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Abstract 

 
The human brain (volume=1200cm3) consumes 20W and is capable of performing > 
10^16 operations/s. Current supercomputer technology has reached 1015 
operations/s, yet it requires 1500m^3 and 3MW, giving the brain a 10^12 advantage 
in operations/s/W/cm^3. Thus, to reach exascale computation, two achievements are 
required: 1) improved understanding of computation in biological tissue, and 2) a 
paradigm shift towards neuromorphic computing where hardware circuits mimic 
properties of neural tissue. To address 1), we will interrogate corticostriatal networks 
in mouse brain tissue slices, specifically with regard to their frequency filtering 
capabilities as a function of input stimulus. To address 2), we will instantiate 
biological computing characteristics such as multi-bit storage into hardware devices 
with future computational and memory applications. Resistive memory devices will 
be modeled, designed, and fabricated in the MESA facility in consultation with our 
internal and external collaborators.  
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1.  INTRODUCTION 
 
 

This project addresses key issues in human decision-making and high-performance 

computing. On the first point, the mechanism by which massive amounts of data can be 

integrated, processed, and stored in the human brain remains a mystery. As an example, the 

cortex has a large number of neurons (1010) and sends many inputs (prefrontal cortex, sensory, 

motor) to the striatum. A large amount of signal processing is performed in the corticostriatal 

networks that connect these two brain regions. Quantitative characterization of this information 

processing, including the ability to “reject” unwanted actions and to make decisions by 

integrating information to a threshold value [1], would improve our understanding of decision-

making and enable the development of decision support tools and human factors methodologies. 

These biological computing mechanisms are also of interest to high performance 

computing. As mentioned previously, biological networks maintain a significant lead over 

supercomputers in computations/s/W/cm3. During the last several decades, neuromorphic 

computing strategies have emerged as a method to mimic the architecture of biological networks 

in silicon hardware [2]. However, these efforts have focused solely on mimicking neural tissue 

structure as opposed to mimicking neural tissue function. Thus, these circuits mimic the 

arrangement of neurons and neuron-neuron connections, but fail to mimic the molecular 

mechanisms and/or state-changes in neurons by which actual computation occurs in neural 

tissue. For instance, synaptic connections between biological neurons are thought to be the basic 

unit of computation, yet many early efforts in neuromorphic computing focused on hardware 

CMOS transistor “neurons” connected by software “synapses.” Other efforts have involved the 

fabrication of large multi-transistor hardware “synapses” that are 103 too large to be scaled to 

biological synapse densities (1010 connections/cm2). However recent work has demonstrated the 

potential of mimicking molecular mechanisms in neurons. Newly discovered memristor 

structures are capable of storing information, and these components scale in sizes similar to that 

of biological synapses [3]. Jo et al. demonstrated spike-timing-dependent plasticity (STDP) in 

memristor structures [4], a phenomenon observed decades ago in biological synapses in which a 

synapse connection grows stronger when the pre-synaptic neuron fires before the post-synaptic 

neuron. Arrays of memristors were recently combined with CMOS to create logic devices [5], 
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yet despite these advances, substantial challenges remain to utilize these technologies in 

conventional electronics and next-generation supercomputers. 

This project addresses these challenges with the following tasks: 1) characterize the 

frequency-dependence of plasticity in biological corticostriatal networks and 2) design, fabricate, 

and characterize neuromorphic memory/computation hardware devices. 
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2.  DISSOCIATED CORTICAL NEURON CHARACTERIZATION 
 

Our previous work in engineered neural tissue networks [6] developed tools for 

constructing and interrogating in vitro neural networks. In vitro preparations of neurons present 

significant challenges to stimulation/recording studies given the difficulty in 1) providing 

directed stimulation to specific neurons and 2) tracking which neurons respond to the stimulated 

cell. In order to assess the information processing in these types of networks, we needed to use a 

method that would allow directed stimulation of particular sites in a network while also tracking 

the response of multiple nearest neighbor cells. We thus focused on optical stimulation and 

monitoring of activity in dissociated neurons. This work is currently being prepared for 

submission to a journal for publication. 

  

2.1. Optical stimulation of dissociated cortical neurons 
 

Near-infrared (NIR) ultrashort pulsed laser irradiation has been used in biology and the 

life sciences for a wide range of applications, from advanced imaging and spectroscopy, to cell 

manipulation and fusion, to nano-surgery and transfection [7-9]. The usefulness of NIR pulsed 

lasers derives from their nonlinear (multiphoton) absorption at focus that results in high peak 

power yet low mean energy as well as the long penetration depth and low scattering in biological 

samples.  In neuroscience, NIR femtosecond lasers have been utilized as a noncontact, 

noninvasive alternative (or complement) to electrical stimulation of neurons and astrocytes [10-

12]. Combined with fluorescence calcium imaging, this approach to neural stimulation has been 

applied to the study of neural activity, connectivity, and function [11, 13, 14]. 

Previous studies of femtosecond stimulation of neurons [10-20] have proposed essentially 

two mechanisms induced by the laser: photo-disruption and photo-poration, where the transition 

from a dominant disruption mechanism to a dominant poration mechanism occurs at laser power 

densities ~ 5×1011 W/cm2 (e.g. ~35mW of 800nm, 100fs, 80MHz light focused with a 0.9 NA 

objective).   These studies are consistent with the in-depth analysis of Vogel et al. [7], where the 

transition from transfection to cell damage occurs near this irradiance level.  The photo-

disruption mechanism proposed thus far involves a laser-induced release of calcium ions (Ca2+) 

from the intracellular calcium stores in the cytoplasm that triggers a massive release of Ca2+ into 

the cytosol, and a subsequent rise in fluorescence as it binds to the dye molecules.  Nothing 
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similar has been proposed for stimulation outside of the soma, although calcium stores exist in 

the neural processes as well.  In photo-poration, the focused laser spot generates sufficient free 

electrons through ionization to form a low density plasma at the membrane surface that opens a 

small, transient pore, which allows entry of extracellular calcium [18].  This stimulation 

mechanism can occur anywhere in the cell, including the axon and dendrites.         

In this study, a NIR femtosecond laser was used to stimulate cultured, cortical neurons 

and to record the resulting activity from the enhanced Ca2+ fluorescence.  An irreversible and 

delayed response is observed that is highly dependent on the influx of extracellular Ca2+ 

primarily through the native membrane channels rather than from a laser-induced poration.  A 

second, fast activity (~sec.) was also observed that is triggered by the fluorescence light source.  

This spontaneous activity is stochastic and reversible and independent of the laser stimulation. 

 
2.1.1. Primary neuron culture 
 

Cortical tissues dissected from the brains of embryonic day 18 Sprague-Dawley rats were 

obtained from Genlantis (San Diego, CA). Tissue dissociation and culture were performed the 

day of arrival following the manufacturer’s suggested protocol. Briefly, tissue was allowed to 

settle for 15 minutes at 4°C and shipping medium was removed for later use. NeuroPapain™ 

enzyme (Genlantis) dissolved in NeuroPrep™ medium (Genlantis) at a concentration of 2 

mg/mL was added to the tissue (2 mL final volume) and incubated at 30˚C for 30 minutes with 

gentle agitation every 2 minutes to digest tissue and aid in cell dissociation. After incubation, the 

suspension was allowed to settle and the supernatant removed. One mL of shipping medium was 

added back to the tissue, and gentle trituration with a 1 mL pipet tip was performed until most of 

the cells were dispersed in solution. The cell suspension was added to the remaining volume of 

shipping medium and the dissociated cells pelleted at 400 x g for 4 minutes. The supernatant was 

removed and the cell pellet resuspended in 1 mL Neurobasal Medium™ (Invitrogen, Carlsbad, 

CA) supplemented with 0.5 mM Glutamax™-I (Invitrogen) and 1X serum-free B27® 

(Invitrogen). A 2 μL aliquot of cells was mixed with 18 μL of 0.4% Trypan Blue (Sigma-

Aldrich, St. Louis, MO) and dye excluding cells counted using a hemacytometer. Cells were 

further diluted to a concentration of 106 cells/mL and plated at a density of 18 x 103 cells/cm2 

onto prepared substrates. Cells were incubated for 1 hour at 37˚C, 5% CO2 with 10 μg/mL 

Gentamycin Reagent Solution (MP Biomedicals, LLC, Solon, Ohio), after which, the medium 
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was replaced with fresh, pre-warmed medium. Every three to four days, a 50% medium change 

was performed and the cells were inspected for growth. 

At specified intervals, healthy cultures were fixed for subsequent staining and imaging. 

Cell media was removed from the substrate and immediately replaced with a small volume of 

2% Paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA), 4% D-Sucrose (Fisher 

Scientific, Pittsburgh, PA) solution in 1X PBS (Mediatech, Manassas, VA). Cells were fixed for 

30 minutes, after which, the substrates were rinsed once with 1X PBS solution and stored in 1X 

PBS at 4°C prior to staining. Samples were permeabilized to allow antibodies to penetrate the 

cells with a permeabilization solution for at least 10 minutes. Following this they were washed 3 

times with PBS. Next, they were blocked with a BSA solution for 1 hour at 37C, followed by 

incubation in antibody dilution buffer, and 3 rinses with PBS. Next, they were incubated with a 

primary antibody(s) for 1 hour at room temperature, followed by 3 rinses in antibody dilution 

buffer. Next, they were incubated with secondary antibody(s) if necessary for 1 hour at room 

temperature, followed by 3 rinses in antibody dilution buffer. In some cases primary antibodies 

were conjugated with secondary fluorescent antibodies so secondary antibody incubation was not 

necessary. Finally in cases where a nuclear DAPI stain was used, it was incubated for 5 minutes, 

followed by two rinses in PBS. The samples were kept in the last PBS rinse prior to imaging. All 

incubation steps involving fluorescent antibodies as well as storage prior to imagine were done 

using minimal light (turned off main lighting, use of aluminum foil covering) to minimize the 

potential for bleaching. Antibodies/fluorophores used include tau1 (Alexa 594), MAP2 (Dylight 

488), and a BODIPY dye that binds to DNA to highlight cell nuclei. 

 

2.1.2. Optical stimulus instrumentation 
 

The oscillator output (1030nm, 200fs, 30MHz) of a diode-pumped Ytterbium 

femtosecond laser (HP s-Pulse, Amplitude Systemes, France) was coupled into an inverted, 

fluorescence microscope (Eclipse Ti-E, Nikon Instruments, Melville, NY) equipped with an 

infinity-corrected objective (20×, NA=0.45, air immersion) and a laser dichroic and FITC filter 

set (Semrock, Rochester, NY).  The stimulation period was controlled by a mechanical shutter 

(Uniblitz, Rochester, NY), and the average sample power was 75mW. 

Fluorescence measurements were taken with an inverted microscope (Eclipse Ti-E, 

Nikon Instruments, Melville, NY) equipped with a low-noise CCD camera (Clara, Andor 
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Technology, Northern Ireland) and a 20× infinity-corrected objective (S Plan Apo ELWD 0.45, 

Nikon Instruments), as shown in Figure 1. Neural stimulation was accomplished using the 

oscillator output (1030nm, 200fs, 30MHz) of an Ytterbium femtosecond laser (HP s-Pulse, 

Amplitude Systemes, France).  Laser exposure was controlled by a mechanical shutter (Uniblitz, 

Rochester, NY), while average power was regulated by a ½-wave plate and a Glan-laser 

polarizer (Thorlabs GmbH).  An optional zero-order, ¼-wave was used to circularly polarize the 

stimulation light.  Two successive beam diameter adjustments, a 10× expansion followed by a 2× 

reduction (Thorlabs), were implemented to match the back-aperture of the objective and to 

ensure that the laser focal plane coincides with the brightfield image plane.  The final element in 

the stimulation path, a laser dichroic beamsplitter (Semrock, Rochester, NY), reflected the laser 

wavelength (~94%) yet transmitted the visible fluorescence (~96-97%) to the imaging path. 

Potentially healthy and dead cells were screened with the baseline fluorescence excited 

by a mercury broadband source (Intensilight, Nikon Instruments) coupled with fluorescein 

isothiocyanate (FITC) and ethidium homodimer (EthD-1) cubes (Semrock), respectively.  A 

second mechanical shutter (Uniblitz) matched the on-time of the excitation light to the camera 

exposure, thereby limiting photobleaching effects.  Both the laser and broadband shutters were 

triggered by a programmable pulse stimulator (Master-8, A.M.P.I., Israel) linked to the internal 

signal from the control software (NIS Elements, Nikon).       

The canonical stimulation paradigm consisted of 100ms bursts of 200fs infrared light at 

75mW average power.  At 30MHz repetition rate, this means that over 3 million pulses with 

energy of 2.5nJ and peak power of 12.5kW are applied with each burst.  By 160mW average 

power, cell blebbing and visible damage (boiling, lysing) were evident.  Lower repetition rates 

(1, 10, 100kHz) were also experimented with using the amplified output beam of the laser (500fs 

pulse width).  For these rates, the average power was adjusted to produce ~10nJ/pulse at the 

sample. 

For optical stimulation studies, we used neurons 10-14 days old loaded with Fluo-4-AM 

dye.  The density of neurons in the camera field-of-view (450 × 335 μm2) ranged from 2-23 

cells, the average being 7 cells.  Candidate cells for optical stimulation were selected first for 

their healthy physical appearance under brightfield illumination, second for their relative 

dimness in the FITC channel (i.e. not saturated—not completely loaded with Fluo-4 dye), and 

finally for their darkness in the EthD-1 channel, which enters the nuclei of dead cells.  The focal 
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spot of the laser was positioned either over the soma itself or along the main process radiating 

out from the soma, presumably the axon.  The cell threshold response to laser activity occurred at 

~60mW.  Even at this threshold level, the effect is cumulative and non-reversible and tends 

toward saturation, counteracted by photobleaching and expulsion of calcium-bound dye 

molecules.  This was true even before laser stimulation, as the brightest cells were essentially 

saturated and therefore not responsive to the laser, and only the dimmer cells showed measurable 

laser activity. 

 
2.1.3. Data analysis 
 
Fluorescence sequences were analyzed by a custom Matlab® program.  In brief, individual cells 

are extracted from the background by a combination of binary thresholding, morphological 

operations, and watershed segmentation using the FITC fluorescence image either before or after 

laser stimulation.  Initially, the entire image is processed for potential cells, but only those 

manually selected by the user are analyzed.  In addition to providing maximum flexibility, this 

manual selection step also makes distinguishing between overlapping cells much easier.  Based 

on the relative intensity and size of the internal morphology of the cells, a further refinement of 

the cell segmentation is also included to remove the nuclear region from the analysis.  The output 

of the segmentation is a binary mask, for which the average intensity within each region is 

logged at every time step in the sequence.  Individual neuron processes were analyzed in a 

similar way, except segmentation was accomplished by the NeuronJ plugin for ImageJ.  

 
2.1.4. Results 
 

Figure 3 shows a typical fluorescence response of cells stimulated multiple times in 

100ms bursts at 75mW and 160mW average laser power.  In both cases (b & e), the soma 

fluorescence increased significantly during the second set of pulses (60-69s) and saturated by the 

end of the third set at 75mW and at the end of the second set at 160mW.  No further increase of 

fluorescence is seen during the pulse trains 3-6 for the 160mW case, whereas diminishing 

responses are evident at 75mW for these pulse trains.  This is especially evident from (c) and (f), 

which show the coincidence of the laser stimulation and the calcium flux as the (positive) time 

derivative from frame to frame.  As shown, the timescale for the expulsion and photobleaching 

of the calcium-bound dye molecules is on the order of several minutes. 
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The dynamics of the calcium flux can be seen in Figure 4, which shows 8 difference 

images (Ii+1 - Ii) in a 5min. sequence for cells stimulated with 75mW.  Extracellular Ca2+ influx 

first occurred at the laser focus (indicated by the arrow) and then moved outward along the 

neuronal processes.  At 42s, the neuron to the right of the stimulation point fluoresces strongly, 

including its distal processes. This neuron repeatedly cycles over the next 20s before the neuron 

to the left of the stimulation point fluoresces dramatically (t=64.5s).  While not shown, this 

calcium wave oscillates back and forth between the left and right neurons for another ~40s 

before becoming saturated in both somas. 

In Figure 5, the variation in fluorescence response with the laser pulse width is plotted.  

Each point represents the summed maximum fluorescence within the first four stimulation time 

intervals normalized to the maximum fluorescence during the experiment.  The linear trend 

observed here shows that, with longer pulse widths, the fluorescence reaches saturation sooner.  

For 150 and 200ms pulse widths, the effects of photobleaching and calcium expulsion 

increasingly counteract the linear trend beyond the first two stimulation windows. 

Several general observations from this set of data help elucidate the mechanism 

underlying the observed calcium fluorescence response: 1) the response is cumulative and 

delayed, 2) it continues beyond the laser stimulation period in some cases, 3) it scales with the 

duration and power of the laser pulses, 4) it propagates from the laser focus, and 5) it is 

irreversible within the time span of the background fluorescence rising to saturation (presumably 

caused by the broadband excitation light source releasing internal calcium stores). 

  We probed the mechanism further by conducting a series of pharmacological 

experiments designed to isolate various components of the cells.  The first such experiment 

involved adding propidium iodide (PI) to the extracellular matrix, the results of which are shown 

in Figure 6.  Relative to the unstimulated cells, this experiment clearly shows that photo-poration 

does indeed occur at the laser focus and that the cumulative effect is not self-healing at either 

power level; however, the time scale for significant influx varies from several minutes at 147mW 

to tens of minutes at 75mW.  At 75mW, the laser irradiance is 2 × 1011 W/cm2, which is below 

that necessary for bubble formation or cell damage, but still sufficient to induce stress and to 

ultimately porate the plasma membrane [7].  We speculate that the slower response observed 

when focused over the soma is most likely due to the greater capacity to self-heal there than 

along a process.  However, unless a small amount of extracellular calcium triggers a cascading 



23 

release of internal calcium, this mechanism alone is insufficient to produce the fluorescence 

activity seen here. 

A second pharmacological experiment was conducted in the presence of zero 

extracellular calcium. Here, the fluorescence activity was dramatically reduced (data not shown), 

indicating that extracellular calcium is a major source of the resultant fluorescence response.  

Given this result and the slow photoporation mechanism, we attempted to isolate additional 

means of calcium entry.  One possibility, through the heat-activated transient receptor potential 

vanilloid (TRPV) channels, was tested by adding the thermal channel blocker SB36671 to the 

extracellular matrix (data not shown).  At 1µM, the activity was not significantly mitigated; 

whereas, at 10 µM, the blocker delayed but did not suppress the activity, indicating that thermal 

heating at and near the laser focus does in fact permit Ca2+ entry into the cell but is not solely 

responsible for the influx.  Another possibility is that the opening of voltage-gated sodium 

channels (and the firing of action potentials) was responsible for the Ca2+ influx.  In the presence 

of the sodium channel blocker, vinpocetine (in ethanol), the activity was delayed and reduced 

relative to normal conditions.  This suggests that the sodium channels play a major role in the 

calcium response.  Whether this leads to action potential firing cannot be determined without 

concurrent electrical measurements. 

As a final pharmacological test, we introduced 5µM of thapsigargin, which blocks the 

SERCA-pump import of calcium into the endoplasmic reticulum (ER).  The result was nearly 

complete suppression of the fluorescence activity (data not shown).  This clearly demonstrates 

that the activity is dependent on the ER SERCA-pump loading and release of calcium.  

Therefore, based on these experiments, the proposed mechanism of opto-stimulation of neurons 

observed here is the result of an influx of extracellular Ca2+ at the stimulation spot through native 

membrane channels, both voltage-gated calcium and TRPV channels, that is subsequently loaded 

into the ER and then irreversibly expelled into the cytosol.     

In contrast to the stimulated activity, the spontaneous Ca2+ spiking exhibited a distinctly 

different response.  First, we observed that any cell within the FOV could display spontaneous 

behavior, not just the cell or cells clearly connected to the stimulated site.  Second, the spiking 

occurred out-of-sync with the laser pulse trains and after a significant time delay (~2-4min.).  In 

separate control experiments, we confirmed that spontaneous activity happened independently of 

laser stimulation entirely.  Given the long delay, we speculate that the spontaneous response is 
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triggered by the gradual increase in the baseline fluorescence, which in turn is likely the result of 

an internal release of calcium from the mitochondria caused by the broadband excitation source 

(465-500nm) [21].  Third, the temporal response of the spontaneous activity is much quicker 

than the corresponding stimulated activity.  Rise times are on the order of a few seconds 

followed by decays times on the order of tens of seconds.  Finally, the magnitude of the 

spontaneous response is generally smaller than the stimulated response and well below 

saturation, which also suggests an intercellular rather than an extracellular calcium release.      

Femtosecond laser stimulation offers the ability to stimulate living neurons with high 

selectivity and minimal invasiveness.  Here, we demonstrated a delayed, irreversible yet strong 

extracellular calcium influx triggered predominantly by the opening of membrane channels along 

the neural processes.  This technique will enable the discovery of the role played by different 

neuronal cell types and networks and can easily be extended to multi-site stimulation with a 

spatial light modulator (SLM) or a galvo-mirror system.  

 
2.1.5. Neuron Placement with Optical Tweezers 
  

A major difficulty with in vitro cultures of dissociated neurons is the inability to control 

the network architecture of the neurons. This is crucial to our goal of assembling in vitro 

corticostriatal networks with user-defined architectures in order to examine the impact of 

network architecture on information processing. We previously demonstrated techniques [6] for 

embedding surface guidance cues into glass substrates in order to influence cell attachment and 

network outgrowth. Previously, we developed a similar cell guidance technology in which buried 

microchannels are embedded into glass substrates to guide primary neuron growth into pre-

defined architectures (James et al., SAND2010-6486). But this technology still suffers from the 

inability to direct the initial neuron attachment in a non-random fashion, given the stochastic 

nature of neuron plating and the random distribution of neurons on a substrate entailed by that 

method. We examined the use of laser tweezers in collaboration with Walter Paxton (1132) as a 

method for direct cell-by-cell positioning of neurons onto substrates. Figure 7 shows an 

experiment in which two neurons were placed into guidance cue nodes that have been etched 

into a glass substrate. The glass substrate was inverted in an inverted microscope and coupled 

with a coverslip and gasket containing a solution of neurons in growth media. Once cells settled 

to the glass coverslip, the were grasped with the laser tweezers and moved up in z and around in 



25 

xy and pushed into the glass substrate with guidance cues. After several neurons are similarly 

placed, the chip is rotated face up and then cultured in an incubator. We are currently exploring 

the viability of this method for fabricating user-defined networks. 

 
 
2.2. Primary neurons in 3D hydrogel matrices 
 

A major concern in experimental neuroscience is the biological relevance of dissociated 

neuron culture experiments. The loss of tissue structure and the plating of neurons onto artificial 

substrates that lack the biochemical cues necessary for neuron differentiation and maturation 

present problems for translating experimental results into potential clinical applications. As a 

first step towards improving the biological relevance of this effort, we examined the option of 

encapsulating primary neurons into hydrogels in order to provide a 3D environment for neuron 

growth. 

 
2.2.1. Encapsulation of neurons in gels 
 

A major concern for dissociated neuron culture is the survivability of the neurons, and this 

concern also remains with regard to the incorporation of neurons into 3D matrices. Diffusion of 

nutrients to and waste away from neurons in these environments is of vital importance. Here we 

show the first integration of rat primary cortical neurons within silica matrices that report 

viability following 7+ days of entrapment (Figure 8 and Figure 9). Primary neurons are difficult 

cells to maintain in culture, and they are extremely relevant for cell-based detection of toxic 

agents that target the nervous system. Creating cell-based sensors practical for defending the 

warfighter and personnel in less-developed or unstable regions requires a biocompatible interface 

between the cells and the macro world. Specifically, these cells require a functional bio-

inorganic interface that allows cellular interactions at the nanoscale while maintaining viability. 

We have developed a tool set for improving long-term viability and activity of integrated 

cells by tuning the silica matrix density, water content, addition of ameliorant compounds, media 

and nutrient content, silica matrix precursor chemistry, and silica delivery method (liquid sol, 

vapor phase, weakly condensed Si films). We have successfully used these tools to stabilize a 

wide variety of living cells, including mammalian cells, in our matrices. These tools allowed us 

to tune the bio-nano interface to cortical neuron cells, optimizing for long-term viability. 
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Specifically, we have found success using alkoxysilanes modified with diols or polyols 

for cellular encapsulation as these systems including high water solubility (no organic co-solvent 

required), initiation of hydrolysis and condensation reactions by the addition of water (no 

requirement of acid or base catalyst), and hydrolysis products that are biocompatible alcohols 

(i.e. glycerol). We have also found success using aqueous silica precursors (sodium silicate) that 

have been tuned to biologically compatible ionic conditions and pH.   

In both cases addition of ameliorants was required to maintain cellular viability. Glycerol 

provided a significant enhancement in cellular viability. This is attributed to the high osmolarity 

of glycerol which decreases the activity of water, and can be transported through the cell 

membrane via aquaglyceroporins, modifying the membrane permeability. The formation of a 

high glycerol and water containing region surrounding cells entrapped in silica matrices has also 

been reported [22, 23], and that interface has been implicated in improved cellular viability. We 

have found that these attributes are crucial in stabilizing the relatively more fragile plasma 

membranes of mammalian cells compared to cells walls of yeast and bacteria. Also, we found 

significant enhancement in viability by including components commonly found in the 

extracellular matrix including collagen and gel from Engelbreth-Hol,-Swarm murine sarcoma.  

Over the course of this study we have shown the ability to culture primary neurons on top 

of these synthetic silica matrices, with processes going into the matrix, resulting in 3D culture. 

This 3D culture is more analogous to behavior found in vivo; therefore, results obtained are more 

relevant than those from simple 2D culture. We have also shown the ability to stabilize cortical 

neurons cells at various stages of growth by introducing an encapsulating silica matrix on top of 

the cells. Cells remained viable following gelation and over 7+ days within the matrix. Cells and 

processes were physically restricted, preventing further growth/migration of cells and processes.  

This is important in studies where placement of cells and location of processes is critical, i.e. 

bioelectronics, biosensing, and fundamental studies in neural stimulation and inter/intra cellular 

communication. Finally, we showed that mixing of free primary cortical neuron cells within pre-

gel solution, followed by gelation, resulted in viable cells encapsulated in the silica-biocomposite 

matrix. Further, by tuning the density of the matrix, we showed that cells could extend processes 

through the matrix and behave in a manner similar to cells found in natural tissues. This is 

extremely important in microfluidic system studies that serve as in vitro mimics for living tissue 
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and organs for response testing to various chemical/biological stimuli. We are currently 

assembling this effort into a manuscript. 
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3.  CORTICOSTRIATAL TISSUE NETWORK CHARACTERIZATION 
 
3.1. Long-term depression in corticostriatal tissue networks 
 

Synaptic plasticity underlies nervous system functions from signal processing to learning 

and memory.  Short-term changes occurring in presynaptic neurons and in feedback circuits 

underlie the frequency dependency and instantaneous efficacy of transmission of action 

potentials through neuronal networks.  Long-term changes in both the pre- and postsynaptic 

regions are thought to be the basis of learning and memory.  The glutamatergic synapse between 

Layer V cortical projection neurons and medium spiny neurons in the dorsal striatum exhibits 

both of these forms of plasticity.  Importantly, the corticostriatal circuit plays an important role in 

various forms of associative learning and in modulation of motor behavior. 

We have previously investigated the role of D2 receptors in the induction of long-term 

depression (LTD) following a 100 Hz high frequency stimulus paradigm [24]. In addition, we 

have delineated the GABAergic feedback mechanisms responsible for the low-pass filter 

characteristics of this synapse [25].  In this study we further investigated the stimulus frequency 

and pattern necessary for LTD induction and the subsequent effect of LTD on the low-pass filter 

characteristics of this synapse. The following material is currently being prepared for submission 

to a journal for publication. 

 
3.1.1. LTD Methods 
 
3.1.1.1. Animals 
 

All experiments were approved by the Institutional Animal Care and Use Committee at 

the University of New Mexico Health Sciences Center and conformed with NIH guidelines.  

Coronal striatal slices were prepared at the University of New Mexico from approximately 21 - 

28 day old C57/Bl6 mice as previously described [26].   

 
3.1.1.2. Electrophysiology high frequency stimulus paradigm 
 

Briefly, animals were deeply anaesthetized by i.p. injection of 250 mg kg−1 ketamine 

(Fort Dodge Animal Health, Fort Dodge, IA, USA), brains were rapidly removed, and slices 

were cut at 300 μm with a vibroslicer (Pelco 101, St Louis, MO, USA) in an ice bath with a 

cutting solution containing (mM):  220 sucrose, 3 KCl, 1.2 NaH2PO4, 26 NaHCO3, 12 MgSO4, 
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0.2 CaCl2, 10 glucose and 0.01 mg ml−1 ketamine equilibrated with 95%O2–5%CO2.  Slices were 

then transferred to a bath containing artificial cerebrospinal fluid (ACSF) containing (mM):  126 

NaCl, 3 KCl, 1.25 NaH2PO4, 1.3 MgSO4, 26 NaHCO3, 2.5 CaCl2 and 10 glucose equilibrated 

with 95%O2–5%CO2 at 30◦C for 1 h and then maintained at room temperature (20 – 22oC) until 

transfer to a temperature-controlled recording chamber (Warner Instruments, Hamden, CT, 

USA), which was maintained at 32◦C and continuously perfused at 2 ml min−1 with ACSF 

saturated with 95%O2–5%CO2. 

A concentric bipolar stimulating electrode (FHC, Bowdoinham, ME, USA) electrode was 

placed in the layer V cortical projection to MSNs in the striatum.  Presynaptic constant current 

pulses (150 μs duration) were applied from a Master 8 through an Iso-Flex constant current 

stimulator (both from API Instruments, Jerusalem, Israel).   fEPSPs were recorded with an 

Axoclamp 2B amplifier (Molecular Devices, Sunnyvale, CA, USA) and a Digidata 1322A 

interface using pCLAMP 8 software (Molecular Devices).   Recordings were digitized at 500 

kHz and filtered at 2 kHz.  Population spike (PS) amplitudes were calculated by subtracting the 

average of both positive components in the fEPSP from the maximum intervening negative value  

To assess long term synaptic plasticity in the corticostriatal field, a 10 minute baseline 

was established at ½ maximum stimulus intensity, then one of 6 high frequency stimulus (HFS) 

paradigms with stimulus pulses at either half maximum or maximum intensity was applied, and 

finally 30 minutes of recordings were obtained again at ½ maximum stimulus intensity. The 

average amplitude of the final 10 population spikes during the 30 minute period was compared to 

the average amplitude of 32 population spikes during the 10 minute pre-HFS baseline in order to 

determine the percentage of change relative to the baseline. 

 
3.1.1.3. Electrophysiology Filtering Paradigm 
 

The filter properties of the corticostriatal field were determined by an additional stimulus 

paradigm, which was applied before and after the assessment of long-term synaptic plasticity.  In 

this random frequency train paradigm, 5 Hz to 60 Hz instantaneous frequency pulse trains were 

produced by a waveform stimulus file in Clampex.  The uniform distribution of instantaneous 

frequencies for a 40 s period of this paradigm was determined by the following statistical tests:  

A Pearson’s correlation of instantaneous frequency vs. time yielded P = 0.383 and R2 = 0.0279 
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and a Spearman’s correlation of the number of occurrences vs. binned instantaneous frequency 

yielded P = 0.340 and R2 = 0.0964. 

Frequency response data for PSs were fit with a 3rd order Butterworth low pass filter with 

a least squares regression using the Levenberg-Marquardt method in ProStat (v 6, Poly Software 

International, Pearl River NY) using Equation 1: 

 

 Equation 1:                   
  

   

 
  

 

where:  Vmean is the frequency-dependent gain that was fit to the average PS amplitude during the 

binned PS amplitudes generated by the random frequency protocol, Hz is the stimulus frequency, 

CoF is the cutoff frequency for a low pass filter, and A is a scaling factor that is directly 

proportional to the roll off of the filter. Statistical analyses were calculated using GraphPad 

Prism (GraphPad Software, La Jolla, CA).  All drugs were purchased from Tocris Bioscience 

(Bristol, UK).  Values of n represent slices. 

 
3.1.2. LTD induction results 
 

The induction of long-term synaptic depression in the corticostriatal synaptic field has 

been shown to involve both post-synaptic D2 receptors and feedback to presynaptic CB1 

receptors.   This induction repetitive firing of glutamatergic fibers that produces an initial post 

tetanic depression followed by a process, which we have called short-term depression (STD), 

that lasts for about 10 minutes.  In some instances, a longer lasting, long-term depression (LTD) 

is induced, which is maintained for an excess of 30 minutes (Lovinger etc.).  The first goal of this 

study was to investigate the characteristics of stimulus paradigms that led to STD vs. LTD.  

Figure 10 shows a set of LTD data from a series of corticostriatal tissue slices. Panel A 

shows representative field excitatory post-synaptic potentials (fEPSPs) before and after high-

frequency stimulus (HFS) is applied to the tissue. Short term depression (STD) occurs when the 

output signal measured in the striatum after HFS recovers to within 80% of the output signal 

amplitude measured before HFS. Long-term depression occurs when the output signal recovers 

to only 50% of the pre-HFS amplitude (Figure 10B). Figure 10C shows two experiments with 

different slices in which one exhibits STD and the other LTD. The time course of the recovery of 

the signal amplitude in the striatum is shown.  
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The 10 Hz, 3000 pulse paradigm at maximum intensity produced the greatest reduction in 

population spike amplitude of the 6 paradigms that we tested (Figure 11).  The reduction in 

population spike amplitude produced by the 10 Hz 300 pulse paradigms was  a result of a 

reduction in the amplitudes in the cluster that showed the least recovery (LTD) with little effect 

on the cluster with the greatest recovery (STD). Paradigms that included 400 stimuli at 

maximum intensity produce clusters with approximately equivalent means regardless of the 

underlying stimulus frequency (Figure 12); however the 10 Hz paradigm was the most reliable in 

producing LTD. 

We tested the effect of LTD induction on the low pass filtering characteristics of this 

synapse and found that long-term synaptic plasticity had little effect on this important synaptic 

property (Figure 13). A 10 minute baseline (BL#1) was followed by a random stimulus paradigm 

(RS# 1), followed by a second 10 minute baseline (BL#2). Next a 10 Hz, 400 stimuli HFS 

paradigm was done followed by a 30 minute recovery period (RESULT). Finally, this was 

followed by an identical random stimulus paradigm (RS#2). Averages of the last 10 readings 30 

minutes after the HFS were divided by averages of each of the 10 minute baselines to obtain the 

% of recovery of the pop spike following HFS. The average of recovery/BL#1 and 

recovery/BL#2 was used to then perform cluster analysis to obtain STD and LTD populations. 3rd 

order Butterworth low pass filter fits to random frequency stimuli either before or after 10 Hz 

HFS paradigm. Clusters (RS# 1 (grey), COF = 4.3688 Hz, A=0.0185, n=22; RS# 2 STD cluster 

(red): COF = 14.2026 Hz, A = 0.0370; n = 7; RS# 2 LTD cluster (green): COF = 3.4474, 

A=0.0084; n=15). 

 
3.1.3. LTD Discussion 
 

Long-term synaptic plasticity is generally accepted as a model of learning and memory.  

To be a valid model, this plasticity must be initiated by a physiologically relevant neural signal.  

HFS stimuli that mimic theta activity are commonly used to initiate LTP, but a similar 

association with the EEG power spectrum has not been made for LTD induction. We show here 

that extended HFS stimuli in the alpha range (8 – 13 Hz) are the most efficacious in inducing 

LTD in the corticostriatal synaptic field.  Importantly, we show here for the first time that 

following HFS in synapses that are capable of sustaining LTD there is a reduced effectiveness of 

low pass filtering of subsequent signals. 
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4.  NEUROMORPHIC MICROELECTRONIC DEVICE DESIGN AND 
FABRICATION 
 
4.1. History of neuromorphic and analog-like microelectronic 
devices  
 

Researchers have been seeking fundamental paradigm shifts in hardware for computation 

for several years. The power density limits and microprocessor-RAM bus bandwidth are primary 

obstacles with regard to maintaining the current hardware trajectory with an end goal of exascale 

(1018) operations per second for supercomputers. In this section, we present several efforts to 

explore novel device hardware for computational purposes. The first effort was focused on 

utilizing a multiferroic material which affords both electric and magnetic polarizations for a total 

of two states within a single device [27]. By using complementary microelectrode configurations 

(surface and embedded), we were able to measure the in-plane and out-of-plane ferroelectric 

polarizations independently, thus providing additional characterization information on bismuth 

manganite thin films.  The second effort is a theoretical conception article on simulating the 

impact of multi-layered insulator films on conductive filament based memristor devices [28]. In 

this work, we stack insulating films with contrasting ionic conductivities between two electrodes 

in order to modulate the growth of filaments within the structure. We predict improved 

performance for such devices in terms of linearity and controllability of switching. We also 

present here our initial efforts at fabricating such devices using Ag as our conductive filament 

within a multilayered structure of SiO2 and TaOx. Our next effort is a theoretical study in 

collaboration with Dept. 1748 and Hewlett Packard on tantalum oxide based memristors and the 

impact of the filament geometry on the switching dynamics [29]. This study also includes 

experimental data on HP-fabricated devices that comports with our theoretical model of oxygen 

vacancy flux within devices. The final portion of this section will cover two additional 

manuscripts on memristor switching dynamics and information storage that are currently in the 

process of being submitted. 

 

4.2. Multiferroic devices for multi-bit memory storage  
 

This work was accepted to the Journal of Applied Physics in 2013 and the material is 

included here [27]. Ferroelectricity is an active field of scientific inquiry due to both its complex 
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physical origins [30] and its wide range of technological applications, including actuators[31], rf 

devices[31],  and non-volatile memory[32]. As a result, there has been considerable progress in 

understanding the physics governing ferroelectric polarization, and complex models describing 

nucleation statistics[33] and domain growth/coalescence[34] have successfully reproduced 

domain switching phenomena spanning more than 8 decades of time[35]. However, while the 

temporal dynamics of polarization are well understood, the spatial characteristics are sparsely 

studied for many reasons including technical challenges involved in conducting polarization 

measurements. For instance, the experimental geometry used to probe ferroelectric materials is 

almost universally a tri-layer capacitor structure, meaning that measurements are sensitive to 

only a single component of the ferroelectric polarization vector. Neglecting the vector nature of 

polarization has become an increasingly relevant limitation, particularly in magnetoelectric and 

multiferroic materials, as novel coupling mechanisms have been shown to be sensitive to specific 

polarization orientations (e.g., polarization ‘flops’)[36-39].  

Theoretical advances have clarified the calculation of ferroelectric polarization [40], and 

methods such as density functional theory [40, 41] and molecular dynamics simulations[42] have 

successfully described the vector nature of microscopic ferroelectric polarization. However, 

despite the need to understand polarization orientations, experimental methods to resolve the in-

plane and out-of-plane polarization in ferroelectric or multiferroic thin films are not well 

established. Piezoresponse force microscopy (PFM) measures electromechanical responses 

which can be linked to local polarizations described by the piezoelectric and electrostriction 

constant tensors [43-45]. This approach allows domain structures to be successfully mapped with 

excellent resolution (10 nm lateral resolution and displacements of sub-pm) [46]. However, 

because the piezoelectric and electrostriction tensors are generally unknown, PFM is limited to 

qualitative descriptions of the polarization vector [47]. A quantitative description of the 

polarization vector requires a measurement of the charge transfer during a switching event, and 

the small size (typically 100x40 m2) of the probing cantilever renders measurements 

untraceable [47]. To address these limitations, we report here on measurements which 

quantitatively resolve the in-plane and out-of-plane polarization components of a thin film 

multiferroic by the use of two complementary interdigital microelectrode configurations: surface 

microelectrodes deposited on top of a multiferroic film and embedded microelectrodes where the 

multiferroic film and microelectrodes are adjacent to each other within the same plane.  
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4.2.1. Embedded microelectrode device structure 

 

As described above, it is important to emphasize that the ferroelectric polarization is a 

vector quantity. Remanent ferroelectric polarization is limited to set crystallographic 

orientations, and does not simply align itself to the applied electric field; therefore, considering 

the relative microelectrode, ferroelectric film, and polarization vector orientation is vital to 

understand the component of the ferroelectric polarization that is measured. In bulk samples, 

placing large area electrodes in arbitrary orientations on the sample enables all components of 

the polarization to be measured. In fact, this is the method by which polarization ‘flops’ were 

first observed [36, 38]. However, thin films are less amenable to generalized electrode 

orientations, and are typically limited to measuring the z-axis (out-of-plane) component of the 

polarization. Additionally, the polarization orientation is generally unknown, prohibiting a 

trigonometric determination of the total polarization from a single component.  

The out-of-plane component of polarization in thin films is commonly measured using a 

tri-layer metal-insulator-metal capacitive structure, allowing charge to be transferred vertically 

from ferroelectric domain switching. However, when thin films are required to be grown on 

insulating substrates such as SrTiO3, the placement of a bottom electrode may be difficult due to 

lattice matching constraints, and surface interdigital microelectrode arrays are used instead [48]. 

In this configuration, the capacitor is composed of alternating V+/V- “finger” microelectrodes 

uniformly spaced on top of the film surface (Figure 14a). This structure produces fringing 

electric fields with equipotential planes intersecting the ferroelectric film between each pair of 

microelectrodes, and the area of the effective capacitor may be calculated analytically using 

conformal mapping and equating the capacitor thickness to half the electrode spatial wavelength 

[49]. This structure is also limited to measuring the z-axis out-of-plane polarization (POP) of the 

film due to the fact that the charge transfer that occurs during a voltage sweep only occurs at the 

film/microelectrode interface in the z-direction, and is therefore insensitive to charge motion 

within the plane of the film. Unique to this study, we have devised a complementary 

experimental method to quantitatively measure the in-plane ferroelectric polarization of thin 

films.  By embedding the microelectrodes adjacent to the film of interest, a simple geometric 

area is obtained, thus allowing for direct, linear, in-plane electric fields within the device (Figure 
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14b). This geometry is selectively sensitive to the charge transferred due to the in-plane 

component (PIP) of the polarization again due to the orientation of the film/microelectrode 

interface.  

We have chosen the notation “in-plane” (   ) and “out-of-plane” (   ) to describe the 

polarization components, as opposed to the x-axis and y-axis polarizations (   and   ). This 

notation was motivated by multiple reasons: First, our films are grown on cubic STO, which 

applies a biaxial compressive strain of 0.77%. Ferroelectric polarization is driven by structural 

distortions, therefore, the large biaxial strain strongly suggests that comparable distortions (and 

therefore polarizations) may be induced along either axis, and that it is likely that          

   . Second, the measurement of the individual polarizations    and    is experimentally 

challenging since ferroelectric polarization vectors can be oriented in multiple degenerate 

orientations within the structural unit cell, and will maximize their alignment with the applied 

electric field to minimize energy. Therefore, measuring    and    with separately oriented 

electrodes does not determine individual components, but rather measures transferred charge 

from different polarization vectors which have aligned themselves to the applied field 

orientations (see the reorientation of polarization vectors illustrated in Figure 14c). The 

individual components must be measured simultaneously under a single electric field orientation, 

which due to signal-to-noise requirements and limitations on the multiferroic film dimensions 

made this approach not feasible for this study. Therefore, we have reported our polarization 

vectors comprising two distinguishable ‘in-plane’ and ‘out-of-plane’ vector components. 

For this study, we examined multiferroic (simultaneously ferromagnetic and ferroelectric) 

thin films of BiMnO3 (BMO) grown with a <111> orientation on SrTiO3 <001> via pulsed laser 

deposition [48]. An off-stoichiometric (Bi-rich) target with composition Bi2.4MnO3 was ablated 

using a KrF excimer laser (λ = 248 nm) with an energy density of 1.0 ± 0.2 J/cm2. The optimum 

flowing oxygen pressure and substrate temperature, TS, were found to be 37 mTorr and 632 °C, 

respectively, with deposition rates of approximately 0.05 nm/s. At the end of the deposition, the 

films were quenched in an O2 atmosphere of 680 Torr at a rate of 20 oC/min. Interdigital 

microelectrodes were fabricated on top of the BMO films using methods described previously 

[49]. The interdigital microelectrode arrays were designed to have total areas of approximately 

Ainter ≈ 10-4 cm2. 
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We examined the ferroelectric properties of these thin film samples by measuring 

remanent polarization hysteresis loops using a Radiant Technologies Precision LC Ferroelectric 

Tester. Typically, hysteresis loops are calculated by integrating the total transferred charge 

during application of a bipolar triangular voltage waveform, with contributions from leakage 

current, capacitance, and ferroelectric domain switching (remanent polarization). Alternatively, 

the polarization in a remanent hysteresis loop is calculated by removing the non-remanent 

components (i.e., leakage and induced capacitive charging) and isolating the charge transferred 

solely from ferroelectric domains. This is achieved by comparing two hysteresis loops that are 

preceded by alternate poling pulses. In the first loop, the domains are poled along the direction of 

the subsequent voltage sweep, ensuring that no charge can be transferred due to domain 

switching. In the second loop, the domains are poled opposite to the polarity of the subsequent 

voltage sweep, ensuring that all domains switch. The non-remanent charge transfer is 

independent of the pre-poling voltage pulse and is the same in both loops, therefore, the 

difference in polarization between the two loops is due to the remanent ferroelectric polarization. 

Our measurements are strictly remanent polarization charge transfer measurements (as opposed 

to induced polarization as in capacitance, see discussion above) which are normalized by the 

electrode area, and they are not affected by this subtlety of capacitive measurements. 

Figure 15a shows a representative remanent polarization hysteresis loop measured via 

surface interdigital electrodes, with a quite large maximum value PR ≈ 23 µC/cm2 and coercive 

field of EC ≈ 41 kV/cm, confirming our sample is in fact ferroelectric.  All measurements were 

made at 5 K, using a Quantum Design Physical Property Measurement System (PPMS), with 

measurement frequencies of 10 Hz. Figure 15b shows the magnetic characterization of the BMO 

films, demonstrating they are also ferromagnetic, and thus multiferroic. The magnetization was 

measured as a function of both temperature and magnetic field using a Quantum Design SQUID 

magnetometer. Zero-field-cooled (ZFC) and field-cooled (FC) warming curves both display a 

saturation magnetization of Msat ≈ 1µB/Mn, measured under an in-plane ambient field of 1000 

Oe. Magnetic field hysteresis loops show hysteresis with a coercive field of about 270 Oe 

observed at 10 K. The hysteresis observed in the M-H curves disappears and the Msat-T trace 

displays a magnetic Curie temperature near T = 80 K. 

With the surface interdigital microelectrode configuration, the out-of-plane polarization is 

measured. For assessing the in-plane polarization, we fabricated samples with microelectrodes 



40 

embedded within the BMO film. Briefly, 60 nm of BMO were deposited on STO (as described 

above) followed by coating with a photoresist (AZ4110). The photoresist was then patterned 

using a Karl Suss MJB3 contact aligner for 10 seconds at an energy of 400mJ/cm2. Patterns were 

then transferred into the BMO film via argon ion milling (VEECO/INTLVAC AM600, 300W, 

33% duty cycle). Patterns were designed with widths and separations of approximately 5 μm. 

The photoresist mask was kept in place for the electron beam evaporation of an adhesive layer of 

titanium (10 nm) and then gold (50 nm). Substrates were then subjected to a lift-off procedure 

using N-Methyl-2-pyrrolidone (NMP) in a mega-sonic bath to remove the photoresist and leave 

the gold microelectrodes embedded in the BMO film. The sample is then cleaned with 

acetone/isopropanol, and water. Samples prepared for focused ion beam serial sectioning and 

scanning electron microscopy imaging were then coated with gold to reduce charging and with 

several micrometers of Pt to protect the device during milling. Samples were then milled and 

imaged with a FEI Helios Dual Beam microscope. 

Figure 16a shows a scanning electron micrograph image of an embedded microelectrode 

device. Figure 16b shows a cross-sectional image of the embedded interdigital microelectrode 

arrays. Each embedded electrode “finger” has a length of L ≈ 2 mm long, and conforms to the h 

≈ 60 nm thickness of the film. Within our electrode array, we have approximately N = 30 pairs of 

V+/V- electrode “fingers”, resulting in a total area of,          7.2x10-5 cm2. It is 

important to note, that while the accurate calculation of capacitance based on the parallel plate 

geometry requires large aspect ratios such that h/d  >> 1 (where d is the separation of the 

electrodes), the calculation of the electrode area is independent of the aspect ratio and is exact.  

Figure 17a shows the remanent polarization loops measured for out-of-plane (red) and in-

plane (green) polarization at    5 K. Both components show large polarizations, of      23 

μC/cm2, and      12 μC/cm2 (although saturation could not be achieved in this electric field 

range for    ). Both polarization components display similar coercive fields, EC, centered at 

approximately 42.5 V/cm and 50 V/cm for     and    , respectively. However,     displays 

significant broadening of EC, suggesting that a significantly larger distribution of coercive fields 

exists in this component. This interpretation is understandable when considering the AFM image 

shown in Figure 15a which shows that the BMO films exhibit island growth morphology. Island 

edges can have diverging strain gradients [50], which result in modified electrical properties. In 

the in-plane polarization measurements, the electric fields cross a large number of islands, with 
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large variations in the voltage drops across them. Alternatively, the electric fields for the out-of-

plane polarization switching are primarily vertical (in the z direction), and thus traverse a 

maximum of 60 nm, which nominally corresponds to roughly 1 to 2 island widths.  

By using both microelectrode configurations and independently measuring both the in-

plane and out-of-plane polarization of a material, the total polarization (PTOT) of the material may 

be determined by combining their components geometrically. Figure 14c shows this combination 

of polarizations, with the total polarization,     , calculated as: 

Equation 2:            √   
     

    

    

As seen, the calculated total polarization has a maximum of        27 μC/cm2, and is 

approximately 16% larger than the value originally measured by    . Finally, comparing the 

relative sizes of the components also allows the orientation of the ferroelectric polarization to be 

estimated as, 

Equation 3:             

     
                  

              .     

 

In summary, we have presented a technique for resolving multiple spatial components of 

the remanent polarization vectors in thin film ferroelectrics. Using complementary electrode 

configurations of surface and embedded interdigital microelectrode arrays, we measured both the 

in-plane and out-of-plane polarizations. BiMnO3 was shown to have a total ferroelectric 

polarization of        27 μC/cm2 and magnetic polarization of Msat ≈ 1µB/Mn, deeming these 

samples strongly multiferroic. As a result of the complementary electrode measurements, we find 

that the ferroelectric polarization vector is in fact 16% larger than what typical measurement 

geometries would report, which due to lack of saturation in     represents a lower bound 

polarization missed by conventional measurements. The spatial sensitivity exhibited by the 

method presented here is important, as novel coupling mechanisms have been shown to couple to 

and modify specific ferroelectric polarization vector components. 
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4.3. Multilayered memristor devices with engineered conduction 
fronts 
  

This work was published in the European Physical Journal of Applied Physics in 2013 

and the article material is included here [28]. Resistive switching in materials via electric and 

magnetic fields has an extensive history of research [51-54], and is a key aspect of several 

technological applications [55, 56]. Resistive switching under applied voltage was first observed 

many years ago [57, 58], and following recent experimental work [59] has been connected to the 

fundamental theoretical prediction of memristive systems [60, 61]. Due to their non-volatile 

properties, scalability, and speed, memristors have been identified as a candidate for the 

replacement of flash memory. Memristors have also been seen as a potential component in next 

generation “neuromorphic” circuits that mimic biological neural networks to reduce the power 

consumption and hardware footprint for next-generation high performance computers [4, 62, 63]. 

However, significant limitations remain such as device-to-device reliability (which limits large 

scale production) and strongly non-linear switching properties (which limits the ability of 

memristors to emulate biological synapses). Here, we introduce a novel memristor design which 

increases the resistance modulation window and precision, and reduces device-to-device 

variations in resistive properties. By engineering a uniform conduction front (UCF), the 

variability of the resistive switching decreased by as much as 90%, and the window of resistance 

modulation with controllable linear tunability increased by as much as 75%. Furthermore, the 

attainment of a UCF increases the memcapacitive properties of the device by as much as 400%, 

enabling additional applications such as dynamic RF filtering, or efficient digital computation 

[64].  

 

4.3.1. Engineered conduction fronts in filamentary memristor devices 
 

Two classes of memristors have garnered particular interest [56]: the electrochemical 

mechanism class (ECM), and the valence change mechanism class (VCM). The resistance 

switching in both classes is driven by ionic transport through an insulating matrix under an 

applied electric field. In the ECM class, an active electrode donates electrochemically active ions 

(Cu, Ni, or Ag) which reduce/metalize once they diffuse to an opposing inert electrode (Pt, W). 

In VCM systems, oxygen vacancies are the mobile ions, which dope oxide layers resulting in 
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higher local conductance. Figure 18a shows a schematic of the basic structure of a filament-

based memristor device. When a voltage is applied between the top and bottom electrodes, 

mobile carriers drift through the insulating matrix under the electric field. Eventually, these 

carriers form conductive filaments that connect the electrodes resulting in a sharp reduction in 

resistance. Due to the stochastic nature of filament formation, these conductive filaments have 

random lengths and distributions [51, 56, 65, 66]. TEM studies of VCM and ECM resistive 

memory devices reveal multiple partial filaments in a single cross sectional slice, with evidence 

suggesting that the number of filaments is proportional to the length-scale of the device [67, 68]. 

Thus, devices with xy areas of hundreds of m can contain hundreds of such filaments of 

varying lengths. Electric field strengths are higher (and thus growth rates are faster) for longer 

filaments due to their closer proximity to the target electrode. Thus, small statistical fluctuations 

in filament growth early in the process are magnified for longer filaments, further increasing 

their separation from shorter filaments. The net result is a length distribution of filaments that is 

highly non-uniform, with one long filament that shorts between the electrodes and a large 

population of short filaments (Figure 18b). This non-uniform “conduction front” of filaments 

results in devices with switching properties that strongly depend on random variations within the 

insulating matrix.  

 
4.3.2. Filament model in single and multilayered memristor devices 

 

Here, we show that by incorporating specifically spaced layers with contrasting ionic 

conductivities, the electric field amplifications can be offset, and a more uniform front of 

conductive filaments can be produced. We begin by modeling a simple resistive switching event. 

Growth rates are determined for 100 independent filaments of length ln (where n = 1:100) 

according to an activation model in which filament lengths increase as ions preferentially hop 

toward the filament tips under applied bias [56, 69-71]: 
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In Equation 4a, d is the hopping site distance, is the characteristic ion hop attempt frequency, 

Ua is the activation potential, V is the applied voltage across the insulating matrix (1 V), h is the 

thickness of the device, l is the filament length, kBT represents the thermal energy, q is the ion’s 

charge, and the negative term accounts for reverse hopping. Equation 4b offers a conceptually 

simpler representation where the prefactors are combined into an effective mobility, μ = 

qd2exp[-qUA/kBT]/kBT, and characteristic field, E0 = 2kBT/(qd) (E = V/(h-l)). The large, non-

physical hopping distances derived from activation models, d ~ 3 nm [56], have led some to 

suggest that linear ionic drift in an electric field may be more plausible, therefore we have also 

repeated our simulations using a linear ionic drift model and obtained similar results. The 

simulated filaments grow uniaxially through an ionic conducting medium in which the ionic 

mobility at each point is determined by a Gaussian distribution in order to emulate local 

irregularities such as grain boundaries, interstitial atoms, trapped charge, and other factors.  

Figure 18c is a schematic of a multilayered structure with materials with different ionic 

mobilities ( ≠ 2). Two important factors in the simulations are the ratio of the layers’ ionic 

mobilities and the z-dimension spacing and arrangement of the layers. Figure 18d shows a 

simulation of the filament length distribution for  a multilayered device, and as shown, the 

filament length distribution is more uniform, with a substantially increased average normalized 

filament length (79±12% of the insulator thickness, h) compared to the single layer device 

(40±45% of h). The working principle is that the low mobility layers temporarily slow the 

growth of longer filaments, allowing shorter filaments to advance. Thus, the difference in 

filament lengths is reduced, and the longer filaments no longer have the same 1/d electric field 

(and therefore growth rate) advantage, allowing the shorter filaments to maintain comparable 

growth rates.  

The uniform conduction front in the multilayered device has a substantial effect on the 

resistive switching properties. Figure 19b compares the resistive switching of a single ionic 

conductor memristor, and the multilayer device proposed here. The total device resistance is 

calculated by placing 100 classical geometric resistances in parallel, where each resistance is 

determined by:   
∑    

 
 , where ρn is the resistivity of each ionic conductor layer, Ln is the 

total thickness of all layers of that ionic conductor between the filament tip and top electrode, 

and A is the area of the memristor structure In the single ionic conductor memristor (blue), there 
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is an initial range of linear resistance modulation, however, the majority of the resistive 

switching range, ΔR = ROFF-RON, is dominated by a rapid strongly non-linear resistance drop 

caused by the rapid growth of a single high conductance filament. This abrupt switching and the 

resulting abbreviated switching range limits the ability to precisely tune the device to multiple 

stable resistance values, which is a key element of analog and neuromorphic computing 

applications. However, in the multi-layer, alternating ionic conductor memristor (red) the 

uniform conduction front extends the range of linear resistance modulation to as much as 75% 

ΔR, which coincidentally is a ~ 75% increase in the tuning range (compared to ~ 44% ΔR for 

memristors with only a single ionic conductor layer). 

The performance of the proposed multilayered device was investigated by modifying the 

thickness, and a custom unitless parameter called ‘layer-configuration’ (comprising number and 

spacing) of the alternate ionic conductor layers.  A visual description of layer-configuration is 

provided in Figure 19a. With multiple layers, the number of design parameters can increase 

quickly. Therefore, for simplicity we start with equal thicknesses and map the position of the 

alternate ionic conductor layers using a generic power-law concentration profile: c(z) = zn
 (with 

results similar for most |n| > 1).  Using this profile, the number of layers specified determines 

their positions. The position of each ith layer for a given layer-configuration number (LC) are 

determined by: 

Equation 5:  
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where i = 1:LC (in integer steps), and zi represents the height of the ith layer along the z-axis 

(with z0 = 0). For example, with 3 layers, the first layer is centered at the x1 position where the 

integral of c(x) = 0.33. Figure 19b shows a simulation of a device with a characteristic resistive 

switching event. The resistance and time are both normalized to compare the linear tuning range 

of resistance for different device designs. Parameters for this simulation were chosen to 

maximize the increase of linear tuning range as well as decrease the device-to-device variability 

(layer-thickness of 20% of the device thickness and layer-configuration of 1.6). Figure 19c 

shows the design space for optimizing the increase in the linear resistance tuning range.  As the 

number of alternate ionic layers increases, the ionic mobility contrast decreases and approaches a 

single layer device, with an optimal design found between the two limits of single layer devices 

of either ionic conductor. 
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The design phase space contours are also sensitive to the material properties of the ionic 

conductor layers, and the characteristics of the alternate ionic conductor layers introduce 

additional potential design variables: the ratio of ionic mobilities (μ2/ μ1), electronic resistivity 

(ρ2/ρ1), and dielectric permittivity (ε2/ε1) of the alternate ionic conductor layers. For the design 

phase spaces shown in this study:  μ2/ μ1 = 1/100, ρ2/ρ1 = 1/2, and ε2/ε1 = 1. Similar results were 

obtained for simulations with ρ2/ρ1 = 1. However, because ionic mobility correlates inversely 

with electronic conductivity, a value less than one was chosen. 

The uniform conduction front not only affects the memristive properties of the device, 

but the memcapacitive properties as well. Memcapacitive systems are analogous to memristive 

systems; capacitance values are modulated by applied voltages and retained after their removal. 

Figure 20a shows the capacitance of a multilayered device as a function of time under applied 

bias. The tunable range of capacitance increases as much as 400% in multi-layer devices. The 

same 2-dimensional design phase-space spanned by layer-configuration (LC) and layer-thickness 

was investigated to optimize memcapacitive properties.  

In addition to improving the range of linear resistance modulation and amplifying the 

memcapacitive properties, the alternating ionic conductor design is also predicted to reduce 

device-to-device (DTD) variability. We simulated the switching of different devices by running 

multiple simulations (n = 1000) with independent Gaussian distributions of local ionic 

conductivities  in order to calculate the standard deviation of the range of resistance modulation 

for a large population of simulated device switchings. Figure 21 shows the design phase space 

for the device-to-device variation as a function of layer thickness and configuration. The 

standard deviation of the linear range of resistance was calculated and was shown to be reduced 

to as little as 10% of the variability observed in single layer devices (a 90% reduction).  

 

4.3.3. Implications of multilayered memristor structures 

 

The multi-layer alternating ionic conductor memristor design proposed here and its 

resulting uniform conduction front are predicted to provide substantial improvement in 

memristor device performance. The uniform conduction front facilitates fine-tuning of the 

resistance state, opening the possibility for analog and multi-bit applications. The uniform 

conduction front simulations also produced consistent switching events and demonstrated that 
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the alternating ionic conductor design dampens the statistical variability inherent to device 

fabrication and operation. This is an important design feature, as DTD consistency and yield are 

major hurdles to large scale memristor production [72, 73]. Furthermore, this design paradigm 

could result in specific new applications for resistive switching. By selecting layers with specific 

resistivities, the switching profile itself may be designed with almost any monotonically 

decreasing function theoretically possible. For analog applications such as neuromorphic 

computing, designing specific non-linear switching profiles could be useful to emulate particular 

learning rates due to varying synaptic development throughout the brain.  

The amplification of the memcapacitive properties is of particular interest, as 

memcapacitive research is relatively fledgling [74], and thus far, memcapacitive properties have 

only been proposed/demonstrated in select systems: ionic nanopores [75], floating gate 

superlattices [76], elastic membranes [77], and phase change systems [78]. Strong limitations on 

the memory of the memcapacitive properties have been typical, such as: limited frequency 

ranges, chaotic behavior, or sharp temperature boundaries centered on phase transitions. 

Importantly, the multi-layered memcapacitive structure proposed here is predicted to operate 

with fewer of these limitations while retaining high stability and independence from frequency 

and temperature. 

Given the design space explored above, future work includes the fabrication of test 

structures to validate the simulations reported here. Candidate materials such as binary metallic 

oxides (SiO2, Ta2O5) for low mobility layers, and chalcogenides (GeSe, GeS) for high mobility 

layers are promising and are currently being explored. Considering the configuration-thickness 

phase space of Figure 19c and Figure 20b, we see that designs with as few as 1 to 2 additional 

layers with thicknesses of approximately 20% to 50% of the total device thickness demonstrate 

significant device performance improvements. For a reasonable memristor thickness of 50 nm, 

this implies layers of 10 nm to 25 nm, which can be easily obtained with standard 

microfabrication tools. The alternate ionic mobility can be obtained by introducing interstitials or 

varying grain boundaries concentrations by altering the temperature and ambient pressure during 

growth. Additionally, by selecting materials with different annealing temperatures, grain 

boundaries may be selectively removed in one of the two ionic conductors via annealing, 

providing direct layer-selective tuning of ionic mobility.  
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In summary, we have presented a novel design for memristive/memcapacitive structures 

in which the conduction front may be engineered to be quasi-uniform by introducing layers of 

alternate ionic mobility which counteract the electric field amplifications of filament growth. The 

uniform conduction front was predicted to increase the memristive and memcapacitive switching 

ranges, as well as improve device-to-device consistency. This work provides an important step 

toward the design and manipulation of the conduction front within memristive/memcapacitive 

systems, an important capability to ascertain the true potential for this technology in future 

memory hardware. 

 

4.4. Design and fabrication of multilayered resistive memory devices 
 

In order to test the device structure hypothesized in Section 4.3, we designed a set of 

structures with multiple layers of insulators with varying ionic conductivities. We have examined 

GeSe insulator structures as well as devices with silicon dioxide and tantalum oxide insulator 

structures. 

  

4.4.1. Germanium selenide / silver resistive memory structures 
 

The GeSeAg filamentary system has been widely explored, thus we began our first 

experimental study of multilayered structures using this particular formulation. Tungsten or 

platinum (100nm) was blanket-coated onto oxidized silicon wafers to serve as the bottom 

electrochemically-inert bottom electrode (Figure 22). A shadow mask was then used to deposit 

isolated dots of GeSe (40nm Ge, 8.4nm of Se) onto the wafer. This was then followed by the 

evaporation of Ag (10nm) onto the GeSe dots. Figure 23 shows a switching event in a GeSeAg 

device (panels 1-6). When a positive voltage is applied to the top electrode, positively-charged 

silver ions drift under the electric field through the insulating GeSe matrix and make contact with 

the bottom electrode, switching the device to a low resistance state. It is important that the 

bottom electrode be inert, thus our use of platinum to prevent any electrochemical reactions from 

occurring between the silver ions and Pt metal. In the IV sweep, the resistance of the device is 

now in a lower state (position 4). As the voltage is swept back and turned negative, silver ions 

drift back to the top electrode and the device switches off (position 6).  
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4.4.1. Multilayered resistive memory devices 

 

Figure 24 shows a schematic of the thin film stack for multilayered memristive devices to 

test the predictions made in Section 4.3. The silver electrode serves as the electrochemically 

active microelectrode. We also included a silicon dioxide layer doped with silver in order to 

increase the probability of filament extension through the insulating matrix. The full stack is 

shown here (TiAg – 28nm thick, TiPt – 53nm) – we also fabricated several control film stacks in 

order to assess the impact of stacking layers of different oxides: SiO2 (15nm), TaOx (12-14nm), 

SiO2/TaOx/SiO2, and SiO2/TaOx/SiO2/TaOx. Figure 25 shows an example IV curve for a single 

TaOx layer control device with a 20x20 m2 active area. This device design exhibited a very low 

reset voltage with an ROFF = 10-20 k and an RON = 500-800 . Figure 26 details the IV curve 

for a 100x100 m2 active area device with a single SiO2 insulator layer. Impedance spectroscopy 

of these films enables us to probe the electrical properties without switching the devices. Devices 

with a single layer of SiO2 with 20x20 m2 active area displayed an initial capacitance of 96pF. 

When switched with a DC pulse, the device became purely resistive with a resistance of ~100. 

After a reversed DC potential to switch the device back off, the device displayed characteristics 

of a parallel RC circuit with R=359M and C=93pF.  

 

4.5. A physical model of switching dynamics in tantalum oxide 
memristive devices 
 

This work was published in Applied Physics Letters in 2013 and the article material is 

included here [29]. Memristive systems, which display hysteretic I-V relationships based on 

tunable internal state variables, were originally observed and predicted as many as 40 years ago 

[58, 60, 61, 79], but have recently become a field of intense research [52, 55, 56, 77].  Their 

inherently coupled ionic and electronic transport properties have provided fundamental research 

interest[71, 80],  and their unique switching properties have opened up the potential for new 

platforms of functionality such as stateful logic operations [81] and neuromorphic computation 

[62-64]. However, in order to realize the aforementioned applications, optimal material systems 

(and their state variables) must be identified, and quantitative models of the physical mechanisms 
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governing their resistive switching must be developed, allowing the resistive state to be 

predictively modulated, facilitating their integration into functional systems.  

TaOx memristors have recently shown fast switching on the sub-nanosecond timescale, 

and record endurance of more than 1012 cycles [82, 83] – which is believed to be linked to 

TaOx’s simple oxide phase diagram[84] including only two thermodynamically stable states: 

metallic Ta, and insulating Ta2O5. Similar to TiO2, the motion of oxygen vacancies and the 

development of a conductive filament have been discussed; however, their exact role in the 

switching mechanism is still under debate with concern that their role changes depending on the 

device structure. In TaOx memristors composed of a bilayer of Ta2O5 and TaOx, qualitative 

models have shown that oxygen vacancies may behave similar to TiO2 in which a vertical 

motion of vacancies provides local doping and tunes a Schottky tunneling gap [82, 85].  

Conversely, in bilayer memristors of TaOx and Ta, the lateral motion of oxygen vacancies or 

anions is thought to be key, with the oxygen concentration of a Ta rich conducting filament the 

purported state variable[83, 86].  Quantitative models describing the physics of phenomena such 

as retention have been demonstrated[87], however, as summarized above, modeling of the 

physics of switching dynamics in TaOx memristors has been primarily qualitative. Here, we 

present a model based on microscopic ionic flux which quantitatively predicts the memristive 

operation of TaOx/Ta devices, providing close agreement with experimental resistive switching 

data.  

 
4.5.1. Filamentary memristor device structure and operation 
 

The material stack of our dot capacitor memristor is shown in Figure 27a. The films were 

grown via reactive sputtering with lateral dot-capacitor dimensions of 100x100 m. Electrical 

contact was made to the top electrode of the devices using micromanipulator probes and a 

backside contact through the probe station chuck which substantially limited any series 

resistance, ensuring the entire voltage is applied across the device thickness. Virgin devices were 

electroformed with currents of approximately 5 mA and the memristive switching was 

characterized using an HP 4156C parameter analyzer with the pulse generator expansion unit. 

Data was obtained on approximately one hundred dot capacitors, all of which showed results 

similar to those presented here. 
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Figure 27b shows a typical hysteresis loop (measured in a two-terminal configuration) in 

which the device is reversibly switched between two stable states by applying positive and 

negative voltages, with           ⁄ . In ON switching, the device gradually decreases 

resistance after a positive threshold voltage of approximately V = 0.5 V on the top electrode 

(bottom electrode grounded), whereas OFF switching is delayed to larger voltages (      ) 

but occurs much more rapidly. To complete a more detailed electrical characterization we have 

also utilized a pulse/read measurement procedure in which a large state changing voltage pulse is 

applied, followed by a small, non-perturbative read voltage pulse which probes the device 

resistance state (50 ms, 1 mV, see Figure 27c inset). The curve in Figure 27c represents the 

resistance values measured following successive state changing pulses of a constant amplitude 

and width. Neglecting the time required for the read measurement, we interpret the data as the 

real-time evolution of the device resistance state under an applied constant voltage bias. The 

resistive switching curve in Figure 27c reaches an asymptotic value (which is dependent on the 

amplitude of the applied state changing voltage pulse – this suggests that the dynamics in these 

devices are not adequately captured by a simple integral of voltage or current flux[61, 79]. 

To accurately describe the resistive switching dynamics shown in Figure 27c, we have 

derived a quasi-3D model describing the time-evolution of memristive switching by predicting 

the change of a single state-variable dependent on three components of ionic flux: Fick diffusion, 

drift, and the less well known phenomenon of Soret diffusion [88, 89]. Soret diffusion, also 

referred to as thermophoresis, is the movement of molecules along a temperature gradient and is 

commonly observed in liquid/molecular solutions[90], however, its role in solid oxides has 

recently been emphasized[55, 89, 91]. Using these components of ionic flux, we find that the 

resistive switching can be reproduced by modulating the radius of a Ta-rich conducting 

cylindrical filament surrounded by a matrix of insulating forms of tantalum oxide.  

 
4.5.2. Phase change in the oxide material during switching 
 

The geometry of our model is inspired directly from experimental results [83, 86], and is 

shown in Figure 28. As observed in synchrotron x-ray fluorescence experiments, a Ta-rich 

conducting filament is surrounded by nano-crystalline Ta2O5 [83, 86]. Additionally, electron 

energy loss spectroscopy characterization indicated that an oxygen concentration gradient 

connects these two regions [83], which we represent by a sub-oxide phase, TaOX , with a radially 
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increasing oxygen concentration.  Finally, because the majority of the current flows through the 

Ta filament, we include a strong thermal gradient representing the expected    between metallic 

and oxide regions caused by Joule heating. Defined in cylindrical coordinates with  ̂ and  ̂ 

symmetry, the model predicts the lateral translation and modification of this sub-oxide phase, 

which subsequently alters the conducting filament radius.   

Because the switching region is surrounded by asymmetric electrodes with unequal ionic 

mobilities (Ta, and Pt), under positive and negative bias applied to the Ta electrode, drift causes 

oxygen ions to flow in (OFF switching) and out (ON switching) of the switching region 

vertically ( ̂), and results in the increase and depletion of oxygen, respectively. Assuming the 

concentration profile remains relatively constant, this flux results in the lateral motion of the sub-

oxide phase. Our model quantifies this lateral shift by calculating the number of oxygen ions 

required to increase a volume,   , to the oxygen concentration of the adjacent Ta2O5 phase 

(             , where L is the film thickness). The number of oxygen ions (N) that have been 

transported to the filament can be estimated by integrating the ionic flux over area and time 

(     ∫  
   

    ). This change in oxygen concentration leads to a corresponding shift of the 

sub-oxide phase and thus a change in the filament radius. Using the definition of concentration, 

      , the resulting change in filament radius may be written as:  

 

Equation 6:       
  ∫        

     
 

 
As mentioned above, in our model       comprises three components corresponding to Fick 

diffusion, Soret diffusion, and drift:               , with: 

 

Equation 7a,b,c:   nDJF   

TnSDJ S   

)/( TkqEnDJ BD   

 

where D is the diffusion coefficient [89],    represents a spatial derivative, S is the Soret 

coefficient defined as the ratio of the thermodiffusion coefficient, DT, to the normal diffusion 

coefficient, D [89], T is the temperature, E is the electric field, q is the ionic charge, and kBT is 

the thermal energy. In this geometry, the Fick and Soret diffusion terms will be directed through 
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the radial surface area of the filament:             . We neglect the vertical Fick diffusion 

given the observed absence of a vertical oxygen concentration in the switching layer [83]. Here, 

Fick diffusion drives oxygen ions toward the conducting channel and Soret diffusion drives them 

outward. The drift is directed primarily along  ̂, and acts over the area of the oxide,     

       
    

  , where      is the total radius of the entire switching region including the filament, 

the sub-oxide region, and the Ta2O5 region. 

Despite the flux of oxygen anions from drift translating across the sub-oxide region, it is 

the two lateral diffusion components (   and   ) which ultimately determines a steady state 

filament radius and resistance state of the device. The steady state radius,    , is determined by 

the balance between these two competing forces, such that,          as the temperature and 

concentration gradients evolve. Therefore, the applied voltage enables bipolar control by 

indirectly modifying the balance between    and   , and forcing the system to establish a new 

steady state filament radius. 

By considering infinitesimal time intervals and volumes, we see that Equation 6 can be 

rewritten in terms of the time derivative of the filament radius, and can be interpreted as the 

dynamical state equation of a canonical memristive system [60, 61, 92].To solve this equation 

we must have explicit expressions for    and    (and therefore,    and    ).  For simplicity we 

assume a constant temperature difference between the filament and surrounding oxide, with 

uniform heat generation and vertical heat flow within the filament. For concentric cylinders with 

a temperature difference between their interfaces, the analytic solution for the temperature 

profile is known :         (      ⁄   )    , which implies that,             
  , where 

rF is the radius of the inner cylinder (the filament). Evaluating this gradient at the edge of the 

filament where growth occurs,     , we see that:            ⁄ . While an oxygen 

concentration gradient was observed experimentally, its exact functional form is not known. 

Therefore, for simplicity we assume a concentration profile such that,                  , 

which has the expected boundary conditions of starting small near     , and increasing as 

         (where      is the radius of the nanocrystalline Ta2O5 region) , preventing runaway 

filament growth. Substituting these expressions into (1) produces: 

 

Equation 8:      

  
   

     

  
 

   
 ⁄

       
       

      
 

  
⁄                

 



54 

Unfortunately, there is no closed-form analytic solution for differential equations of this form, 

and       cannot be solved for directly. However, considering the limited range of filament radii 

expected (       ⁄    , suggests a ratio of radii in the OFF and ON states,            ⁄ , of 

almost 3) it is possible to replace each term with a second order expansion in terms of   . 

Grouping the coefficients from each power of   , we see that a solution exists over our limited 

range, 

 
Equation 9:    ∫

   

           
  ∫    

 

where    ∑  ,    ∑  , and    ∑   , and   ,    , and    are the coefficients of the 2nd order 

approximation of each ionic flux term. Integrating and solving for      , we find: 

 

Equation 10:                         ⁄    
 

where   is the initial filament radius,    represents the total change of radius,   is the switching 

time-scale, and   is a phase factor.  

 
4.5.3. On/Off switching as a function of pulse stimulus 
 
With the dynamical state variable equation now derived and its time-dependent solution found, 

to complete the Chua memristor formalism, the static transport equation must be specified as 

well. For the data shown in  in which the resistance is calculated from a single low voltage read 

measurement, the resistance of the device can be accurately reproduced assuming all the current 

flows through a cylindrical filament as suggested above, leading to:        
      (with 

         
 ). Combining this approximation with a normalization scheme, the memristive 

switching data shown in Figure 29 were fit using only 3 free parameters, varying   ,  , and   in 

Equation 10. This combination of simplicity and accuracy is compelling, as general functions 

such as exponentials produced poor fits, suggesting that the data has a unique curvature which is 

captured by our mathematically simplified model. For ON switching (0.65 to 1V), the fitting 

parameters smoothly varied across ranges of:                      , and           

           ,                             . For OFF switching, the range were: 

                          ,                    , and              

               .  We find these values physically reasonable:    provides a reasonable range 
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of radii to account for the change in resistance, and   is consistent with the speed of switching 

observed, slow at the start and considerably faster for a small increase in voltage. 

 
4.5.4. Linear and nonlinear contributions to switching dynamics 

 

However, considering the hysteresis curve shown in Figure 27, we see that while the ON 

state has Ohmic dependence, the OFF state displays strong non-linearity, and the simple 

geometric modulation of a filament radius cannot account for this linear/non-linear transition. At 

the nano-scale, the assumption of a perfectly cylindrical filament with constant radius likely 

fails. As the filament is pinched to a minimum in the OFF state, it is likely that it in fact ruptures 

and becomes discontinuous due to uneven, inherent surface roughness and non-uniform 

depletion of oxygen. As a result, the conductive path is below the percolation-threshold, and 

includes a series insulating component which accounts for the non-linearity. According to this 

scenario, the static transport equation would contain two parallel conduction contributions from 

both a perfect cylinder and its discontinuous rough edges such that (calculated from classical 

geometric resistances): 

 
Equation 11:      [

         
 

       
 

         
     

 

       
]  

 

where     corresponds to an approximate surface roughness of the filament,     and     are the 

resistivities of Ta and non-linear regions,          
  represents the area of linear conduction, 

and          
     

  represents the area of the concentric cylinder of discontinuous non-

linear transport. Alternatively, the non-linear region could be interpreted as a portion of the sub-

oxide with a sufficiently high conductivity which contributes a parallel (but non-linear) 

conduction path. However, it is impossible to distinguish these two scenarios, as each would 

contribute an identical term to Equation 11. 

Because the non-perturbative read measurements are made at a single small voltage (V ≈ 

1mV), the curvature associated with the non-linear insulating conduction is not evident. 

Therefore, to investigate the development of non-linear conduction and complete Equation 11 by 

specifying the functional form of       , we have performed static IV measurements at set 

resistance states throughout the continuum between      and     . Figure 30 shows IV curves 

taken at device resistances spaced across the linear to non-linear transition, with the voltage 



56 

range chosen to limit unintended resistive switching. Non-linearity was determined by 

calculating the absolute error resulting from linear fits. As seen in the inset of Figure 30 there is a 

clear crossover from linear conduction at low resistance states to non-linear conduction at high 

resistance states. Ohmic conduction dominates over the measured voltage range for the majority 

of the resistance states with non-linear conduction present only at the highest resistances, as 

expected from our filament radius state variable model. Poole-Frenkel emission, with         

    √ , was chosen for the parallel non-linear conduction, and was found to provide the best fits 

to the data. 

In conclusion, we presented a quasi-3D quantitative memristive model which accurately 

reproduces both ON and OFF switching data in TaOx over a wide range of device states with the 

use of a single governing state variable. Counting the ionic flux of individual oxygen ions, we 

showed that the radius of a Ta rich conducting filament core controls the resistive state of the 

device, and we derived the associated dynamical memristive state equation as well as its time-

dependent solution. Measuring static IV curves across a range of device resistance values we 

showed that the filament radius model smoothly connects the linear and non-linear conduction 

regimes. These results are important as this work provides a model capable of quantitatively 

reproducing dynamic resistive switching data in TaOx, which may be useful in circuit simulators 

such as SPICE. Furthermore, while we have tested this model with TaOx resistive switching data, 

the results and general physics of the model may be applicable to other binary oxide memristive 

systems. 

 

4.6. Filament-based memristor device switching model and 
information storage 
 
4.6.1. Physics model of state switching in filamentary memristors 
 

In collaboration with Dept. 1748, we developed a theoretical model that fits memristive 

switching data in tantalum oxide-based devices with the use of only three physical fitting 

parameters: the critical activation temperature      , thermal conductivity of the device electrodes 

  , and the conductive filament radius   . Importantly, the physical fitting parameters were 

found to all have quite reasonable ranges over our set of test devices: 8.5 nm        13.2 nm 

is consistent with the range of previous reports [93],        1300 K -1700 K is in close 
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agreement with finite element thermal modeling [94, 95],  and 89 W m-1K-1      120 W m-

1K-1 is close to the expected value for the device electrodes used here. The strength of this work 

lies in the fact that determining filament composition and radius are prohibitively difficult [83, 

86] and/or require inaccessible experimental instrumentation [65, 96]. Filament temperature and 

surrounding thermal resistance - outside of finite element methods such as COMSOL simulations 

[94, 95] - are not well known experimentally. In contrast, our model provides a complete 

characterization of the conducting filament algebraically using a single hysteresis curve. We 

currently have a manuscript prepared on this work that that is under review for publication. 

 
4.6.2. Information storage in filamentary memristor devices  
 

The traditional understanding of memristor devices is that they contain two states – low 

(ON) and high (OFF) resistance. We have preliminary evidence that traditional approaches to 

multi-state memory drastically understate the information storage capacity of these devices.  

Memristor devices require significant Joule heating to become thermally activated, and this 

activation power can be used as a separate state variable apart from resistance to store 

information. We demonstrate experimentally, using standard tantalum oxide ReRAM devices, a 

simple electrical method for storing multiple bits at single resistance values. We also 

demonstrate that these states can be easily and precisely read electrically to extract the stored 

data. Currently, we are assembling this work into a publication. 
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5.  NEUROMORPHIC CIRCUIT SIMULATION AND IMPLEMENTATION – 
SPICE AND XYCE 
 
5.1. Example of a voltage to frequency converter with a memristor 
element 

 

Voltage to frequency converters (VFCs) take input voltages and convert them into 

sinusoidal voltage output signals of varying frequency. Therefore, an output frequency may be 

externally controlled by modulating the input voltage. Simple integrated circuits typically have a 

single constant voltage power source, which would result in a constant output frequency when 

applied to a VFC. The typical solution to this problem is to include an on chip assortment (or 

‘ladder’) of reference resistors which may be placed in various series configurations allowing a 

multiplicity of input voltages into the VFC. Other solutions include laser trimming of resistors in 

the circuit – a demanding effort that requires an expensive electro-optical hardware setup for 

precision laser machining. Instead, memristors provide a simpler solution, where a single 

memristor can have its resistance state changed dynamically and thus supplant the entire ‘ladder’ 

of reference resistors. Figure 31 shows a schematic of a printed circuit board for demonstrating a 

voltage-to-frequency converter with an active memristor element. The figure also demonstrates a 

SPICE simulation where a single memristor was used to produce a continuous modulation of the 

output frequency of a generic VFC (for clarity only select frequencies are shown). Currently, we 

are constructing the printed circuit board to demonstrate this voltage-to-frequency converter with 

a bread-board incorporation of a MESA fabricated tantalum oxide memristor. 

 
5.2. Implementation of memristor model into Xyce 
 

Based on our recent publications, Dr. Richard Schiek developed a prototyping code to 

implement in Matlab to ensure the underlying memristor model equations were adequately 

represented.  Initial calculations did not replicate the results presented in the article under 

preparation [Mickel et al. 2013, Section 4.6.1.].  After consultation, the prototyping code was 

modified to take into account that the filament radius term in the power equations should be the 

maximum filament radius and the code duplicated the results presented. With the modeling 

equations verified, the power - resistance relationship that was proposed (IVon & IVoff) was 

used to implement a new memristor device in Xyce, Sandia’s in-house circuit simulation 
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software package.  Equations (2a) and (2b) in the article can be solved for, R, the resistance for 

this device during the on-switching and off-switching states.  Adding in simple ohmic 

relationships for the behavior during the on and off states will close the set of equations 

needed.  This is encouraging because initial discussions on this topic led us to believe that very-

fast time scale heating and diffusion processes within the device would need to be included, thus 

complicating the model. Our next step will be to implement these equations as a new memristor 

device in Xyce. 

  



61 

  



62 

  



63 

6.  CONCLUSIONS 
 

The effort described in this SAND report is multifaceted and spans wet biology work 

with primary neurons to hardware memory devices fabricated in the MESA facility. The unifying 

concept that spans this breadth of work is the focus on developing biology-inspired strategies 

towards computation with future applications to reach exascale levels of computational power. In 

the first portion of this report, we describe our efforts in wet biology where our initial purpose is 

to examine optical stimulation of primary neurons. Optical stimulation would provide a strong 

advantage for interrogating the network architecture of living networks by simultaneous and 

dynamic stimulation of multiple cells to identify the inputs and outputs of a particular network. 

Electrical stimulation provides limited stimulation to small numbers of neurons and does not 

provide dynamic information due to the time needed to move stimulation electrodes to different 

locations within the network. Chemical stimulation lacks specificity with regard to choosing 

which neurons to stimulate. Optical stimulation provides 1) specificity, 2) dynamic assessment, 

and 3) multiple cell interrogation. This work was started with dissociated neurons in culture in 

order to control as many variables as possible in the experimental setup. We found some 

evidence for stimulation of neurons directly with light and have shed some insight into the 

mechanisms by which this occurs. 

Our next effort was to improve the biological relevance of our neural preparation by 

incorporating dissociated neurons into 3D gels. Neurons plated on glass substrates is a simplified 

preparation useful for early characterization, but a 3D environment comprised of biological 

proteins is more relevant given the interactions between the living neurons and the 3D substrate 

and the positive effect these interactions have on in vitro neuron maturation. Primary neurons are 

especially delicate cells, and thus we explored several different gel preparations in order to 

optimize their long term health and maturity. Positive results were found with silica gels, and 

future work will focus on the incorporation of neurons into these gels in a microfluidic 

environment that will permit directed interactions between different neuron cell types. 

The first set of efforts described previously (optical stimulation and 3D gel environments 

for neurons) are largely to prepare the groundwork for experiments focused on studying the 

information processing in biological tissue networks. Our first set of experiments in mouse brain 

tissue slices (collaboration with UNM) examined the effect of plasticity (long-term changes in 

neuron activity) on the frequency filtering properties of corticostriatal networks. We observed 
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that the low-pass properties of the network were modulated by inducing long-term depression 

and by blocking inhibitory neurotransmitter receptors. In future work, we are interested in 

incorporating dissociated neurons into 3D gels in a microfluidic device where cortical neurons 

and striatal neurons are compartmentalized and can be controllably connected together into 

artificial corticostriatal networks. In this type of preparation, we could then modulate the 

network architecture and examine the impact on the frequency filtering characteristics and thus 

information processing, an experiment that is not possible with brain tissue slices where the 

architecture is fixed and cannot be modulated. In summary, the 1) dissociated neuron 

preparation, 2) optical stimulation of neurons, 3) incorporation of neurons into 3D gels, and 4) 

plasticity and frequency filtering studies in brain tissue slices provide a set of tools for examining 

the role of network architecture on information processing in biological networks.    

In the computational portion of this project, our aim was to examine neuromorphic 

computational systems that display characteristics of biological networks. From our wet biology 

work, we know that frequency-dependent changes in the state of neurons and/or a population of 

neurons is one method by which biological networks modulate their information processing 

capabilities. Also, the ability of neurons to enter/exit multiple states is another method by which 

biological networks process and store information. In our hardware effort, we examined the use 

of multiferroic materials due to their ability to hold multiple states in single devices. Memristive 

devices, which we show are capable of multi-state information processing, were also explored in 

this project. We developed a set of theoretical models with experimental validation that provide 

insight into how memristive devices operate, and we fabricate several memristive devices that 

rely on metallic atom and oxygen vacancy filament-based structures. We are currently exploring 

the use of memristors to provide dynamic modulation and tuning of a voltage to frequency 

converter circuit. Future work includes continuing to partner within SNL and with Hewlett 

Packard to design, fabricate, and characterize memristor devices for implementation into various 

computational and memory architectures.    
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Figure 1: Experimental setup for femtosecond laser stimulation and epifluorescence 
imaging of neurons. 
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Figure 2: Schematic of the optical setup for femtosecond laser stimulation and 
epifluorescence imaging of neurons. 
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Figure 3: Fluorescence response of neurons optically stimulated at 75mW average power 
(a-c) and at 160mW average power (d-f). (a) Brightfield image of a neural network showing 
the location of the focal spot (circle) and the cell body of interest (arrow). (b) Normalized 
intensity versus time calculated from the average fluorescence across the soma when 
exposed to 6 sets of optical irradiations (dashed lines). (c) Time derivative of the 
fluorescence showing the relatively intensity change between successive frames in the 
sequence. (d-f) Corresponding image and plots from a different sample at 160mW. 
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Figure 4: Differential fluorescence images of Ca2+ concentration after laser stimulation.  
The arrow denotes the laser stimulation location. 
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Figure 5: Variation of fluorescence response with laser pulse width.  A linear fit to the data 
is also shown. 
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Figure 6: Red channel fluorescence over time for a solution with 20µM of propidium iodide 
(PI) added to the extracellular matrix. Several nearby cells in the field of view that were 
not directly stimulated are also shown. 
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Figure 7: Image of two neurons (arrows) placed into guidance cue nodes with laser 
tweezers on day 1 in culture. 
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Figure 8: (left) Sodium silicate derived matrix encapsulated 7 days. (right) Poly(glycerol) 
silicate derived matrix containing Neuro-basal medium (encapsulated 7 Days). 
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Figure 9: (top) Poly(glycerol) Silicate-derived matrix containing Neuro-basal medium and 
1.5 mg/mL collagen (encapsulated 7 days). (bottom) Poly(glycerol) silicate derived matrix 
containing Neuro-basal medium and 2.5 mg/mL collagen (encapsulated 7 days). 
 

  



80 

 

 

 

 

 

 

 

 

  

 
Figure 10: A) Representative example of fEPSP population spikes before (gray) and after 
(red, blue) 4 x 10 Hz maximum HFS paradigm from STD cluster (> 70% recovery, n = 8, 
red) and LTD cluster (<60% recovery, n = 10, blue).  B) Mean +/- SEM of individual LTD 
and STD clusters and combined data for test population spike amplitudes shown in C.  C) 
Time course of normalized population spike amplitudes separated into 2 groups 
determined by cluster analysis of amplitudes during test period (30 min after HFS). 
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Figure 11: A) Percent recovery of population spike amplitudes before cluster analysis.  
Statistics: ANOVA multiple comparisons mean squares between groups = 7590.7, mean 
squares within groups = 1058.9, F = 7.1687, p < 0.0001with Scheffe’s posthoc. B)  Percent 
recovery of population spike amplitude for clusters with the weakest recovery.  Statistics: 
ANOVA multiple comparisons, mean squares between groups = 5135.8 F=28.5296, p < 
0.0001, with Scheffe’s posthoc  C) Percent recovery of population spike amplitude for 
clusters with the strongest recovery.  Statistics: ANOVA multiple comparisons mean 
squares between groups = 883.3, F= 3.0877, p = 0.016, Scheffe’s posthoc – no significant 
differences. 
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Figure 12: Clusters with 4 x 100 stimuli at max Istim. Percent recovery of population spike 
amplitude for all clusters with a HFS paradigm with 4 x 100 stimuli at maximum Istim.  
Statistics: ANOVA multiple comparisons, 2  3, mean squares between groups = 7790.4, F = 
29.2047, p < 0.0001, with Scheffe’s posthoc. 
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Figure 13: Effect of long-term plasticity on filtering for 10 Hz, 400 stimuli at maximum 
intensity HFS paradigm. A) Time course of normalized population spike amplitudes 
separated into 2 groups (STD and LTD). B) Low pass filter properties for 10 Hz, 400 
stimuli at maximum intensity. 3rd order Butterworth low pass filter fits to random 
frequency stimuli either before or after 10 Hz HFS paradigm. Clusters (RS# 1 (grey), COF 
= 4.3688 Hz, A=0.0185, n=22; RS# 2 STD cluster (red): COF = 14.2026 Hz, A = 0.0370; n = 
7;  RS# 2 LTD cluster (green): COF = 3.4474, A=0.0084; n=15). Inset shows averages of the 
lowest 3 frequencies used in random stimulus paradigm (n=6). C) Bar graph of STD (mean 
92.50 +/- 4.87, red) and LTD (62.11 +/- 2.78, green) clusters of results 30 minutes after HFS 
from time course plots in A. D) Bar graph of ratio of 10 minute BL#1 to BL#2 for STD and 
LTD clusters. E) Comparison of RS# 1 (grey), RS# 2 STD cluster (red), and RS# 2 LTD 
cluster (green) frequency responses at 20.8 Hz, 35.2 Hz and 57.5 Hz. 
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Figure 14: (a) Surface interdigital microelectrode device configuration 
for a bismuth manganite (BiMnO3, BMO) multiferroic thin film. Gold 
microelectrodes (Au) and the strontium titanate (SrTiO3, STO) 
substrate are shown. Electric field lines ( ⃗⃗ ) when voltage is applied 
across the microelectrodes and the subsequent induced bound charge 
out-of-plane polarization (POP) at the BMO/metal interface are also 
shown. (b) Embedded interdigital microelectrode device configuration 
for measuring in-plane ferroelectric properties. The in-plane (PIP), out-
of-plane (POP), and total vector polarization (PTOT) are shown.  (c) 
Degenerate ferroelectric polarization vectors corresponding to electric 
fields applied along the x and y axes of a ferroelectric film are shown. 
The total polarization vector (PTOT) is also shown as a combination of 
the in-plane and out-of-plane polarization vectors.  
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Figure 15: a) Remanent ferroelectric polarization measured at 5 K via surface interdigital 
microelectrodes. Inset: AFM image of film morphology. b) Zero-field-cooled and field-
cooled magnetization measured in a magnetic field of 1000 Oe is shown. Inset: 
magnetization vs. magnetic field hysteresis shows strong non-linearity and quasi saturation. 
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Figure 16:(a) Scanning electron microscope image of an embedded interdigital 
microelectrode array device. Bright-field image (inset). Scale bars = 10 m. (b) Cross-
sectional image of an embedded interdigital microelectrode array device (coated with two 
layers of Pt for milling/imaging). Scale bar = 200 nm. 
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Figure 17: (a) The out-of-plane (solid red line) and in-plane (dashed green line) remanent 
polarizations are shown for the surface and embedded interdigital electrodes, respectively, 
taken at 5 K.  (b) The calculated total remanent polarization magnitude, PTot, inferred from 
POP and PIP. 
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Figure 18: (a) Schematic of a conventional memristive device with an insulator layer 
sandwiched by a top (TE) and bottom electrode (BE).  Conductive filaments made of 
mobile carriers grow under an electric field between the electrodes. (b) Simulation of the 
filament length distribution (n=100 filaments) in a single layer device. Filament lengths are 
sorted in ascending order for clarity. (c) A memristive device structure with multiple layers 
of alternating ionic mobility (1, 2). (d) Simulation of the filament length distribution in 
the multi-layered device structure demonstrates larger average lengths with more 
uniformity than the distribution of the single layer device shown in panel b (dashed black 
line). 
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Figure 19: (a) Schematic of the phase-space coordinate layer-configuration (LC, see text), 
LC = 1.6 (bolded) was used for the switching profile shown in Fig. 2b. (b) The range of 
linear resistance modulation is shown to be as much as 75% ΔR in the memristor structure 
with two ionic conductors (IC, red), a 75% increase compared to a conventional single ionic 
conductor memristor structure with ~ 44% ΔR (blue). The resistance curves are 
normalized by their OFF state resistances, which are calculated as: Roff=(∑nLn)/A where 
ρn is the resistivity of each ionic conductor layer, Ln is the total thickness of all layers of 
that ionic conductor, and A is the area of the memristor structure. (c) Plot of the optimized 
design phase space for the increase in the range of linear resistive switching as a function of 
layer thickness and configuration. 
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Figure 20: (a) The capacitance switching of a conventional single layer memristor (1 IC, 
blue) and an alternating ionic conductor memristor (2 ICs, red) are compared. Inset: The 
device design for the capacitive switching behavior for Fig. 3a is shown. (b) The design 
space spanned by layer-thickness and layer-configuration is shown for capacitive 
switching, identifying optimal device design parameters. 
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Figure 21: The relative device-to-device (DTD) variability as a function of layer thickness 
and configuration. 
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Figure 22: Image of GeSeAg resistive memory devices fabricated in MESA 
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Figure 23: GeSeAg device operation. (left) Upon applying a positive voltage to the top 
electrode, silver drifts towards the bottom electrode and the device switches on (1-4). Upon 
applying a negative voltage to the top electrode, silver drifts back to the top electrode and 
the device switches off (5-6). (right) IV curve of a GeSeAg device with portions of the curve 
labeled according to the Ag motion shown on the left. 
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Figure 24: Schematic of a multilayer memristor stack using silver as the electrochemically-
active electrode and platinum as the inert electrode.  
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Figure 25: IV switching curve for a single layer (TaOx) resistive memory device with a 
20x20 m2 active area. 
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Figure 26: IV switching curve for a single layer (SiO2) resistive memory device with a 
100x100 m2 active area. 
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Figure 27: a) Memristor device structure, with the switching region magnified for clarity. 
b) A hysteretic IV curve from a tantalum oxide device with two stable resistance states 
(ROFF/RON > 10). Inset: Triangular current waveform applied in IV hysteresis curves. c) 
Memristor resistance as a function of pulse number. Inset: The pulse/read waveform 
sequence used to modulate and measure the device state. 
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Figure 28:a) The low resistance state geometry of the switching region is shown. A Ta-rich 
core is surrounded by an oxygen concentration gradient (dashed line), transitioning from a 
sub-oxide region (TaOx) to the Ta2O5 phase. The steady state filament radius, rSS, is 
determined by the balance of flux due to the concentration gradient and temperature 
gradient (solid black line). The discontinuous outer edge contributes to non-linear 
conduction throughout rNL and causes ruptures as rF decreases. b) Geometry changes with 
an increase in resistance are shown: smaller steady-state radius, steeper temperature 
gradient, and an expansion of the Ta2O5 phase and contraction of the Ta filament by the 
amount drF.  
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Figure 29: a) Device resistance is shown as a function of applied voltage pulse number for 
ON switching, as calculated from the non-perturbative read measurement (Vread = 1mV).  
Each trace is the time-series of resistive switching for specific amplitudes of the 1 µs, state 
changing voltage pulse, with the arrow representing the direction of increasing amplitude 
(0.65 V to 1 V). Fits to Eq. 5 are shown in green. b) Equivalent data for OFF switching for 
voltages ranging from -1 V to -1.75 V. 
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Figure 30: IV curves measured at multiple resistance states spaced between RON and ROFF. 
Fits according to the parallel conduction model of Eq. 6 are shown in green. Inset: 
Deviation from linear conduction showing the increasing contribution from parallel 
discontinuous non-linear conduction as the filament radius decreases. 
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Figure 31: (left) Schematic of a voltage to frequency converter circuit using a memristor 
active element. (right) Spice simulation of the memristor-based  voltage to frequency 
converter. 
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