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Abstract 

 

Over the last three years the Neurons to Algorithms (N2A) LDRD project teams has built 

infrastructure to discover computational structures in the brain. This consists of a modeling 

language, a tool that enables model development and simulation in that language, and 

initial connections with the Neuroinformatics community, a group working toward similar 

goals. 

 

The approach of N2A is to express large complex systems like the brain as populations of a 

discrete part types that have specific structural relationships with each other, along with 

internal and structural dynamics. Such an evolving mathematical system may be able to 

capture the essence of neural processing, and ultimately of thought itself. 

 

This final report is a cover for the actual products of the project: the N2A Language 

Specification, the N2A Application, and a journal paper summarizing our methods. 
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SUMMARY 
 

 

Overview 
 

This project was named “Neurons to Algorithms” for a simple reason. As an investment area, 

Cognitive Science and Technology was considering the mechanisms of cognition across the full 

range of scales, starting with molecular machinery, through cellular structures, brain regions, 

individual humans and finally entire societies. The goal of Neurons to Algorithms (N2A) was to 

bridge the range between individual neurons and the function of neural circuits. We postulated 

that neural circuits did the equivalent of routines in a very large and complex software system. 

Alternately, neural circuits could be described in terms of an orderly set of transformations 

among a set of values. 

 

Clearly, neural circuits do not map directly to step-by-step procedures in the traditional sense. 

Rather they map most naturally to dynamical systems: sets of variables that evolve over time 

based on their current values and some transition function. Remarkably, many algorithms have 

an alternative formulation as a dynamical system, and in fact there is a simple reduction from 

algorithms that solve NP-complete problems to dynamical systems. 

 

The original goal of the project was to: 1) accumulate descriptions of neurons in terms of their 

dynamics, 2) assemble these into networks of interacting components, 3) infer “algorithms” in 

the more traditional sense. 

 

What actually happened? Several things became apparent within the first year of the project: 

1) It is necessary to build tools to hold the data representing neural structures and their dynamics. 

2) It is not possible for a small team on a 1 FTE budget to summarize the whole of neuroscience, 

or even to model one select circuit of the brain. 

 

In the second year of the project two people with doctorates in Neuroscience joined the team. 

Based on their guidance we redirected the project to focus primarily on building tools to 

represent and simulate neural systems. It was their belief that a powerful tool would leverage 

Sandia's existing investment in supercomputing (Xyce, DAKOTA) and provide value to the 

Neuroscience community. 

 

By the end of the second year we had a functioning modeling and simulation environment built 

on top of Xyce, which we presented at the Neuroinformatics 2012 conference. This began 

stronger interaction with the rest of the neuroinformatics community, within which our work 

solidly belongs. While there are many tools and simulators available, we have a unique niche to 

fill in large-scale, biologically realistic simulation. 

 

In contrast, most large-scale simulations are event-driven spike-based systems. It is generally 

necessary to pursue less realistic models in order to gain enough efficiency to scale up to 

millions or billions of neurons. Most biologically realistic models are small scale in order to 

focus the computation on detailed simulation of mechanisms. 
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N2A takes the position that cognition is the result of the dynamics, and that these dynamics are 

best represented as continuous variables in continuous time. This is not to deny that spikes are a 

crucial part of neural information flow, and that they offer significant energy efficiency 

advantages. Our working assumption is that there is some essential dynamical process behind the 

complex set of mechanisms seen in a neural circuit. When these dynamics are properly 

elucidated, they may turn out to be simple enough that they can scale up to a large system that is 

in fact a functioning mind. 

 

Results 
 

The primary products of this project are the design of the N2A language for representing 

dynamical systems, the software tool for modeling and simulating in the N2A language, several 

conference presentations and the methods journal paper. 

 

The N2A Language Overview is an informal document that describes how the modeling 

language works. It is included here as an appendix, and also as supplementary material in the 

methods journal paper. The key scientific question this project addressed is how to represent 

neural structures in a single coherent framework. Such a framework is necessary if we ever hope 

to bring together the enormous amount of neuroscience data into a theory of how the brain 

works. 

 

The N2A language attempts to answer this question in as simple a manner as possible. It 

commits to the following assumptions: 

 While there are billions of neurons in the brain, they are instances of a relatively small set 

of basic types. The specifics of each neuron are a consequence of that type’s dynamics 

playing out in a particular environment. 

 The rules for the behavior of each neuron type can be described as a dynamical system, 

consisting of state variables and functions that relate them over time. 

 Neuron types are structured to interact with other specific neuron types, and populations 

as a whole are appropriate components for describing the function of neural circuits. 

 

The N2A language attempts to express all these relationships and dynamics as sets of equations. 

By restricting the language to this simple form it remains easy to compute and analyze, yet it is 

able to express some very sophisticated behaviors. For example, the language can model the 

growth and development of brain regions, as well as cell-death and the pruning of connections. 

Few other modeling environments even attempt such things. 

 

The journal article (SAND 2013-8328 J) summarizes the technical results, and is included in this 

report by reference. 

 

The tool is released open source (SCR#1532) under a Berkeley-style license, and is available for 

download at http://code.google.com/p/n2a 

 

The tool is described in the methods journal paper. Since it is under active development and will 

continue to evolve after the end of this project, we will not describe it in great detail here. To 

summarize: It provides a textual interface for editing models in the N2A language. It automates 

http://code.google.com/p/n2a
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the process of running simulations of the models, and can perform parameter-space searches. 

The tool provides a general purpose environment, called the “Universal Modeling Framework”, 

for working with many different kinds of models and simulators beyond N2A itself. 

 

Future Work 
 

Long-term goals for the tool include: 1) A graph editing interface, where neural components and 

their connections appear as nodes and edges, along with their equations. 2) Ability to share 

models and compute resources between peers. 3) Better integration with other neuroinformatic 

tools and databases, particularly the Neuroscience Information Framework (NIF). 4) Ability to 

read and write NeuroML, or whatever becomes the standard of interchange between simulators. 

 

Scientifically, the interesting question is how to create brain-scale models that can be embedded 

in real-time systems so that they can do cognitive work. This goes beyond a neural simulation to 

creating a neural application. For something approaching human cognition, it may require a 

machine the size of a supercomputer. We are interested in finding ways to relax the traditional 

lockstep processing of a simulation so that various parts of the neural system can run at different 

speeds. We have initial designs for a mixed-frequency simulator that we will begin testing as 

resources permit. 

 

N2A is a key component in a number of funding proposals, including an internal Grand 

Challenge in neural computing and an external proposal by Northrop-Grumman. Simultaneously 

we are proposing to NIH that it be supported as a community tool for neuroscience work. Dr. 

Maryann Martone, the PI of the Neuroscience Information Framework (NIF, 

https://www.neuinfo.org ), that the approach of N2A may help solve some problems vexing the 

neuroinformatics community now regarding integration across scales and combining metadata 

with computable models. The tool and approach has tremendous potential, and we continue to 

strive to place it into service where it will help the scientific community. 

https://www.neuinfo.org/
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APPENDIX A – N2A  LANGUAGE OVERVIEW 
 

This is an informal presentation of the Neurons to Algorithms (N2A) modeling language. It is 

intended to give users an understanding of the behavior they can expect from models they create. 

 

General Concepts 
 

A “model” is any object described by a collection of metadata and equations, and which has 

relationships with other objects in the collection. A “part” is a model that has been included into 

another model. (See below for the distinction between inclusion and inheritance.) During a 

simulation, the top-level model may also be thought of as a part that is held by the simulator. 

 

A part can either be a “compartment” or a “connection”. A compartment may be an entire 

neuron, a segment of a neuron, or any other kind of system component one may wish to model. A 

connection may be a synapse between two neurons, a shared surface between two segments of a 

single neuron, or any interaction between two system components that one wishes to model. 

 

A given part may produce any number of instances within a system. Each instance has a separate 

and independent set of state variables, which evolve according to the dynamics prescribed by the 

part’s equations. A part is a template for stamping out instances. Sometimes this document 

conflates a part and an instance of that part, but keep in mind that all actual operations must 

occur on instances during simulation. 

 

Each equation in a part declares a state variable via simple assignment: 
 <name> <assignment operator> <expression> 

For example: 
 a = b + 10 

This equation brings the state variable “a” into existence, and describes how it changes over 

time. In particular, it is always 10 greater than “b”. 

 

Equations may be of roughly three basic types. A constant is known before execution starts and 

never changes. A regular variable receives its value from the expression, and generally changes 

during the simulation. A differential equation is like a regular variable, but implicitly creates an 

integrated value as well. Differential equations are always with respect to time. Example: 
 a  = 10     // constant a 

 b  = a * v  // variable b 

 v’ = c * g  // differential equation v’ and integrated 

value v 

 

An equation set describes how the state of a part changes at a given instant in time. All equations 

are evaluated at the same moment, in parallel. This implies that there is no ordering among the 

equations. One equation cannot build on the results of another at that instant in time. (However, 

see “Multiline Equations” below for a relaxation of this rule.)  For example: 
 a = c + 1 

 b = a + 1 

 c = b + 1 
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Before the first evaluation of this set, all three variables are initialized to zero. After the first 

evaluation, all three variables are 1. After the second evaluation, all three variables are 2, and so 

on. 

 

The simulator determines how much time has transpired since the last evaluation. (That quantity 

is available in the special variable $dt.) Any differential equations are integrated over that 

interval, and the results are available at the moment the equation set is processed. 

 

Multiline Equations 
 

The rule is “one variable, one equation”. During a given update cycle, only one equation in a 

given equation set can change a variable. However, there are a number of useful expressions that 

appear to contradict this. 

 

Append Operator – A connection modifies values within the parts it connects. This implies that a 

variable may be addressed by more than one equation set during a given update. The connection 

may simply assign a value, but since all evaluation is unordered this may or may not be the final 

value of the variable. Alternately, the connection could add some amount to the value that is 

already there using the append operator “+=”. (See “Combining Parts” below for an example 

using this operator.) Any variable touched by an append operator becomes a sum. A sum is set to 

0 at the start of an update cycle and accumulates value from all equations that address it. Note in 

particular that the meaning of += is different from C-like programming languages. It cannot be 

used as a shortcut for “a = a + b”! 

 

Conditional Evaluation – Sometimes an equation may take several different forms, depending on 

the state of other variables. Example: 
 sgn =  1 @ x > 0 

 sgn = -1 @ x < 0 

 sgn = 0 

In this example, x is a state variable somewhere else in the equation set, and we are determining 

its sign. 

 

The expression after the “@” is evaluated for each line that defines the same variable. If several 

are non-zero, then one will be chosen in a simulator-specific fashion. Examples of choice 

methods include picking a different one at random during each update, or always executing the 

first one. A user should not rely on any particular choice method. It is best to ensure that the 

conditions are mutually exclusive. A line with no @ is the default expression. If all @ 

expressions evaluate to zero, then the default is executed. If no default is provided, then nothing 

is executed. During init-time, a line with simply “@ $init” is treated as the default equation. 

 

The reserved variable $init is set to 1 when a part is instantiated, and becomes 0 after its equation 

set is first evaluated. This allows initial values to be expressed as part of the equation set. 

Example: 
 V’ = g / C 

 V  = -72 @ $init // V is integrated V’, except first cycle 

 

Another use of @ is to evaluate equations at specific places or times in the simulation. This can 



13 

provide a simple way to create input patterns. Examples: 
 // Note: $t is current simulated time 

a = 10 @ 0.9 < $t && $t < 1  // only in a certain period 

 b = 5  @ $xyz == [5;5;0]     // only at a certain place 

 

 // Initialize c to 5, except at one place. 

 // The first line is treated as the default during init, 

// so the second line is given precedence. 

 c = 5 @ $init 

 c = 10 @ $init && $xyz == [2;1;0] 

 

Temporaries – It is sometimes useful to define values that are not part of the state of a part. That 

is, you do not want to consume memory storing the value between updates. Instead you want to 

calculate each time for use in other expressions. Using the temporary assignment operator “:=” 

keeps a variable out of the part’s state. Example: 
 a := b + c 

 e  = a + d  // equivalent to b + c + d 

 g  = a + f  // equivalent to b + c + f 

Temporaries are evaluated only when they are referenced by other equations. A temporary is only 

evaluated once per cycle, and the value is not stored between cycles. Temporaries must not form 

a cyclic dependency. Connections may not reference temporaries in other parts. 

 

A simulator backend should automatically find sub-expressions within the equation set and factor 

them out to minimize computation. Thus it is not necessary to identify temporaries solely for the 

sake of optimization. 

 

Combining Parts 
 

A model may incorporate other models. When it does so, all the equations from the source model 

must be combined into a single namespace within the destination model. This may happen in two 

ways: inheritance and inclusion. These are defined below, followed by an extended example. 

 

 
 

When a model is inherited, all its equations are appended to the child model directly. If a 

variable is defined in both the parent and the child, then the child equation overrides the parent. 

If multiple models are inherited that define the same variable, and the child does not otherwise 

override it, one of the parent equations is chosen in an arbitrary way. The user should have no 

expectations about precedence. In the case of triangle inheritance (where C inherits from A and 

from B, both of which inherit from P), the equations from P will appear only once in C. 

A = ... 

B = ... 

C = ... 

Child / Destination 

 

D = ... 
E = ... 

Parent / Source 
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When a model is included as a part, a prefix is added to each variable defined in the part. This 

creates a sub-namespace that contains the equations from the part. The containing model may 

also define variables in that sub-namespace, and these override variables coming from the part. 

 

If the included part references a variable but does not define it, then the containing part must 

provide it. The simulator will attempt to resolve a name in the local namespace first. If that fails, 

it will search in the containing namespace, and on up the hierarchy until the name is found. 

 

In some cases, a variable may be defined in both the included set and the containing set. If you 

wish to force resolution up to the containing set, prepend the special namespace “$up” to the 

variable name. Alternately, you can explicitly prepend the containing namespace to the variable, 

but this is only possible when that namespace is known ahead of time. Some parts (such as ion 

channels) may be included in many different containers with many different names. The special 

namespace $up makes it possible to force resolution up the containment hierarchy without 

knowing those names. 

 

A model can override one or all the conditional equations associated with a given variable in a 

part that is inherited or included. If the model contains an equation with the right prefix and 

variable name but no @, then all the equations associated with the variable are removed, and 

replaced by the new default equation. If the model contains an override with an @ clause, then 

only the equation with the matching @ clause (if any) is replaced. If a model specifies an empty 

@ clause, then only the default equation from the source part is overridden. Example 
 // In model “Bob”: 

sgn =  1 @ x > 0 

 sgn = -1 @ x < 0 

 sgn = 0 

 // In model “Sue”: 

 B = $include (“Bob”) 

 B.sgn = 1   // no “@”; replaces all 3 forms of “sgn” with 

single equation 

 B.sgn = 1 @ // nothing after the “@”; replaces only sgn = 0 

 B.sgn = 22 @ x > 0  // replaces only sgn = 1 @ x > 0 

 

Inheritance and inclusion make the construction of large models easy. The following describes 

what happens when you use inheritance and inclusion to assemble parts into a model. 

 

A “population” is a set of part instances. The number of instances is specified by the reserved 

variable $n. (See the section “Model Layout” for details on the construction of a population.)  A 

model may contain several different parts, and each part may define its own $n. This implies that 

there may be hierarchical production of populations. That is, each instance in a population may 

itself contain populations of subparts. The total number of instances of a particular part is the 

product of its $n and the $n of each containing part. If $n is not specified, then it defaults to 1. 

 

Below is a fully-worked example of the Hodgkin-Huxley cable model. It starts by showing each 

source model with only their locally-defined equations. Then it expands the Hodgkin-Huxley 

Compartment equation set to show how inheritance and inclusion work. It concludes with the 
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cable model and its fully expanded equation set to show how hierarchical inclusion works. Some 

models have brief commentary to highlight features. 

 

Passive Membrane (a kind of compartment): 
V'     = (G * (V_rest - V) + I_inj) / C 

G      = 0.3 

V_rest = 10.613 

C      = 1 

 

Ion Channel: 
$up.V' += I / C 

The special namespace $up in front of V’ forces it to reference the enclosing part. I and C are not 

defined here; they don’t appear on the left-hand side of an equation. Therefore they must be 

satisfied by the enclosing or inheriting part. 

 

Potassium Channel: 
parent   = $inherit (“Ion Channel”) 

I        = G * n^4 * (E - V) 

n'       = alpha_n * (1 – n) – beta_n * n 

alpha_n := (10 - V) / (100 * (exp ((10 - V) / 10) - 1)) 

beta_n  := 0.125 * exp (-V / 80) 

G        = 36 

E        = -12 

“parent” is a pseudo-variable. It is not actually computed at simulation time. The exact name is 

arbitrary, but must be unique in the equation set. In particular, each $inherit() line must have a 

distinct name. This supports versioning of equation sets, where an $inherit() may be revoked or 

replaced. 

When “Ion Channel” is inherited, $up is brought in verbatim. It is only resolved when this model 

is included as a part of another model. 

 

Sodium Channel: 
parent   = $inherit (“Ion Channel”) 

.V’     += I / C 

I        = G * m^3 * h * (E – V) 

m’       = alpha_m * (1 – m) – beta_m * m 

h’       = alpha_h * (1 – h) – beta_h * h 

alpha_m := (25 – V) / (10 * (exp ((25 – V) / 10) – 1)) 

beta_m  := 4 * exp (- V / 18) 

alpha_h := 0.07 * exp (- V / 20) 

beta_h  := 1 / (exp ((30 – V) / 10) + 1) 

G        = 120 

E        = 115 

 

Hodgkin-Huxley Compartment: 
parent = $inherit (“Passive Membrane”) 

K      = $include (“Potassium Channel”) 

Na     = $include (“Sodium Channel”) 
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“K” and “Na” are pseudo-variables but they serve a crucial role: they specify the prefix for the 

included part. 

 

Expanded equations for Hodgkin-Huxley Compartment: Note that variables on right-hand-side 

are fully qualified to show where they get resolved. 
V’          = (G * (V_rest - V) + I_inj) / C 

G           = 0.3 

V_rest      = 10.613 

C           = 1 

K..V’      += K.I / C     // ..V’ refers to containing V’ 

K.I         = K.G * K.n^4 * (K.E - V) 

K.n’        = K.alpha_n * (1 – K.n) – K.beta_n * K.n 

K.alpha_n  := (10 - V) / (100 * (exp ((10 - V) / 10) - 1)) 

K.beta_n   := 0.125 * exp (-V / 80) 

K.G         = 36 

K.E         = -12 

Na..V’     += Na.I / C 

Na.I        = Na.G * Na.m^3 * Na.h * (Na.E – V) 

Na.m’       = Na.alpha_m * (1 – Na.m) – Na.beta_m * Na.m 

Na.h’       = Na.alpha_h * (1 – Na.h) – Na.beta_h * Na.h 

Na.alpha_m := (25 – V) / (10 * (exp ((25 – V) / 10) – 1)) 

Na.beta_m  := 4 * exp (- V / 18) 

Na.alpha_h := 0.07 * exp (- V / 20) 

Na.beta_h  := 1 / (exp ((30 – V) / 10) + 1) 

Na.G        = 120 

Na.E        = 115 

 

Hodgkin-Huxley Connection (to set up cable equations): 
A     = $connect (“Hodgin-Huxley Compartment”) 

B     = $connect (“Hodgin-Huxley Compartment”) 

A.V' += (B.V – A.V) / R 

B.V' += (A.V – B.V) / R 

R     = 10 

The $connect() lines declare that “A” and “B” are instances of other parts. The exact names are 

arbitrary. The key characteristic of a connection is the ability to reference other instances and 

modify their variables. 

 

Cable Model: 
HH    = $include (“Hodgkin Huxley”) 

HH.$n = 3 

C     = $include (“Hodgkin-Huxley Coupling”) 

C.A   = HH 

C.B   = HH 

C.$p  = C.A.$index == C.B.$index - 1 

A potential instance of connection C will be generated for every combination of two HH 

instances. The reserved variable $p determines whether that instance should actually exist. In this 

example, we are using $index to state that neighboring HH instances should link. 
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Here is the fully expanded equation set for Cable Model: 
HH.$n          = 3 

HH.V’          = (HH.G * (HH.V_rest – HH.V) + HH.I_inj) / HH.C 

HH.G           = 0.3 

HH.V_rest      = 10.613 

HH.C           = 1 

HH.K.$up.V’   += HH.K.I / HH.C 

HH.K.I         = HH.K.G * HH.K.n^4 * (HH.K.E – HH.V) 

HH.K.n’        = HH.K.alpha_n * (1 – HH.K.n) – HH.K.beta_n * HH.K.n 

HH.K.alpha_n  := (10 – HH.V) / (100 * (exp ((10 – HH.V) / 10) - 1)) 

HH.K.beta_n   := 0.125 * exp (-HH.V / 80) 

HH.K.G         = 36 

HH.K.E         = -12 

HH.Na.$up.V’  += HH.Na.I / HH.C 

HH.Na.I        = HH.Na.G * HH.Na.m^3 * HH.Na.h * (HH.Na.E – HH.V) 

HH.Na.m’       = HH.Na.alpha_m * (1 – HH.Na.m) – HH.Na.beta_m*HH.Na.m 

HH.Na.h’       = HH.Na.alpha_h * (1 – HH.Na.h) – HH.Na.beta_h*HH.Na.h 

HH.Na.alpha_m := (25 – HH.V) / (10 * (exp ((25 – HH.V) / 10) – 1)) 

HH.Na.beta_m  := 4 * exp (- HH.V / 18) 

HH.Na.alpha_h := 0.07 * exp (- HH.V / 20) 

HH.Na.beta_h  := 1 / (exp ((30 – HH.V) / 10) + 1) 

HH.Na.G        = 120 

HH.Na.E        = 115 

C.A            = HH 

C.B            = HH 

C.A.V'        += (B.V – A.V) / R 

C.B.V'        += (A.V – B.V) / R 

C.R            = 10 

C.$p           = C.A.$index == C.B.$index - 1 

 

Instantiation and Simulation 
 

This section describes a fairly specific procedure for simulation which is true mainly of the 

reference C backend. The purpose is to make the intended semantics clear, rather than to overly 

constrain how other backends behave. Simulation is on a “best effort” basis. A simulator should 

always try to run its closest approximation of the written model. It should provide warnings 

when the model contains elements that can’t be simulated according to these expectations. A 

simulator should only terminate with an error if the model is truly impossible to run, even in 

some limited form. 

 

N2A reserves some variables to have special meaning during the instantiation of parts. All 

reserved variables start with the dollar-sign ($). These variables never resolve up the containment 

hierarchy, but instead have well-defined default values. 

 

Before simulation, N2A fully expands the equation set for a model. It processes all $inherit() and 

$include() statements. For any $ equation that lacks an @ clause, it adds an @ $init. Thus a 

$ equation usually evaluates only once, during the first pass through the equation set when $init 

is set to 1. The user can change this by adding explicit conditions to it. 
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The equations of an instance are evaluated immediately when it is first created. Then a full time-

step will go by before another evaluation. During the very first cycle of a simulation, parts are 

instantiated while $t is still 0. Thus, most instances will execute their init phase when $t is 0, and 

their first non-init cycle when $t advances by $dt. At init-time, almost all variables are 0 except 

for $index and $init. In particular, $dt is always 0 because no simulation time has passed yet. 

 

The time-sequence for a simulation is: 

$t = 0 

 instantiate new compartments based on $n 

  evaluate each equation set with $init=1 and $dt=0 (no sim-time has passed yet) 

 instantiate connections between new compartments 

  ditto 

$t += $dt  (amount of sim-time that has passed, not 0) 

 evaluate all current equation sets with $init=0 

 instantiate any new compartments and connections (same procedure as in $t=0) 

$t += $dt … 

 

The procedure for generating new instances in a population is: 

 

For i = (previous value of $n) to (new value of $n-1) 

 Create a new instance of the part 

 Set all variables and implicit integrands to zero 

 Assign $index from pool of available numbers, else set $index = i 

 Set $init = 1 

 Evaluate $ equations 

 Evaluate non-$ equations 

 Set $init = 0 

 

Most equation sets will assign a value to $xyz, giving the new instance a location in space. When 

$variables are evaluated at init time, only $index and $init are defined. If any initialization 

depends on the results of other initializations, then it is necessary to organize your equation set to 

use temporaries. Such temporary variables should not be prefixed with $. 

 

At init time there is an exception to the instantaneous evaluation rule. $variables are evaluated 

first, then their values are made available to the non-$ equations. This allows non-$ variables to 

reference $variables, such as a calculated $xyz value. 

 

The procedure for creating connections is: 

 

Select the population to iterate over in the outer loop 

 Either random 

 Or its alias is specified by an assignment to $ref  // must be a constant 

For each newly created A in reference population 

 evaluate $xyz, the projection of A into the other population 

  if $xyz is undefined, then set to A.$xyz. If A.$xyz is undefined, then [0,0,0]. 
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  Note: $xyz must depend only on A. If $xyz is defined, then $ref must be defined. 

 Filter subset of population B (criteria ANDed together): 

  Select $k nearest parts 

  Select parts within $radius of $xyz 

  Select all 

 Permute the subset, such that each A is paired with a different ordering over B 

 For all B in subset 

  If (connections of this type to A) >= A.$max, then stop iterating 

  If (connections of this type to B) >= B.$max, then skip to next B 

  Evaluate equation for $p with “$init” in @ clause 

  if $p > random draw with uniform distribution in [0,1) 

   Create new instance of connection 

For each old A in “from” population 

 Do same as above, but only interact with newly created B in other population 

 note: If the expression for the connection's $xyz is invertible 

  then select a subset of old A for each new B. 

 

Parts of the above procedure repeat as necessary until every A has connections >= A.$min and 

every B has connections >= B.$min. However, it is possible to specify a network where all 

members of one population reach their $max before all members of the other reach their $min. In 

this case, the simulation will continue with $min unfulfilled. 

 

Sometimes a population connects to itself. This raises the question of whether an individual 

instance can connect to itself, or only to its neighbors. To test whether both ends of a connection 

are the same instance, compare their aliases. For example: 

 $p = A != B  // only true if A and B refer to different instances 

 

Operators 
 

Associativity Precedence Operator Description 

Left to Right 1 . Namespace delimiter 

func() Function call 

[] Subscripts 

Matrix constants 

() Override precedence 

' Matrix transpose 

Abbreviation for □|$t (derivative w.r.t. time) 

| Delimit two state variables in an ODE or PDE 

Right to Left 2 - Unary minus (makes a negative number) 

! Logical NOT 

Left to Right 3 ^ Exponentiation 
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4 * Multiply 

/ Divide 

% Modulo 

5 + Add 

- Subtract 

6 < Less than 

<= Less than or equal to 

> Greater than 

>= Greater than or equal to 

7 == Equal to 

!= Not equal to 

8 && Logical AND 

9 || Logical OR 

10 , Separate expressions in a list, or elements in a row of a matrix. 

11 ; Separate rows in a matrix 

None 12 = Define a state variable 

:= Define a temporary variable 

13 @ Separate assignment expression from conditional expression. 

 

Types 
 

float – Floating point value. The precision is determined by the backend, and in some case may 

be specified by the user. All computation is done in this format. In particular, integer and 

Boolean values are treated as floats. Boolean true is 1 and false is 0. 

 

matrix – A 2D raster of floats. Used primarily for specifying and manipulating coordinates. A 

matrix constant has the following format: [row1; row2; ... ; rowN]'. The trailing apostrophe (') is 

optional, and indicates that the matrix should be transposed. Rows are separated by semicolons. 

Values within a single row are separated by spaces. Any values in a row that are not specified are 

treated as zero. Two semicolons with nothing but white-space between them are treated as one 

semicolon. The number of columns in the matrix is determined by the longest row. Thus, an 

entire row of zeroes may be specified with a single 0 between semicolons. 

 

instance – The data of a part or connection as it exists at runtime. A part can have any number of 

instances. An “alias” in a connection is a variable of type “instance”. 

  

Special Variables 
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$dt Read: seconds since last evaluation of this instance. 

Write: the preferred evaluation period for this instance. On simulators that 

support it, this may move the instance to a different position in the event queue, 

so its next update may come at a completely different time than its peers. 

$index An integer indicating the position of this instance in the population organized as 

a 1D array. Not defined for connections. 

$init Evaluates to 1 when instance is being constructed. Evaluates to 0 at all other 

times. 

$k An integer number of nearest neighbors to search for potential connections. If 

undefined or 0, then treated as infinite. 

$live Evaluates to 1 if this instance (generally a connection) currently exists, and to 0 

if this instance is being evaluated for potential creation. 

$max Always prefixed by an alias in a connection equation set. Indicates the greatest 

number of instances from the other population that may connect to one instance 

of the aliased population. If undefined or 0, then treated as infinite. 

$min Always prefixed by an alias in a connection equation set. At least this many 

instances from the other population must connect to one instance of the aliased 

population. Default is 0. 

$n Quantity of instances to generate for the given population. Default is 1. 

$p Probability that a part exists. Decision is based on whether $p is greater than a 

random draw from a uniform distribution in [0, 1). A value of 0 forces a part to 

die, and a value of 1 forces it to live. If not specified, then the part always exists. 

Connections: used to filter all possible combinations of two populations to 

determine those that will actually connect. 

Compartments: used to implement population dynamics by randomly killing off 

instances. 

$radius A distance to search in the space of the “other” (non-reference) population for 

potential connections. If undefined or 0, then treated as infinite. Default is 0. 

$ref Which population to iterate over first when evaluating connections. If a 

connection references more than two populations, then they should be listed in 

order, separated by commas. 

$t Seconds of simulated time since start. 

$type=A,B,… Enables an instance to change into a different kind of part, or to split into 

instances of several different parts, analogous to cell-division and specialization. 

The right-hand-side of the assignment is a comma-separated list of part names. 

One or more of the destination parts are allowed to be the same as the current 

part. 

 

Write: Create a new instance for each part listed on the right-hand-side. Each 

new instance first does a standard initialization, then all values with exactly the 

same name are copied over from the old instance. Values without matching 

names are lost. If at least one of the named parts is the same as the current part, 

the first one is considered to be fulfilled by the current instance. Otherwise it 

dies at the end of the cycle. A part that lives on retains its current connections, 

while all new parts must form new connections. 
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Read: If this instance was created by any process other than an assignment to 

$type, then the value reads 0. If this instance was born from a $type assignment, 

then the value is the one-based position in the list of parts on the right-hand-side. 

After one update cycle this value resets to 0. 

$xyz Spatial location of instance. For connections, the projection of an instance of the 

reference population into the space of the other population. 

 

Pseudo-Functions 
 

prefix = $connect(name,…) Declares that “prefix” is an instance of a connected part. The list of 

part names is a hint about what this connection can handle. All 

descendants of a part are also implicitly allowed. A connection 

may be used against any part that has the right variable names, 

even it is not listed here. That is, N2A is not strictly typed. 

prefix = $include(name) Appends named equation set, while boxing them in the prefix. 

parent = $inherit(name) Appends named equation set directly. Variable on LHS is ignored, 

but must be unique within the containing equation set. 

 

Predefined Functions 
 

All backends are expected to support these functions, though in practice some may not. If a 

backend does support a function listed here, then it must follow the given semantics exactly. Any 

function not listed here has arbitrary semantics defined by the backend, and is less likely to be 

portable. 

 

gauss(dimension) Returns a random draw from a Gaussian distribution with mean 

0 and variance 1. 

dimension – Number of elements in resulting vector. If 1, then 

returns a scalar. Default is 1. 

grid(i,sx,sy,sz,dx,dy,dz) Returns a 3-vector indicating a point in space. 

i -- the index of the current element. 

sx,sy,sz -- the integer stride along each dimension. Unused 

dimensions should be set to 1. 

dx,dy,dz -- the spatial distance between adjacent elements along 

each dimension. Unused dimensions should be set to 0. 

 

Note that a stride is not the same thing as the number of elements 

along that dimension. It is instead the integer difference in the 

index between two elements along that dimension. For example, 

suppose the layout is a 4x4x4 cube, and that y is the major 

dimension (that is, all indices associated with a particular y value 

are contiguous), followed by z and finally x. The strides would 

be: sx=1, sy=16, sz=4 

pulse(x,width,period,rise,fall) Generate square and triangular waves. Returns values in [0,1]. 

Exact shape of wave depends on input parameters. 

x – Independent variable. In practice this is time or some 
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function thereof. First rise starts at 0. Any negative value results 

in an output of 0. 

width – Time from end of rise to start of fall. That is, how long 

the output remains at 1. 

period – Amount of time between start of rise in one cycle and 

start of rise in next cycle. If 0, does not repeat. Default is 0. 

rise – How long for output to change from 0 to 1. Default is 0 

(instantaneous). 

fall – How long for output to change from 1 to 0. Default is 0 

(instantaneous). 

trace(expression,“column 

name”) 

Sends the value of expression to a table on standard-out. If 

“column name” is omitted, the associated column in the table 

gets an automatically-generated unique name based on part 

prefixes and indices. The result of this function is the value of 

the expression itself, so this may be used to wrap any part of a 

larger expression. 

uniform(dimension) Returns a random number in [0,1] with uniform distribution. 

dimension – Number of elements in resulting vector. If 1, then 

returns a scalar. Default is 1. 
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DISTRIBUTION 
 

 

1 MS1326 Leann Miller 1460 (electronic copy) 

1 MS1327 John Wagner 1462 (electronic copy) 

1 MS0899 Technical Library 9536 (electronic copy) 

1 MS0359 D. Chavez, LDRD Office 1911 (electronic copy) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


