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Abstract

This report summarizes findings and results of the Quantifiably Secure Power Grid Oper-
ation, Management, and Evolution LDRD. The focus of the LDRD was to develop decision-
support technologies to enable rational and quantifiable risk management for two key grid
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operational timescales: scheduling (day-ahead) and planning (month-to-year-ahead). Risk or
resiliency metrics are foundational in this effort. The 2003 Northeast Blackout investigative
report stressed the criticality of enforceable metrics for system resiliency – the grid’s ability
to satisfy demands subject to perturbation. However, we neither have well-defined risk met-
rics for addressing the pervasive uncertainties in a renewable energy era, nor decision-support
tools for their enforcement, which severely impacts efforts to rationally improve grid security.
For day-ahead unit commitment, decision-support tools must account for topological secu-
rity constraints, loss-of-load (economic) costs, and supply and demand variability – especially
given high renewables penetration. For long-term planning, transmission and generation ex-
pansion must ensure realized demand is satisfied for various projected technological, climate,
and growth scenarios.

The decision-support tools investigated in this project paid particular attention to tail-
oriented risk metrics for explicitly addressing high-consequence events. Historically, decision-
support tools for the grid consider expected cost minimization, largely ignoring risk and instead
penalizing loss-of-load through artificial parameters. The technical focus of this work was the
development of scalable solvers for enforcing risk metrics. Advanced stochastic programming
solvers were developed to address generation and transmission expansion and unit commit-
ment, minimizing cost subject to pre-specified risk thresholds. Particular attention was paid to
renewables where security critically depends on production and demand prediction accuracy.
To address this concern, powerful filtering techniques for spatio-temporal measurement assim-
ilation were used to develop short-term predictive stochastic models. To achieve uncertainty-
tolerant solutions, very large numbers of scenarios must be simultaneously considered. One
focus of this work was investigating ways of reasonably reducing this number.
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1 Motivation and Background

In the United States, the electrical grid has changed very little in the last 100 years, and in fact
still works mainly on the principle of one-way flow of consumption [15]. The drivers for the
new smart grid include new energy generation methods, the incorporation of renewables, balanced
loads and reduced peaking, improved reliability and security, and the desire for a two-way flow
system. To address these goals, solutions to some fundamental short-term operations and long-
term planning problems in power systems are needed. However, these problems must be addressed
given uncertain information. For example, the natural fluctuations in wind speeds have caused
concerns about the integration of wind power. Questions have arisen about the stability of the grid
system in the face of its intermittent capacity. Despite such concerns, policies have been written
to integrate renewables into existing electrical grids. Therefore, planning activities must focus on
techniques that minimize disruptions and account for uncertainties. In this project, we investigate
some of the issues associated with uncertainties and variabilities associated with wind and solar
energy and suggest some techniques to overcome them.

One of the most basic problems in electrical grid planning and operations is unit commitment
(UC). The UC problem is to determine an optimal on/off schedule for a set of power generating
units that both meets load demands and satisfies operational constraints. A UC plan is considered
for both short (e.g., hours or days) and long (e.g., weeks or months) time horizons. Uncertainties
resulting from load forecasts, network outages, and discrete events must be considered in order to
make a robust UC schedule. For example, UC can be examined with uncertainty due to wind speeds
or solar availabilities. This is a fundamental power systems operational problem that can be for-
mulated as a mixed integer stochastic optimization problem (See for example [19] and references
therein). Another such problem in electrical grid planning and operations is network expansion.
Here, the focus is determining how best to upgrade the system in order to meet future demands.
Like UC, network expansion can be posed as a mixed integer stochastic optimization problem. In
planning contexts, like all generation and transmission expansion problems, inherent uncertainties
in future demand, budgets, and technologies add to the challenge of obtaining a robust solution.

The computational challenges associated with solving stochastic mixed-integer problems like
the UC and the network expansion problems are significant. There are two primary and related
factors [1]. First, the (finite) number of scenarios required to approximate the joint distributions of
uncertain parameters leads to notoriously difficult deterministic mixed-integer optimization prob-
lems. Second, unrealistic modeling simplifications are often required to achieve computationally
tractability, leading to more costly and potentially infeasible solutions. High-performance com-
puting technologies have been proposed to mitigate both concerns. As part of this project, we
reviewed these technologies and presented some results for their application to the electrical grid
planning and operation problems.

Another problem of great interest is that of grid expansion. In the US, grid expansion is needed
to meet the needs of customers, to incorporate renewables, to increase surety, to provide security
of resources, and to upgrade the current infrastructure. In this project, particular interest was paid
to the addition of solar farms to the grids. Photovoltaics, the conversion of solar radiation into
direct current electricity, has advanced significantly in recent years and shows great promise to aid
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grid expansion. To make decisions about where to invest in new solar projects, stakeholders must
calculate projected annual energy projections (AEPs). AEPs are dependent on solar irradiation
data which can vary greatly both temporally and spatially. In this project, we investigated the root
of these issues and how the uncertainties could be incorporated into the larger problems of grid
expansion planning and long-term UC.

It should be noted that there is a wide range of problems related to grid operations and plan-
ning problems. This report addresses only two such problems and focuses on dealing with the
variabilities and uncertainties related to these problems. There exists a vast array of literature and
ongoing research about the incorporation of renewables and such an effort is needed to solve the
problems (see for example [22, 14] and references therein). This LDRD project and subsequent
report focuses on a very small subset of these problems and is arranged as follows: In Section 2,
we discuss the mathematical and statistical basics needed to examine and address uncertainty and
variability. Then, in Section 3, we consider the problem of unit commitment and the inclusion
of load demand and wind supply uncertainties. Next, in Section 4, we examine the problem of
expansion planning in terms of adding solar plants given resource uncertainty. Finally, in Section
5, we draw some conclusions and describe possible future directions and extensions of this work.
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2 Some of the Basics of Uncertainty and Variability

Operating, managing and evolving the grid is done is a decision making environment. In general,
all decision environments possess a common set of constituent elements as noted in [9]. They are
as follows:

Step 1: A decision maker is committed to making a decision.

Step 2: An objective is identified (although in the context of complex decision environments, there
might be multiple objectives).

Step 3: A finite number of mutually exclusive events or scenarios are identified. (Note that in
complex environments, the scenarios may not be mutually exclusive).

Step 4: A finite number of decision alternatives or actions are identified.

Step 5: Outcomes for each scenario and action are identified.

Step 6: Quantified uncertainty is applied and propagated (or communicated) for each alternative.

Step 7: A return on the decision alternatives (also called the payoff) is determined.

Step 8: A best alternative is chosen and enacted.

These elements incorporate many different decision criteria such as available resources and spec-
ification requirements. Uncertainty is specifically called out in step 6 of the decision making
framework. However, uncertainty permeates the entire decision making process. How uncertainty
is represented, incorporated, and propagated within scenarios, their underlying data, and along
the decision-making path itself is challenging; and novel mathematics is required to address it ap-
propriately. This project investigated some of the issues surrounding uncertainty as they relate to
operating, managing, and evolving the electrical grid.

2.1 Uncertainty

There are two basic types of uncertainties- aleatory and epistemic [7]. Aleatory uncertainty is the
inherent variability in an object or system. It cannot be removed or reduced, but can be represented
probabilistically if enough data are present. Epistemic uncertainty is a subjective uncertainty that
results from lack of knowledge. It is also referred to as reducible or model-form uncertainty be-
cause the addition of data can increase knowledge and improve underlying models.

Uncertainty quantification (UQ) is a fundamental tool for determining how likely certain out-
comes would be given that certain aspects of the system model are unknown. UQ is used to identify,
characterize, reduce, and, if possible, eliminate uncertainties. For example, weather forecasts use
UQ to define a percentage chance that a certain outcome might occur. (i.e. ”There is a 75% chance
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of rain.”) UQ techniques are used to analyze both computational and experimental data and may
be used to compare the two sets. In fact, the effective identification, definition, quantification and
communication of uncertainties is often the most important aspect of model development, and it
can have a significant impact on the overall success of the modeling activity [7, 13, 21].

2.2 Variability

Variability is used to describe how clustered or spread out a data set is. It is related to uncertainty in
that it can be used to describe the range of outcomes. For example, for a given variety of consumer
behaviors, a range of operational scenarios can be generated. There is uncertainty in the consumer
behavior and it is represented by its variability.

There are a number of basic measures of variability that can be useful in analyzing data sets.
They include:

• mean: In this context, the mean is merely the simple average value of the data set. It is
calculated as the sum of all the values divided by the number of values.

• range: The range measures the difference between the lowest and highest values in the data
set. For example, the temperature on the warmest day of the year may have been 103 degrees
and the temperature on the coldest day may have been 31. Then, the range of temperatures
for the year would be 72.

• interquartile range: The interquartile range elucidates the spread of the central 50% of the
data. It compares the data at the 25th percentile with that of the 75 percentile. This eliminates
outliers and gives the analyst a better idea of the overall dataset. Note that in the case of grid
related decision making activities, this value may not be useful as it is often the outlier values
that concern operators.

• variance: The variance also measures how much a set of data is spread out. However, unlike
the range and interquartile range, the variance considers every value in the set instead of just
two of the values. It is calculated as the average of the squared differences from the mean.

• standard deviation: The standard deviation is the square root of the variance and is also a
measure of the amount by which every value within a dataset varies from the mean. It is an
indicator of how tightly the values in the dataset are clustered around the mean. Thus, if the
values are densely centered near the mean, the standard deviation will be relatively small.

We encourage interested readers to consult a basic statistics text for more details.
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3 Unit Commitment

The uncertainty and variability in the output of wind farms pose a significant challenge to grid
integration. Differences between forecasted and actual volumes can arise on both the supply and
the demand sides of the system. One the supply side, these include outages of generating plant
(planned or unplanned) or distribution networks as well as unpredicted changes in wind speeds.
On the demand side, these include changes in consumer usage due to unusual or rare events or
weather patterns. In this project, we focused on these complications as they relate to the problem
of unit commitment (UC), the least-cost dispatch of available resources to meet the electrical load.

To reduce the impacts of the uncertainties associated with renewables such as wind, the UC
problem must be approached with sophisticated techniques. Here, we model and solve the cor-
responding operational problems stochastically. The optimization objective is to meet projected
demand at a minimum expected cost, and the uncertainty in the renewables is captured in a set of
possible, projected scenarios. We focus on analyzing electrical load demands and weather infor-
mation to create an appropriate set of scenarios. The set balances the need to cover the wide range
of variability with the need to minimize the computational workload and problem complexity.

3.1 Data

The data utilized in this work represents the Western Electricity Coordinating Council (WECC)
which is illustrated in Figure 1. It includes one year of load data for its 39 service providers at a
one hour time series resolution, wind farm output data at one hour intervals over one year period for
82 existing wind farms, and solar power output at one hour intervals for one year at 9 existing sites.
Closer examination of this data indicates that the data is highly non-stationary (e.g. the distribution
changes over time). Therefore, external predictors will be essential to improving forecasts.

Figure 1: The Western Electricity Coordinating Council (WECC) is one of nine regional elec-
tric reliability councils under North American Electric Reliability Corporation (NERC) authority.
WECC covers the Western United States and Western Canada.

Weather data is specified by longitude and latitude. While this is directly applicable to the
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locations of the wind generation stations, it provides some challenges for the load domains. As
illustrated in Figurer̃efservice, some service providers cover areas that are difficult to describe with
one representative points. The area may contain widely varying climates. This is true of Pacific
Gas & Electric in the Northern California Bay Area which covers both San Francisco and cities
in the East Bay, and temperatures in these areas can vary by upwards of 20 degrees. Additionally,
some service providers cover areas which vary widely with respect to population density. For
example, the Canadian service provider areas correspond to territories, and the population of these
territories is concentrated near the US border which is a small percentage of the total land area.
Therefore, the weather data corresponding to a service provider may require range of values or a
weighted metric to improve load forecasts. Also, the uncertainty of weather forecasts themselves
must be a consideration. In addition to weather information, future work will improve predictions
by incorporating information about the type of day (e.g. a weekend day, a holiday, or a normal
weekday) as another external predictor.

Figure 2: The WECC is composed of 39 service providers. Note that the service provider areas
vary greatly.

3.2 Forecasting Models

Forecasting is the process of making predictions of future events. In this project, we use quantita-
tive forecast as opposed to qualitative forecasting techniques. Qualitative forecasts rely on expert
opinion and do not require past data. On the other hand, quantitative forecasts describe data associ-
ated with future events given past events. Two such techniques and their application to generating
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a set of scenarios for use in solving the stochastic UC problem are described below.

ARIMA Model

An ARIMA (Auto-Regressive Integrated Moving Average) model is part of a general class of
phenomenological time series models and is arguably the most commonly applied time series
forecasting tool. It predicts future values of a time series using a combination of past observations
and projected errors. ARIMA models were designed with the intent of capturing all the ways that a
time series can evolve independent of seasonal terms and trends [2]. More specifically, an ARIMA
model is define by the three-tuple (p,d,q) where p is the number of autoregressive terms, dis the
number of nonseasonal differences, and q is the number of lagged forecast errors. These three
parts can be further defined as:

• The Auto-Regressive (AR) part which allows future observations to depend linearly on a
fixed number (p) of past iterations

• The Integrated (I) part which involves taking d-differences to potentially remove some non-
stationarity.

• The Moving Average (MA) part which allows errors to accumulate linearly up to a finite lag
(q)

Using this notation, some well-know examples include the ARIMA(0,1,0) model which is a ran-
dom walk, ARIMA(0,1,1) which is the exponential smoothing model, and ARIMA(1,1,0) which
is the differenced first-order autoregressive model. There are a number of ARIMA model software
packages available. Many of the ones in the statistical software package R [8] try to automate the
selection of autoregressive terms (p) and lag (q) and decide on first differencing, via information
criteria, while simultaneously estimating the known coefficients. Many packages also automate
some kind of rudimentary de-seasonalization and de-trending.

In this work, we employed the basic ARIMA model in the forecast package in R [10]. In order
to overcome data issues associated with frequency, we consider 30-day batches of data to predict
the next 48 hours. In other words, to predict the load requirements, wind farm output, or solar farm
output for days x and x + 1, we consider the information for the days prior to x. As future work,
we will consider longer time horizons, which are also important in grid integration problems.
In addition, we selected outcomes that are within the 95% predictive interval. For generating
scenarios from the load data, this approach was straightforward and sufficient. However, the wind
and solar data provide some additional challenges. First, the outputs of the farms are bounded
below by zero and above by the capacity of the farms. This must be incorporated into the model
so that the results do not include infeasible scenarios. Second, the time series have numerous
zeros and replicates that make standard statistical modeling difficult. In the case of the solar data,
many of these zeros can be predicted as they correspond to times when the sun is down. For the
wind data, this is not the case. As we continue this work, these data features must be addressed.
Moreover, as this is a relatively unexplored area of statistical forecasting, any resulting modeling
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process may lead to a technical contribution to the field at large. However, such an advance falls
outside the scope of this LDRD and thus, in order to focus on demonstrating the usefulness of
the stochastic formulation of the UC problem, we proceeded with a simplistic scenario generation
process. To meet the bounds of the wind and solar data, all infeasible points of the 5% to 95%
predictive interval are snapped to the feasibility boundary, and then the scenarios generated are
generated so that they stay within this revised interval. Special consideration of the zeros and
replicates was left for future work.

ARIMA models are powerful and widely used in practice, and using the implementation de-
scribed above, we were able to generate a reasonable set of representative scenarios. However,
ARIMA models are often highly automated and thus can usually be improved upon with a more
hands-on approach. In fact, in our study, our specialized implementation of the ARIMA model
allows the paths of the forecasted scenarios to bounce around unrealistically. Therefore, we opted
to consider an alternative forecast model designed specifically to meet the characteristics of the
grid-related data.

Specialized Load Forecast Model

The goals of the new forecast model were to generate scenarios more faithful to the predictive
distribution, to respect the time structure by not sampling around the (moving) mean, and to sig-
nificantly reduce the number of scenarios without losing variability and uncertainty information.
In addition, we wanted to devise something that would more easily handle external predictors as
this is critical to improving the forecasting as described earlier. This remainder of this section
focuses mainly on scenario generation for the load data. However, a few comments are included
to describe how this process could be applied to the wind and the solar data.

Popular forecasting models, such as ARIMA, rely on normality, so considering log values
of positive data sets is reasonable and logical. Therefore, the first step in the modeling process
for the load data is to take the log of the load values. This is corrected with exponentials at the
end of the process. For the wind and the solar data, this step is skipped due to the many 0 data
values. The next step is to describe a set of variables that appear to be useful for modeling the
data. In this case, these included : autoregressive components of orders 1 and 2, autoregressive
terms of order 12 and 24 to describe half-daily features, and sin and cos terms with periods of 12
and 24 to describe some smooth half-daily features. Then, an information criterion was applied
to select the best subset of these 8 terms. Initial autocorrelated residual diagnostics indicated
that lag-6 might be useful, so two more sin and cos terms with period 6 were added. After the
model was selected (e.g. the variable values were selected), a simple Monte Carlo procedure was
applied to simulate the time series forward and generate the scenarios. Note in the case of the wind
and solar data, the information criterion can (and likely does) chose the components differently.
However, the components may need to be modified to incorporate the daily features of wind and
solar power generation. Moreover, the basic Monte Carlo process used here does not guarantee
that the scenarios will be feasible. Therefore, as a simple fix, the results for wind and solar were
linearly projected back into the interval [0,FM] where FM indicates the maximum capacity of the
farm.
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3.3 Comparing Scenario Generation Methods

Figure 3 shows a direct comparison of two scenarios of load over the next 48 hours. The one in
black is generated by the ARIMA model and the one in red is generated by the specialized model.
Note that the two methods forecast load profiles with the same basic trends, but the specialized
model is much smoother.
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Figure 3: This plot illustrates the smoothness differences between a load scenario generated by
and ARIMA model (in black) and our specilized model (in red). Note that both follow the same
basic trend over the 48 hour forecast time period.

The coefficients of the specialized model are being studied to see how they can be used to
determine how many regimes are present and thus how many scenarios are needed to describe the
system. This is one of the advantages of using a the specialized model as opposed to the ARIMA
model. For the study of the load data, we also considered how the overall variability was reduced
with the addition of scenarios. A plot of this study is shown in Figure 4. Note that at 100 scenarios,
the variability stops changing significantly. Therefore, we produced sets of 100 scenarios for use
in some UC problems. Future work includes developing a computationally inexpensive metric to
automate the process of determining an optimal number of scenarios.

Figure 5 gives some examples of how 100 scenarios generated by the ARIMA model compare
with 100 scenarios generated by the specialized model. In the pictures, the ARIMA-model gener-
ated scenarios are in black and the specialized model scenarios are in red. Note that approximately
5% of the Specialized scenarios break out of the 95% confidence interval. Also, observe that there
is no specific pattern for how these sets differ. In some cases (Subfigure 5a), the ARIMA scenarios
are completed contained within in the bounds of the Specialized model scenarios while in other
cases (Subfigure 5b), the opposite is true. Subfigure 5c shows a case where the two are very simi-
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Figure 4: Using the specialized model, the variance represented by the scenarios (y-axis) is de-
creased as the number of scenarios in the set is increased (x-axis). This plot shows that using 100
load scenarios is sufficient for capturing the variance of interest.

lar except at the extremes of the curves, and Subfigure 5d shows a case where the ARIMA model
scenarios seem to be shifted down slightly.

18





(a) (b)

(c) (d)

Figure 5: Some examples of how the sets of 100 scenarios generated by the ARIMA forecast model
(in red) and the specialized forecast model (in black) compare with one another.
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4 Expansion Planning

Expanding the grid is important for many reasons including meeting the demands of changing
populations, satisfying changing energy requests of current populations (i.e. an increase in the use
of electric cars or the building of new computer facilities), strengthening connections with outlying
communities, incorporating designs that better accommodate fault tolerance, and facilitating the
efficient use of renewable energy. In this project, we paid particular attention to the incorporation
of renewable energy. More specifically, we studied the decision making process of erecting new
solar facilities.

Decisions about financing solar projects pay particularly attention to risk assessments related
to projected annual energy productions (AEPs). More specifically, AEP is used to calculate an
exceedance probability [3]. For example, given an exceedance probability of P90, there is a 10%
chance that this level will not be met. In other words, P90 is the AEP that can be expected in 9 out
of 10 years. Determining the exceedance probability of a solar power system is highly dependent
on annual insolation measurements. Therefore, understanding and quantifying uncertainties in the
AEP requires correctly calculating the inter-annual variability of annual insolation. In this project,
we have found that while the concept of year-to-year variability is recognized and discussed, there
is no agreed upon value or methodology for calculating and using this value. To study this issue in
more detail, we investigated approaches to the issue of inter-annual insolation variability through-
out both the business (i.e companies that buy and sell components of solar power systems as well
as those that consult on the design and use of such systems) and research communities.

4.1 Current Practices

This section describes how the business of risk assessment of solar power systems is currently
carried out. It includes both small projects such as panel installation at single family home and
larger projects.

In general, we observed that companies that sell components of solar power systems offer their
customers give the high, low and average solar insolation for a year in a certain area. However,
they do not indicate how they arrived at these values, and they rarely mention year-to-year variance.
Instead, they tend to work with average numbers of full sun hours and geographical zones. The
calculators available on the website of Wholesale Solar ( http://www.wholesalesolar.com/)
are an example of this practice.

Green Rhino Energy, a management consultant company specializing in PV, wind, and tidal
power systems, specifically identifies ”natural fluctuations in annual irradiation” as a source of
uncertainty in its AEP calculation. It goes on to describe the statistical process used to calculate the
overall uncertainty in AEP using the basic statistical tools of standard deviation and correlation,
and describes the resulting covariance matrix. However, no specific information with respect to
calculating uncertainties in annual insolation is given. Moreover, the data used in these calculations
is not identified. (See http://www.greenrhinoenergy.com/ for more information)
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A few management consultant companies (i.e. AWS True Power, GL Garrad Hassan, and
Megajoule) specifically call out year-to-year variability as a source of irradiation uncertainty. AWS
True Power classifies it as a solar resource estimate uncertainty that is between 5-17% and advocate
on-site monitoring to mitigate risks. GL Garrad Hassan gives an example of the variability for
Global Horizon Irradiation in France, but does not specifically describe how to account for this
issue. Megajoule classifies resource uncertainty, which includes annual variation, as 6-12% of the
overall project uncertainty and annual variability on its own as 1-4%. They advocate taking this into
account when calculating exceedance probabilities but give no mathematical details. Moreover, no
details are given as to how they arrived at these percentages.

Partners at the South African National Department of Energy and the Nelson Mandela Metropoli-
tan University are designing a PV plant for the Eastern Cape of South Africa using a model based
meteorological data. They use data from Meteonorm, a comprehensive climatological database.
The base stochastically generates a statistical representation of a typical year, and the designers rely
on this value to represent inter-annual insolation variability. Although uncertainties are specifically
discussed with respect to the subsequent exceedance probability calculations, the year-to-year vari-
ability is incorporated solely by the use of the Meteonorm data. (See presentation by EE van Dyk)
An article on the CSP Today Business Intelligence website in March 2011 also advocates the ap-
proach of using a typical year. The article focuses on building a better meteorological dataset to
improve exceedance probability calculations [5].

4.2 Approaches in Research & Development

Note that there are many areas of science and engineering that use solar insolation data. A few
examples include spacecraft design, understanding of equilibrium temperatures in planetology, the
construction of climate-adapted buildings, and the runoff of fresh water from the snow pack to
the water system. The literature describing these fields is rich and comprehensive. However, they
suffer from the same issues found in the energy sciences, namely that there is no definitive method-
ology for calculating the uncertainty associated with annual insolation nor a general method for
propagating the result through a predictive model that uses the mean value of annual insolation.
There are publications that correlate annual insolation variability to annual water supply, annual
precipitation, and annual atmospheric carbon levels. Other studies try to identify spatial and tem-
poral patterns in year-to-year variations or to prove or disprove theories a bout the effects of climate
on the environment. Many of the studies conclude that so-called “larger than expected” changes
to environmental patterns were indeed observed. Such results are used to motivate future research
and to implement risk-reduction projects. In general, this literature showed more results related to
identifying insolation anomalies rather than calculating insolation uncertainties.

Much of the discussion related to inter-annual variability relates to the formation of a typical
meteorological year (TMY). A TMY gives a full year of hourly weather data that is consistent with
the long-term averages of the location of interest. The National Renewable Energy Laboratory has
created the follow three such sets:

• TMY- based on data collected at 229 US locations between 1948 & 1980
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• TMY2- based on data collected at 229 US locations between 1961 & 1990

• TMY3- based on data collected and 1020 US locations, both continental and territory (i.e.
Guam, Puerto Rico & the US Virgin Islands), between 1976 & 2005 wherever available or
from 1991 to 2005 otherwise [20]

Other TMY sets are available for specific locations provided by vendors of planning and assess-
ment software. There are some calls by researchers to produce improved TMYs and decrease
uncertainty in solar radiation averages [5]. Others use a TMY in combination with the statistical
probability that an extreme event might occur. For example, in [6], the probability of a volcanic
eruption is incorporated into to the typical data set.

The pros of using a TMY include its usefulness in comparisons of system configurations and
locations in typical situations. Moreover, if a TMY is utilized, no additional data collection is
required which can represent a significant savings. However, there is no strict standard for a TMY.
Moreover, a TMY is merely an average and does not represent extreme or worst-case scenario ([3]
and references therein). It does not guarantee average values will closely represent averages over
time [18] and may only be available for a nearby location of interest instead of the actual location
of interest which ignores microclimate behavior.

Given the negatives of using TMY, researchers have suggested creating multi-year historical
models using existing data or with new data. This approach invites a number of questions including
where to conduct the measurements and over what time frame, how to quality control the data, and
how to handle missing or obviously erroneous readings. The most complete discussion of this
topic is in [6]. In that work, data from three solar stations in Oregon and one in Colorado are used
since they have the longest data records and consistent solar radiation measurements. To study
inter-annual variability, the data was sorted from the best years to the average years and from the
average years to the worst years. Among the conclusions of these studies were that the significant
inter-annual variability of solar irradiation precludes the use of TMYs as appropriate to simulate
AEP and that in the US, the highest variations of inter-annual variability were observed in the
Pacific Northwest and lowest variations in the Southwest. Other studies on inter-annual variability
in climate related analysis that do not use TMY include [16, 11, 12, 17, 4].
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5 Conclusions and Future Work

This project elucidated a number of the issues associated with the uncertainty and variability as-
sociated with secure power grid operation, management and evolution. More specifically, we in-
vestigated how variabilities in weather and uncertainties in weather predictions can be mitigated in
planning problems in order to improve management and expansion plans. We can draw a number
of conclusions and make suggestions for future work.

First, we observed that forecast models play a critical role in addressing the uncertainties as-
sociated with unit commitment. Stochastic methods rely on scenarios to demonstrate the range of
possible situations. There is certainty an art to creating and implementing forecast models, and
these models can be improved with specialized components. Although the specialized model was
shown to work well for the UC problem of interest, it can be improved. Specifically, we suggest
the following continuations of this work:

• Include external predictors in the forecast model.

• Study the affect of the uncertainty of the external predictors on the overall system variability.

• Refine the Specialized model to meet the specific traits of the wind and the solar power
generation scenarios.

• Consider sets of scenarios for longer time horizons.

• Create a general method that is both computationally inexpensive and easy to execute that
determines an appropriate number of scenarios.

The scenarios play a key role in showing the computational tractability of the stochastic unit com-
mitment methodology being developed in an ongoing ARPA-E project.

Second, we observed that the variability of weather from year-to-year adds a significant amount
of uncertainty to the decision-making process of whether or not to build renewable energy plants.
Currently, there is no proven process for defining the variability of annual irradiation. Moreover,
the uncertainty in some of the currently used percentages may be reduced with additional studies
and data. Given these results, the following continuations of this study seem appropriate:

• Identify and distinguish between the uncertainties in the inter-annual variability of the weather,
the measurements of irradiance, and the model of translating irradiance to power.

• Compare inter-annual irradiance variabilities for some well defined data sets.

• Create an improved forecast model of solar plant output for use in the stochastic UC problem.

• Compare results for TMY data versus other data sources.
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It should be noted that some of these tasks are will be carried out as part of a DOE project.

Finally, we note that all the problems discussed in this report are particularly difficult in a
security-conscious, cost-constrained world where there is a need to quantify and enumerate the
tradeoff between uncertain risks (e.g., grid stability, renewable penetration, and security threats)
and the costs to mitigate those risks. This need motivates the development of multi-objective
optimization of stochastic systems, but it also introduces a number of new challenges including
quantification of the tradeoff curve itself, managing the potentially astronomical computational
budget and educating decision makers in how to interpret and use the results.
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