
SANDIA REPORT
SAND2013-7294
Unlimited Release
Printed August 2013

Building Guide:
How to build XyceTM from source code

Eric R. Keiter, Thomas V. Russo, Richard L. Schiek, Peter E. Sholander, Heidi K.
Thornquist, Ting Mei, Jason C. Verley, David G. Baur

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

ITED

STATES OF AM

ER
IC

A

2

SAND2013-7294
Unlimited Release

Printed August 2013

Building Guide:
How to build XyceTM from source code

Eric R. Keiter, Thomas V. Russo, Richard L. Schiek,
Peter E. Sholander, Heidi K. Thornquist, Ting Mei, Jason C. Verley

Electrical Models and Simulation
Sandia National Laboratories

P.O. Box 5800
Albuquerque, NM 87185-1177

Abstract

While Xyce uses the Autoconf and Automake system to configure builds, it is often nec-
essary to perform more than the customary “./configure” builds many open source users
have come to expect. This document describes the steps needed to get Xyce built on a
number of common platforms.

3

4

Contents

1. Introduction 9

Target Audience . 9

Overview . 9

Prerequisites . 10

2. Installing Required Libraries 12

Installing Prerequisite Libraries From System Packages . 12

Linux . 12

Red Hat Enterprise Linux (RHEL) and CentOS 12

Ubuntu and Debian Linux . 13

Mac OS X . 13

FreeBSD . 14

Cygwin . 15

3. Installing Trilinos 17

Introduction . 17

Building Trilinos for Serial Xyce . 18

Building Trilinos for Parallel Xyce . 20

4. Building Xyce 22

5

Configure options . 22

Specifying compilers and helper programs . 22

Specifying compiler flags . 23

Specifying additional library search directories . 23

Specifying additional include search directories . 23

Example configure invocations for selected systems . 24

Serial Builds . 24

Red Hat Linux . 24

Mac OS X . 24

FreeBSD . 25

Cygwin . 26

Parallel Builds . 26

Red Hat Linux . 26

Mac OS X . 27

FreeBSD . 27

Cygwin . 28

Appendix

Building UMFPACK and AMD . 29

Building ParMETIS . 29

6

List of Figures

3.1 cmake invocation for configuring serial Trilinos . 19

3.2 cmake invocation for configuring parallel Trilinos . 21

7

8

1. Introduction

Target Audience

This guide is intended for those interested in building Xyce from the source code. It is
recommended that anyone intending to build Xyce be familiar with editing text files and
compiling programs on their target computer. Prior experience using command line tools
like configure, cmake and make is recommended. For information on using Xyce please
see the Xyce Users’ Guide [1].

Overview

Installing Xyce from source requires the following general steps:

� Install a complete compiler suite

� Install all prerequisite libraries from packages or from source

� Build Trilinos from source and install it

� Build Xyce

Most libraries that Xyce depends on are available through system package managers;
they are also available in source form, which you can compile yourself. Since the majority
of the work in installing Xyce involves installing the prerequisite libraries, most of this
document is focused on those prerequisites.

It is important to note that both Trilinos and Xyce make use of out-of-source builds. This
means the executables and/or libraries are produced in a separate directory structure
from the source code. Therefore, care must be taken to not conflate the two directory
trees by properly specifying the proper source directory and, possibly, the target directory,
in the configure scripts.

9

Prerequisites
Building Xyce requires a computer with a modern C++ compiler. Some of the libraries that
Xyce uses also require a Fortran compiler. The Xyce development team has successfully
used the Gnu Compiler Collection (gcc), the Intel Compiler Collection and Clang. Other
compilers may work, but we have not tested any others. For building and running Xyce in
parallel, an MPI compiler front-end is needed, such as Open-MPI or MPICH. These tools
are sometimes tuned for specific computing clusters, but they may also be downloaded
from http://www.open-mpi.org and http://www.mpich.org.

Xyce depends on many external libraries to supply enhanced parsing, mathematical algo-
rithms and parallel communication. Some of the required libraries may already be present
on your system, and some are optional; but many will have to be built or installed prior to
building Xyce.

The required libraries for Xyce are listed in Table 1.1. All of the libraries are either freely
available, or have equivalents that are open source. Note that if one is building a serial
version of Xyce, i.e. a version that does not use MPI, then the ParMETIS library is not
needed and Trilinos must be built with MPI disabled. Likewise, if one is building a parallel
version of Xyce, then one must build ParMETIS and Trilinos with MPI enabled.

10

http://www.open-mpi.org
http://www.mpich.org

Table 1.1. Libraries Required for Building Xyce.

Name Version Notes and Download URL

blas -
May be included with compiler, or may require separate
package installation. One may also use ATLAS:
http://math-atlas.sourceforge.net

lapack -
May be included with compiler, or may require separate
package installation. One may also use ATLAS, or
download from: http://www.netlib.org

bison 2.3-2.7 Required for the chemical reaction parser. Download
from: http://www.gnu.org

flex 2.5.34 or
later

Required for the chemical reaction parser. Download
from: http://www.gnu.org

FFT package
Required for Fourier and HB analysis. Xyce can use
either the Intel Math Library or FFTW3. See:
http://software.intel.com or http://www.fftw.org

UMFPACK 4.1-5.2
May be installed as part of SuiteSparse package. If
otherwise unavailable, download from:
http://www.cise.ufl.edu/research/sparse/umfpack

AMD 1.0 or
greater

May be installed as part of SuiteSparse package. If
otherwise unavailable, download from:
http://www.cise.ufl.edu/research/sparse/amd

ParMETIS 3.1 or later

This is required for MPI parallel builds of Xyce and it
must be compiled with an MPI compiler or use MPI
libraries during linking. Download from: http://glaros.
dtc.umn.edu/gkhome/metis/parmetis/overview

Trilinos 11.2.4

Xyce requires Trilinos for many linear algebra and solver
services. When building the serial version of Xyce one
must build Trilinos without MPI support enabled. When
building Trilinos for the parallel version of Xyce, then
Trilinos must be built with MPI support enabled.
Download from: http://trilinos.sandia.gov

11

http://math-atlas.sourceforge.net
http://www.netlib.org
http://www.gnu.org
http://www.gnu.org
http://software.intel.com
http://www.fftw.org
http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse/amd
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://trilinos.sandia.gov

2. Installing Required
Libraries

Installing Prerequisite Libraries From
System Packages
Except for Trilinos, and sometimes ParMETIS, the libraries required for building Xyce are
available in popular system package repositories, and as such, are easily installed. The
Xyce team recommends using these prepackaged libraries as much as possible.

Here we enumerate the packages known to exist on systems the Xyce team has built on.
Other systems probably have similarly named packages.

Where a system does not provide a package for a given library, you will have to build that
library from source. Guidelines for building required libraries from source are given in the
Appendix.

Note that at this time no system provides packages for Trilinos, so it will always need to
be built from source.

Linux

Red Hat Enterprise Linux (RHEL) and CentOS

These systems have all the prerequisite libraries available in the RPM repository except
for ParMETIS. The following packages are required:

� a version of gcc, g++ and gfortran

� blas-devel

� blas

� cmake (needed for Trilinos)

� lapack-devel

12

� lapack

� bison

� flex

� fftw-devel

� fftw

� suitesparse-devel

� suitesparse

Note that on versions of these operating systems older than RHEL6/CentOS6, the fftw
and suitesparse libraries might require use of an additional repository. On RHEL6 and
CentOS 6 they require no special additions.

Install these packages using sudo yum install on each package name. In most cases,
the -devel package will also cause the other package without “-devel” to be installed, so it
is not strictly necessary to list all of them above.

If you are building the parallel version of Xyce you will also need the openmpi and
openmpi-devel packages.

ParMETIS is not available in packages on these systems, so if you are building the parallel
version of Xyce, you will have to build it from source.

Ubuntu and Debian Linux

All required packages are available in these systems’ default repositories. See the list
given for RHEL in Section 2. Note that in Debian-based systems, development packages
are usually called “-dev” instead of “-devel”, but otherwise the names will be the same as
for RHEL and CentOS.

Install these packages using sudo apt-get install, or a graphical package manager.

Mac OS X
Building Xyce on Mac OS X will require that you obtain the XCode package from Apple,
and you must also install the “XCode Command Line Tools”.

In addition to XCode, you will also require a package manager such as MacPorts (http:
//www.macports.org) or Fink (http://fink.thetis.ig42.org/). Install one of these
package managers according to the instructions provided on its web site.

13

http://www.macports.org
http://www.macports.org
http://fink.thetis.ig42.org/

For Fink, install the following packages:

� a version of gcc (for example gcc48)

� fftw

� suitesparse

� cmake (for Trilinos)

� openmpi (only for parallel installations)

For MacPorts, install

� a version of gcc (for example gcc48)

� fftw-3

� SuiteSparse

� cmake (for Trilinos)

� openmpi (only for parallel installations)

It is not necessary to install blas and lapack, as XCode has those available in a system
library. bison and flex are provided by the XCode command line tools.

Install these packages in fink using fink install <packagename>.

If you are using MacPorts then use sudo port install <portname>.

If you are building the parallel version of Xyce you will also need to build ParMETIS from
source.

FreeBSD
All libraries required by Xyce, including ParMETIS, but not including Trilinos, are available
in the FreeBSD ports system.

For the serial version of Xyce, install the following ports:

� lang/gcc46 or later

� math/blas

14

� math/lapack

� math/suitesparse

� math/fftw3

� devel/bison

� devel/cmake (needed for Trilinos)

� textproc/flex

Install each of these using the standard FreeBSD ports system. For example, to install
GCC 4.6, run the following commands as root:

cd /usr/ports/lang/gcc46

make install clean

If you are building the parallel version of Xyce, you also require:

� net/openmpi

� math/parmetis

One important point to note is that, as of this writing, the FreeBSD ParMETIS port does not
install the “metis.h” file that goes along with the “libmetis.a” file it installs. After installing
math/parmetis with “make install” but before doing any “make clean”, install the “metis.h”
file by hand:

cp work/parmetis-4.0/metis/include/metis.h /usr/local/include/parmetis

Cygwin
For Windows systems, the Xyce project team uses the Cygwin (http://www.cygwin.
com/) system to provide a Unix-like environment with Unix-style tools. While it is possible
to build Xyce using native tools, the team does not support that approach.

Install Cygwin according to its instructions. You will then need to install a series of pack-
ages in addition to the base Cygwin packages. Add:

� gcc-core

15

http://www.cygwin.com/
http://www.cygwin.com/

� gcc-g++

� gcc-fortran

� make

� cmake (needed for configuring Trilinos)

� lapack, liblapack0 and liblapack-devel

� libsuitesparseconfig-devel

� libumfpack-devel

� bison

� flex

� fftw3 and libfftw3-devel

� libtool

Many of these packages will automatically install additional packages that they require.

The Xyce project team has never attempted to build the parallel version of Xyce on Win-
dows.

16

3. Installing Trilinos

Introduction
Trilinos is a very complex set of interdependent packages for a wide range of numeric
computational problems. This section will provide an overview of building Trilinos for Xyce.
However, for detailed questions on Trilinos or its build system please see the Trilinos
getting started page at http://trilinos.sandia.gov/getting started.html for places
to start your inquiry.

This section assumes you have installed all prerequisite libraries from packages according
to the instructions in the previous section, or have built missing libraries from source as
described in the Appendix.

First, download and unpack the Trilinos source code. Because of the size and complexity
of Trilinos, it is recommended to do an out-of-source build. For example, in the Trilinos
source code directory (say trilinos-11.x-Source), you could create two “build” direc-
tories, called trilinosSerial and trilinosParallel for the serial and parallel builds,
respectively.

Trilinos has many packages that can be built, only some of which are required by Xyce.
The packages are specified using a configuration script. Trilinos requires CMake for its
configuration. In the next sections we will provide examples of CMake invocations for
typical serial and parallel builds of Xyce.

Building Trilinos involves only a few steps:

� invoke CMake using a build script specifying all the required parameters

� make

� make install

Because multiple versions of Trilinos might need to be built to support both serial and
parallel builds of Xyce, we do not recommend installing Trilinos directly into system library
and header directories. Our instructions for building Trilinos will therefore be set up for
installation in a user-specified, non-standard location.

17

http://trilinos.sandia.gov/getting_started.html

Building Trilinos for Serial Xyce
Serial Xyce requires a build of Trilinos that contains the NOX, LOCA, EpetraExt, BTF, If-
pack, Isorropia, AztecOO, Belos, Teuchos, Sacado and Amesos packages. Amesos must
be configured to use KLU and UMFPACK. EpetraExt must be configured with BTF (block
triangular factorization), experimental features, and graph reordering enabled. Trilinos
must also be told where to find the UMFPACK and AMD libraries and headers.

The CMake invocation of Figure 3.1 is an example that configures a version of Trilinos
with the packages and options required by a serial version of Xyce. There are several
things to note about this figure:

� This text should be put into a file that will be used as a shell script. This file should
be placed in an empty directory (the “build directory”).

� Set the variable “SRCDIR” to have the full path of the location of the Trilinos source
code.

� The “\” character must be the last character on any line where it appears. There
must be no spaces following it.

� The script specifies which C, C++, and Fortran compilers to use

� Flags for passing to the compilers are specified, and in this case are all the same.

� Use the variable, “ARCHDIR,” to define the location where Trilinos should be in-
stalled.

� We have assumed that AMD and UMFPACK libraries were installed in /usr/lib

and their associated header files in /usr/include/suitesparse, as they would be
on 32-bit Linux. If they were installed elsewhere, modify the script in the obvious
way. Some common modifications are:

– On 64-bit Linux, the libraries are in /usr/lib64.

– On OS X, using fink, the libraries are in /sw/lib and the headers are in
/sw/include/suitesparse

– On OS X, using MacPorts, the libraries are in /opt/local/lib and the headers
are in /opt/local/include

– on FreeBSD the libraries are in /usr/local.

Once the script is created and customized, run it. If it completes without error, Trilinos is
configured for building. Build with “make” and install with “make install.”

18

#!/bin/bash

SRCDIR= < location of the trilinos source code >

ARCHDIR=/home/me/XyceLibs/Serial

FLAGS="-O3 -fPIC"

cmake \

-G "Unix Makefiles" \

-DCMAKE_C_COMPILER=gcc \

-DCMAKE_CXX_COMPILER=g++ \

-DCMAKE_Fortran_COMPILER=gfortran \

-DCMAKE_CXX_FLAGS="$FLAGS" \

-DCMAKE_C_FLAGS="$FLAGS" \

-DCMAKE_Fortran_FLAGS="$FLAGS" \

-DCMAKE_INSTALL_PREFIX=$ARCHDIR \

-DCMAKE_MAKE_PROGRAM="make" \

-DTrilinos_ENABLE_NOX=ON \

-DTrilinos_ENABLE_LOCA=ON \

-DTrilinos_ENABLE_EpetraExt=ON \

-DEpetraExt_BUILD_BTF=ON \

-DEpetraExt_BUILD_EXPERIMENTAL=ON \

-DEpetraExt_BUILD_GRAPH_REORDERINGS=ON \

-DTrilinos_ENABLE_TrilinosCouplings=ON \

-DTrilinos_ENABLE_Ifpack=ON \

-DTrilinos_ENABLE_Isorropia=ON \

-DTrilinos_ENABLE_AztecOO=ON \

-DTrilinos_ENABLE_Belos=ON \

-DTrilinos_ENABLE_Teuchos=ON \

-DTrilinos_ENABLE_Amesos=ON \

-DAmesos_ENABLE_KLU=ON \

-DAmesos_ENABLE_UMFPACK=ON \

-DTrilinos_ENABLE_Sacado=ON \

-DTrilinos_ENABLE_ALL_OPTIONAL_PACKAGES=OFF \

-DTPL_ENABLE_AMD=ON \

-DAMD_LIBRARY_DIRS="/usr/lib" \

-DTPL_AMD_INCLUDE_DIRS="/usr/include/suitesparse" \

-DTPL_ENABLE_UMFPACK=ON \

-DUMFPACK_LIBRARY_DIRS="/usr/lib" \

-DTPL_UMFPACK_INCLUDE_DIRS="/usr/include/suitesparse" \

-DTPL_ENABLE_BLAS=ON \

-DTPL_ENABLE_LAPACK=ON \

$SRCDIR

Figure 3.1. cmake invocation for configuring serial Trilinos

19

Building Trilinos for Parallel Xyce
Building Trilinos for use in Parallel Xyce requires enabling one additional Trilinos pack-
age (Zoltan) and enabling ParMETIS library support. It also requires using the compiler
wrappers provided by your system’s OpenMPI package.

The CMake invocation of Figure 3.2 is an example invocation that would be appropriate
on a Linux system that provides UMFPACK and AMD through SuiteSparse, but for which
no package exists for ParMETIS. The notes in the serial build instructions also apply to
Figure 3.2.

We assumed for this invocation that you have installed ParMETIS in
/home/me/XyceLibs/Parallel, as described in the Appendix. If your system has pro-
vided ParMETIS, and it is installed in some other location, change the relevant lines of the
cmake invocation (-DParMETIS LIBRARY DIRS and -DParMETIS INCLUDE DIRS).

Once the script is created and customized, run it. If it completes without error, Trilinos is
configured for building. Build with “make” and install with “make install.”

20

#!/bin/bash

SRCDIR= < location of the trilinos source code >

ARCHDIR=/home/me/XyceLibs/Parallel

FLAGS="-O3 -fPIC"

cmake \

-G "Unix Makefiles" \

-DCMAKE_C_COMPILER=mpicc \

-DCMAKE_CXX_COMPILER=mpic++ \

-DCMAKE_Fortran_COMPILER=mpif77 \

-DCMAKE_CXX_FLAGS="$FLAGS" \

-DCMAKE_C_FLAGS="$FLAGS" \

-DCMAKE_Fortran_FLAGS="$FLAGS" \

-DCMAKE_INSTALL_PREFIX=$ARCHDIR \

-DCMAKE_MAKE_PROGRAM="make" \

-DTrilinos_ENABLE_NOX=ON \

-DTrilinos_ENABLE_LOCA=ON \

-DTrilinos_ENABLE_EpetraExt=ON \

-DEpetraExt_BUILD_BTF=ON \

-DEpetraExt_BUILD_EXPERIMENTAL=ON \

-DEpetraExt_BUILD_GRAPH_REORDERINGS=ON \

-DTrilinos_ENABLE_TrilinosCouplings=ON \

-DTrilinos_ENABLE_Ifpack=ON \

-DTrilinos_ENABLE_ShyLU=ON \

-DTrilinos_ENABLE_Isorropia=ON \

-DTrilinos_ENABLE_AztecOO=ON \

-DTrilinos_ENABLE_Belos=ON \

-DTrilinos_ENABLE_Teuchos=ON \

-DTrilinos_ENABLE_Amesos=ON \

-DAmesos_ENABLE_KLU=ON \

-DAmesos_ENABLE_UMFPACK=ON \

-DTrilinos_ENABLE_Sacado=ON \

-DTrilinos_ENABLE_Zoltan=ON \

-DTrilinos_ENABLE_ALL_OPTIONAL_PACKAGES=OFF \

-DTPL_ENABLE_AMD=ON \

-DAMD_LIBRARY_DIRS="/usr/lib" \

-DTPL_AMD_INCLUDE_DIRS="/usr/include/suitesparse" \

-DTPL_ENABLE_UMFPACK=ON \

-DUMFPACK_LIBRARY_DIRS="/usr/lib" \

-DTPL_UMFPACK_INCLUDE_DIRS="/usr/include/suitesparse" \

-DTPL_ENABLE_BLAS=ON \

-DTPL_ENABLE_LAPACK=ON \

-DTPL_ENABLE_ParMETIS=ON \

-DParMETIS_LIBRARY_DIRS="$ARCHDIR/lib" \

-DParMETIS_INCLUDE_DIRS="$ARCHDIR/include" \

-DTPL_ENABLE_MPI=ON \

-DTPL_MPI_LIBRARIES="" \

$SRCDIR

Figure 3.2. cmake invocation for configuring parallel Trili-
nos

21

4. Building Xyce

Xyce is built using the standard configure system. Most of the work getting Xyce config-
ured involves getting configure to find the required libraries and headers. This is primarily
accomplished by passing “LDFLAGS” and “CPPFLAGS” parameters in to configure. It
may also be necessary to tell configure which compiler to use, or any special libraries it
should link in.

The Xyce team recommends compiling Xyce “out-of-source.” Create an empty directory
and specify a full path to the Xyce configure script:

mkdir my_build

cd my_build

/path/to/Xyce/configure [configure options]

make

make install

The remaining sections below detail the configure options most likely to be required. A
full list of configure’s options may be obtained by typing:

/path/to/Xyce/configure --help

Configure options

Specifying compilers and helper programs

configure usually tries to find the C, C++, and Fortran compilers from a well-known list
of standard compiler names. If your system does not have one of the standard-named
compilers, or you wish to use some other compiler, you can specify them with configure
variables. It is important to use the same compilers to compile Xyce that you used to
compile the Trilinos libraries. Additional variables also allow you to specify particular
versions of helper programs, like the Flex lexical analyzer generator. For example:

22

/path/to/Xyce/configure \

CC=strangeC \

CXX=strangeC++ \

F77=strangeF77 \

LEX=/usr/local/bin/flex

Here we have used the shell’s continuation mechanism, and placed a backslash at the
end of each line other than the last. It is important that no spaces appear after the back-
slashes.

Specifying compiler flags
Each compiler has a configure variable for passing it parameters. These variables are
CXXFLAGS for C++ compiler flags, CFLAGS for C compiler flags, and FFLAGS for Fortran
compiler flags:

/path/to/Xyce/configure \

CC=gcc48 \

CXX=g++48 \

F77=gfortran48 \

LEX=/usr/local/bin/flex \

CXXFLAGS="-O3" \

CFLAGS="-O3"

Specifying additional library search directories
If your libraries are installed in any directory that configure will not search by default, you
can direct configure to search them by adding “-L” flags to the variable “LDFLAGS”:

/path/to/Xyce/configure \

LDFLAGS="-L/some/random/directory/lib -L/home/me/archdir/ZipChip2000/lib"

Specifying additional include search directories
It is sometimes the case that system packages install headers in subdirectories of
/usr/include or /usr/local/include. configure (and the C++ compiler itself) will not
search for include files outside standard locations. If header files are installed in any di-
rectory that configure will not search by default, you can direct configure to search them
by adding “-I” flags to the variable “CPPFLAGS”:

/path/to/Xyce/configure \

CPPFLAGS="-I/home/me/archdir/ZipChip2000/include"

23

Example configure invocations for selected
systems
Here we present example invocations of configure for selected systems. Because multi-
ple versions of Trilinos might need to be built to supoort both serial and parallel builds of
Xyce, we do not recommend installing Trilinos directly into system library and header di-
rectories. Therefore, in each example we have assumed that Trilinos (and any other hand-
built libraries) have been installed into a directory called /home/me/XyceLibs/Serial/lib,
and their associated headers into /home/me/XyceLibs/Serial/include. In the case of
Trilinos, that can be accomplished by setting “ARCHDIR” to /home/me/XyceLibs/Serial in
the CMake invocation script.

Serial Builds

Red Hat Linux

If all packages have been installed as recommended, configuring on Linux is fairly sim-
ple. This is because the package manager installs all of its packages in /usr/lib and
/usr/include, and these are searched by configure and the compilers with no extra op-
tions required.

/path/to/Xyce/configure \

CXXFLAGS="-O3" \

LDFLAGS="-L/home/me/XyceLibs/Serial/lib" \

CPPFLAGS="-I/usr/include/suitesparse -I/home/me/XyceLibs/Serial/include"

Here, we have not had to specify anything more than the extra directories to search for
our hand-built libraries and headers. Even the compilers are found automatically.

Mac OS X

If you have installed XCode, Fink, and all the Fink packages we have recommended, and
installed Trilinos in /home/me/XyceLibs/Serial (per our example), building Xyce on Mac
OS X in serial can be accomplished with the following configure invocation:

/path/to/Xyce/configure \

CXXFLAGS="-O3" \

LDFLAGS="-framework,Accelerate -L/sw/lib -L/Users/me/XyceLibs/Serial/lib" \

CPPFLAGS="-I/sw/include/suitesparse -I/sw/include -I/home/me/XyceLibs/Serial/include" \

CXX=g++48 \

24

CC=gcc48 \

F77=gfortran48

For a MacPorts installation, use the following:

/path/to/Xyce/configure \

CXXFLAGS="-O3" \

LDFLAGS="-framework,Accelerate -L/opt/local/lib -L/Users/me/XyceLibs/Serial/lib" \

CPPFLAGS="-I/opt/local/include -I/home/me/XyceLibs/Serial/include" \

CXX=g++48 \

CC=gcc48 \

F77=gfortran48

The -framework,Accelerate option in LDFLAGS tells configure to link in the optimized
libraries provided by XCode. These libraries include BLAS and LAPACK, so when config-
ure starts to look for those routines it will find them without having to search for libraries
like libblas or liblapack. 1

The other LDFLAGS and CPPFLAGS options tell configure to look for libraries and headers
where Fink or MacPorts has installed them, and to look for Trilinos where it was installed.

While we have used gcc48 in the above examples, the system clang compiler has also
been used to compile Xyce. Note that gfortran is still required, since clang does not
have a native Fortran compiler.

FreeBSD

If all libraries and packages have been installed as described above, serial Xyce can be
configured on FreeBSD with the following configure invocation.

/path/to/Xyce/configure \

CXXFLAGS="-O3 -Wl,-rpath=/usr/local/lib/gcc46" \

LEX=/usr/local/bin/flex \

LDFLAGS="-L/usr/local/lib -L/home/me/XyceLibs/Serial/lib" \

CPPFLAGS="-I/usr/local/include -L/home/me/XyceLibs/Serial/include" \

CXX=g++46 \

CC=gcc46 \

F77=gfortran46

1While numerous Xyce developers have built the code with exactly the configure options shown above, it
has been observed that in some combinations of package managers and XCode versions the build process
has problems finding the Fortran versions of BLAS and LAPACK. When this happens, there will be a large
number of link errors at the end of the build, reporting “undefined symbols for architecture” referenced
by functions in Teuchos (a Trilinos package). Should this occur, one can add the --disable-fortran test

option to the configure invocation to make it use C versions of BLAS and LAPACK library functions instead.

25

In this example, we have used the GCC 4.6 compiler from the FreeBSD ports collection rather than
the system gcc compiler (gcc and g++, versions 4.2). Because these compilers have incompatible
C++ standard libraries that conflict with the system libraries, it is necessary to specify an “rpath” in
the CXXFLAGS so that the resulting binary will always reference the correct C++ standard library.
If both Trilinos and Xyce were built with the system gcc compiler (or with clang), this rpath would
be unnecessary. GCC 4.6 and later will generally produce slightly faster executables, and should
be preferred over the system GCC 4.2 compilers.

Cygwin

If all libraries and packages have been installed as described above, the following configure

invocation will configure Xyce to be built under Cygwin:

/path/to/Xyce/configure \

LDFLAGS="-L/usr/local/lib -L/home/me/XyceLibs/Serial/lib" \

CPPFLAGS="-I/usr/local/include -I/home/me/XyceLibs/Serial/include" \

CXX=g++ \

CC=gcc

While it is tempting to let configure guess the C++ and C compilers, doing so causes problems
in the link stage, when for some reason libtool is invoked using the C compiler as linker instead of
C++ (it appears that the reason for this is that configure finds “CC” as a valid C++ compiler, but
when this name is passed to libtool it is interpreted to mean “C mode”). This results in numerous
inexplicable “undefined references” to standard C++ library functions.

Parallel Builds
Most of the complexity of building Xyce in parallel on any platform is in getting the third-party
libraries built. If you have all the required packages for Trilinos built, and have properly built Trilinos
using MPI compiler wrapper scripts, then configuring Xyce is usually just a matter of providing the
same wrapper scripts for compilers and adjusting the configure line to point at the parallel versions
of libraries.

In addition to naming the MPI compiler wrappers and identifying library directories, one must add
“--enable-mpi” to the configure options.

Red Hat Linux

/path/to/Xyce/configure \

CXXFLAGS="-O3" \

LDFLAGS="-L/home/me/XyceLibs/Parallel/lib" \

CPPFLAGS="-I/usr/include/suitesparse -I/home/me/XyceLibs/Parallel/include" \

--enable-mpi \

CXX=mpiCC \

26

CC=mpicc \

F77=mpif77

Mac OS X

Fink:

/path/to/Xyce/configure \

CXXFLAGS="-O3" \

LDFLAGS="-framework,Accelerate -L/sw/lib -L/home/me/XyceLibs/Parallel/lib" \

CPPFLAGS="-I/sw/include/suitesparse -I/sw/include -I/home/me/XyceLibs/Parallel/include" \

--enable-mpi \

CXX=mpiCC \

CC=mpicc \

F77=mpif77

MacPorts:

/path/to/Xyce/configure \

CXXFLAGS="-O3" \

LDFLAGS="-framework,Accelerate -L/opt/local/lib -L/Users/me/XyceLibs/Serial/lib" \

CPPFLAGS="-I/opt/local/include -I/home/me/XyceLibs/Serial/include" \

--enable-mpi \

CXX=mpiCC \

CC=mpicc \

F77=mpif77

FreeBSD

/path/to/Xyce/configure \

CXXFLAGS="-O3 -Wl,-rpath=/usr/local/lib/gcc46" \

LEX=/usr/local/bin/flex \

LDFLAGS="-L/usr/local/lib -L/home/me/XyceLibs/Parallel/lib" \

CPPFLAGS="-I/usr/local/include -L/home/me/XyceLibs/Parallel/include" \

--enable-mpi \

CXX=/usr/local/mpi/openmpi/bin/mpiCC \

CC=/usr/local/mpi/openmpi/bin/mpicc \

F77=/usr/local/mpi/openmpi/bin/mpif77

Note the required “rpath” is still there, because the MPI wrappers will have the same libstdc++
issue that the serial g++46 compiler will.

27

Cygwin

The Xyce team has never built Xyce in parallel on Windows, and cannot suggest packages or
build options for that system.

28

Appendix: Building the Prerequisite Libraries
From Source

For the best instructions on building the libraries listed in Table 1.1, see the documentation included
with those libraries. On some systems, these libraries may be available as pre-compiled packages,
and are installable with a package management system such as app-get, yum, fink or port.
Where a package is available for your system, it is usually preferable to use it.

While prebuilt packages can save one time, other considerations may require that one build from
source code instead. Thus, these instructions will document how to build the individual compo-
nents from the source for Umfpack, AMD, and ParMETIS.

Due to its license, ParMETIS is not available on most Linux package repositories. It will therefore
be necessary to build ParMETIS from source on most Linux systems.

It is useful to keep the libraries needed for Xyce in a consistent location. This makes it easier to
tell Xyce’s configure script where to find all the external libraries. Additionally, since some libraries
require MPI to be enabled, it makes sense to keep separate library directories for MPI and non-
MPI enabled code. Thus, we suggest you make two directories such as XyceLibs/Serial and
XyceLibs/Parallel. Within these directories you should make lib and include directories. For
the sake of consistency we will use /home/me/XyceLibs as the prototypical name for this directory
in all our examples below.

Building UMFPACK and AMD

Download and unpack the UMFPACK/AMD source code. Compile it as per UMFPACK’s instruc-
tions with whatever compiler you intended to use for Xyce. This requires hand-editing an include
file that is used by the main Makefile. UMFPACK may give you the option of using its own version
of BLAS or an external version if you have one. If you have an optimized version of BLAS then it
is advised that you use it rather than the supplied version.

Once UMFPACK is built, you will need to copy two of the libraries it created to your XyceLibs/Serial/lib
directory. These are libraries called libamd.a and libumfpack.a on most systems, or libamd.lib
and libumfpack.lib under Windows. If you intend to build both serial and parallel versions of
Xyce then you can copy these same libraries to both your serial and parallel XyceLibs/Parallel/lib
directories, as they do not depend on MPI.

Building ParMETIS

ParMETIS is only required for parallel versions of Xyce. Thus, if you do not intend to build parallel
Xyce then you may skip this section. Once you have downloaded and unpacked the ParMETIS
source code, build it with the MPI-enabled compiler that you intend to use when building Xyce.

29

In older versions of ParMETIS (e.g. 3.1), this is accomplished by editing an appropriate “Make-
file.in.XXXXX” file for your system (copy one that is similar if none is appropriate and edit it to fit),
then copy that Makefile.in.XXXXX to Makefile.in, then run “make”.

For the older version of ParMETIS, there is no install target in the Makefile. You will need to copy
the two libraries libmetis.a and libparmetis.a to your XyceLibs/Parallel/lib directory, and
copy parmetis.h and METISLib/metis.h to your XyceLibs/Parallel/include directory.

Recent versions of ParMETIS (4.0 and later) use CMake to configure. The Xyce developers have
used two methods to install ParMETIS.

Method 1

When ParMETIS is first unpacked, one can type “make” for installation instructions. Following these
instructions, simply type

make config prefix=/home/me/XyceLibs/Parallel

make

make install

One can specify the MPI compilers, if they are not the default mpicc by adding the cc and cxx

options to the make config line. For example,

make config cc=openmpicc cxx=openmpicxx prefix=/home/me/XyceLibs/Parallel

Once ParMETIS is installed, the same procedure must be performed in the metis sub-directory.

Method 2

Provide the C compiler wrapper for MPI to the CMake invocation. Create an empty build directory,
then execute CMake:

cmake /path/to/parmetis/source \

-DGKLIB_PATH=/path/to/parmetis/source/metis/GKlib \

-DMETIS_PATH=/path/to/parmetis/source/metis \

-DCMAKE_INSTALL_PREFIX=/home/me/XyceLibs/Parallel \

-DCMAKE_C_COMPILER=mpicc

After configuring ParMETIS 4.0 in the appropriate manner, simply type “make”. You will then need
to manually copy the required libraries and headers. From your build directory:

cp libmetis/libmetis.a /home/me/XyceLibs/Parallel/lib

cp libparmetis/libparmetis.a /home/me/XyceLibs/Parallel/lib

30

cp /path/to/parmetis/source/include/parmetis.h \

/home/me/XyceLibs/Parallel/include

cp /path/to/parmetis/source/metis/include/metis.h \

/home/me/XyceLibs/Parallel/include

Windows

The Xyce team has never built or tested Xyce in parallel on Windows, and has no guidance for
building any of its third-party libraries for parallel in that environment.

31

References

[1] Eric R. Keiter, Ting Mei, Thomas V. Russo, Eric L. Rankin, Richard L. Schiek, Heidi K. Thorn-
quist, Jason C. Verley, Deborah A. Fixel, Roger P. Pawlowski, and Keith R. Santarelli. Xyce
parallel electronic simulator: User’s guide, version 6.0. Technical Report SAND2013-WWWW,
Sandia National Laboratories, Albuquerque, NM, 2013.

32

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic copy)

33

34

v1.38

	Introduction
	Target Audience
	Overview
	Prerequisites

	Installing Required Libraries
	Installing Prerequisite Libraries From System Packages
	Linux
	Red Hat Enterprise Linux (RHEL) and CentOS
	Ubuntu and Debian Linux

	Mac OS X
	FreeBSD
	Cygwin

	Installing Trilinos
	Introduction
	Building Trilinos for Serial Xyce
	Building Trilinos for Parallel Xyce

	Building Xyce
	Configure options
	Specifying compilers and helper programs
	Specifying compiler flags
	Specifying additional library search directories
	Specifying additional include search directories

	Example configure invocations for selected systems
	Serial Builds
	Red Hat Linux
	Mac OS X
	FreeBSD
	Cygwin

	Parallel Builds
	Red Hat Linux
	Mac OS X
	FreeBSD
	Cygwin

	Building UMFPACK and AMD
	Building ParMETIS

