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Abstract 
 

Currently, much of protection planning is conducted separately for each infrastructure 
and hazard. Limited funding requires a balance of expenditures between terrorism and 
natural hazards based on potential impacts. This report documents the results of a 
Laboratory Directed Research & Development (LDRD) project that created a 
modeling framework for investment planning in interdependent infrastructures 
focused on multiple hazards, including terrorism. To develop this framework, three 
modeling elements were integrated: natural hazards, terrorism, and interdependent 
infrastructures. For natural hazards, a methodology was created for specifying events 
consistent with regional hazards. For terrorism, we modeled the terrorist’s actions 
based on assumptions regarding their knowledge, goals, and target identification 
strategy. For infrastructures, we focused on predicting post-event performance due to 
specific terrorist attacks and natural hazard events, tempered by appropriate 
infrastructure investments. We demonstrate the utility of this framework with various 
examples, including protection of electric power, roadway, and hospital networks. 
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1. INTRODUCTION 
 
The continuous operation of infrastructure systems is critical to societal welfare. Much of the 
current planning for protection against natural hazards and terrorism is done separately for 
each infrastructure and each hazard, which precludes a cost-benefit analysis across multiple 
investments. The goal of this project is to create a modeling framework for investment 
planning in interdependent infrastructures, focusing on multi-hazard risks, including 
terrorism. With such a framework, it is possible to balance expenditures for terrorism and 
natural hazards based on potential impacts. To develop the framework, three modeling 
elements were integrated: natural hazards, terrorism, and interdependent infrastructures. For 
natural hazards, a methodology was created to specify events that are consistent with regional 
hazards. For terrorism, sophisticated models of potential terrorist actions were developed 
based on assumptions regarding their knowledge, goals, and target identification strategy.  
For infrastructures, our efforts focused on predicting the post-event performance of a system 
impacted by specific terrorist attacks and natural hazard events, as well as the effect of 
appropriate infrastructure investments. 
 
The missions of the Department of Energy (DOE) and the Department of Homeland Security 
(DHS) are to advance the security of the United States through technical means, including 
energy and infrastructure security, respectively. The tools developed under this project can be 
applied to support these missions, because they are applicable across a wide range of 
infrastructures. Further, two key responsibilities of the Department of Homeland Security are 
to analyze and to mitigate the consequences of national disasters and terrorist events. To 
define a reasonable scope for this effort, this research was limited to three different 
infrastructures: the Eastern Interconnect Power Grid, the roadway network in and around the 
Memphis metropolitan area, and the network of hospitals in the Memphis metropolitan area. 
Similarly, although multiple natural hazards can be modeled using the techniques developed 
during this analysis, the focus was solely on the seismic threat present in the New Madrid 
Seismic Zone (NMSZ). 
 
The first portion of this document describes the capabilities developed during this effort, 
including the associated applications.  Note that most of the capabilities have short 
summaries that reference full papers, except for the air transport model which was not 
published externally. The second portion of this document discusses how these capabilities 
can be combined to produce a comprehensive cost-benefit analysis for investing in two 
separate infrastructures (roadways and hospitals) to mitigate against two different threats 
(earthquakes and terrorism). 
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2. SUMMARY OF CAPABILITIES 
 
During the course of this 3-year LDRD, our team developed a variety of capabilities, which 
were primarily documented in eight peer-reviewed publications.  This section provides a 
brief summary of these capabilities as well as references to the associated publications which 
provide more detailed information. 
 
2.1. Modeling of Consequence Scenarios for Natural Disasters 
 
One effective methodology to accurately assess the impact of natural disasters on an 
infrastructure is to create a collection of consequence scenarios that are consistent with the 
regional hazard. By leveraging Hazus, the loss estimation methodology developed by the 
Federal Emergency Management Agency (FEMA), it is possible to use optimization to create 
a small set of consequence scenarios that accurately represent the hazard more efficiently 
than using Monte Carlo sampling. For our study, we focused on the effects of earthquakes on 
roadway bridges and the electric power grid in the NMSZ. However, this technique could 
also be applied to the effects of hurricanes and could include other infrastructures. A full 
description of this optimization-based scenario generation is described in Brown, et al. 
(2011), and extended in Gearhart, et al. (2013). 
 
2.2. Terrorism Model 
 
The modeling of terrorism as a hazard to an infrastructure followed a game-theoretic 
approach using leader-follower assumptions. Two different approaches were researched 
during the course of this LDRD project. A Benders Decomposition approach was applied to 
power network interdiction in the paper by Xu, et al. (2103), “A Decomposition Heuristic for 
a Power Network Interdiction Problem.” A simplified game-theoretic approach is examined 
in the section of the case study describing the terrorism threat solution procedure. 
 
2.3. Electric Power Grid Model 
 
For the electric power system, post-event impacts are modeled using a DC flow economic 
dispatch model as well as a cascading power failure model. The models utilized in this 
project are described both in Romero, et al. (2012), and Romero, et al. (2013). 
 
2.4. Roadway Network Model 
 
Throughout the course of our research, we produced two roadway network models: New 
Orleans, Louisiana, and Memphis, Tennessee. The collection of files associated with each 
network describes all road capacities, speeds, bridge locations, and population density. 
Appendix A describes the input files required to specify a highway network model, as well as 
the simulation procedure that provides all traffic metrics.  
 
The network performance for these network models is measured using a dynamic traffic 
assignment (DTA) algorithm.  The DTA is the core of the roadway network model, and 
simulates the movement of a fixed number of vehicles from a collection of origins to a 
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collection of destinations over a well-defined time period. It was originally developed in 
MATLAB at Cornell University for modeling the Katrina evacuation. The functionality was 
ported to a Java implementation at Sandia, and modified so that it can analyze either a 
roadway network with no bridges or a roadway network with multiple bridges in various 
damage states (which restricts traffic flow). The model uses Dijkstra’s algorithm for 
determining the shortest path, based on travel time, between all OD pairs. At each time 
interval, traffic can be re-routed based on changing congestion patters using an “all-or-
nothing” selection strategy (i.e., all traffic bound for a particular destination will choose the 
shortest path to get there). The Sandia version of the code is able to run the Katrina 
evacuation simulation in roughly 10 seconds on an 8-core PC, as compared to 110 minutes 
for DynusT (the industry standard) and approximately 24 hours for TRANSIMS. A complete 
description of the DTA in the context of the Katrina study can be found in Li, et al. (2012). 
 
2.5. Air System Model 
 
The purpose of the air system model is to estimate the resulting effect on passenger travel, 
given a hazard scenario and a resulting set of airports that are inoperable (either directly from 
the hazard or potentially due to disruptions to the power grid). More specifically, given a set 
of inoperable airports, the model estimates the groups of passengers that are no longer able to 
reach their destination within the given time window. Based on these results, analysis can 
identify where the air system may be most vulnerable, and investment planning decisions can 
be made accordingly.  Appendix B gives an in-depth description of the air system model 
including instructions on how to operate the software and input file formats. 
 
2.6. Optimization 
 
In order to utilize the objective values produced by these different models for investment 
planning, a multi-objective optimization capability was developed.  Since many investment 
planning scenarios have an exceedingly large solution space, computational efficiency is 
paramount but insufficient.  Additional techniques must be applied in order to achieve near-
optimal results in a reasonable amount of time.  For our research, we made use of heuristic 
techniques such as Tabu Search and genetic algorithms as well as parallel processing on 
Sandia’s HPC (High Performance Computing) resource Red Sky.  For example, the DTA 
algorithm can be run on a single core, across several threads on a multi-core machine, or 
across multiple processes on a multi-node supercomputer.  When spawned across multiple 
nodes, MPI (Message Passing Interface) is used to spawn a single process to each node and 
RMI (Remote Method Invocation) is used to send the results back from each child process to 
the parent process.  The parent process collects the resulting solutions from each child 
process, produces a new generation of mitigation strategies via genetic crossover, and 
respawns the new collection of strategies to be evaluated by the child processes.  The 
solutions from each iteration are used to construct a Pareto frontier, which holds the final 
collection of solutions and avoids arbitrary weighting of the objectives to allow decision 
makers to assign their own importance.  The various pieces of this optimization methodology 
are described in more detail in the case study. 
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3. CASE STUDY 
 
This section of the report discusses how our framework could be applied to the core problem 
of investment planning in interdependent infrastructures in a multi-hazard environment. The 
two infrastructures selected are the roadway system in Memphis, Tennessee, and the network 
of hospitals that is connected by those roads. The hazards in this region include the NMSZ 
seismic threat to the roadway bridges and an act of terrorism against the hospitals. This 
optimization is an extension of the multi-objective, 2-stage stochastic problem described in 
Brown, et al. (2013). In that paper, there were two interdependent infrastructures (the 
Memphis roadway network with bridges and the hospital system), but only a single hazard 
(seismic). Although it is somewhat unlikely that the Memphis hospital system would be 
targeted by a terrorist, this case study serves as an illustrative example of how an investment 
strategy could be evaluated by a decision maker who is concerned with maintaining an 
operational capability subject to multiple threats.  Figure 1, below, illustrates the solution 
procedure from the decision maker’s perspective. 
 

 
Figure 1: Decision Maker Solution Procedure 

 
In this case study, the decision maker is primarily concerned with ensuring good hospital 
connectivity for the greatest number of people.  To achieve this goal, a single budget must be 
split between mitigations against both seismic and terrorism threats.  For the seismic threat, 
bridges are selected for reinforcement that will minimize hospital connectivity loss when an 
earthquake event occurs.  For the terrorism threat, hospitals are selected for security upgrades 
to prevent successful terrorist attacks which would render them unusable.  In each case, a 
DTA evaluation of the post-event roadway network performance is used to calculate the 
hospital connectivity.  The seismic evaluation requires that the roadway network simulation 
be performed across all consequence scenarios produced by the hazard model. The terrorism 
performance evaluation requires that a game-theoretic, attacker-defender simulation be run 
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using the hospital network in conjunction with the roadway network.  Since the seismic 
threat is probabilistic in nature but terrorism is more of a perceived threat, two separate 
investment planning optimizations must be performed independently.  Once a family of 
mitigation solutions is developed for each threat, the resulting collection can be integrated by 
enumerating across all possible combinations, which are tied together by overall investment 
cost.  The final collection of solutions can then be used by the decision maker to make a cost-
benefit decision based on their priorities (e.g., they may bias towards mitigating the seismic 
threat with a medium cost if they think it is more probable than a terrorist attack). 
 
3.1. Objective Functions 
 
The decision maker’s optimization problem is concerned with three different objectives 
(described below) for which the goal is to minimize each one. Though not considered in this 
case study, a fourth objective, Travel Time, is presented, which could be included in the 
decision-making process. Because maximum infrastructure protection is tied to investment 
cost, it is necessary to balance system performance against the monetary expenditure. As 
such, a Pareto Efficiency approach was taken, rather than creating an arbitrarily-weighted 
combination of the objective values. 
 
3.1.1. Investment Cost 
 
The investment cost is simply the sum of the investments required for 1) mitigating each 
selected bridge against the seismic threat, and 2) improving the security for each selected 
hospital in the solution. The cost of mitigating a bridge was set at 10% of the replacement 
cost. For simplicity, a cost of $10M for each hospital security investment is assumed, which 
causes the mitigation of all 20 hospitals ($200M) to be roughly equal to the cost of mitigating 
all bridges ($194M). It would be fairly straightforward to derive a meaningful value that is 
proportional to the size of the hospital (number of beds); however, we did not have the 
required data when this study was performed. The final cost objective is computed by 
summing the cost of the bridge mitigations selected and the cost of the hospital mitigations 
selected. 
 

min෍ܿ௜
஻ݔ௜

௜

൅෍ ௝ܿ௞
ுݕ௝௞

௝,௞

 

Where, 
 ܿ௜

஻: is the cost of reinforcing bridge i 
 ௝ܿ௞

ு : is the cost of implementing mitigation strategy j at hospital k 
 ௜: is a binary decision variable that indicates whether bridge i is seismicallyݔ 
                  reinforced 

  ௝௞: is a binary decision variable that indicates if mitigation strategy j isݕ
        applied to hospital k 
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3.1.2. Travel-Time Objective 
 
The travel-time objective is a measure of the increase in travel time for the general 
population when a seismic event occurs. Although this metric is not directly hospital-related, 
it does form part of the basis for determining the seismic hospital connectivity objective. 
From a story point of view, this is a side objective that could be used by the decision maker 
to strengthen the argument for making investments in bridges. The argument would be that 
improving hospital connectivity also benefits the general population in terms of travel time 
after a seismic event. 
 
The average travel time on a link within a road network is computed using the volume-delay 
function developed by the Bureau of Public Roads (BPR): 
 

T = ܽݐ ൤1 ൅ ܽݒቀߙ
ܿܽ
ቁ
ߚ
൨  (Average Travel Time) 

 
Where: 

 free flow travel time on link ܽ per unit time  (constant) = ܽݐ
ܿܽ = capacity of link ܽ per unit time     (constant) 
 volume of traffic on link ܽ per unit time   (variable) = ܽݒ
,ߙ  constant parameters (typically 0.15 and 4, respectively) = ߚ
 

To develop a travel-time objective for all traffic that moves across the network within a fixed 
time horizon, the number of cars delivered within each 15-minute time interval is tracked. 
This histogram of traffic data can then be used to generate a cumulative distribution curve 
from which the travel-time objective is calculated. Because traffic can be “stalled” 
(prevented from reaching its assigned destination), an additional penalty is applied that is 
equal to three times the maximum travel time experienced by any carload. The figures below 
illustrate a hypothetical simulation in which the maximum travel time is 165 minutes, which 
implies a 495 minute penalty for stalled vehicles. The shaded area to the left of the Travel 
Time CDF is the Travel Time objective. 
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Figure 2: Visual Representation of Travel Time Objective 

 
 
3.1.3. Hospital Connectivity Objective  
 
Connectivity is a combination of two goals:  minimizing the number of people who have no 
route to any hospital, and minimizing the travel time of those who do have a route to the 
hospital, with larger importance placed on the first goal. In the Memphis network, there are 
1,267 traffic analysis zones (TAZs). Each zone contains a centroid where trips originate and 
terminate. Connectivity is measured from each zone to the closest hospital. If a zone contains 
a hospital, the centroid within that zone is identified as a valid destination. When determining 
hospital connectivity, each origin node is allowed to consider every valid hospital 
destination.  This objective is used to assess the impacts of both the seismic and terrorism 
hazards. 
 
3.1.3.1. Calculation Procedure 
 
In addition to the highway network parameters used for the DTA, the following inputs are 
provided: 
 A set W that contains a weighting factor ݓ௢ for each origin node, o, in the network.  
 A set H that contains the destination nodes which are connected to hospitals.  

H is a subset of the destination nodes used in the model. 
 A set of travel time breakpoints and a set of penalty terms associated with each 

breakpoint. This input is used to increase the penalties, because it takes longer to reach 
a hospital. For example, suppose that a travel time of 0-8 minutes is desired, 8-16 is 
acceptable but undesirable, and longer than 16 minutes is unacceptable. Assume that a 
penalty of 0.1, 1, and 10 are applied each bin. This input can be thought of as being 
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passed into the model in two arrays, [0, 8, 16] and [0.1, 1, 10]. Let I represent the 
number of bins, ܾ௜ be the lower break point of each bin i, and let ݌௜ be the penalty 
associated with each bin i. 

 A large penalty term, M, which is applied to traffic that cannot reach a hospital.  We 
chose a value of 10,000 for M.  

 
Given these inputs, the connectivity objective can be evaluated using the following steps. This 
description explains how this objective function is calculated for the seismic hazard. Section 
3.1.3.3 describes how this calculation is modified for the terrorism hazard. 
 

1) For each mitigation strategy, run the DTA for each consequence scenario and accumulate 
all network statistics. 

2) For each origin zone and time interval where new traffic is added to the network, 
determine the shortest path (based on travel time) to any hospital on the network. Use the 
nodes in H to determine which nodes are hospital nodes. Note that the closest hospital 
could vary during the course of the DTA run due to changes in congestion. Only track 
these paths for the time periods where traffic is applied to the network which, in our case, 
is the twelve 15-minute intervals from 6:00-8:45. We ignore the time intervals where 
traffic is being cleared out of the network. Once this procedure is complete, each origin 
has a set of numbers that represent the shortest time path to any hospital for the time 
periods of interest. Note that paths with no connection are also recorded. 

3) For each origin zone, we need to measure the quality of its connection to each hospital. 
Because the network does not change over the duration of the simulation, the results 
should show that a zone was either connected or disconnected to a hospital for all time 
periods. For each origin there will be a set of travel times, one for each time interval, so 
the first task is to convert these values into a single number. Let ݐ௦௢ represented how 
well-connected origin o is to any hospital over the window of interest for consequence 
scenario s. In the case where it is not connected, ݐ௦௢ ൌ ∞; otherwise set ݐ௦௢ equal to the 
75th percentile of the travel times observed. 

4) Finally, the hospital connectivity objective can be calculated. At this point the term ݐ௦௢ 
should have been determined for each origin in each consequence scenario. The hospital 
connectivity objective is given below: 

 

݉݅݊෍෍݌௦ݓ௢݂ሺݐ௦௢ሻ

ை

௢ୀଵ

ௌ

௦ୀଵ

 

 
 Where, 
 ௦ is the probability of consequence scenario s݌  
 ௢ is the weight or importance associated with origin zone oݓ  
  ݂ሺݐ௦௢ሻ represents the penalty associated with a hospital connectivity of ݐ௦௢ 
 
 The penalty term for hospital connectivity is calculated as follow: 
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݂ሺݐ௦௢ሻ ൌ ൞

,௦௢ݐଵ݌ ܾଵ ൑ ௦௢ݐ ൏ ܾଶ
,௦௢ݐ௜݌ ܾ௜ ൑ ௦௢ݐ ൏ ܾ௜ାଵ
,௦௢ݐூ݌ ܾூ ൑ ௦௢ݐ
,ܯ ௦௢ݐ ൌ ∞

 

 
For this study the penalty terms shown in Table 1 were used, and M was set to 10,000. We 
assume that anything less than eight minutes is a good response time, so the penalty is low. 
The penalty increases for longer trips so that the model will focus on improving longer trips 
instead of shorter trips. Assuming that the longest trip to a hospital will be somewhere on the 
order of an hour (even if all bridges are gone), the maximum penalty will be around 600, 
which is a much lower penalty than for zones disconnected from hospitals (where the penalty 
is around 10,000).  
 

Trip Duration 
(minutes) 

Penalty 

0‐8  0.1 

8‐16  1 

16‐24  2 

24‐32  4 

32‐40  7 

40+  10 

 
Table 1: Hospital Travel Time Penalties 

 
3.1.3.2. Zone Importance Determination 
 
The weight associated with each zone was determined by estimating the number of people in 
that zone. This estimation procedure is difficult to make accurate, because people move to 
different zones throughout the day. The census data contains the population of each zone, the 
number of employees in each zone and the number of students in each zone. It also provides 
data on the number of households where 0, 1, 2, and 3+ personnel are employed. This 
information was used to estimate the number of people who are employed in each zone. In 
the case of 3+ personnel per household, it was assumed that only 3 personnel were employed. 
The average number of people in a zone over the course of a day was used to determine the 
weight. The average number of people in each zone over the course of a day was computed 
as follows: 
 

൬
2
3
൰ ሼ݁݊݋ݖ	݊݋݅ݐ݈ܽݑ݌݋݌ሽ ൅ ൬

1
3
൰ ሼ݁݊݋ݖ	݊݋݅ݐ݈ܽݑ݌݋݌ െ ݏݐ݊݁݀݅ݏ݁ݎ	݀݁ݕ݋݈݌݉݁ ൅ ݏݐ݊݁݀ݑݐݏ

൅  ሽݏ݁݁ݕ݋݈݌݉݁
 
It was assumed that people will spend 1/3 of their day at school or work. During this part of 
the day, we assume that employed residents will leave and that students and employees will 
arrive. If a person is employed in the zone in which they live, they will leave as an employed 
resident and arrive as an employee. Student residents should be subtracted out of the zone 
population, but there was no data on the number of students per household. It was assumed 
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that for the remaining 2/3 of the day, people will reside in their home zone. While this 
estimation is far from perfect, it should at least provide a reasonable estimate of which areas 
contain more people. Also, it is less important that each zone be represented exactly, because 
the bridge investment decisions that the model makes are more likely to affect regions 
containing many zones, rather than a specific zone. Given this information, as long as larger 
weights reflect regions where there are more residents, the correct behavior should be seen in 
aggregate.  
 
Each weight was computed by calculating the average population for its associated zone, 
then rescaling it to range from zero to one, based on the maximum population. Two 
corrections were made to the weights. First, the network contains “external” zones that are 
used to represent traffic flowing in and out of the Memphis area. Because these zones do not 
represent real geographic areas, it does not make sense to measure how connected they are to 
hospitals. For these zones, a weight of 0 was used so that they would not impact the 
optimization.  Second, the region containing the Memphis International Airport was assigned 
an artificial weighting of 1. The calculation above produced a low weight for this zone, 
because it has a very small population. However, because there are a large number of people 
in and out of the airport in a day, it was manually given a high priority. Figure 3 shows the 
importance weight of each zone. Higher weights occur in the more densely populated 
metropolitan areas. The disconnected triangular regions represent the external zones. 
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Figure 3: Memphis Importance Zones 
 
 
3.1.3.3. Differences Between Seismic and Terrorist Objective Calculations 
 
The hospital connectivity objective is calculated in a similar fashion for both the seismic and 
terrorism hazards; however, there are some small differences. For the seismic hazard, 
connectivity is affected when bridges are damaged, causing restricted or precluded traffic 
flow on connected highway links. For the terrorism hazard, hospitals can be completely 
removed from the network (the terrorist has successfully attacked and disabled them) such 
that the minimum hospital travel-time calculation only considers the remaining hospitals. As 
such, a single DTA run can be performed “up front” to calculate travel times to all hospitals 
from each origin. These values are then stored, and a lookup procedure is used to assess the 
objective function for each scenario where different hospitals are successfully removed from 
the network due to a terrorist attack. 
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3.1.3.4. Other Input Data 
 
A list of the region that contains hospitals is also required. For this study, 20 TAZs were 
identified that contained hospitals in the Memphis region. Finally, the terrorist’s attack 
budget, in terms of “number of hospitals”, is also provided as input. 
  
3.2. Decision Variables 
 
The decision variables for the optimization are broken into two parts: one set for the seismic 
threat and one for the terrorism threat. For the earthquake threat, each bridge, i, has a 
decision variable, xi, which takes a value of one or zero indicating if it will be seismically 
reinforced. For the terrorist threat, a collection of zero or one decision variables yjk are used 
to indicate whether mitigation strategy, j, will be applied to hospital, k. Each hospital will 
have exactly one mitigation strategy for a given solution. For this study, hospitals can either 
be mitigated (have increased security) or not. 
 
3.3. Solution Procedure 
 
The solution procedure consists of two pieces: computation of the optimal bridge mitigation 
strategy due to a seismic threat, and computation of the optimal hospital mitigation strategy 
due to a terrorist threat. This approach is possible because 1) the goal is not to try to find 
solutions that honor a budget limit, and 2) the hazards and mitigation strategies are 
independent of each other, so we can consider each hazard separately. This section 
summarizes how the mitigation solutions for each hazard are generated separately, then 
presents how they are combined to form one set of solutions on a Pareto frontier. 
 
For the seismic hazard, we use the approach as described in Brown, et al. (2013), which 
involves a single run of the optimization to determine the Pareto points that consider the total 
travel time, hospital connectivity, and seismic portion of the cost. For the terrorist hazard, we 
can execute a separate optimization that determines Pareto points for terrorism mitigation 
costs and terrorism hospital connectivity objectives. Once this is accomplished, all pairs of 
solutions from both optimizations are combined to produce a new set of solutions, each of 
which contains four components: the seismic hospital connectivity objective value, the 
terrorism hospital connectivity objective value, the seismic travel-time objective, and the 
total cost (i.e., the terrorism mitigation cost plus the seismic mitigation cost). The final set of 
Pareto points can be determined from this set of solutions. 
 
3.3.1. Seismic Threat Solution Procedure 
 
For the seismic hazard, we use the approach as described in Brown, et al. (2013), which 
involves conducting a single run of the optimization to determine the Pareto points that 
depend on the total travel time, hospital connectivity, and the seismic portion of the cost. The 
high-level solution procedure can be summarized in the following points and Figure 4. 
 
1. Identify hazard-consistent earthquake scenarios: The USGS has cataloged 433 

historic events and 20 synthetic events that represent the seismic hazard in the NMSZ.  
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Using the non-linear optimization process described in Shiraki, et al. (2007), it is possible 
to reduce this large collection of events to 8 representative earthquakes, of which only 2 
pose a significant threat to the bridges in the region. 

2. Identify hazard-consistent consequence scenarios for each earthquake scenario:  
The standard method for developing probabilistic consequence scenarios is to use Monte 
Carlo sampling, however, this requires on the order of hundreds of iterations, which is 
impractical for performing the optimization we are interested in. As such, we proposed a 
non-linear optimization procedure, as described in Gearhart, et al. (2013), to create a 
much smaller number of scenarios (20 per earthquake event) by using FEMA’s Hazus 
loss estimation tool in conjunction with a non-linear optimization. 

3. Assess objectives for post-event system performance: The DTA is used to the travel 
time across the network, which also feeds into the computation of hospital connectivity 
loss. A DTA evaluation is required for each consequence scenario, such that the total 
travel time and hospital connectivity loss objectives are calculated using a weighted 
aggregation across all scenarios. 

4. Optimize investment: The decision regarding which bridges to seismically reinforce 
drives this optimization. There are three objectives that must be simultaneously 
minimized for this multi-objective optimization: mitigation cost, travel time, and hospital 
connectivity loss. The combination of a genetic algorithm (GA) with a local search, run 
in parallel on the Red Sky supercomputer, is used to subsample the solution space in an 
intelligent fashion. 

 
The last two steps are repeated multiple times:  a GA crossover step is used to combine the 
solutions at each iteration from each independent process.   
 

Figure 4: Seismic Investment Optimization  
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3.3.1.1. Algorithm Summary 
 
A single run of the optimization requires that multiple mitigation strategies be evaluated by 
measuring the post-event network performance. There are 2 possible earthquake events, each 
of which has 20 possible consequence scenarios. The DTA requires 11 minutes to evaluate 
the 40 scenarios required for a single solution. There are 286 bridges in the road network that 
can be reinforced. Consequently, there are 2286 different reinforcement permutations, which 
is approximately 1086 or roughly the number of particles in the universe!  Because it is not 
possible to examine all of the permutations (which would require an approximate runtime of 
2x1080 years), the solution space is sub-sampled by applying a genetic algorithm heuristic 
and evaluating multiple, random mitigation strategies in parallel, using a collection of 
compute nodes. At initialization, each node is assigned a random bridge mitigation strategy 
that indicates the bridges to be reinforced.  Twenty consequence scenarios are constructed for 
each earthquake event based on the bridge mitigation strategies. For a given scenario, each 
bridge will be in a known damage state ranging from NONE (no impact) to COMPLETE 
(total loss of use of the affected road link(s)). Network performance is evaluated for each 
scenario by executing the DTA simulation over a 3-hour time horizon at 15 minute time 
intervals. Two objective values are produced from the DTA evaluation: travel time across the 
network, and hospital connectivity loss. The objectives are weighted by the scenario and 
(normalized) earthquake probabilities, and summed across all scenarios and earthquakes.   
 
To determine the objective contribution based on each earthquake event, the relative 
weighting based on the event probability is derived. The sum of the two different earthquake 
event probabilities is not equal to one; however, we are only interested in the fractional 
contribution of each, so the following normalization is applied: 
 

௫ݓ ൌ 	
௫݌

∑ ௘ா݌
௘ୀଵ

 

 
Where: 

 ௫ is the normalized weight contribution due to earthquake event xݓ  
 ௫ is the probability of earthquake event x݌  
 ௘ is the probability of earthquake event e݌  
    
Total objective for a single DTA evaluation: 
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 Where: 
 is the total cost of the bridge mitigation strategy in dollars ܥ  
 ௘ is the weight of earthquake event eݓ  
 ௦ is the probability of consequence scenario s݌  
 ௦ is the value of the hospital objective for consequence scenario sܪ  
  ௦ܶ is the value of the travel time objective for consequence scenario s 
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A multi-objective optimization is performed using the total objective described above as the 
basis. Because it is unlikely that all three objectives are equally important to the final 
solution, a Pareto Frontier of solutions is generated.  To evaluate each new solution, n, its 
Euclidean distance from the closest point on the current frontier is used as the fitness 
function.   
 
 

,ܪ,ܥሺܨ ܶሻ ൌ min	݃ݎܽ ݂ሺݔሻ ≔	
௫

ቄݔቚඥሺܥ௫ െ ௡ሻଶܥ ൅ ሺܪ௫ െ ௡ሻଶܪ ൅ ሺ ௫ܶ െ ௡ܶሻଶቅ 

  
Where: 

 ௫ is the cost of the bridge mitigation strategy for Pareto solution xܥ  
 ௡ is the cost of the bridge mitigation strategy for candidate solution nܥ  
 ௫ is the value of the hospital objective for Pareto solution xܪ  
 ௡ is the value of the hospital objective for candidate solution nܪ  
  ௫ܶ is the value of the travel time objective for Pareto solution x 
  ௡ܶ is the value of the travel time objective for candidate solution n 
 
The sequence of steps for a single optimization run is as follows: 
1) The master process spawns the collection of sub processes using MPI (Message Passing 

Interface) and utilizes RMI (Remote Method Invocation) for inter-process 
communication and data transfer.   

2) An initial run on each node establishes the baseline Pareto frontier by evaluating the two 
extreme strategies: all bridges reinforced, and no bridges reinforced. This frontier is then 
used as the fitness function for all local evaluations that start with a random 
reinforcement strategy across all bridges. 

3) A local search procedure (as described in the next section) is performed by evaluating the 
initial mitigation strategy, along with a small number of strategies that are within the 
same neighborhood.   

4) After a fixed number of iterations, the collection of “best” (closest to the frontier) 
solutions are sent back to the master process from each sub-process.   

5) The master updates its Pareto frontier with the solutions from all “child” processes.  
6) A collection of “parent” solutions is created by making a random selection from all new 

solutions, biased by how close they are to the frontier. 
7) New mitigation strategies are formed using genetic crossover and mutation of the parent 

solution strategies, as described in the pertinent sections that follow.   
8) The new strategies are partitioned out to the sub-processes, along with the updated 

frontier, so that another iteration can be executed.   
9) This procedure is repeated a fixed number of times, as each iteration improves the Pareto 

frontier. 
 
3.3.1.2. Local Search Procedure 
The local search solution procedure is used to refine the initial solution on each local 
compute node. The first iteration computes the full objective value across all 40 consequence 
scenarios. Each local search iteration is a single bridge-mitigation swap off of the initial 
mitigation strategy (i.e., changes a single bridge from reinforced to not reinforced or vice 
versa) and requires a new evaluation across all scenarios. Changing the reinforcement 
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strategy of a single bridge will likely not change its damage state across all consequence 
scenarios, hence, only those scenarios in which the bridge damage state changes need to have 
their objective values reevaluated. The affected scenario objective values from the initial 
solution are subtracted, and the new scenario objective values are added (making sure to 
apply the correct weighting based on scenario and earthquake event). The bridge selected for 
each swap is biased according to the number of scenarios that it changes. For example, a 
bridge reinforcement change which impacts 30 scenarios is more likely to be selected over 
one that affects only 20 scenarios. The probability for a bridge being selected for a 
reinforcement state change (changing to either being reinforced or to not being reinforced) is 
based on the number of scenarios, as follows: 
 

௫ܲ ൌ 	
௫ܰ

∑ ݊௕஻
௕ୀଵ

 

Where: 
 ௫ܲ is the probability of selecting bridge x for a reinforcement change 
 ௫ܰ is the number of scenarios impacted by changing the reinforcement of bridge x 
 ݊௕ is the number of scenarios impacted by changing the reinforcement of bridge b 
 is the total number of bridges in the network that can be reinforced	ܤ 
 
3.3.1.3. Crossover Strategy 
 
The crossover strategy is based on first making a random selection of the new solutions 
biased towards those that are closest to the frontier. The probability of selecting a solution on 
the frontier is chosen to be three times as probable as selecting the solution that is furthest 
from the frontier. A plot of this relationship appears in Figure 5, below. Additionally, an 
illustration of this biasing method is present in the table of hypothetical data, which shows 10 
solution points at various distances from the frontier. In this example, the maximum distance 
across all solutions is 10, which has a selection probability of 0.05. The total probability 
across all solutions is 1, as required. 
 

 
Figure 5: Illustration of Biased Selection  
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Where: 

 d is the maximum distance from the frontier across all solutions 
Pd is the probability of selecting a solution that is the maximum distance from the 

frontier 
 
Using this biased-selection strategy, the number of solutions selected from the new 
population is equal to the number of parallel processes being executed. Two new mitigation 
strategies are created by randomly selecting two strategies from the current solutions, 
choosing a random cut point, and reassembling the sequences by swapping the two halves. 
The example below illustrates this process for two mitigation strategies. 
 

 
Figure 6: Illustration of Genetic Crossover 

 
3.3.1.4. Mutation Strategy 
 
After a number of genetic crossovers, there will be a tendency for the mitigation strategies to 
converge towards a similar collection of strategies. To create greater diversification in the 
solution space, mutation is employed based on the similarities between the different 
mitigation strategies. The similarity ratio indicates the similarity across all mitigation 
strategies in the current solution set based on the number of bridges with the same 
reinforcement strategy (either reinforced or not). The following steps are used to calculate the 
similarity ratio and resultant mutation count: 
 Accrue the bridge statistics across the current mitigation strategies.  This action is 

essentially counting the number of times each bridge is reinforced. 

 Select a threshold, TH, at which a bridge is considered to be reinforced most of the time.  
Conversely, bridges below (100 – TH)% are considered to be unreinforced most of the 
time. 

 Make a count of the number of bridges in “similar” states and calculate a similarity ratio 
by dividing by the total number of bridges. 

 The number of bridge states is calculated as the number of bridges times the number of 
mitigation strategies. 

 The number of bridge state changes that should be changed (mutation count) is then the 
similarity ratio times the mutation rate times the number of bridge states. 
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As an example, consider a network with four bridges with IDs 1, 2, 9, and 15. One hundred 
mitigation strategies are generated with the reinforcement statistics as summarized in the 
table and histogram in Figure 7. Of the newly generated strategies, ten must be randomly 
selected and mutated due to the similarity ratio, also shown below. 

 
Figure 7: Illustration of Genetic Mutation 

 
The high threshold is set at 75%, which indicates that a bridge must be reinforced 75 times 
out of 100 (or greater) to be considered reinforced most of the time and 25 times (or fewer) to 
be considered unreinforced most of the time. From the histogram, it is clear that bridge 1 is 
reinforced most of the time, whereas bridge 9 is unreinforced most of the time. This situation 
gives a similarity ratio of 0.5 (i.e., 50% of the bridges have similar reinforcement states 
across all mitigation strategies). The number of bridge states is 400, which, when combined 
with a maximum mutation rate of 5%, produces a total mutation count of 20. 
 
3.3.2. Terrorism Threat Solution Procedure 
 
For this study, a game-theoretic approach is taken, using an attacker-defender model to find 
the optimal hospital reinforcement strategy for minimizing the worst terrorist attack. The 
terrorist’s goal is to disrupt emergency services for the maximum number of people given a 
limited attack budget. We assume that the terrorist has a maximum attack budget of k 
hospitals out of a total of n hospitals in the region, and that all attacks succeed with 
probability one, which renders the hospital unusable. For example, if the attack budget is 
selected to be 7 out of the total of 20 hospitals, there are 77,520 different permutations as 
defined by the 20-choose-7 binomial coefficient: 
 

ቀ
݊
݇ቁ ൌ

݊!
݇! ሺ݊ െ ݇ሻ!

; 	ቀ20
7
ቁ ൌ 	

20!
7! 13!

ൌ 77,520 

 
Additionally, we assume that mitigating a hospital involves making a security investment 
that is visible to the terrorist (perfect knowledge) and completely deters them from targeting 
that hospital. Additionally, the defender can reinforce at most n-1 of the n hospitals, since full 
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reinforcement would create a non-feasible attack solution. The high-level solution procedure 
can be summarized in the following points and Figure 8. 
 
1. Select hospitals to reinforce: The initial collection of solutions will be a completely 

random selection, which has a size approximately equal to 10% of the full solution space. 
After the first iteration, genetic crossover will be used to select the next generation of 
solutions, such that many of the desirable “genes” (hospitals investments) will be 
preserved. To ensure a complete family of solutions, it is desirable that there be a fairly 
uniform distribution across the number of hospitals reinforced.   

2. Determine the worst possible terrorist attack given a fixed attack budget: An MILP 
solver (CPLEX) is used to determine the worst possible attack for the selected 
investment, given that the terrorist has a maximum attack budget. 

3. Optimize investment: The decision regarding which hospitals should have security 
investments applied drives this optimization. There are two objectives that must be 
simultaneously minimized for this optimization: security investment cost and hospital 
connectivity loss. 

 
Genetic crossover is used to create each new generation of potential hospital investments 
based on preserving desirable (minimum objective) characteristics, but also to allow random 
mutation to preserve solution diversity. For our study, the terrorist is assumed to have a 
maximum attack budget of 7 out of the 20 possible hospitals.   
 

 
Figure 8: Terrorism Investment Optimization  
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3.4. Results 
 
For the case study, the seismic and terrorism optimizations are performed independently with 
the resulting solutions combined by examining all solution permutations. The reason for this 
separation is that, although there is a probability associated with a new seismic event, there is 
no calculable probability for a terrorist attack, so the relative weightings would be arbitrary. 
Decision makers can weight the final trade-off decision based on how significant they 
perceive the terrorist versus the seismic threat. The Pareto frontier for the seismic 
optimization (bridge mitigation), considering only bridge mitigation cost and hospital 
connectivity loss, contains 91 points, as shown in Figure 9. 
 
 

 
 

Figure 9: Seismic Investment Pareto Frontier 
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The Pareto frontier for the terrorism optimization (hospital mitigation), considering only 
hospital mitigation cost and hospital connectivity loss, contains 15 points, as shown in 
Figure 10, below. 
 

 
Figure 10: Terrorism Investment Pareto Frontier 

 
The Pareto frontier for the combination of both hazards is the full enumeration of all different 
solution combinations, which results in 91 * 15 = 1365 Pareto points. The combined frontier 
uses the combined mitigation cost (hospital plus bridge), the hospital connectivity loss for 
seismic alone, and the hospital connectivity loss for terrorism alone. Figure 11, below, shows 
the resulting frontier in 3D along with potential solution choices.  In this case, the 
distribution of points extends into the screen towards the minimum value for each of the 
three axes.  The decision maker can use this surface plot to determine possible solutions in 
various regions of interest.  For example, if there is a significant amount of funding available, 
the decision can be made to minimize both the seismic and terrorism threats at a high 
investment cost.  Alternately, a medium-cost solution can be selected, which is more focused 
on seismic mitigation.  If funding is highly constrained, then a low-cost solution can be 
chosen, which balances both seismic and terrorism mitigation, but with much worse resulting 
performance than the high-cost solution. 
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Figure 11: Combined Seismic, Terrorist, and Cost Pareto Frontier (3D) 
 
As an alternative way of viewing the Pareto frontier, but in two dimensions, allows for a 
somewhat more intuitive presentation.  Figure 12 shows the two dimensional representation 
of the Pareto frontier where the cost is represented by the size of the bubble.  One 
hypothetical line of reasoning could lead the decision maker to filter the results using the 
following criteria: 
 
1. Remove all solutions that cost more than $100 million. 
2. Select solutions where the terrorism hospital connectivity loss is smaller than 2700. 
3. Select solutions where the seismic hospital connectivity loss is smaller than 2300. 

Figure 13 illustrates the visual partitioning of the solution space and the resultant collection 
of solution points.  Within this smaller collection of solution points, the decision maker could 
choose the most (circled point in lower left) and least (circled point in upper right) expensive 
solutions to compare the trade-offs associated with each.   
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Figure 12: Combined Seismic, Terrorist, and Cost Pareto Frontier (2D) 

 
 
 
 

 
 

Figure 13: Filtered and Partitioned Solution Space 



33 

Table 2 illustrates that by (approximately) doubling the mitigation cost, the seismic objective 
is decreased from 2131 to 1675; however, it’s not immediately clear how this translates to 
network impact.  Table 3 illustrates how these objective values can be mapped to the 
population that can reach the closest hospital within certain travel times. For both solutions, 
the pre-event population in the 8-minute time bin is 874,879.  After a seismic event, solution 
one loses 70,416 people out of the 8-minute bin (i.e., they have longer hospital travel times), 
whereas with solution two, 207,016 people end up with longer travel times.  A tool that could 
provide this type of information to a decision maker would be of great value when making 
expensive investment decisions that must be defended by sound reasoning. 

 
 

Table 2: Comparison of Most and Least Expensive Solution Objectives 
 

 Solution 1 Solution 2 
Bridges Mitigated 68 19 
Hospitals Mitigated 7 4 
Cost ($M) 99.2 47.5 
Seismic Objective 1675 2131 
Terrorism Objective 1508.2 2556.2 

 
Table 3: Mapping from Hospital Objective Values to Population Values 

 
 Solution 1 Solution 2 

Hospital 
Travel Time 

(min) 

Pre-event 
Population 

Post-Event 
Seismic 

Difference 

Post-Event 
Terrorism 
Difference 

Post-Event 
Seismic 

Difference 

Post-Event 
Terrorism 
Difference 

0-8 874,849 -70,416 -183,152 -207,016 -422,763 
8-16 229,500 +53,021 +173,346 +69,483  +311,641 
16-24 73,080 +11,116 +8,387 +79,358  +87,940 
24-32 19,809 +5,039 +162 +42,306  +18,746 
32-40 3,474 +818 +1,257 +11,738  +4,355 
40+ 0 +118 0 +3,665  +82 
Disconnected 0 +183 0 +346  +0 
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4. SUMMARY AND CONCLUSIONS 
 

The overarching goal of this LDRD project was achieved by creating an analysis 
framework which allows investment planning to be performed on multiple, 
interdependent infrastructures subject to multiple hazards, both natural and terrorism-
related.  To achieve this goal, we integrated the following capabilities into a rigorous 
analytic framework: infrastructure modeling, natural hazard analysis, and game 
theory.  As a result, several new models were developed including infrastructure 
(transportation and electric power), natural hazard (earthquakes) and terrorism.  These 
models were integrated into the investment planning framework using a variety of 
optimization techniques such as closed form (MILP), heuristic (GA), and non-linear.   
Numerous artifacts which were produced as a result of this effort, include eight 
publications in peer-reviewed journals, two technical advances, and a substantial 
library of software objects which compose the framework. 
 
Next steps in this research could proceed in a variety of different directions.  The 
conversion of roadway networks into more efficient representations utilizing super-
centroids could be translated from a manual into a semi-automated process.  By 
augmenting the game-theoretic approach with increased realism in terrorist behavior, 
a more robust terrorism model could be developed.  Advanced visualization and 
interaction software that would allow a more high-level user to make use of the 
capabilities for simulating different disaster scenarios and investment strategies 
would also be of high value.  Any of these efforts would augment the ability of the 
framework to enable decision makers to generate informed cost-benefit decisions. 
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APPENDIX A:  ROADWAY NETWORK DATA FILES 
The data required for a full description of each network is composed of multiple files, each 
with a different function. The following sections describe the contents of each file. 
 
Highway Network File 
The network file contains nodes on the network, the links that join these nodes, and the link 
attributes. This file is a CSV file associated with configuration property highway network 
file. The following columns are present in the file, which can be either comma or tab 
delimited (one or the other, but not a mix of both). 

 Link ID – The integer ID, which uniquely identifies the link. 
 Source ID – The integer ID, which uniquely identifies the link’s origin node. 
 Destination ID – The integer ID, which uniquely identifies the link’s destination 

node. 
 Direction – The direction of the link. A +1 indicates traffic flowing from source node 

to destination node. A -1 indicates traffic flowing in the reverse direction. This 
column is necessary, because different directions of a link may have different 
attributes (e.g., capacity). 

 Time – The time in minutes required to traverse the link, under free-flow conditions. 
 Capacity – The capacity of the link in carloads per hour. 
 Alpha – Alpha value in BPR volume-delay function (can be omitted) 
 Beta – Beta value in BPR volume-delay function (can be omitted) 

 
Notes: 

 All link and node IDs must be positive integers. This restriction is required so that 
the negative of the link ID is used internally in the model to identify the reverse 
direction link. 

 The alpha and beta values can be omitted from the file if desired, in which case the 
configuration file values will be used. The definition of the BPR volume-delay 
formula is specified in the section on the Travel Time Objective. 

 For the Memphis network, there are 2 versions of this file: HwyNet.txt specifies 
25,970 links for the full network, whereas merged_HwyNet.txt specifies 12,347 
super-links (combinations of multiple standard links). The merged_HwyNet.txt 
version was created by converting the nodes to super-centroids (collections of 
nodes), resulting in a network that is 47.5% of the size of the original network.  

 
OD Matrix File 
The OD (origin-destination) matrix file specifies all origin and destination nodes, as well as 
the associated traffic flow that moves between these nodes over the time horizon. The file is 
a CSV with 3 columns: origin node ID, destination node ID, and traffic flow in carloads per 
hour. The default filename is ODMatrix.txt and is associated with configuration property OD 
matrix file. The OD matrix is converted to a temporal demand OD matrix when combined 
with the timing percentage file, which defines the fraction of total demand for each time 
interval. 
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Timing Percentage File 
This file specifies the fraction of the total OD demand at each time interval (typically every 
15 minutes). The file is a CSV with a single column (the fraction of demand), and has a row 
entry for each time interval. The configuration property intervals per hour must be set 
properly to coincide with the entries in this file (e.g., a value of “4” indicates 15-minute time 
intervals). The default filename is “DepartTiming.txt”, and is associated with configuration 
property timing percentage file. This file is used to convert the OD matrix to a temporal 
demand per time interval. 
 
Bridge Cost File 
This file specifies all bridge IDs and their associated mitigation cost in millions of dollars 
(roughly 10% of the replacement cost). The file is a CSV with 2 columns: ID and cost. The 
default filename is AllowableCost.txt and is associated with the configuration property 
bridge strategy file.   
 
Bridge-Link Relationship File 
This file specifies the different bridge-link relationships for each bridge. It is a CSV file with 
the following columns: bridge ID, link ID, link direction (1 or -1), and relationship ID 
(1 = link runs on top of the bridge, or 2 = link runs under the bridge). This file is associated 
with configuration property bridge-link relationship file, with a default filename of 
BridgeLinkRelation.txt for the original network and merged_BridgeLinkRelation.txt for the 
super centroid network. 
 
Recovery Plan File 
This file specifies a generic recovery plan over time for bridges damaged by an earthquake 
event, and indicates the fraction of available capacity for links affected by a bridge. It is a 
CSV file with the following columns:  

 Bridge damage state – The damage state of the bridge after the earthquake event 
ranging from 1 (no damage) to 5 (complete damage). 

 Bridge-link relation – The relationship for which the recovery plan applies, which is 
either 1 (link is on top of the bridge) or 2 (link runs under the bridge). 

 Day – The day in the recovery plan starting at 1 (the day after the event). 
 Capacity – The fraction of available capacity on links affected by a bridge in the 

given damage state. This value will vary from 0 (no available capacity) up to 1 (full 
capacity). 

 
The Recovery Plan file was intended to be used for the change in link capacity over time; 
however, it is currently only used to determine the link capacity immediately after an 
earthquake event. This file is associated with configuration property recovery file, and has a 
default filename of RecoveryPlan.txt. 
 
Earthquake File 
This file specifies the earthquakes to be used in the optimization. It is a CSV file with two 
columns: earthquake ID, and probability of occurrence (value between 0 and 1). This file is 
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associated with configuration property earthquake file, with a default filename of 
Earthquake.txt. 
 
Bridge Damage Probability File 
This file specifies the probability of each damage state for all bridges and reinforcement 
strategies. It is a CSV file with the following columns: earthquake ID, bridge ID, strategy ID, 
damage ID (value ranging from 1 [no damage] up to 5 [complete damage]), and probability 
(decimal value between 0 and 1). This file is only required when doing Monte Carlo 
sampling, and has a default filename of BridgeDamageProb.txt associated with configuration 
property bridge damage probability file.  When Monte Carlo sampling is not used, a 
mitigated scenarios file must be present. 
  
Mitigation Scenario File 
This file specifies a collection of static scenarios in a CSV file format, has a default filename 
of MitigatedScenarios.txt, and is associated with configuration property mitigation scenario 
file. The first row of this file contains the column names: Earthquake, Scenario, Probability, 
1, 2, …, N. The interpretation of the columns is as follows: [quake ID],[scenario 
ID],[scenario probability/weight],[CSV of bridge damage states for all bridge IDs 1 through 
N]. The first entry for any scenario will be assumed to hold the unmitigated damage states. 
The second entry for an already existing scenario will be assumed to hold the mitigated 
damage states. The weight is the probability of the scenario given that the associated 
earthquake occurs.  To get the complete, conditional probability weight for the scenario, it 
must be scaled based on the probability of the associated earthquake. The scaling due to 
earthquake probability is a multi-step procedure: 

 Determine the scaling to be applied to each quake probability such that the sum of the 
quake probabilities is 1:  1/(P1 + P2 + ... + PN) 

 The full scenario weight is then: (probability of scenario) * (probability of quake) * 
(quake probability normalization) 

Only those bridges for which there are IDs should have their damage states updated. For the 
Memphis dataset there are 335 bridges of which 14 which are not connected to the network 
and are omitted.  There must be the same number of scenarios for the mitigated case as for 
the unmitigated case with the same probabilities.  For the Memphis dataset there are 20 core 
scenarios.  The file is structured so that we have scenarios 1 – 20 for an earthquake ID that 
represent no mitigation damage probabilities, then another 20 scenarios with the same quake 
and scenario IDs that represent mitigation damage probabilities.  The next collection of 20 
scenarios should be numbered 21 – 40 for the next earthquake ID, etc. 
 
Origin Importance File 
This file specifies the importance of each TAZ (Transportation Analysis Zone) based on the 
population in that zone. It is used for determining the hospital connectivity objective, as 
described in the section of the same name under the case study (see Section 3.1.3). It is a 
CSV file with the following columns: EP_ID (endpoint ID: the ID of the centroid node 
identifying the TAZ), weight (importance of TAZ), AVG_POP (average population in TAZ).  
This file is only required when doing an optimization around a hospital network, and has the 
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default filename of OriginImportance.csv associated with configuration property origin 
importance file.   
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APPENDIX B:  AIR SYSTEM MODEL DETAILS 
Overview 
There are two main components to the model. The first is a large database containing 
publicly available airline data obtained from the Bureau of Transportation Statistics website. 
The second is an optimization model implemented in Optimization Programming Language 
OPL. Through a series of database queries, the historical data is manipulated into a 
manageable dataset that can then be processed by OPL. This manageable dataset contains an 
estimation of passenger demands for travel between all origin-destination pairs for each 
airline, as well as a flight schedule (within a specified time window). The goal of the OPL 
model is either to route as many passengers as possible through the system within the time 
window, or to minimize the number of “shed passengers” – passengers that are unable to 
reach their destination.   
 
The queries that create the manageable dataset are dependent on a set of user-defined 
parameters. Adjusting these parameters allows the user to create different datasets. The 
datasets may differ by how many airports are represented in the model, which (and how 
many) flights are included during the time window, how coarsely the time window is 
discretized, and how many different “types” of passengers there are (a passenger “type” is a 
group of passengers with a unique triple [i.e., origin, destination, and carrier]). 
 
Before solving the OPL model, the user must determine which of these datasets to use, as 
well as which of the airports are disrupted. Once these decisions are made, and a few other 
parameters are specified, the OPL model is solved, resulting in the optimal passenger flow. 
This flow can then be analyzed to determine the impact that the disruption had on the 
passenger air system. A pictorial representation of this framework is shown in Error! 
Reference source not found.4.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: Passenger Air System Model Framework 
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Optimization Model and Implementation 
To model the passenger air transportation system, we use a multi-commodity flow model 
with side constraints. The multi-commodity flow problem is a network flow problem 
involving multiple commodities, each with a source node, sink node, and flow demand that 
must be sent between the two nodes. The goal of the optimization problem is to minimize the 
cost of sending all of the commodities between their source and sink nodes, while adhering to 
the “arc” capacities.    
 
In our model, a “commodity” is defined as a set of passengers with the same origin, 
destination, and airline carrier. The network contains a node for every airport-time period 
pair. There are three types of arcs in the network. The first type of arc represents actual 
flights in the air transportation system. The second type of arc connects two nodes 
representing the same airport in consecutive time periods. The third type of arc is a “dummy 
arc”, which accommodates passengers that are unable to make it from origin to destination 
by traveling through the air system. Complicating the model are side constraints – in this 
case, the side constraints are restrictions that are placed on which types of passengers can use 
which flights  (to be discussed in more depth later). 
 
Model Assumptions 
Various assumptions are made in the development of this model. First, instead of 
determining the specific itinerary (or route) a passenger will follow in traveling from origin 
to destination, only the origin and destination are specified. A model in which actual 
passenger routes are specified would most likely have been less tractable.  
 
Second, instead of introducing passengers into the system at different times throughout the 
day, they all enter the system during the first time period. The lack of historical passenger 
data at the hourly (or even daily or monthly) level makes estimating a distribution for the 
times that passengers enter the system very difficult. Therefore, for our analysis, it is 
sufficient to allow all passengers to enter the system during the first time period, effectively 
allowing the optimization model to determine what time the passengers depart on their first 
flight of the day.  
 
We also assume that, in the event of disruptions, the flight schedule does not change. In other 
words, the arrival and departure times of all flights remain the same, and flights that originate 
or depart from interrupted airports simply do not operate.  
 
Last, instead of solving an integer program (IP), we solve a linear program (LP). While this 
results in unrealistic (fractional) passenger flows, the added value of an integer solution is not 
worth the extra computational burden induced by solving an IP. 
 
Notation and Formulation 
A formal representation of the model is developed using the following notation: 
 
 ܶ :  set of time units, indexed by	ݐ 
 ܽ set of airports, indexed by  : ܣ 
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 ݂ set of flights, indexed by  : ܨ 
 ௙ܱ :  origin of flight ݂ 
 ݂ ௙ :  destination of flightܦ 
 ݂ ௙ :  carrier of flightܥ 
௙ݐ 

ை: time period flight ݂ leaves its origin 
௙ݐ 

஽: time period flight ݂ arrives at its destination 
 ݂ ௙ :  capacity of flightݑ 
௔ܮ ௔:  minimum layover time at airport ܽ  (currentlyܮ  ൌ 0			∀ܽ) 
 set of commodities, indexed by ݇ (a commodity is a set of passengers defined by  : ܭ 

a unique triple: (origin, destination, carrier)) 
 ݊௞ :  # of passengers for commodity ݇ 
 ݇	௞:  origin of commodity݋ 
 ݀௞:  destination of commodity ݇ 
 ௞:  the set of airports that commodity ݇ is allowed to visitܣ 
 ௞:  the set of flights that commodity ݇ can useܨ 
 
Given this notation, a network is constructed with a node for every airport-time period pair: 
ሺܽ, ሻݐ ∈ ܣ ൈ ܶ. Given an airport, ܽ ∈ ݐ ,and time period ,ܣ ∈ ܶ\|ܶ|, an arc is added between 
nodes ሺܽ, ,ሻ and ሺܽݐ ݐ ൅ 1ሻ. For each flight, ݂ ∈ ,an arc is added between nodes ሺܽ ,ܨ  ሻ andݐ
ሺ തܽ, ܽ ሻ where̅ݐ ൌ ௙ܱ, ݐ ൌ ௙ݐ

ை,  തܽ ൌ ̅ݐ ௙, andܦ ൌ ௙ݐ
஽ ൅  . A dummy arc is added for each	௔തܮ

commodity, ݇ ∈ ,௞݋connecting nodes ሺ ,ܭ 1ሻ and ሺ݀௞, |ܶ|ሻ. This representation can be 
viewed as a series of chains, one for each airport, that is interconnected by flight arcs and 
dummy arcs (see Figure 2). The objective is to route the passengers in a way that minimizes 
the total number of passengers that require dummy arcs to get from their origin node to their 
destination node (e.g., for passengers of commodity type ݇, from node ሺ݋௞, 1ሻ to node 
ሺ݀௞, |ܶ|ሻ). In the example below, the green arcs represent flights, the orange arcs allow 
passengers to remain at an airport from one time period to the next, and the purple arc is the 
dummy arc for a group of passengers flying from ABE to ABI with a specific carrier. 
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Figure 15:  Network Model Representation 
 
The capacities of the arcs corresponding to flights are the capacities of those flights (flights 
with identical origin, destination, carrier, departure time, and arrival time are combined). All 
other arcs are uncapacitated. The dummy arcs have a cost of 1 (representing one passenger 
that cannot make it to its destination), while all other arcs have 0 cost. There are three sets of 
decision variables:  
 
ሺ௔,௧ሻݔ
௞ : the amount of commodity ݇ (# of passengers) that move from node ሺܽ,   ሻ toݐ

 node ሺܽ, ݐ ൅ 1ሻ 
௙ݕ
௞:  the amount of commodity ݇ that uses flight ݂ ∈  ܨ
 ௞:  the amount of commodity ݇ using its corresponding dummy arcݖ
 
The formulation is as follows: 
 

min෍ ௞ݖ
௞∈௄

 

 
such that 

௞ݖ ൅ ሺ௢ೖ,ଵሻݔ	
௞ ൅	෍ ௙ݕ

௞

ቄ௙∈ிೖቚை೑ୀ௢ೖ,௧೑
ೀୀଵ	ቅ

ൌ ݊௞																				∀݇ 

ABE 

t = 1 t = 2 t = 3 t = 4 t = |T|
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The objective function minimizes the number of passengers that travel on dummy arcs. The 
first set of constraints ensures that ݊௞ passengers leave the node representing commodity ݇’s 
origin airport at time period 1. The second set of constraints ensures that no passengers of 
commodity type ݇ originate at any airport other the origin. The third set of constraints 
ensures that the same number of passengers for each commodity type enter and leave each 
intermediate node. The fourth set of constraints ensures that 0 passengers of commodity 
type ݇ terminate at any airport other than the destination. The fifth set of constraints ensures 
that exactly that ݊௞ passengers reach commodity ݇’s destination airport by the last time 
period (this set of constraints is actually redundant, and is not included in the OPL model). 
The sixth set of constraints ensures that no flight’s capacity is exceeded, and the seventh set 
of constraints contains the nonnegativity restrictions. 
 
The number of constraints for the model is ܱሺ|ܨ| ൅ |ܶ|∑ ௞|௞ܣ| ሻ, and the number of variables 
is ሺ∑ |௞ܣ| ൅ ௞|ሻ௞ܨ| . Because of this, we use sets ܣ௞ ⊂ ௞ܨ and ܣ ⊂  This may result in a .ܨ
slightly worse solution (because of the reduced solution space), but the model would most 
likely be intractable if we allowed every passenger to visit any airport and use every flight. 
Also, by constructing these sets, we restrict the model from choosing strange routes, such as 
Albuquerque-LA-Honolulu-San Francisco-Atlanta for a passenger to get from Albuquerque 
to Atlanta. 
 
OPL Implementation 
The implementation of the mathematical model is accomplished using OPL. The project 
consists of three files: a data file, model file, and a settings file. Two steps must be completed 
before the OPL model is solved. First, the user must specify the values for a set of six 
parameters in the Input_OPL_Parameters table of the AirlineDataLDRD database. Second, 
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the user must run the Pre_OPL_Run.sql query and then identify which airports are 
interrupted in the Input_Airports_With_Status table that is generated from the query.  
Once the user has completed these steps, the OPL code can be run. When the OPL code is 
run, a unique integer, ModelRunID, is generated and the following steps are completed: 
 

1) The data and parameters are read in from the AirlineDataLDRD database. 
2) The “uninterrupted” version of the model is solved – the number of shed passengers 

is minimized when no airports are disrupted.   
3) All shed passengers are removed from the system.  (Ideally, the uninterrupted version 

wouldn’t have any shed passengers, but because the OD table is an estimation, there 
will most likely be some unaccommodated passengers). 

4) [OPTIONAL] The passenger flow is fixed for the commodities that have no 
passengers flying through the disrupted airports. 

5) The “interrupted” version of the model is solved – the number of “shed” passengers is 
minimized when the specified subset of the airports is interrupted. 

6) [OPTIONAL] A third LP (linear program) is solved in which a secondary objective 
is optimized. A constraint is added so that the total number of shed passengers is no 
more than the optimal number of shed passengers. The secondary objective may be 
either to obtain a solution with the smallest deviation from the historical load factors, 
or to find an alternative optimal solution in which the number of passengers that 
board each flight is below 25% capacity is summed and minimized. 

7) The output is exported to the database. 
 
Each ModelRunID refers to an OPL run in which a DatasetID  and set of inoperable airports 
have been selected (as well as the values for the other 5 parameters in the 
Input_OPL_Parameters table). When incorporated into other models, it is most likely that 
the same DatasetID  and OPL parameters would be used for a given analysis, but with 
different sets of inoperable airports. To automate this process, new model runs can be created 
from a common dataset and only the Input_Airports_With_Status table would need to be 
modified. This approach allows the model to be solved multiple times in a loop.   
 
Input Parameters 
Below are the six parameters that must be specified in the Input_OPL_Parameters table of 
the AirlineDataLDRD database before OPL is run (this table should only have one row): 
‐ DatasetID: identifies which dataset will be used by OPL.  (The set of airports, carriers, 

commodities, and flights is different for each dataset. The datasets have been constructed 
by running SQL queries on the historical airline data.)  

‐ FixUninterruptedCommodities: If equal to 1, then, after the uninterrupted 
model is solved, all passengers for any commodity that doesn’t have any passengers 
flying through interrupted airports have their routes fixed.   

‐ UninterruptedSharing: If equal to 1, then, in the uninterrupted model, passengers 
flying with a specific carrier may be able to use flights from other carriers (more on this 
later). If equal to 0, then passengers may only use flights provided by the carrier they 
purchased their tickets from. 
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‐ InterruptedSharing: If equal to 1, then in the interrupted model, passengers flying 
with a specific carrier may be able to use flights from other carriers. If equal to 0, then 
passengers may only use flights provided by the carrier they purchased their tickets from. 

‐ MinimizeEmptyFlights: If equal to 1, after solving the interrupted LP, a third LP is 
solved that attempts to find an alternative optimal solution, in which, for each flight 
below 50% capacity, the number of passengers is summed and minimized. 

‐ MinimizeLoadFactorDeviation: If equal to 1, after solving the interrupted LP, a 
third LP is solved that attempts to find an alternative optimal solution, in which the load 
factor deviation is minimized. 

Also, the set of interrupted airports must be identified by modifying the Interrupted 
column of the  Input_Airports_With_Status table (set the value equal to 1 if the airport is 
interrupted; otherwise, set the value to 0 and designate the time periods that the airport is 
interrupted). 
 
Note: At most one of the parameters: MinimizeEmptyFlights and 
MinimizeLoadFactorDeviation, may be set to 1.   
 
Input Data Tables 
Below is a list of the data tables used as input by the OPL model: 
‐ Input_OPL_Parameters: This table contains the DatasetID for the dataset to be 

used, as well as the values for the following OPL parameters: 
FixUninterruptedCommodities, UninterruptedSharing, 

InterruptedSharing, MinimizeEmptyFlights, and 

MinimizeLoadFactorDeviation. 

‐ Input_Dataset_Input_Parameters: Given the DatasetID value from 

Input_OPL_Parameters, OPL pulls from this table the number of time periods per 
hour, as well as the start and end of the time window. 

‐ Input_Airports_With_Status: This table contains the set of airports to be used 
for the model, as well as an indicator for each airport identifying whether it is disrupted 
or not. 

‐ Input_Commodities: Given the DatasetID value from 

Input_OPL_Parameters, OPL pulls a list of commodities from this table. Each 
commodity has an origin, destination, carrier, number of passengers, and a 
CommodityID. 

‐ Input_Flights: Given the DatasetID value from Input_OPL_Parameters, 
OPL pulls a list of flights from this table. Each flight has an origin, destination, carrier, 
capacity, departure time period, arrival time period, and a FlightID. 

‐ Input_Commodity_Flight_Pairs:  Given the DatasetID value from 

Input_OPL_Parameters, OPL pulls a list of commodity-flight pairs from this table. 

A commodity-flight pair is composed of a  CommodityID and a FlightID, 
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indicating that the commodity can use that flight (when sharing is allowed). Also 
included is an indicator that tells whether the commodity’s carrier is the same as the 
flight’s carrier. (This data is used when sharing isn’t allowed.) 

‐ Input_Commodity_Airport_Pairs: Given the DatasetID value from 

Input_OPL_Parameters, OPL pulls a list of commodity-airport pairs from this 

table. A commodity-airport pair is composed of a CommodityID and an airport, 
indicating that the commodity is able to visit the airport en route to its destination. 

OPL Code 
The OPL code is divided into several sections. In the first portion of the model file, tuples are 
constructed to store the data that is read in from the database. The second part of the code is 
where the model is defined. Next, there is a main flow control script, where, first, the 
uninterrupted model is solved and the number of passengers adjusted. Next, the interrupted 
model is solved. A third LP may be solved if a secondary objective is selected. After the 
main flow control script, another set of tuples is constructed to export the model’s results to 
the database. For a more in-depth understanding of the code, see the model and the data files. 
 
Output Data Tables 
The main output of the model is the passenger flow on each arc. From these values, the total 
number of shed passengers and the number of shed passengers for each commodity type are 
obtained. Below is a list of the output tables (in the AirlineDataLDRD database) and the 
information they contain: 
‐ Output_Summary: For each ModelRunID, the DatasetID for the dataset that was 

used, the values for the five other OPL parameters, the total number of passengers in the 
system, the total number of passengers after post-uninterrupted solve adjustments, the 
total number of shed passengers, and the total number of shed passengers that neither 
originate nor terminate at an interrupted airport are provided. 

‐ Output_Interrupted_Airports: For each ModelRunID, the set of airports that 
was interrupted is listed. (Note that the set of interrupted airports is not unique to the 
DatasetID, which is why we include it with the output data. Many model runs may be 
executed, each using the same dataset, but with different sets of interrupted airports.) 

‐ Output_Flights: For each ModelRunID, the total number of passengers on each 
flight during the last LP solve is provided, as well as whether the flight is operational or 
not (flights in or out of disrupted airports are not operational). 

‐ Output_Commodities: For each ModelRunID and commodity, the total number of 
passengers, the total number of passengers after post-uninterrupted solve adjustments, 
and the total number of shed passengers from the last LP solve is provided. 

‐ Output_Commodity_Flight_Pairs: For each ModelRunID and commodity, the 
total number of passengers using each flight from the last LP solve is provided. 
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Historical Data 
The main source of historical data is the Bureau of Transportation Statistics website. Three 
sets of data are obtained from this website: T100 Segment data, OnTime Performance data, 
and OD Market data. Also, a set of tables was downloaded from the Federal Aviation 
Administration website and used to map the aircraft tail numbers to the aircraft model and 
corresponding plane capacity. In addition, a table was constructed that lists the time zone in 
which each airport is located (for both Daylight Savings Time and Standard Time). All of 
this data can be found in the AirlineDataLDRD database on the orca-srn-
db\sandbox server. Below is a list of the six tables of data used for the airline system 
model: 
‐ ZZZZ_OD_Market: Contains the passenger data aggregated at a quarterly level. A 

given row provides the total number of passengers for each quarter that traveled between 
an origin and destination, following a specific route, using flights from specific carriers. 
For example, there would be two separate rows for all passengers flying from 
Albuquerque to Atlanta to Gainesville, if one set of passengers used Delta Airlines on 
both flights, and a second set of passengers used Delta for the first leg and US Airways 
for the second leg. Unfortunately, there is no passenger data at the daily level and no data 
for passengers flying internationally. This data can be downloaded here: 
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=247&DB_Short_Name=Ori
gin and Destination Survey.   

‐ ZZZZ_OnTime_Performance: For every flight flown by the major air carriers, this 
table contains information such as the origin airport, destination airport, and carrier, as 
well as scheduled and actual arrival and departure times. Also provided is a TailNum 
column which (in most cases) can be mapped to a plane model and capacity. This data 
can be downloaded here: 
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On
-Time. 

‐ ZZZZ_T100_Segment: For each unique tuple (origin airport, destination airport, 
carrier, aircraft type), this table contains the total number of passengers and seats 
available. Unfortunately, there is no way of knowing which passengers were flying 
internationally vs. domestically. This data can be downloaded here: 
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=293&DB_Short_Name=Air 
Carriers. 

‐ ZZZZ_ACFTREF and ZZZZ_MASTER: These tables allow most of the values from the 

TailNum column of the ZZZZ_OnTime_Performance table to be mapped to an 
aircraft model and corresponding plane capacity.  This data can be downloaded here: 
http://www.faa.gov/licenses_certificates/aircraft_certification/aircraft_registry/releasable
_aircraft_download/ 

‐ ZZZZ_Airport_Timezones: For each airport appearing in the 

ZZZZ_OnTime_Performance  table, the time zone was looked up manually. 
Therefore, this table may need to be updated if there are new airports appearing in other 
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years’ worth of data that may added to the ZZZZ_OnTime_Performance table in the 
future. 

(The reason the tables all have ZZZZ_ as a prefix is just to keep them listed at the bottom, 
separate from the tables that are generated for the OPL model input and output, and from the 
analysis tables). 
 
Model Preparation Queries 
Given the six tables above, the Create_New_OPL_Dataset.sql query can be executed to 
manipulate the data and construct a manageable dataset that can then be fed into the OPL 
model. Before execution, the user must open the query and set the values for 11 different 
parameters. The user will find the following portion of code near the top of the file: 
 
SET @DatasetID=(SELECT MAX(DatasetID) FROM Input_Dataset_Input 
_Parameters)+1 
SET @DatasetID =  1  
SET @StartDate =  '8/10/2011' 
SET @StartTime =  400 
SET @EndDate =  '8/11/2011' 
SET @EndTime =  400 
SET @TimePdsPerHour = 1  
SET @MinAirportVolumePercentage = 0.2  
SET @MinCarrierVolumePercentage = 0.2  
SET @MinAirplaneCapacity = 3  
SET @MinCommoditySize = 900  
SET @NumRoutesToIncludePerODPair = 5  
SET @MaxNumLegsForTopRoutes = 3 
 
 
The user must first decide whether to create a totally new dataset or to overwrite a previously 
generated dataset. If creating a new dataset, the line ‘SET @DatasetID = 1’ must be 
commented out. If overwriting a previous dataset, the user must replace ‘1’ (or whatever the 
line currently says), with the DatasetID value for the dataset they wish to overwrite. Next, 
the user determines the start date, start time, end date, and end time for the time window the 
user wishes to model (400 means 4:00 am and 2400 means midnight). The user also 
determines how finely/coarsely the time window is discretized by setting the 
TimePdsPerHour value.   
 
The user controls how large an airport must be (in terms of total inbound and outbound 
flights) to be included in the model by selecting the value for 
MinAirportVolumePercentage.  A value of 0.2, for example, means that only airports that 
are either the origin or destination of at least 0.2% of the flights listed in the  
ZZZZ_OnTime_Performance  table are kept in the model.  
 
Similarly, the user controls how large a carrier must be to be included in the model by setting 
the value for MinCarrierVolumePercentage. A value of 0.2, for example, means only 
carriers that operate at least 0.2% of the flights listed in the  ZZZZ_OnTime_Performance 
table are kept in the model as individual carriers. Those carriers not operating at least 0.2% of 
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the flights will be combined into an “other” carrier.  (For the most part, this value should just 
remain at 0. For 2011, the on-time performance data only contains the flights for 16 different 
carriers.  Three of these carriers, Mesa Airlines, ExpressJet Airlines, and Atlantic Southeast 
Airlines, have been chosen to be lumped into the “other” carrier, regardless of their volume 
percentage.  This is done in a different portion of the code.)   
 
By selecting a value for the MinAirplaneCapacity parameter, the user restricts the model 
from including any flights from the ZZZZ_OnTime_Performance table that have a plane 
capacity less than MinAirplaneCapacity.   
 
There are many commodities - (origin, destination, carrier) triples – that have very few 
passengers throughout the quarter. Setting MinCommoditySize = 900, for example, restricts 
commodities from being created that have less than 900 passengers in the given quarter (or 
roughly 10 passengers/day). To account for these smaller commodities that are not created, 
the number of passengers in the other commodities is scaled up so that the total number of 
passengers in the system is not changed.  
 
The last two parameters, NumRoutesToIncludePerODPair and MaxNumLegsForTopRoutes, 
are used to restrict the sets of flights and airports that each commodity may use. When 
NumRoutesToIncludePerODPair = 5, for example, for each origin-destination pair, the top 
five routes (in terms of the total number of passengers flying along that route during the 
quarter) are selected. Then, in the OPL model, passengers can only use flight legs that appear 
in those top 5 routes. When MaxNumLegsForTopRoutes = 3, the “top routes” must consist of 
no more than three segments.   
 
Once the user specifies the values for the parameters listed above, the 
Create_New_OPL_Dataset.sql query can be executed.  The query is summarized in the 
following steps: 
 
‐ Step 0:  

o The values for the parameters mentioned above are stored in a row of the 
Input_Dataset_Input_Parameters table for future reference.    

o The flights from ZZZZ_OnTime_Performance that fall within the specified 
time window are copied into a table named OnTime_Performance. 

o The flight data from ZZZZ_T100_Segment for the month in which the time 
window falls is copied into a table named T100_Segment. 

o The passenger data from ZZZZ_OD_Market for the quarter in which the time 
window falls is copied into a table named OD_Market.  Only rows for which the 
carrier listed in the TkCarrier column is one of the carriers from the 
OnTime_Performance table are included (or those with TkCarrier=’99’, 
meaning the passengers use multiple carriers). 

o Primary keys are added to these tables. 
‐ Step 1:   

o Rows of the form (DatasetID, Airport, AirportID) are added to the 
Input_Airports table, where Airport is the three letter identifier and 
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AirportID is an integer ID for the airport. Only the airports that are either the 
origin or destination for at least MinAirportVolumePercentage percent of 
the total flights from OnTime_Performance are added.  

‐ Step 2: 
o Rows of the form (DatasetID, Carrier, Model_Carrier) are added to 

the Input_Carriers table, where Carrier is the two letter identifier for 
the carrier and Model_Carrier is initialized to be‘OTH’. A row is added for 
each carrier that appears in the OnTime_Performance table. 

o The Model_Carrier column is updated, with Model_Carrier = Carrier 
for any carrier that operates at least MinCarrierVolumePercentage of the 
total flights from the OnTime_Performance table. Model_Carrier = 
‘OTH’ for Mesa Airlines, ExpressJet Airlines, Atlantic Southeast Airlines, and 
all other carriers. 

‐ Step 3: 
o The data from the T100_Segment table is grouped by carrier, origin, and 

destination to create the T100_Summary table (over multiple aircraft types). 
This can be used to estimate plane capacities for the flights from the 
OnTime_Performance table without a TailNum value that can be mapped to 
an aircraft type and plane capacity. 

‐ Step 4: 
o The Tickets_Split_Out table is constructed by taking the OD_Market 

data and separating the AirportGroup and OpCarrierGroup columns each 
into 9 separate columns ((Airport1, Airport2, ..., Airport9) and 
(Carrier1, Carrier2,…,Carrier9)). These identify the sequence of 
airports visited and the carriers used along the passengers’ route from origin to 
destination. 

o Three columns are added: Model_Origin, Model_Dest, and 
Model_Carrier. 

o For each row, the Model_Origin value equals the first airport visited on the 
passengers’ itinerary that appears in the Input_Airports (given the current 
DatasetID). 

o For each row, the Model_Dest value equals the last airport visited on the 
passengers’ itinerary that appears in the Input_Airports table (given the 
current DatasetID). 

o For each row, the Model_Carrier value equals the value in the 
Model_Carrier column of the Input_Carriers table for the carrier listed 
in the TkCarrier column of the Tickets_Split_Out table (when 
TkCarrier = ‘99’, then Model_Carrier = ‘OTH’). 

‐ Step 5:  
o Rows of the from (DatasetID, Model_Origin, Model_Dest, 

Model_Carrier, Passengers, CommodityID) are added to the 
Input_Commodities table by taking the tickets from 
Tickets_Split_Out and grouping all that have the same Model_Origin, 
Model_Dest, and Model_Carrier. The CommodityID column is a unique 
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integer identifying the commodity (unique only when comparing to other 
commodities within the same dataset). 

o If a commodity has less than MinCommoditySize total passengers over the 
whole quarter, it is not included (after being multiplied by 10 to account for the 
10% sampling). 

o Based on the total number of passengers left out because the commodities they 
compose are too small, the number of passengers for other commodities is scaled 
up so the total number of passengers remains the same. 

o Also, the number of passengers is scaled by the ratio of the total number of flights 
from the ZZZZ_OnTime_Performance database that occur during the 
specified time window to the total number of flights during that quarter (roughly 
1/90 if the time window is a single day). 

‐ Step 6: 
o The Trimmed_OnTime_Performance table is created by selecting all flights 

from OnTime_Performance that originate and terminate at airports from the 
Input_Airports table (given the current DatasetID). 

o A Model_Carrier column is added and given a value mapped from the 
Input_Carriers table (so if the flight is operated by Mesa Airlines, then 
Model_Carrier=’OTH’, but if operated by Delta Airlines, then 
Model_Carrier = ‘DL’). 

o A Capacity column is added and filled in based on a mapping from the 
TailNum column to the No_Seats column from the ZZZZ_ACFTREF table. 
The average capacity from the T100_Summary table is used for flights without 
TailNum values that cannot be mapped to a capacity 

o The DepTimePeriod and ArrTimePeriod columns are added and populated 
based on the CRSDepTime and CRSArrTime columns (the time zone 
adjustments are also made here). 

o Flights that fall out of the time window after the time zone adjustments are thrown 
out. 

‐ Step 7: 
o Rows of the form (DatasetID, Model_Origin, Model_Dest, 

Model_Carrier, DepTimePeriod, ArrTimePeriod) are added to the 
Input_Flights table by grouping flights from the 
Trimmed_OnTime_Performance table that have the same 
Model_Origin, Model_Dest, Model_Carrier, DepTimePeriod, and 
ArrTimePeriod (when the number of time periods per hour is 1 or more there 
are very few instances in which multiple flights are combined; so most flights in 
Input_Flights actually represent true historical flights instead of combined 
flights). 

o Only flights with a capacity of at least MinAirplaneCapacity are kept.   
o The Trimmed_OnTime_Performance table includes passengers that flew 

with multiple carriers, some of which may not have their flights listed in the 
ZZZZ_OnTime_Performance table. Therefore, the total number of 
passengers flying between each pair of airports on these “unrepresented” carriers 
is calculated. Based on these results, capacity is added to the existing flights, or if 



53 

no existing flight occurs between the airports, a flight is created and added to the 
list.  

‐ Step 8: 
o The TopRoutes table is created, which, for each passenger OD pair, contains 

the top routes traveled between the airports (ranked by total number of passengers 
using the route). Only the top NumRoutesToIncludePerODPair routes that 
are composed of no more than MaxNumLegsForTopRoutes segments and are 
used by at least 1% of passengers over the whole quarter are included. 

o Next, the Usable_Legs_ByOD table is created, which lists, for each passenger 
OD pair, the flight segments (or legs) that may be used to travel from origin to 
destination. This table is constructed by taking all flight segments from the 
TopRoutes table for each OD pair.   

‐ Step 9:  
o The Usable_Carriers table is created, which lists, for each 

Model_Carrier, the other carriers that its passengers can use. This is based on 
the historical data. For example, if there are passengers in the 
Tickets_Split_Out table that have Delta Airlines as the TkCarrier, but 
use United Airlines as the OpCarrier for one of the segments of the flight, then 
we allow Delta passengers to use United Airlines flights in our model (when 
sharing is allowed). 

‐ Step 10: 
o Rows of the form (DatasetID, CommodityID, FlightID, 

SameCarrier) are added to the Input_Commodity_Flight_Pairs table 
based on the Usable_Carriers and Usable_Legs_ByOD tables. 

o The SameCarrier indicates if the commodity and flight share the same 
Model_Carrier. This is used by OPL in the event that 
UninterruptedSharing = 0 or InterruptedSharing = 0. 

o Any flights that don’t appear in a commodity-flight pairing are deleted. 
‐ Step 11: 

o Rows of the form (DatasetID, CommodityID, Airport) are added to the 
Input_Commodity_Airport_Pairs table. 

o This lists all the airports each commodity is allowed to visit, based on the flights it 
can use from the Input_Commodity_Flight_Pairs table. 

o Any airports that don’t appear in  a commodity-airport pairing are deleted. 
‐ Step 12: 

o Monthly load factors are calculated from ZZZZ_T100_Segment for each of the 
carriers and put in the MonthlyT100LoadFactor column of the 
Input_Carriers table. 

o Quarterly load factors are calculated from ZZZZ_T100_Segment and from 
ZZZZ_OD_Market and put in the QuarterlyT100LoadFactor and 
QuarterlyODMarketLoadFactor columns of the Input_Carriers 
table. 
(The load factors from ZZZZ_T100_Segment include passengers that use 
domestic flights before eventually flying internationally, which lead to larger load 
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factor values than those that are estimated from the ZZZZ_OD_Market table, 
which includes only passengers flying domestically.) 

‐ Step 13:  
o All of the temporary tables are deleted  

 
Once the query is completed, a new dataset has been constructed. This dataset can then be 
used in OPL by specifying its DatasetID in the Input_OPL_Parameters table. With a 
DatasetID specified, filtering is done on the Input_Airports, Input_Commodities, 
Input_Flights, Input_Commodity_Flight_Pairs, and 
Input_Commodity_Airport_Pairs tables to obtain the desired dataset. 
 
Note: When the OPL code is run, if the number of time periods per hour is greater than 1, 
then the arrival time period for all flights is increased by 1 time period. This essentially 
implements a minimum layover time.  
 
For a more in-depth understanding of the query, please see the code.   
 
Post-Processing Queries 
After an OPL model is run, in order to do some analysis on the output tables, the  
Post_Processing.sql query should be executed.  First, the query must be opened, and a 
ModelRunID must be specified by editing the following portion of code: 

SET @ModelRunID = (SELECT MAX(ModelRunID) FROM Output_Summary) 
SET @ModelRunID = 1 

 
Either select a specific value by using the second line, or comment out the second line to run 
the query on the most recent model run. Once selecting a value, the query can be executed, 
and the following tables are created: 
 
‐ Analysis_Interrupted_Airports: Lists the set of airports that were selected to be 

interrupted in the current model run being analyzed 
‐ Analysis_Load_Factors: Lists the load factors calculated from the model’s solution, 

as well as the three different historical load factors calculated from the data. 
‐ Analysis_Number_Of_Connections: Provides the total number of adjusted 

passengers, the number of passengers flying direct, the number of passengers making one 
connection,*** and the number of undelivered passengers 

‐ Analysis_Undelivered_Passengers: For each OD pair, the total number of 
adjusted passengers and undelivered passengers is provided. 

‐ Analysis_Undelivered_Passengers_By_Airport: Contains the following seven 
columns: 
o Airport: The name of the airport 
o AdjustedPassengersOriginating: Total number of adjusted passengers originating at 

the airport 
o UndeliveredPassengersOriginating: Total number of passengers originating at the 

airport that are undelivered 
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o UndeliveredPassengersOriginatingAndNotUsingInterruptedAirport: Total number of 
passengers originating at the airport that are undelievered and neither originate nor 
terminate at an interrupted airport 

o AdjustedPassengersTerminating: Total number of adjusted passengers terminating at 
the airport 

o UndeliveredPassengersTerminating: Total number of passengers terminating at the 
airport that are undelivered 

o UndeliveredPassengersTerminatingAndNotUsingInterruptedAirport: 
Total number of passengers terminating at the airport that are undelievered and 
neither originate nor terminate at an interrupted airport 

 
 
*** Given the solution to the multi-commodity flow model, there may be alternative ways of constructing a 
route-based solution. Because of this, it may be impossible to put an exact count on the number of passengers 
making a single connection. However, we can calculate the minimum and maximum number of passengers 
making a single connection.   
 
Validation 
Two measures were used to assess the validity of the model. The first was the load factors for 
the carriers; the second was the distribution for the number of connections made by the 
passengers. 
 
Load Factors 
Given a specific carrier, its system-wide load factor is calculated by taking the total number 
of passenger-miles (sum over all flights: the number of passengers times the flight distance) 
and dividing by the total number of seat-miles (sum over all flights: the number of available 
seats times the flight distance).   
 
Given a solution to the OPL model, the load factors are easily calculated. Typically, the T100 
Segment data is used to calculate load factors. This data allows monthly load factors to be 
calculated for each of the carriers. However, the problem with comparing the model’s load 
factors to the T100 Segment load factors is that the passenger OD table in the model was 
constructed directly from domestic passenger data. However, the load factors calculated from 
the T100 Segment data inherently include passengers flying on domestic segments as part of 
an international itinerary. Therefore, we use the OD Market data (which includes only 
passengers with domestic origins and destinations) to estimate “domestic” load factors.   
 
The process to estimate the load factors from the OD market data is simple. First, for each 
carrier, the total number of passengers flying on each segment is estimated by multiplying 
the passenger sum from the data by 10. Then, the total number of passenger-miles is 
calculated by summing the passenger number multiplied by the segment distance. The total 
number of seat-miles is calculated from the T100 Segment data, then the load factor is found 
by dividing the passenger-miles by the seat-miles. 
  
While these estimated load factors are a better measure for comparison than the T100 
Segment load factors, there are still some issues. First, because the OD Market data is only a 
sample, the exact domestic load factors cannot be calculated. Second, it is unrealistic to 
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expect the model to provide a solution with historically accurate load factor values for the 
following reasons: 
 

 The passenger OD table is purely an estimation. 

 Some airports may not be included in the model. 

 Some passengers (those composing smaller commodities) are not included in the 
model. 

 The capacities for some of the flights are estimated. 

 The capacities for some flights are adjusted based on the lack of flight data for the 
smaller carriers. 

 An optimal extreme point solution to the LP results in a large number of empty 
flights which is unrealistic. 

 
Given these downfalls, we believe it is sufficient to strive for an average load factor deviation 
(over all carriers) that is no greater than 10-15%. During the development of the model, this 
goal was usually achieved, especially when setting MinimizeLoadFactorDeviation 
equal to 1. 
 
Distribution for Number of Connections 
From the OD Market data, we are able to estimate the distribution for the number of 
connections made by passengers.   
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For 2011, this distribution is summarized in the table below: 
 

Table 4: Number of connections made by passengers 
 

# Connections  Percentage 

0  65.89% 

1  31.51% 

2  2.32% 

3  0.25% 

4  0.02% 
 

Given a solution to the OPL model, there may be multiple ways of constructing a set of 
routes and a corresponding number of passengers using each route. For example, consider the 
following network flow model, in which node 1 has a supply of 2 and node 5 has a demand 
of 2. Assume that there is an optimal solution in which each arc has a flow of 1. When 
constructing a route-based solution from this arc-based solution, one possibility would be to 
have 1 unit of flow on each of the routes 1-3-2-5 and 1-4-3-5. Another possibility would be 
to have 1 unit of flow on each of the routes 1-3-5 and 1-4-3-2-5.  
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

Figure 16. Simple Air Network 
 
Because of this, it may be impossible to calculate the exact number of passengers making one 
or more connections. However, we are able to calculate the minimum and maximum number 
of passengers that must make a single connection (in fact, in nearly all studied cases, these 
values were the same). Because the number of passengers that historically make more than a 
single connection is so small, and because calculating the minimum and maximum number of 
passengers making more than a single connection in the model’s solution would be quite 
complicated, we only make comparisons between the number of direct and single-connection 
passengers. As with the load factor measure, there are several issues with this comparison: 
 

 The historical distribution is merely an estimate, because it comes from the OD 
Market data, which is a 10% sample. 
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 When the smaller airports are removed from the model, the number of passengers 
flying direct increases. 

 Without adding some type of penalty term, there is no way to discourage the 
model from doing strange things, such as having a passenger fly from 
Albuquerque to Los Angeles to Denver, back to Los Angeles, and then to Atlanta.  
However, including such a penalty term to restrict such things from happening 
could create biases that affect the model’s validity in other aspects. 

Fortunately, while these issues exist, when the majority of airports are included, the model 
seems to provide solutions very close to the historic distribution for the number of 
connections made by passengers.  
 
Suggested Parameters Settings 
Many different parameter settings were used throughout the development of the model. 
Ideally, a set of parameter values would exist that provide the most realistic model that is 
solvable in matter of seconds. Unfortunately, this is not the case. A sacrifice must be made 
between how realistic the model is and how long it takes to solve. Because it this model is 
intended to be solved many times using different hazard scenarios, a solution time of no more 
than a few minutes is desired. The table below shows nine different model runs, each having 
varying parameter settings. Also shown in the table are the resulting output parameters that 
describe the resulting dataset, the model size in terms of the number of constraints and 
variables, the number of shed passengers, the number of empty flights, the largest load factor 
deviation (over all carriers), and the total computation time (using a Intel Cors2 Quad CPU 
Q9650 with 3.00 GHz and 8GB of RAM). The time window used for each of the datasets 
was from 8/10/11 at 4:00 am to 8/11/11 at 4:00 am, and in each model run, ‘ATL’ was the 
only airport interrupted. 
 
Note: The total number of airports is not only a function of 
MinAirportVolumePercentage. Even though an airport may be kept after the initial 
selection, all airports that don’t appear in a commodity-flight pairing are removed. Small 
airports that don’t have a large volume of passengers during a given quarter may not be 
included as the origin or destination of any of the commodities. Also, they may not be used 
as intermediate airports for any of the other commodities. In such cases, these airports will 
not be included in the model.   
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Table 5. Suggested Parameter Values 
 
 

ModelRunID  1  2  3  4  5  6  7  8  9 

Dataset Input Parameters: 

DatasetID  1  2  3  3  3  3  4  5  6 

TimePdsPerHour  1  1  1  1  1  1  1  1  2 

MinAirportVolumePercentage  0.2  0.1  0  0  0  0  0  0  0 

MinCarrierVolumePercentage  0  0  0  0  0  0  0  0  0 

MinAirplaneCapacity  3  3  3  3  3  3  3  3  3 

MinCommoditySize  4,500  4,500  4,500  4,500  4,500  4,500  4,500  1,800  4,500 

NumRoutesToIncludePerOD  5  5  5  5  5  5  10  5  5 

MaxNumLegsForTopRoutes  3  3  3  3  3  3  3  3  3 

Dataset Output Parameters: 

# Airports  81  117  151  151  151  151  164  217  151 

# Carriers  13  13  13  13  13  13  13  13  13 

# Flights  13,433  14,842  15,089  15,089  15,089  15,089  15,554  17,102  15,197 

# Commodities  4,024  4,319  4,236  4,236  4,236  4,236  4,236  8,593  4,236 

# Commodity‐Flight Pairs  92,404  107,003  126,232  126,232  126,232  126,232  196,557  264,029  128,394 

# Commodity‐Airport Pairs  14,277  16,253  18,038  18,038  18,038  18,038  25,510  38,534  18,028 

Model Size: 

# Constraints  365,825  415,769  459,155  459,155  459,155  459,155  639,381  950,897  891,803 

# Variables  438,365  500,116  560,564  560,564  560,564  560,564  803,210 
1,176,13

9  995,276 

OPL Parameters: 

FixUninterruptedCommodities  0  0  0  1  0  0  0  0  0 

UninterruptedSharing  1  1  1  1  1  1  1  1  1 

InterruptedSharing  1  1  1  1  1  1  1  1  1 

MinimizeEmptyFlights  0  0  0  0  1  0  0  0  0 

MinimizeLoadFactorDeviation  0  0  0  0  0  1  0  0  0 

Solution Output: 

# of Shed Passengers  137,591  126,519  109,650  111,866  109,650  109,650  107,356  109,393  109,560 

Empty Flights  2,308  2,898  2,778  3,058  850  3,134  2,559  2,816  2,814 

Passengers Flying Direct  78.1%  77.1%  75.6%  76.0%  74.6%  76.0%  67.8%  65.0%  76.0% 

Avg Load Factor Deviation  7.7%  9.7%  10.7%  10.8%  10.3%  6.7%  9.6%  9.6%  11.0% 

Total Computation Time (s)   70.731  93.077  148.58  310.9  228.51  336.38  542.51  911.063  377.489 

 
Note: The results in this table were obtained before a minimum layover time of one time 
period was enforced; in addition, a few changes were made that reduce the number of 
commodities, commodity-flight pairs, and commodity-airport pairs. However, the overall 
trends remain the same. 
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Each of the first three model runs uses a different dataset. The only difference between the 
three datasets is the value for MinAirportVolumePercentage. As is expected, when the 
value for MinAirportVolumePercentage decreases, we see an increase in the resulting 
number of airports that are kept in the model. As a result of a larger number of airports being 
included, there is a slight increase in the number of flights, commodities, commodity-flight 
pairs, and commodity-airport pairs. The OPL model takes slightly longer to solve and 
provides a solution with a better objective function (# of shed passengers), and slightly better 
percentage of passengers flying direct, but is worse in terms of the number of empty flights 
and the average load factor deviation.   
When comparing model runs 3-6, the same dataset is selected, but different values for the 
OPL parameters are used. When setting FixUninterruptedCommodities = 1, the 
computation time increases and the objective function value is worse, as expected. The 
increase in computation time is mainly a result of the time that it takes to set the bounds for 
the variables When setting MinimizeEmptyFlights = 1, the computation time is 
significantly greater and the objective function value is the same. As can be seen, there’s a 
great decrease in the number of empty flights, which is clearly more realistic. When setting 
MinimizeLoadFactorDeviation = 1, a significant decrease in the average load factor 
deviation is seen. However, the increased computational burden is probably not worth it.  
Model runs 7-9 differ from model run 3 in that the datasets used each vary from dataset 3 by 
one parameter value. Dataset 4 differs from dataset 3 in its value for  
NumRoutesToIncludePerOD.  Increasing this value gives the passengers more flexibility 
with the flights they can use and the airports they can visit. This results in an improved 
objective function and percentage of passengers flying direct, but the computation time 
greatly increases. Dataset 5 differs from dataset 3 in its value for MinCommoditySize.  
Decreasing this value results a larger number of commodities. Many of these new 
commodities are probably flying between smaller airports, which results in a decrease in the 
number of passengers flying direct (because they probably have to fly through at least one 
large airport en route to destination). While this is desirable, because it gives a more realistic 
solution, the increase in computation time is very significant and may not be worth it. 
Dataset 6 differs from dataset 3 in its value for TimePdsPerHour. Increasing this value will 
give a slightly more realistic solution, but is probably not worth the increase in computation 
time.    
 
Based on these results, the following parameter settings/ranges are suggested: 
 

 TimePdsPerHour = 1   

 0 <= MinAirportVolumePercentage <= 0.2 

 MinCarrierVolumePercentage = 0 

 MinAirplaneCapacity = 3 

 3600 <= MinCommoditySize <= 4500 

 5 <= NumRoutesToIncludePerODPair <= 6 

 MaxNumLegsForTopRoutes = 3 

Also, it is suggested that the time window be roughly one day in length. It is important to 
note, however, that as the number of interrupted airports increases, the computation time will 
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probably increase as well. 
 
Keeping MinCarrierVolumePercentage = 0 should be sufficient, because there are 
only 16 carriers with flight data in the On Time Performance data. Three of these carriers, as 
mentioned before, have been chosen to automatically be grouped in the “other” category, 
which means 13 individual carriers remain. If for some reason, the user chose to have all 
carriers act as a whole, then they should set MinCarrierVolumePercentage = 1. A few 
flights appear in the database with a capacity of 1 or 2, and letting 
MinAirplaneCapacity=3 restricts these flights from being included in the model.  The 
value for MaxNumLegsForTopRoutes is relatively unimportant, because most of the top 
routes for a given OD pair will use fewer than 4 segments; but,it does provide the user with a 
little extra flexibility.   
 
The value chosen for MinCommoditySize has a large impact on the model size and 
computational time. Setting MinCommoditySize = 4500 means that only commodities 
with at least (roughly) 50 people per day are included in the model (because there are about 
90 days each quarter). Decreasing the value of this parameter increases the number of 
commodities, which greatly impacts the model size and computational time. Letting 
MinCommoditySize = 0 is certainly not possible, because it results in hundreds of 
thousands of commodities. Because the model size is linear with respect to the number of 
commodities times the number of airports times the number of time periods, this would result 
in a model with hundreds of millions of variables and constraints.   
 
In addition to the suggestions for the parameters used to create the manageable datasets, the 
following are suggestions for the values to use for the OPL parameter values: 
 

‐ FixUninterruptedCommodities = 0   

‐ UninterruptedSharing = 1 

‐ InterruptedSharing = 1 

‐ MinimizeEmptyFlights = 0 

‐ MinimizeLoadFactorDeviation = 0 

 

The reason for suggesting to set FixUninterruptedCommodities = 0  is that when   
FixUninterruptedCommodities = 1, the lower and upper bounds for a large number of 
variables must be set during the main flow control script, which often takes a significant 
amount of time.  When UninterruptedSharing = 1 and InterruptedSharing = 1, 
code sharing is allowed, which actually does occur between many of the carriers. While the 
logic we used to allow sharing may lead to more sharing than actually occurs, it is probably 
more realistic than when UninterruptedSharing = 0 and InterruptedSharing = 
0.  When MinimizeEmptyFlights = 0, a more realistic solution is obtained, but the 
extra computation time is probably not worth the added realism.   
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