conditions, if an
increment in stress points away from the elastic region, then plastic deformation
occurs. Otherwise the material response is elastic. For plasticity calculations, the
initial yield stress is taken as the proportional limit. In principal stress space the
von-Mises criterion is a cylinder of circular cross-section.

Flow rule: The flow rule is the relationship between the stress increment (dσij) and
the plastic strain increment (dεpij) during plastic flow. It is given by

dεpij = G
∂f

∂σij

∂f

∂σmn
dσmn

where G = G(σij, εij, history). The total strain increment is given by

dεij = dεeij + dεpij

where dεeij is the linearly elastic strain increment given by

dεeij =
1 + ν

E
dσij −

ν

E
dσkkδij

and E, ν are the Young’s modulus and Poisson’s ratio of the material.

Hardening Rule: During plastic deformation, the current stress has to remain on the
yield surface so that the elastic region is immediately available upon unloading.

22



This requirement is called the consistency condition. Therefore, the yield surface
changes during plastic deformation. The hardening rule prescribes how the yield
surface changes. The most common hardening rule is isotropic hardening, where
the yield surface retains its shape and simply grows in size. In this case, the cur-
rent yield stress of the material is taken to be equal to the maximum equivalent
stress achieved up to the present, σo = σmax

e Other possibilities include kinematic
hardening, where the yield surface translates without changing shape and com-
bined isotropic/kinematic hardening. Hardening rules that allow the yield surface
to change shape are also possible, but exhibit considerable complexity.

J2 flow theory with isotropic hardening: Here, the yield function is that of von-Mises
so the equivalent stress is given by (7). An equivalent plastic strain increment, dεpe, is
defined so that

σedε
p
e = σijdε

p
ij (10)

and is given by

dεpe =

√
2

3
dεpijdε

p
ij. (11)

The flow rule reduces to

dεpij =
9

4σ2
e

1

Ep
t

sijsmndσmn (12)

where Ep
t is the current value of the plastic tangent modulus. As mentioned above,

during plastic deformation the hardening rule changes the yield surface to f = σe −
σmax
e = 0.
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3 Failure Under Proportional Stress Paths

The prediction of ductile failure is fairly complex and is dependent on the plastic deformation
of the material. As a result, failure can be sensitive to the loading path, or stress history,
as has been discussed by Stoughton and Yoon (2012). The failure criteria that will be
considered in Section 4 exhibit some form of path dependence, but there is no expectation
that they will reflect the path dependence describted by Sotoughton and Yoon. In order to
give the reader an idea of how predictions obtained with various failure models compare,
simple proportional loading examples were constructed in both three-dimensional principal
stress space as well as plane stress space as described in the next two sections.

3.1 Three-Dimensional Principal Stress Space

Suppose that we have an elastic-plastic material with the uniaxial stress-plastic strain curve
shown in Fig. 6(a). It has yield stress σo and constant plastic tangent modulus Ep

t . Under
uniaxial stress, failure is taken to occur when the plastic strain is equal to εpf . The cor-
responding stress value is σf . Let the material be loaded incrementally in principal stress
space starting from the unloaded state while keeping a constant proportion between the
stress components. Such proportional loading gives stress paths such as OA or OB in Fig.
6(b) that are straight lines. The direction of the stress path can be defined by two angles, φ
and θ as shown in the figure. φ is the angle that the stress path makes with respect to the
hydrostatic axis and is directly related to the stress triaxiality η by

tanφ =

√
2

3

(
σe
σm

)
=

√
2

3

1

η
. (13)
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Figure 6: (a) Linear stress-plastic-strain curve with parameters and (b) schematic of failure
contours in principal stress space.

The angle θ is the Lode angle and represents a rotation about the hydrostatic axis.
Following a stress path with given φ and θ from the origin, the stress components will
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eventually become high enough to satisfy a ductile failure criterion, thus generating a failure
point in principal stress space. Considering paths with constant φ but different values of θ
generates closed contours as shown in Fig. 6(b) for two values of φ. If the failure criterion is
independent of the Lode angle θ, the contours will be circles. The lines shown are examples
of a failure criterion that is Lode angle dependent. Note that the lines do not have to lie in
a plane with constant hydrostatic stress. The shapes shown for φ1 and φ2 are drawn with
different sizes to represent a failure criterion that is also dependent on triaxiality. A criterion
that is triaxiality independent would produce shapes of equal size. In general, it is expected
that the size of the failure contours would decrease with increasing triaxiality (decreasing φ)
as mentioned in Section 1.1 and illustrated in Fig. 6(b).

One of two methods were used to generate the failure surface for each of the failure
criteria considered.

Method A:

In this procedure a series of numerical calculations were performed where the stress mag-
nitude was increased incrementally for constant values of φ and θ. At each increment, the
plastic strains, the equivalent plastic strain, and other state variables were calculated using
the relations presented in Section 2. With this information, a given failure criterion was
evaluated until failure was detected. By changing the value of θ the failure contour at con-
stant triaxiality was determined. Once this was performed, similar failure contours were
generated for other values of φ. Finally, a failure envelope was generated by joining the
different contours.

Method B:

Given the simplicity of the hardening function and of the stress history, it is also possible to
obtain closed-form solutions for the stress at failure as follows. Suppose that we are following
a proportional stress path with constant φ and θ. Decomposing the stress components as
suggested by (6), we can write

σx = σm + sx (14a)

σy = σm + sy (14b)

σz = σm + sz (14c)

where the deviatoric stress components will be written as

sx = s (15a)

sy = α s (15b)

sz = −(1 + α) s. (15c)

Note that sx+sy+sz = 0 as required. All calculations conducted in Section 4 will be carried
out with s > 0. Therefore, this condition is also assumed in the following development.
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From (7) and (15) the equivalent stress is

σe =
√

3(1 + α + α2) s (16)

Since first yield occurs when σe = σo, the value of s at yield is given by

s̄o =
σo√

3(1 + α + α2)
. (17)

From (13), constant φ implies constant η. Then from (17) and (8), the relation between σm
and η is

σm = η
√

3(1 + α + α2)s. (18)

The relation between θ and α depends on the range of α. The calculations presented in the
next section will be conducted with −1/2 ≤ α ≤ 1. In this range σx > σy > σz and

√
3 tan θ =

2σy − σx − σz
σx − σz

.

Combining with 14 and 15 gives

tan θ =

√
3α

2 + α
. (19)

From (12) the plastic strain increments are

dεpx =
3

2

ds

Ep
t

(20a)

dεpy = αdεx (20b)

dεpy = −(1 + α)dεx. (20c)

Integrating for constant Ep
t and α gives

εpx =
3

2

s− s̄o
Ep
t

(21a)

εpy = αεx (21b)

εpz = −(1 + α)εx. (21c)

Finally, the expression for the equivalent plastic strain increment can be obtained by
substituting (20) into (11), which gives

dεpe =
√

3(1 + α + α2)
ds

Ep
t

, (22)

and, integrating,

εpe =
√

3(1 + α + α2)
s− s̄o
Ep
t

(23)

Note that using (16) and (17) in (23) gives

εpe =
σe − σo
Ep
t

(24)

as can be seen in Fig. 6(a). Keep in mind that the equivalent stress-plastic-strain curve is
the same as the uniaxial stress-plastic-strain curve.
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3.2 Plane Stress

Plane stress in the x-y plane is defined as a state of stress having components σzz = σxz =
σyz = 0. The principal stress has two non-zero normal components σx and σy, as shown
in Fig. 7(b). The third principal component σz is zero at all times. As in Section 3.1,
proportional stress loading was considered (see Fig. 7(c)) with σx = σ and σy = βσx for
a material with constant hardening modulus as shown in Fig. 7(a). The same material
properties used in the 3D examples were used for plane stress, and one of two methods were
used to calculate each failure envelope.

Method A:

In this method, the stress components were incremented along proportional stress paths
(constant values of ω, as defined in Fig. 7c), while calculating the plastic strain components
and checking the failure criterion. Once the failure criterion was met, the stress and strain
values were stored, and the process was repeated for a new value of ω. Finally, the stored
variables for −180◦≤ ω ≤180◦ were assembled to generate the plane stress failure envelope.

Method B:

Since the failure criteria considered are isotropic, the failure envelopes will be symmetric
about the line σy = σx in Fig. 8(c). As a result, calculations need only be conducted in the
regions labeled 1, 2 and 3. Each of the regions have the following characteristics:

Region 1: σ > 0, 0 ≤ β ≤ 1, σ1 = σx, σ2 = σy and σ3 = 0.

Region 2: σ > 0, −∞ ≤ β ≤ 0, σ1 = σx, σ2 = 0 and σ3 = σy.

Region 3: σ < 0, 1 ≤ β ≤ ∞, σ1 = 0, σ2 = σy and σ3 = σx.

The mean hydrostatic stress is given by

σm =
1 + β

3
σ (25)

while the equivalent stress is

σe =
√

1− β + β2 |σ| (26)

and the Lode angle is

√
3 tan θ =


2β − 1, in region 1

−1+β
1−β , in region 2

−2−β
β
, in region 3.

. (27)
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Note that while in three dimensions the Lode angle and the triaxiality are independent,
the plane stress condition ties them. Writing triaxiality (η) in terms of the Lode parameter
(µ =

√
3 tan θ) gives

η =


3+µ

3
√

3+µ2
, in region 1

−2µ
3
√

3+µ2
, in region 2

− 3+µ

3
√

3+µ2
, in region 3.

. (28)

Because of the constant plastic tangent modulus of the material and the proportional
stress path used, the equations of J2 flow plasticity can be easily integrated to give the
following expressions for the plastic strains:

εPx =
2− β

2

|σ| − σ̄o
EP
t

sgn(σ) (29a)

εPy =
2β − 1

2

|σ| − σ̄o
EP
t

sgn(σ) (29b)

εPz = −1 + β

2

|σ| − σ̄o
EP
t

sgn(σ) (29c)

where
σ̄o =

σo√
1− β + β2

. (30)

is the value of σ at yield. The expression for the equivalent plastic strain is

εPe =
√

1− β + β2
|σ| − σ̄o
EP
t

. (31)
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Figure 7: Definition of plane stress example parameters. (a) Stress-strain relationship pa-
rameters, (b) plane stress condition and (c) radial stress path.
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4 Failure Criteria

The next sections will first present examples of the failure contours in principal stress and
strain spaces for various commonly used failure criteria using the proportional stress paths
discussed previously. Following this, examples will be given of failure surfaces in principal
stress space and how they project onto plane stress. Finally, the plane stress representation
of each failure criterion will be discussed in detail. In all cases to be shown, the material
parameters were taken as σ0 = 60 ksi, Ep

t = 1× 102 ksi and εpf = 0.15.

4.1 Equivalent Plastic Strain

Definition

Although it is not supported strongly by experimental data, the equivalent plastic strain
failure criterion is the simplest and therefore one of the most widely used failure criteria. It
is available in Abaqus as well as in Sierra/SM. The criterion states that failure at a material
point occurs when the equivalent plastic strain reaches a failure value. In other words, when

εpe = εpf . (32)

Here εpf is the plastic strain at failure, and it is the only parameter that needs to be calibrated
from test data. The most common calibration test is the uniaxial tension test, but others
such as pure shear tests may also be used. In J2 plasticity, the equivalent plastic strain
is calculated incrementally as given in (11) and accumulates during plastic deformation.
Therefore,

εpe =

∫
dεpe =

∫ √
2

3
dεpijdε

p
ij. (33)

Examples of Use

Documented examples of the use of this failure criterion include the Newton aircraft vul-
nerability project conducted at Sandia, Los Alamos and Lawrence Livermore National Lab-
oratories (Alves et al (2012)). Validation studies on the failure of round thin-walled plates
subjected to blast loading gave predictions that underestimated the explosive amount re-
quired to fail the plates. An increase of 20% in the value of εpf determined from uniaxial
tension tests was required to match the experimental data. This may indicate a deficiency
in the failure criterion and/or the calibration procedure used in the uniaxial tension tests.

Another example was presented by Kazemahvazi et al (2007) who investigated the failure
of circular copper plates subjected to an underwater shock. They reported calibration of the
equivalent plastic strain at failure based on uniaxial tension tests. They took the failure
strain to correspond to the plastic strain at which the ultimate tensile stress occurred. The
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authors reported mesh dependency of the failure results and chose a mesh size to “ensure
agreement with experimentally observed failure modes over the entire range of pressures
investigated.” The results indicated a tendency for the loads required to induce failure of
the plates to be underestimated by about 20% in some cases.

Proportional Stress Paths–Three Dimensional Results

Using (24), setting εpe = εpf and solving for the corresponding critical value of equivalent
stress σec gives

σec = Ep
t ε
p
f + σo = σf .

Here, σf is the failure stress that corresponds to the specified plastic strain εpf under uni-
axial loading. This equation reveals that the equivalent plastic strain failure criterion is
independent of both triaxiality and Lode angle. Hence, the single contour shown in Fig.
9(a) represents the failure criterion. The perspective shown is as if one was looking down
the hydrostatic axis. The radius of the failure surface is

√
2/3 σf as shown in the figure.

The initial yield surface is shown in green in the figure for reference. Figure 9(b) shows
the corresponding contour of plastic strain on the π-plane, which is also a circle of radius√

3/2εpf .
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Figure 9: Stress and plastic strain states at failure according to the equivalent plastic strain
failure criterion for 3D proportional stress paths. (a) Stress space and (b) plastic strain
space.

Figure 10 shows a three-dimensional representation of the failure surface in principal
stress space. It is simply a cylinder of circular cross-section with its axis aligned with he
hydrostatic axis. The surface was plotted in a semi-transparent fashion, so the darker region
represents the overlap of the front and back portions of the surface. The green line is the
hydrostatic axis σx = σy = σz, whereas the red triad represents the principal stress axes
passing through the origin. The intersection of the failure surface with a plane where one of
the principal stresses is zero represents the case of plane stress and is of particular interest
in the analysis of thin-walled structures. The black line in the figure shows the intersection
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of the failure surface with the σx-σy plane and illustrates the shape of the failure surface in
plane stress.

Figure 10: The equivalent plastic strain failure surface in principal stress space for 3D
proportional stress paths. The hydrostatic axis is shown in green and the origin is shown
by the intersection of the three red axes. The black line is the intersection with the σx-σy
plane.

Proportional Stress Paths–Plane Stress Results

Figure 11(a) shows the calculated failure envelope in stress space for the case of plane stress.
These were calculated using the plane stress relations presented in Section 3.2. Four symbols
are included to identify particular states of stress. Equibiaxial tension (β = 1) is shown by
the up triangle, “plane plastic strain,” defined by εpy = 0 (β = 1/2) is shown by the down
triangle, uniaxial tension (β = 0) is shown by the square and pure shear (β = −1) is shown
by the circle. Both stress components have been normalized by σf . As expected, the failure
envelope has the shape of a von Mises ellipse. The initial yield surface is also included in
green line as reference.

Figure 11(b) shows the corresponding in-plane plastic strain envelope while Fig. 11(c)
shows the dependence of the critical equivalent plastic strain at failure (εpec) on the stress
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Figure 11: Equivalent plastic strain failure criterion for plane stress, proportional stress
paths. (a) Stress space, (b) in-plane plastic strain space and (c) critical equivalent plastic
strain vs. stress triaxiality.

triaxiality (η). As dictated by the definition of this failure criterion εpec = εpf . It is important
to note that because this failure criterion does not distinguish between states of stress with
positive or negative triaxiality, the equivalent plastic strain to failure is the same whether
the hydrostatic mean stress is positive or negative. Therefore, when used in problems with
high compressive hydrostatic stress it predicts unexpected failure modes for triaxiality values
near zero or negative, as has been demonstrated for plate puncture problems by Teng and
Wierzbicki (2006).

4.2 Equivalent Plastic Strain in Tension

Definition

A simple modification to the equivalent plastic strain failure criterion to prevent failure under
hydrostatic compression has been implemented in Sierra/SM by calculating a variable εpet
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Figure 12: The equivalent plastic strain in tension failure surface in principal stress space
for 3D proportional stress paths. The hydrostatic axis is shown in green and the origin is
shown by the intersection of the three red axes. The black line is the intersection with the
σx-σy plane.

called ‘tensile eqps’ defined in incremental form as follows (Crane (2013)):

dεpet =

{
dεpe, if σm > 0
0, if σm ≤ 0

. (34)

In other words, the increment of equivalent plastic strain in tension only accumulates when
the hydrostatic mean stress is positive. Failure is predicted to occur when

εpet = εpf . (35)

As with the regular equivalent plastic strain criterion, only the parameter εpf needs to be
calibrated from test data. Note that this failure criterion is triaxiality dependent, but in a
very simple and abrupt manner.
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Figure 13: Equivalent plastic strain in tension failure criterion for plane stress, proportional
stress paths. (a) Stress space, (b) in-plane plastic strain space, (c) critical equivalent plastic
strain vs. stress triaxiality.

Examples of Use

This failure criterion was used for calculations in the Newton aircraft vulnerability project
Alves et al (2012), but no direct comparison to experiment was reported. This criterion has
also been used to prevent failure when the material is under negative triaxiality in other
projects but, again, no record explicitly addressing the performance of this criterion has
been found in a practical problem.

Proportional Stress Paths–Three Dimensional Results

Under proportional loading the failure contours produced by the equivalent plastic strain
in tension criterion are identical to those of the equivalent plastic strain criterion as long
as the stress triaxiality is positive. Therefore, the contours are identical to those shown
in Fig. 9. Since no failure can occur for zero or negative triaxiality, one can think of the
failure contours as having infinite radius under this condition. Figure 12 shows the three-
dimensional failure prediction as a truncated cylinder whose radius goes to infinity at zero
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triaxiality. The intersection of the failure surface with the σx-σy axis, shown in black line,
consists of one-half of an ellipse as will be shown next in more detail.

Proportional Stress Paths–Plane Stress Results

The result of using this failure criterion under plane stress is presented in Fig. 13. The
failure envelope in stress space is shown in Fig. 13(a) to be “open” over half of the second
and fourth quadrants and the whole third quadrant. Therefore, no failure occurs for paths
in those regions. The corresponding in-plane strain failure envelope is shown in Fig. 13(b).
Figure 13(c) reflects exactly the definition of the failure criterion: failure occurs when εpet = εpf
if the triaxiality η > 0, and no failure occurs if η ≤ 0.

4.3 Maximum Shear Stress

Definition

This is a simple stress-based criterion stating that failure occurs when the maximum shear
stress reaches a prescribed value. The maximum shear stress can be easily calculated if the
three principal stresses are known. If they are ordered such that σ1 > σ2 > σ3 then the
maximum shear stress, τmax, is given by

τmax =
σ1 − σ3

2
. (36)

The material is taken to fail when

τmax = τf . (37)

Here τf is the maximum shear stress at failure. As in the previous two cases, only a single
parameter, the value of τf , needs to be calibrated from test data. Again, a simple uniaxial
tension test is a possibility. For J2 plasticity models, τf = σf/2.

Examples of Use

This was one of the models evaluated in plane stress by Wierzbicki et al (2005) for states of
stress with triaxialities η > −1/3. In their evaluation of seven failure models, they concluded
that this simple model fit their experimental data very well and was therefore a “winner.”
Similarly, Vallellano et al (2007) found that this failure criterion fitted the measured biaxial
strain failure data of Al 2024 sheet under stretch much better than other criteria.
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Figure 14: Stress and plastic strain states at failure according to the maximum shear stress
failure criterion for 3D proportional stress paths. (a) Stress space and (b) plastic strain
space.

Proportional Stress Paths–Three Dimensional Results

Since this failure criterion is completely defined in terms of stress we can easily determine
the stresses at failure as follows. Consider the ranges of α and s in (15) to be −1/2 ≤ α ≤ 1
and s > 0. In this range σ1 = σx, σ2 = σy and σ3 = σz. It covers the segment in the π-plane,
shown in Fig. 5, that lies between the projection of the positive σx axis when α = −1

2
and

the projection of the negative σz axis when α = 1. As mentioned in Section 3.2, this range
covers one-sixth of the π-plane. For an isotropic failure criterion, five similar segments can
be determined by reflection of the failure surface about the stress axes. The maximum shear
stress in the segment of interest is given by

τmax =
2 + α

2
s. (38)

Note that τmax is independent of σm, so the maximum shear failure criterion does not depend
on triaxiality. To find the critical value of s at failure (sc), use (38) and solve for sc, giving

sc =
2τf

2 + α
(39)

The other stress components can the be found from (15), (14) and (18). As in the
equivalent plastic strain criterion, a single contour, shown in Fig. 14(a) in red, represents the
failure criterion for any value of triaxiality in stress space. The contour calculated for the
equivalent plastic strain criterion, as well as the contour of the yield surface are shown for
reference. Note that the maximum shear failure criterion is a hexagon, which implies a Lode
angle dependence, and that it is inscribed in the circle representing the equivalent plastic
strain criterion.

Once sc is known, the value of the strain components at failure can be found from (21).
Figure 14(b) shows the comparison between the plastic strains at failure predicted by the
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Figure 15: The maximum shear criterion failure surface in principal stress space for 3D
proportional stress paths. The hydrostatic axis is shown in green and the origin is shown
by the intersection of the three red axes. The black line is the intersection with the σx-σy
plane.

maximum shear and equivalent plastic strain criteria. Note that in strain space, the criterion
takes a “star” shape as shown. The reason for the star shape can be clearly seen in Fig.
14(a). Note that along certain directions the distance between the yield surface and the
failure surface is smaller and gives the valleys in the star. Where the vertices occur in stress
space, the results have to agree with those from the equivalent plastic strain failure criterion,
thus giving the points of the star in strain space. So, clearly the combination of using J2
plasticity and the maximum shear failure criterion results in the star shape of the plastic
strain contours.

From (23) the value of the equivalent plastic strain at failure is given by

εpec =
√

3(1 + α + α2)

2τf
2+α
− s̄o
Ep
t

. (40)

So, while εpec depends on α and therefore on the Lode angle θ, it does not depend on triaxiality.

The three-dimensional representation of the failure surface is shown in Fig. 15 together
with its intersection with the σx-σy plane.
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Figure 16: Maximum shear stress failure criterion for plane stress, proportional stress paths.
(a) Stress space, (b) in-plane plastic strain space and (c) critical equivalent plastic strain
vs. stress triaxiality. The results from the equivalent plastic strain criterion are shown for
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Proportional Stress Paths–Plane Stress Results

In the case of plane stress, the maximum shear stress is given by

τmax =


σ
2
, if σ > 0 and 0 ≤ β ≤ 1

1−β
2
σ, if σ > 0 and −∞ ≤ β ≤ 0

−βσ
2

, if σ < 0 and 1 ≤ β ≤ ∞.
(41)

The plane stress failure envelopes are shown in Fig. 16 in red line. The results obtained for
the equivalent plastic strain criterion are shown in blue for comparison. The failure envelope
in terms of the stress is shown in Fig. 16(a). As previously seen, this envelope has the
shape of the Tresca hexagon in plane stress. The largest differences between the two criteria
occur for the cases of “plane plastic strain” and pure shear. Although the differences may
seem small in stress space, they become quite dramatic when looking at the in-plane plastic
strain space as seen in Fig. 16(b). A shallow plastic tangent modulus projects a small stress
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difference into a large plastic strain difference. The critical values of equivalent plastic strain
as a function of stress triaxiality are shown in Fig. 16(c). Clearly, the critical equivalent
plastic strain varies considerably. The material is most ductile under uniaxial loading and
under balanced biaxial loading and least ductile under pure shear and “plane plastic strain”
conditions. Recall, however, that this failure criterion is triaxiality independent but Lode
angle dependent. It was previously discussed that in plane stress the triaxialty and the Lode
angle are related by (28). Hence, the trend shown in Fig. 16(c) is a reflection of Lode angle
dependence rather than triaxiality dependence.

This failure criterion does not distinguish between states of stress with positive or negative
triaxiality. As a result, it suffers from the same deficiencies as the equivalent plastic strain
criterion when states of stress with high compressive mean stresses are present.

4.4 Mohr-Coulomb

Definition

The Mohr-Coulomb failure model has its roots in the field of geomechanics. In a recent
paper Bai and Wierzbicki (2010) proposed the use of this model for ductile fracture because
it exhibits both triaxiality and Lode angle dependence. Their observations that both of these
parameters are important in the prediction of ductile fracture motivated their consideration
of this model.

The Mohr-Coulomb failure criterion is given by the expression

M = τ + c1σn = c2 (42)

where τ and σn are the shear and normal traction components, given by (2) and (3) on a
plane that maximizes M . The parameters c1 and c2 are material constants. Note that if
c1 = 0, the criterion reduces to the maximum shear stress criterion. Bai and Wierzbicki have
shown that by maximizing M with respect to the plane orientation, the criterion reduces to

1

2

[(√
1 + c21 + c1

)
σ1 −

(√
1 + c21 − c1

)
σ3

]
= c2. (43)

Recall that the principal stresses have been ordered such that σ1 ≥ σ2 ≥ σ3.

Examples of Use

This criterion has been used extensively for concrete and geomaterials, but its use for ductile
failure seems to have started with the papers by Bai and Wierzbicki (2010) and Beese et al
(2010). Since then it has been used in the prediction of fracture in sheet metal by several
investigators with reportedly reasonably good results. See, for example, the papers by Li
et al (2010), Dunand and Mohr (2011) and Ebnoether and Mohr (2013). In some of these
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papers the criterion is modified and is generally used in conjunction with plasticity models
that are more sophisticated than the one used in this work.

Proportional Stress Paths–Three Dimensional Results

The Mohr-Coulomb failure criterion is, like the maximum shear criterion, stress-based. As
was done when considering maximum shear, the range −1/2 ≤ α ≤ 1 and s > 0 will be
considered in (15). Recall that in this range, σ1 = σx and σ3 = σz. Substituting from (14)
and (15) into (43) yields the relation for sc as follows

sc =
c2 − c1σm

k

where

k =

[√
1 + c21 +

1

2

(√
1 + c21 − c1

)
α

]
.

Using (8) to write the triaxiality η instead of σm above and using (16) gives the final expres-
sion for the critical value at failure

sc =
c2[

k + c1η
√

3 (1 + α + α2)
] . (44)

It is then clear that this failure criterion depends on both the triaxiality and the Lode angle,
and that the values of c1 and c2 need to be calibrated from experimental data. Our simple
example requires that, under uniaxial stress conditions, failure occur when the plastic strain
reaches the value εf , which corresponds to a stress σf . Substituting σ1 = σf and σ3 = 0 in
(43) yields a relation between c1 and c2 as follows

1

2

(√
1 + c21 + c1

)
σf = c2. (45)

Therefore, only the value of c1 will be prescribed in the examples that follow. The value of
c2 will be determined from (45).

Once sc is determined from (44), the rest of the stress components can be found from
(15) and (14). Examples of failure contours for four values of triaxiality are shown in Figs.
17(a) and (c) for c1 = 0.2 and 0.4 respectively. The results show that the shapes of the
failure contours resemble a distorted hexagon. The effect of triaxiality is enhanced as c1
increases. The case with c1 = 0 is not shown but, as indicated previously, it is equivalent to
the maximum shear failure criterion shown in Fig. 14(a). Comparing the stress contours in
Fig. 14(a) to those in Figs. 17(a) and (c) shows that the distortion of the maximum shear
stress hexagon increases with c1. The results also show that for sufficiently high triaxialities,
parts or the whole failure contour can be inside the yield surface. Presumably, in theses
cases failure would be declared upon yielding. Finally, note that failure is asymmetric with
respect to the positive and negative uniaxial stress directions.
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Figure 17: Stress and plastic strain states at failure according to the Mohr-Coulomb failure
criterion for 3D proportional stress paths. (a) Stress space, c1 = 0.2, (b) plastic strain space,
c1 = 0.2, (c) stress space, c1 = 0.4 and (d) plastic strain space, c1 = 0.4.
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Figure 18: The Mohr-Coulomb failure surface in principal stress space for 3D proportional
stress paths (c1 = 0.2). The hydrostatic axis is shown in green and the origin is shown by
the intersection of the three red axes. The black line is the intersection with the σx-σy plane.

The strains at failure are found from (21) and produce the contours shown in Figs. 17(b)
and (d) for c1 = 0.2 and 0.4. As expected the contours have ‘star’ shapes like the maximum
shear criterion, but with distortions that increase with c1. The equivalent plastic strain at
failure can be found by substituting (44) into (23). Clearly εpec depends on both the Lode
angle θ and triaxiality η.

The three-dimensional representation of the failure surface for c1 = 0.2 is shown in Fig.
18, together with its intersection with the σx-σy plane that constitutes the plane stress failure
contour that will be discussed next.
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Proportional Stress Paths–Plane Stress Results

In the case of plane stress, tracing the failure contours requires splitting the calculations
into three parts as indicated in Section 3.2. The expressions for the critical value σc are as
follows:

σc =


σf , if σ > 0 and 0 ≤ β ≤ 1(√

1+c21+c1
)
σf√

1+c21+c1−
(√

1+c21−c1
)
β
, if σ > 0 and −∞ ≤ β ≤ 0

−
√

1+c21+c1√
1+c21−c1

σf
β

, if σ < 0 and 1 ≤ β ≤ ∞

. (46)

These equations produce one-half of the envelope, and the other half can be obtained by
reflection about the σx = sigmay line.

The results for the stress contours are shown in Fig. 19(a) in red line, together with the
results from the equivalent plastic strain criterion shown in blue. Note that all the stress
contours are closed and that the segment in the first quadrant is independent of c1. The
plastic strains at failure, obtained with (29) are shown in Fig. 19(b) while the equivalent
plastic strain at failure obtained from (31) is shown in Fig. 19(c). As indicated previously,
the results differ more and more from those of the maximum shear criterion as c1 increases.
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Figure 19: Mohr-Coulomb failure criterion for plane stress, proportional stress paths. (a)
Stress space, (b) in-plane plastic strain space, (c) critical equivalent plastic strain vs. stress
triaxiality. The results from the equivalent plastic strain criterion are shown for reference in
blue line.

4.5 Tearing Parameter

Definition

The tearing parameter is a simple, empirical ductile failure model that is currently im-
plemented in Sierra/SM as part of the Multi-Linear Elastic-Plastic (MLEP) with failure
plasticity model. The MLEP model is a classical iso-thermal and rate independent J2 plas-
ticity model. Although it provides a choice of isotropic and kinematic hardening, only the
isotropic hardening option is regularly used at SNL. The failure model is a modification of
that originally proposed by Brozzo et al (1972). This model was evaluated and compared
against other failure criteria by Wellman and Salzbrenner (1992). Subsequently, Wellman
adopted it, modified it and implemented it in Sierra/SM (Wellman, 2012). In the current
form implemented in Sierra Solid Mechanics Team (2013), the expression for the tearing
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parameter is given by

ψ =

∫ εpe

0

〈
2σ1

3(σ1 − σm)

〉ξ
dε̂pe, (47)

where εpe is the equivalent plastic strain, σ1 is the largest principal stress, σm is the hydrostatic
mean stress and ξ is a parameter. Clearly, this criterion exhibits dependence on mean stress
and hence triaxiality. The Macaulay bracket is interpreted as

〈a〉 =

{
a, if a > 0
0, if a ≤ 0.

Failure occurs when

ψ = ψf (48)

where ψf is the value of the tearing parameter at failure. Note that under uniaxial conditions
with σ1 = σ and σ2 = σ3 = 0 (47) gives ψ = εpe. Hence, setting ψf = εpf gives failure when
the uniaxial plastic strain is εpf .

Using the tearing parameter failure criterion requires data to calibrate two parameters:
ψf and ξ. Wellman (2012) suggested setting ξ = 4 based on calibrations that he conducted
using notched Al 6061-T6 specimens tested under tensile load. More recently, however, it
has been found that using ξ = 4 does not fit the response of other materials well, so it is
useful to make ξ a parameter to be calibrated based on test data.

Examples of Use

The tearing parameter failure criterion has been used often at SNL to make predictions of
ductile failure in various applications with varying degree of success. Most of the usage of
this failure criterion seems to be included in various internal Sandia memos and a few SAND
reports. The objective of the initial evaluation conducted by Wellman and Salzbrenner
(1992) was to model the punching of exclusion barrier mock-ups. Since then, this failure
criterion has been applied to other problems.

Prior to about the year 2000, the value of ξ used in most analyses was one, which is in
agreement with the original model by Brozzo et al (1972). Starting around 1998, however,
the value of ξ was changed to four to achieve better agreement with experimental failure
measurements conducted on Al 6061-T6 notched specimens. Wellman (2012) indicated that
the tearing parameter “has been used with many materials with a good degree of success,”
but acknowledged that for less ductile metals, such as Al 2024-T3, the predictions were
not accurate. He also identified shear loading as another source of concern. It has been
known that using the tearing parameter gives responses that are very tough in the vicinity
of stress states where shear dominates. This may be improved by using smaller values of ξ
as will be shown. The tearing parameter was used in the calculations of Al 7075 plate and
cylinder puncture by Corona et al (2012). The results obtained with ξ = 4 overestimated the
minimum punch-through velocity by about 60%. Given that in recent Sierra/SM releases
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Figure 20: Stress and plastic strain states at failure according to the tearing parameter
failure criterion for 3D, proportional stress paths. (a) Stress space, ξ = 4, (b) plastic strain
space, ξ = 4, (c) stress space, ξ = 1 and (d) plastic strain space, ξ = 1.

the value of ξ can be picked by the analyst, it is expected that calibrating both ξ and ψf to
experimental data can lead to improved failure predictions.

Proportional Stress Paths–Three-Dimensional Results

In order to determine the failure envelope according to this criterion, the largest principal
stress has to be determined first. As was done in the case of the maximum shear stress
criterion, the range −1/2 ≤ α ≤ 1 with s > 0 is considered. In this range σ1 = σx = σm + s.
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Substituting into (47) gives

ψ =

∫ εpe

0

〈
2 (σm + s)

3s

〉ξ
dε̂pe. (49)

Dividing the numerator and denominator of the quantity in the brackets by σe and using
(8), (16) and (22) yields

ψ =

∫ s

0

(
2

3

)ξ 〈
η
√

3(1 + α + α2) + 1
〉ξ √3(1 + α + α2)

Ep
t

dŝ. (50)

Since η, α and Ep
t are all constants, this expression can be easily integrated to give

ψ =

(
2

3

)ξ 〈
η
√

3(1 + α + α2) + 1
〉ξ √3(1 + α + α2)

Ep
t

(s− s̄o) . (51)

where s̄o is the value of s at yield as given by (17). Note that in order for ψ to be non-zero,

η
√

3(1 + α + α2) + 1 > 0. (52)

This expression sets some limits for η for given values of α. Values of η more negative
than these limits completely prevent failure from occurring. For example, for α = −1
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Figure 21: Predicted variation by the tearing parameter for the critical value of the equivalent
plastic strain with triaxiality for three values of α and two values of ξ.

If (52) is satisfied, then at failure ψ = ψf , and (51) can be solved for the critical value
value of s, which gives

sc =

(
3

2

)ξ
ψf(

η
√

3(1 + α + α2) + 1
)ξ Ep

t√
3(1 + α + α2)

+ s̄o (53)
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Figure 22: The tearing parameter failure surface in principal stress space for 3D proportional
stress paths (ξ = 1). The hydrostatic axis is shown in green and the origin is shown by the
intersection of the three red axes. The black line is the intersection with the σx-σy plane.

and the stress components can then be determined from (14) and (15). Clearly the shape of
the failure surface is complex. When η = 0, however, it can be shown that

εpec =

(
3

2

)ξ
ψf .

In other words, the shape of the failure surface contour when η = 0 is a circle. Its radius
depends on the values of the tearing parameter at failure ψf and the exponent ξ. At the other
extreme, as η goes to infinity (hydrostatic tension), (53) reduces to sc = s̄o. This means that
the tearing parameter predicts nearly immediate failure for high triaxiality stress paths.

The contours of the failure surface obtained for constant triaxiality in principal stress
and strain space are shown in Fig. 20. Contours based on the recommendation presented
by Wellman and Salzbrenner (1992) that ξ = 4, are plotted in Fig. 20(a) and (b). The
contours obtained with the equivalent plastic strain criterion are shown in blue for comparison
purposes. Clearly, the failure criterion has a strong dependence on triaxiality. Note that the
contours become quite large compared to those generated by the equivalent plastic strain
criterion when the triaxiality is zero or negative. This is most apparent when looking at the
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strain contours in Fig. 20(b). The effect of triaxiality can be moderated by choosing smaller
values of ξ, as shown in Fig. 20(c) and (d), which were generated with ξ = 1. Clearly the
criterion shows Lode angle dependence if η 6= 0 as evidenced by the non-circular shapes of
the contours.

To further demonstrate the effect of ξ, Fig. 21 shows the triaxiality dependence of the
equivalent plastic strain at failure for three values of α. Due to the Lode angle dependence,
the three values of α produce distinct curves. Note that increasing ξ makes the failure
criterion more sensitive to the effects of triaxiality. This implies a reduction of the strain to
failure for triaxialities higher than η = 1/3, and greatly increasing the strain to failure for
triaxialities lower than 1/3.

The three-dimensional failure surface obtained with ξ = 1 is shown in Fig. 22, with
the projection onto plane stress shown in black line. Clearly, under plane stress, failure is
inhibited when both stress components are compressive. To maintain clarity in the figure
the surface is plotted for values of η that satisfy (52) by some margin.

Proportional Stress Paths–Plane Stress Results

Applying the tearing parameter failure criterion to proportional loading under plane stress
gives the red envelopes shown in Fig. 23. The failure envelope in stress space is shown in
Fig. 23(a) compared to the blue ellipse obtained with the equivalent plastic strain criterion.
Three curves are shown for the tearing parameter, corresponding to values of ξ = 4, 1 and
0.25. Note that as ξ increases, failure occurs at lower stress combinations in the vicinity of
the equi-biaxial stress path, and at higher stresses in the vicinity of pure shear. The failure
envelopes in plastic strain space, shown in Fig. 23(b), also reflect these observations. Note
that for equi-biaxial stressing and ξ = 4 failure actually occurs soon after initial yield as seen
in Fig. 23(a), and therefore the plastic strains at failure are also very small. At the same
time, the strains at failure for the pure shear case are very large. Reducing the value of ξ
makes the failure envelopes approach that of the equivalent plastic strain criterion, as long
as one of the two stresses is positive.

Figure 23(c) reflect the observations made previously. Note that increasing ξ causes a
reduction on the critical equivalent plastic strain to failure for η > 1/3 but a marked increase
when η < 1/3.

4.6 Johnson-Cook

Definition

Johnson and Cook (1985) proposed plasticity and failure models that account for factors
that are important when materials are loaded to failure at high rates. These factors include
large strains, large strain rates, high pressures and high temperatures.
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Figure 23: Tearing parameter failure criterion for plane stress, proportional stress paths. (a)
Stress space, (b) in-plane plastic strain space, (c) critical equivalent plastic strain vs. stress
triaxiality. The results from the equivalent plastic strain criterion are shown for reference in
blue line.

The model to calculate plastic deformation (often called the “strength model”) assumes
that plastic deformation is governed by the J2 flow theory of plasticity, but that the expression
for the equivalent stress-plastic strain (σe-ε

p
e) curve of the material during plastic loading

depends not only on equivalent plastic strain, but also on strain rate and temperature. The
influences of each of these parameters are decomposed in a multiplicative manner as follows:

σe = [A+B (εpe)
n]

[
1 + C ln

(
ε̇pe
ε̇peo

)] [
1− T̂m

]
(54)

Here, (•̇) = d(•)/dt where t represents time, ε̇peo represents a reference strain rate and

T̂ =


0, if T < Tr
T−Tr
Tm−Tr , if Tr ≤ T ≤ Tm
1, if T > Tm

(55)

is the homologous temperature. In the latter expression, T , Tr and Tm are the current
temperature, a reference (usually room) temperature and the melting temperature of the
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material3 Finally, the five parameters (A,B, n, C,m) are adjusted to match as well as possible
the data obtained from material tests. Note that testing data obtained under quasi-static
and dynamic conditions as well as at temperature are needed to fit this model.

Since the objective of the present work is to review failure criteria, the strength model
will not be exercised here. Instead, the simple rate and temperature independent model used
in all the previous examples will still be used.

The failure model is also constructed using a multiplicative decomposition of the effect
of triaxiality, strain rate and temperature on the equivalent plastic strain at failure:

εpef =
[
d1 + d2e

d3η
] [

1 + d4

(
ε̇pe
ε̇peo

)] [
1 + d5T̂

]
(56)

where d1, . . . , d5 are adjusted to best represent the dependence of the equivalent plastic strain
at failure. Note that the dependence of the equivalent plastic strain at failure on triaxiality
has an exponential form, as suggested by Rice and Tracey (1969) for the enlargement of
spherical voids. Since the values of η, ε̇pe and T̂ can vary during the loading history at a
material point, a cumulative damage variable is defined as

D =

∫ εpe

0

dε̂pe

εpef (η, ε̇
p
e/ε̇

p
eo, T̂ )

(57)

with failure occurring when D = 1.

Examples of Use

Because of its simplicity and dependence on triaxiality, strain rate and temperature, the
Johnson-Cook model is widely used to predict material plastic flow and failure. Whereas
the strength model has been called a “workhorse for engineers and analysts,” (Dabboussi

3Temperature changes in the material may be due to environmental conditions or to heat generated from
plastic deformation. The heat generated during plastic deformation is often calculated as

dq = β σ dεpe,

where the parameter β represents the fraction of plastic work that is converted into heat. Generally β is
taken to be a constant in the order of 0.90 to 0.95, but experiments show that it can depend on strain and
strain rate as discussed by Mason et al (1994). It appears, however, that assuming constant values in the
order of 0.90 to 0.95 is a good approximation, especially as the strains become larger, at least for the Al 2024
and 4340 steel specimens that they tested. The importance of plastic dissipation depends on the temperature
sensitivity of the material and the rate that heat is transported away from local hot zones. For sufficiently
slow rates, the heat generated by plastic work dissipates without a significant temperature increase in the
material (∆T ≈ 0). For sufficiently fast strain rates, ∆T can be calculated by assuming adiabatic heating
as follows:

∆T =
β

ρCp

∫
σ dεpe

where ρ is the density of the material, and Cp is the specific heat capacity. For intermediate strain rates, one
must solve the coupled thermo-mechanical boundary value problem to calculate the temperature rise ∆T .
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and Nemes (2005)), examples where the failure criterion has been calibrated seem to be
significantly more sparse. Johnson and Cook (1985) indicate that, for the materials they
considered, failure seems to be more dependent on triaxiality and less so on strain rate and
temperature. A similar conclusion has also been reached by Skoglund et al (2006) after
fitting the failure criterion for a high performance armor steel.

The use of the Johnson-Cook strength and failure models seem to be particularly preva-
lent in the field of ballistic impact simulation. For example Borvik et al (2005) as well as
Teng and Wierzbicki (2006) used these models to numerically simulate the impact of high
speed projectiles on Al 6005-T6 panels and Weldox 460 steel plates and compared the results
to experimental data. Both reported that using the Johnson-Cook model gave very good
predictions of different aspects of the impact events such as the prediction of the ballistic
limit, the residual velocity after perforation and the crack patterns. Similar conclusions
have also been reached by Corona et al (2013) for simulations of impact and puncture of Al
7075-T651 plates by a punch attached to a large mass.

One of the keys to success in the references given above was that in all cases relatively
comprehensive experimental studies of the material response and failure were conducted
to provide data for the calibration of the strength and failure models. The material tests
required for the full calibration of the models are, at a minimum: Quasi-static uniaxial ten-
sion tests at room temperature, quasi-static uniaxial tension tests at different temperatures,
quasi-static tension tests on notched specimens, and high strain rate uniaxial tension tests.
If the problem being solved is insensitive to some of the parameters of the model, however,
the material tests listed above that are not relevant do not have to be conducted.

Proportional Stress Paths–Three Dimensional Results

Although the model allows for the equivalent plastic strain at failure to depend on strain rate
and temperature, the only effect that will be considered in this review is that of triaxialtiy.
Under these conditions (56) reduces to

εpef = d1 + d2e
d3η, (58)

and (57) to

D =

∫ εpe

0

dε̂pe
εpef (η)

. (59)

Since η is fixed for the proportional paths considered in Section 3.1, the critical value of
equivalent strain at failure, εpec, will be equal to the value given by (58), in other words

εpec = εpef .

From (23) and (17) one obtains the expression for the critical value of s as

sc =
Ep
t ε
p
ef + σo√

3(1 + α + α2)
. (60)
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Figure 24: Stress and plastic strain states at failure according to the Johnson-Cook failure
criterion for 3D proportional stress paths. (a) Stress space, case 1, (b) plastic strain space,
case 1, (c) stress space, case 2 and (d) plastic strain space, case 2. Case 1: d1 = 0.005, d2 =
0.34, d3 = −1.5. Case 2: d1 = 0.005, d2 = 0.39415, d3 = −3.
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Figure 25: The Johnson-Cook failure surface in principal stress space for 3D proportional
stress paths (d1 = 0.005, d2 = 0.34, d3 = −1.5). The hydrostatic axis is shown in green and
the origin is shown by the intersection of the three red axes. The black line is the intersection
with the σx-σy plane.

Also note that substituting (16) into (60) gives the critical value of the equivalent stress at
failure as

σec = Ep
t ε
p
ef + σo. (61)

This latter equation, in conjunction with (58), indicates that σec depends on η only, so this
failure criterion does not have Load angle dependence.

Figure 24 shows examples of stress and plastic strain contours at failure predicted by
this failure criterion for four values of triaxiality. In all cases, the parameters d1, d2 and d3
were adjusted to result in failure under uniaxial conditions at a strain of 0.15. The contours
produced by the equivalent plastic strain criterion are shown in blue line, while the initial
yield surface is shown in green line for reference. Figures 24(a) and (b) show contours for
the case with d1 = 0.005, d2 = 0.239 and d3 = −1.5. These values give a relatively moderate
dependence of failure on triaxiality as compared to the cases in Fig. 24(c) and (d), which
were generated with d1 = 0.005, d2 = 0.39415 and d3 = −3. Note that all contours are
circular indicating no dependence on Lode angle as mentioned previously.
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Figure 26: The Johnson-Cook failure criterion for plane stress, proportional stress paths.
The two cases shown correspond to those shown in Fig. 24. (a) Stress space, (b) in-plane
plastic strain space, (c) critical equivalent plastic strain vs. stress triaxiality. The results
from the equivalent plastic strain criterion are shown for reference in blue line.

The failure surface generated with d1 = 0.005, d2 = 0.239 and d3 = −1.5 is shown in Fig.
25 together with the hydrostatic axis in green line and the projection onto the σx-σy plane in
black line. Note that the Johnson-Cook failure criterion produces a closed line in plane stress
as shown. This is in contrast with the equivalent plastic strain in tension and the tearing
parameter criteria, which produce open failure envelopes in plane stress, resulting in infinite
strength under stress states dominated by biaxial compression. The strength of the material
predicted by the Johnson-Cook model, however, is still much larger when the stresses are
compressive than when they are tensile. In this respect, it resembles the Mohr-Coulomb
criterion.

Proportional Stress Paths–Plane Stress Results

Applying the Johnson-Cook failure criterion to proportional loading under plane stress gives
the results in Fig. 26. Failure curves in stress space are shown in Fig. 26(a) for the two cases
presented earlier in Fig. 24. The stress range shown cuts the contours off, but recall that
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they are actually closed for much larger compressive stresses than shown. The corresponding
failure curves in strain space are given in Fig. 26(b). Finally, the dependence of the equivalent
plastic strain on triaxiality is shown in Fig. 26(c). Note that these curves represent the
definition of the failure criterion as stated in (58).

4.7 BCJ MEM

Definition

BCJ MEM (Bammann-Chiesa-Johnson Microstructural Evolution Model) is a strain rate
and temperature dependent elasto-viscoplasticity model with isotropic damage. Unlike the
other models discussed herein, BCJ MEM’s plasticity model is coupled to the damage model.
In the limit as the strain rate goes to zero, BCJ MEM reduces to a classical plasticity model
with isotropic damage when the temperature is held well below the melting point. In a
dynamic setting, rate and temperature dependencies are activated, which can impact the
the strain to failure.

The failure model in BCJ MEM is history dependent, so it is important to understand
how strain rate and temperature affect the plastic response. For the simplified case of uniaxial
tension, at a constant strain rate, without kinematic hardening, stage IV hardening, or static
recovery, the yield stress curve can be expressed as

σy = (1− v)

[
σo +

Ep
t

Rd

(1− exp(−Rd ε
p
e))

]{
1 + sinh−1

[(
ε̇pe
w

)1/r
]}

. (62)

This equation can be compared with (54) for the Johnson-Cook model. The first expression
in parentheses causes the equivalent stress to linearly decay with the percent damage v.
The second expression in square brackets includes the initial yield strength σo, the linear
hardening modulus Ep

t , and the dynamic recovery parameter Rd, which collectively control
the rate independent behavior of the model. The third expression in curly brackets contains
the equivalent plastic strain rate ε̇pe and two model parameters w and r, which control the
rate dependent behavior of the model. Each of these parameters (σo, E

p
t , Rd, w, and r) can

be material constants, or they can independently vary with temperature T in a variety of
ways (see Sierra Solid Mechanics Team (2013) for further details). One should also keep in
mind that plastic work in BCJ MEM gets converted into heat, which can cause a significant
temperature rise under the right conditions (see footnote in Section 4.6). Thus, plastic
dissipation plays a role in the rate dependence of the model.

The isotropic damage component of BCJ MEM is based on a void growth model originally
proposed by Cocks and Ashby (1980) (Eqns. (32-34)). The growth model does not include
void nucleation, so the analyst must provide an initial volume fraction of voids vo, which can
then grow during the simulation. (A void nucleation model, which will augment the void
growth model, is under development.) The growth equation for the void volume fraction v
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is
dv

dεpe
=

√
3

2

1− (1− v)m+1

(1− v)m
sinh

[
2 (2m− 1)

2m+ 1
〈η〉
]
, (63)

where the damage exponent m is a user specified constant. Failure occurs when

v = vf , (64)

where vf is the void volume fraction at failure, which must be determined by the analyst.
The analyst should also pick m ≥ 0.5 so that the hyperbolic sine term remains positive and
voids do not shrink. When voids do grow, they are thought to grow only when σm > 0,
so the Macaulay brackets (〈·〉) in (63) cause dv/dεpe = 0 when η < 0. Finally, note that
(63) does not explicitly include strain rate or temperature, in contrast to the Johnson-Cook
failure model.

As opposed to the other failure models considered, damage and plasticity are fully coupled
in BCJ MEM. The accumulation of plastic strain at a given triaxiality affects the void volume
fraction (see (63)), and the void volume fraction affects the plasticity by reducing the elastic
constants and yield strength. As v increases, Young’s modulus and the shear modulus both
decrease according to

E(T, v) = E(T ) (1− v), (65)

µ(T, v) = µ(T ) (1− v), (66)

while the yield strength decreases according to (62).

Coupling the plastic response and failure may be more physically realistic than treating
them as independent, but it does make the model more difficult to calibrate. For example,
plasticity models are typically calibrated against a uniaxial tension stress-strain curve, mono-
tonically loaded to failure. The post-yield engineering stress-strain response can be due to
void growth, plasticity, and/or structural effects (necking), so how does one partition these
effects? To avoid this dilemma, an analyst needs more experimental data than a monotoni-
cally loaded, uniaxial, tension response curve. If one periodically unloads and reloads during
the uniaxial tension experiment, it is possible to track the evolution of Young’s modulus and
indirectly measure v through (65). Alternatively, if one assumes the plasticity is the same
in tension and compression, then a uniaxial compression test can be used to calibrate the
plasticity parameters in a scenario where voids do not grow.

References and examples of use

The BCJ MEM development is chronicled in a series of papers starting with Bammann
(1990). Since then, several papers have dealt directly with material failure (Bammann et al,
1993, 1996; Horstemeyer, 2000) and Hammi et al (2004).

Several references exist to help understand the use of BCJ MEM and its theoretical
formulation. The Sierra/SM user manual (Sierra Solid Mechanics Team, 2013) has detailed
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descriptions of the material parameters that must be specified to run the model. Brown
and Bammann (2012) contains a recent and succinct overview of the model formulation.
For a more thorough description of the model, its numerical implementation, and example
simulations, see Marin et al (2006). (The EMMI model discussed in Marin et al (2006) is
essentially an alternate formulation of BCJ MEM without recrystalization.)

Reduction to Linear Hardening

To put BCJ MEM on equal footing with the other models discussed herein, we must reduce
the equivalent stress-equivalent plastic strain relationship (62) to rate-independent, isother-
mal, linear hardening. First, σo, E

p
t , Rd, w, and r become constants. Second, take the limit

as w goes to infinity and r goes to zero to remove the rate dependence of the model. Third,
employ L’Hôpital’s rule to take the limit as Rd goes to zero to obtain

σy = (1− v) [σo + Ep
t ε

p
e] . (67)

This expression is close to a linear hardening model, but we must solve for v to complete
the simplification.

In the model implementation, v is calculated by numerically integrating (63), but v can
be analytically calculated for proportional load paths where η is a constant. Restricting our
attention to positive triaxiality (〈η〉 = η), we define

γ(η) =

√
3

2
sinh

[
2 (2m− 1)

2m+ 1
η

]
, (68)

so that (63) can be written as

dv

dεpe
=

1− (1− v)m+1

(1− v)m
γ(η). (69)

Next, collect like terms and integrate both sides from the start of plastic deformation to the
current state ∫ v

vo

(1− v̂)m

1− (1− v̂)m+1
dv̂ =

∫ εpe

0

γ(η) dε̂pe, (70)

to obtain

v(η, εpe, vo,m) = 1−
{

1− (1− (1− vo)m+1) exp [(m+ 1) γ(η) εpe]
} 1

m+1 , (71)

after some algebraic manipulation.

Note that σy becomes non-linear with respect to εpe when we substitute (71) into (67).
Linear hardening can still be approximately obtained, however, if v remains small throughout
the analysis. To achieve this, we selected an initial void volume fraction of vo = 1.0×10−4 (a
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Figure 27: The BCJ MEM failure surface (m = 7.0) in principal stress space for 3D propor-
tional stress paths. The plane stress curve depicts the intersection of the failure surface with
the σx-σy plane.

typical value) and calibrated vf for several values of m using a uniaxial tension test without
any localization (η = 1/3 and εpf = 0.15). The void fraction at failure is

vf = v
�
1
3
, 0.15, 1.0× 10�4,m

)
(72)

= 1�
{

1� (1� (1� 1.0× 10�4)m+1) exp
[
(m+ 1) γ

�
1
3

)
0.15

]} 1
m+1 . (73)

If we set m = 4.0 (a typical value), vf is a small value of 1.5 × 10�4. If we select a large
value of m = 40.0, then vf is still only 8.6 × 10�3. The function v

�
1
3
, 0.15, 1.0× 10�4,m

)
monotonically increases for the valid range of the damage exponent (m ≥ 0.5), so any value
of m in-between 0.5 and 40.0 will produce virtually linear hardening.

Proportional Stress Paths–Three Dimensional Results

BCJ MEM’s failure model was evaluated using Method A described in Section 3.1. The
stress was increased incrementally along each proportional load path using a simple, linear
hardening, plasticity model written in Python. The void volume fraction was monitored
during each simulation, and the material state was stored at v = vf . The Python code
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Figure 28: The BCJ MEM failure surface (m = 7.0) for 3D, proportional, stress paths,
projected onto the π-plane. The contours in (a) and (b) show that the failure model does
not depend on the Lode angle.

failure predictions were spot checked against the Sierra/SM implementation of BCJ MEM
for three proportional load paths and the results were indistinguishable.

As shown in Fig. 27 for m = 7.0, the BCJ MEM failure surface in 3D principal stress
space has a flared end that looks similar to the end of a trumpet. The trumpet shape flares
out as the mean stress approaches 0, while the narrow end converges to a cylinder as the
mean stress goes to infinity. The intersection between the failure surface and σz = 0 is
highlighted with a thick black line to indicate the failure curve for plane stress.

Figure 28a shows the projection of the three-dimensional failure surface (Fig. 27) for
m = 7.0 onto the π-plane, which looks down the hydrostat. Several stress contours, each
at a constant value of η, are compared against the initial yield surface and the equivalent
plastic strain criterion. The corresponding plastic strain contours are shown in Fig. 28b.
The failure surface is clearly axisymmetric about the hydrostatic axis, meaning the shape
can be fully defined in the Rendulic plane.

Looking perpendicular to the hydrostat, the Rendulic plane (Fig. 29) gives a clear view
of the failure surfaces for several values of m. Figure 29 plots the Von-Mises equivalent stress
at failure σec against the mean stress, where we can see that the damage exponent m has
a very small impact on the failure surface. The surface only changes slightly when m is
increased from 0.5 to 40. (The damage exponent probably has a greater impact when the
failure model is calibrated to more ductile materials.) More importantly, the projection onto
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Figure 29: The BCJ MEM failure surface perpendicular to the hydrostatic axis for several
values of m.

the Rendulic plane makes it easy to see that a BCJ MEM material will never fail in pure
shear (σm = η = 0). This feature should be expected from (63), since voids require positive
triaxiality to grow. (The BCJ MEM void nucleation model under development is expected to
allow voids to nucleate when η ≤ 0.) In addition, the failure surface asymptotes to the yield
surface, for all values of m, as σm at failure is increased to infinity. This characteristic means
that BCJ MEM predicts failure almost immediately after initial yield for high triaxiality
stress paths, similar to the tearing parameter criterion.

Proportional Stress Paths–Plane Stress Results

The plots of stress space, plastic strain space, and triaxiality dependence in Fig. 30 for
BCJ MEM’s failure model (m = 7.0) all show similar trends under plane stress conditions.
First, BCJ MEM predicts the least ductility for equi-biaxial tension. Second, as we devi-
ate from equi-biaxial tension, the distance between the initial yield surface and the stress
space curve increases (Fig. 30a), the plastic strain curve moves further away from the origin
(Fig. 30b), and the equivalent plastic strain to failure increases (Fig. 30c). Third, once the
stress state reaches pure shear, BCJ MEM predicts infinite failure stresses and strains.
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(b) Plastic strain space
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(c) Triaxiality dependence

Figure 30: The BCJ MEM failure criterion (m = 7.0) for plane stress, proportional stress
paths. The results of the equivalent plastic strain criterion are shown for reference in blue
line.
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5 Summary

This document presented a short survey of ductile failure models to help analysts choose an
appropriate failure criteria, and to help interpret the results of analyses. The survey is by
no means exhaustive nor detailed. It simply reflects the current understanding of the field
by the authors.

The survey concentrated on failure where isothermal and rate-independent conditions
prevailed. In many applications, the effects of temperature and strain rate on failure cannot
be ignored. These effects, although present in some of the models discussed, were not
explored.

Table 3: Summary of ductile failure criteria considered.

Failure Triaxiality Lode Failure Model
Criterion Dependence Angle Parameters

Eq. Plastic Stn. N N εpf
Eq. Plastic Stn. in Tens. Y N εpf
Maximum Shear N Y τf
Mohr-Coulomb Y Y c1, c2
Tearing Parameter Y Y ψf , ξ
Johnson-Cook Y N d1, d2, d3
BCJ-MEM Y N vo, vf ,m

Table 3 presents a summary of the models considered, indicates whether the models
exhibit dependence on triaxiality and Lode angle, and lists the parameters that must be
calibrated from test data. Dependence on triaxiality seems to be a well accepted feature of
ductile fracture, and several of the models include it. The effect of Lode angle dependence of
ductile failure models has also been reported, but may be more difficult to calibrate. Mohr-
Coulomb and Tearing Parameter exhibit Lode angle dependence and triaxiality dependence,
but they are coupled. In other words, one cannot alter the Lode angle dependence with-
out altering the triaxiality dependence. Other models not covered here may not have this
constraint.

All the models presented are phenomenological and, as such, should be calibrated with
data obtained from material experiments. Furthermore, the best results can be expected if
the material calibration experiments are conducted in stress, temperature and loading rate
regimes that are close to those that are critical to failure in the applications of interest.
In addition, obtaining the best results requires that testing be conducted on samples taken
from the same alloy and from parent material that has undergone the same processing as the
material in the application of interest. Of course, cutting samples from the same stock as in
the application is most preferred. Tests that have been used for calibration include uniaxial
tension tests, tension tests on notched specimens, upsetting tests, tension/torsion tests on
tubular specimens, Arcan-type tests, etc.
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Analysts frequently must decide whether to use a simple or a sophisticated material
model. Simple models may be easier to calibrate, but one must keep in mind that such
models generally have strong assumptions that may or may not be applicable in a given
problem. In general, it is preferable to obtain more material data and fully calibrate a more
flexible model than to use a simpler but more rigid model. In the end, however, practical
considerations usually limit the amount of data available, and it is up to the analyst’s
discretion to decide how to best approach problems that involve ductile failure.

Finally, one must keep in mind that ductile failure is a field of current active research
and that no recipe exists that can be applied universally to predict it. Instead, the analyst
should approach the field with a sense of curiosity that includes considering different models
and understanding their advantages and disadvantages with respect to the problem being
solved.
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