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Abstract 
 

MREG V1.1 is the sixth generation SAR image registration algorithm developed by 
the Signal Processing & Technology Department for Synthetic Aperture Radar 
applications. Like its predecessor algorithm REGI, it employs a powerful iterative 
multi-scale paradigm to achieve the competing goals of sub-pixel registration 
accuracy and the ability to handle large initial offsets. Since it is not model based, it 
allows for high fidelity tracking of spatially varying terrain-induced misregistration. 
Since it does not rely on image domain phase, it is equally adept at coherent and non-
coherent image registration. This document provides a brief history of the registration 
processors developed by Dept. 5962 leading up to MREG V1.1, a full description of 
the signal processing steps involved in the algorithm, and a user’s manual with 
application specific recommendations for CCD, TwoColor MultiView, and SAR 
stereoscopy. 
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1. INTRODUCTION 

 
 
MREG V1.1 represents the sixth generation in a progression of ever more powerful image 
registration codes developed by the Signal Processing & Technology Department (5962) for 
SAR applications. Researchers in the Department recognized the need for sub-pixel image 
registration accuracy in order to pursue pioneering research in SAR coherent pair processing. In 
the late 1980s and early 1990s, these research efforts culminated in many first-in-kind 
demonstrations of Coherent Change Detection (CCD), Interferometric terrain mapping, and 
Stereoscopic terrain mapping. The early registration and CCD algorithms were packaged into the 
CASE EXECUTIVE software release and employed by a large number of image analysts 
providing the first practical applications of SAR coherent pair processing. 
 
MREG V1.1, like its predecessor REGI, is a non-coherent, multi-scale registration algorithm. 
Being non-coherent, it is equally adept at registering pairs of images that exhibit phase 
coherency (such as used for CCD) or, by virtue of less stringent collection geometries, pairs of 
images that lack such coherency (such as typically employed for TwoColor MultiView). Its 
multi-scale iterative structure allows MREG to accommodate large and spatially varying initial 
offsets and still produce sub-pixel registered final products. Unlike polynomial (model) based 
registration algorithms, no restrictions are placed on the randomness of spatial registration 
offsets allowing for excellent performance on image pairs exhibiting terrain-induced differential 
layover such as those employed for stereoscopic terrain mapping. 
 
This document serves several functions. First, a brief history of the development of registration 
processors at SNL is summarized. Second, the signal processing steps are provided in a complete 
and concise manner with an aim to documenting the software. Finally, a user’s manual is 
included, with specific recommendations of command line options for processing CCD, 
TwoColor MultiView, and Stereo. 
 
 



8 

2. HISTORY 
 
 
In 1989, a nascent research project conducted by the Signal Processing & Technology 
Department (originally The Systems Research Division, 0315, and later The Signal Processing 
Research Group, 5912) received a significant windfall of data. These data consisted of numerous 
complex SAR images that had been collected by an airborne system (the ERIM N1) in support of 
another Sandia program. At the time, Div. 0315 was entertaining the notion that complex SAR 
imagery might be suitable for two-pass interferometry. (Single-pass Radar interferometry had 
been demonstrated by Goodyear Aerospace as early as 1974 [ (Graham 1974)]). Not just any pair 
of complex SAR images would be candidates for interference phenomena, however. Theoretical 
work on the part of ERIM, under contract to Sandia, had suggested that tight repeat collection 
geometries were necessary to form mutually coherent image pairs. Since the N1 images were 
collected using a sophisticated beacon system to guide the aircraft to precise repeat geometries, 
these images appeared to be excellent candidates to kick start research into SAR interferometry. 
 
The question remained as how a given pair of two-pass images was to be processed to yield an 
interference pattern. After studying the technique of Gabriel and Goldstein using SIR-B data       
[ (Gabriel 1988)], Paul Eichel of Div. 0315 postulated that 2-D subpixel co-registration of the 
image domain datasets might yield continuous interference patterns without iteratively reforming 
the images from phase history. To test this theory, he wrote a small program for the department’s 
MegaVision real-time image processing system wherein the phase of one image, discretized to 
one byte per pixel, was loaded into one image plane and the conjugate phase of the second image 
was loaded into another image plane. The pixel level difference (phase difference) was computed 
at video rates to a third plane and routed to the real-time display. The second image could be 
spatially offset in both directions under the control of the trackball. By slowly displacing image 2 
relative to image 1 via the trackball, Eichel unequivocally demonstrated interference patterns 
throughout the footprint of the image pair, albeit with offsets that varied spatially. 
 
Armed with this discovery, and aided by image warping expertise contributed by Dennis Ghiglia 
and Gary Mastin, Eichel wrote a comprehensive complex SAR image registration code described 
in the following section. This code was used to demonstrate the first full-scene interferometry 
and Coherent Change Detection (CCD) results from 2-pass airborne collections in 1989. 
Regarded as highly classified at the time, this technique was published only later after similar 
results were reported in the open literature. The source code for all of the registration algorithms 
discussed below has been preserved. 
 
2.1 SNL CCD.CSH 
 
The first generation image registration software, SNL CCD.CSH, was actually a collection of 
programs executed under the control of a C-shell script, ccd.csh. The registration methodology 
employed by ccd.csh has been fully documented in Chapter 5 of [ (Jakowatz 1996)]. Here we 
will provide an overview. The basic notion is to compute a regular grid of control points or tie 
points that measure the local displacement between the pair of images. Thus, a sparse set of sub-
image blocks, typically sized 64 X 64 pixels and spaced by 512 pixels, are extracted from the 
original complex images and compared. The local displacement for each control point block is 
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determined by computing the complex correlation over a range of spatial offsets and finding the 
maximum of the correlation surface. This computation is facilitated by using FFTs. 
 
Having found a 2-D set of control points, the local measurements are automatically edited for 
outliers, and the surviving control points are regressively fit to a low order 2-D polynomial. A 
second order fit is generally used. This 2-D polynomial in turn is used to resample (warp) one 
image to the other, typically achieving sub-pixel accuracy in the neighborhood of a tenth of an 
IPR main lobe for images with high complex coherence. 
 
Since the search space of each control point computation is fundamentally limited by the size of 
the correlation block size, and since global image offsets can sometimes be much larger than 
this, the just described high resolution registration stage was preceded by a low-resolution, non-
coherent (detected) registration stage to coarsely back out such gross offsets. The reader is 
referred to [ (Jakowatz 1996)] for a complete discussion of this technique. 
 
CCD.CSH was employed by Div. 0315 in many first-ever two-pass SAR interferometry and 
CCD experiments in 1990 and 1991. The most important of these seminal results were 
catalogued in [(Eichel 1993)].  
 
2.2 SNL CCD Release 1.0 
 
By 1991, it had become evident to researchers in Div. 0315 that polynomial based registration 
techniques were not suitable for every 2-pass application. In particular, where the SAR 
collections are obtained on significantly different ground tracks (greater than a few degrees) and 
in the presence of non-trivial terrain relief in the imaged scene, substantial amounts of height 
induced differential layover exists in the image pairs (see [ (Jakowatz 1996)]). Because the 
differential layover is spatially varying and local in nature, low-order 2-D polynomials are ill 
suited to modeling the image-to-image disparity. Charles Jakowatz made the important 
observation that a denser set of control points followed by the computation of a non-parametric 
2-D displacement surface ought to handle such situations. Eichel, again with the help of Ghiglia 
and Mastin, then implemented a tessellation-based image warper. This warper, in turn, was based 
on a triangular tessellation fitting routine written by C. L. Lawson of the Jet Propulsion 
Laboratory. 
 
The sequence of operations for this method is similar to that described above and is also 
documented in reference [ (Jakowatz 1996)]. The main differences are that a much denser set of 
control points are computed and these are then fit not to a 2-D polynomial, but rather comprise 
the vertices of a triangular tessellation. Two spline surfaces are computed: an X-displacement 
surface and a Y-displacement surface. The surfaces have triangular flat plates with vertices at the 
control point locations. Each triangle is a best spline fit of the displacements at its vertices 
subject to the constraint that the first partial derivatives are continuous at the boundaries (cubic 
spline fitting) [ (Press 1992)]. 
 
The spline-fitting registration algorithm was integrated with the polynomial-based codes and 
released with version control as SNL CCD Release 1.0. In 1993, this version was made available 
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outside of SNL in a third-party package called CASE EXECUTIVE. CASE EXECUTIVE was 
quickly adopted by a wide range of image analysts and became the standard CCD tool of the day. 
The code was restructured by Eichel to take advantage of the simple and efficient shared 
memory parallel processing architectures such as the Silicon Graphics 240-GTX. Gary Mastin 
ported the code to the Cray XMP architecture for a set of demanding users. 
 
2.3 SNL DYNREG 
 
DYNREG was the brainchild of Paul Thompson. This registration algorithm was based on a 
completely different paradigm than CCD Release 1.0. Rather than using a strategy of generating 
a grid of control points and fitting them to a surface, DYNREG employed dynamic 
programming. DYNREG made iterative passes through a pair of images, attempting to find 
patch-wise offsets that maximized the complex correlation between the images. As the algorithm 
progressed through the raster images, succeeding row and column offsets were predicted from 
present offsets by means of the dynamic programming logic. Thus, DYNREG made allowances 
for local, terrain-induced differential layover in a smoothly varying manner, but without either a 
polynomial or a tessellated surface model. 
 
DYNREG became operational in late 1994. However, it did not enjoy widespread adoption. This 
may have come about not because of any lack of performance but rather because its user 
interface was widely perceived to be cumbersome. A sophisticated knowledge of the underlying 
principles of the dynamic programing engine was required in order to obtain the best 
performance from the algorithm. Although Thomas Flynn made various modifications to the 
algorithm to improve the correlation computations and make it easier to adjust search 
parameters, DYNREG never enjoyed the large impact that CCD Release 1.0 had made. It was 
added to the CASE EXECUTIVE package in 1996, and modified for parallel execution using the 
Message Passing Interface (MPI) protocol by Ireena Erteza in 1999-2000. The MPI version was 
successfully used in the Exercise Special Project 99 (SP 99), an AF TENCAP extended real-life 
scenario demonstration, delivering increased performance and intelligence from CCD in highly 
demanding scenes. 
 
2.4 SNL MSREG 
 
The fourth generation registration software package was also initiated by Paul Thompson. This 
highly effective algorithm has proven to be extremely robust and versatile. At its core, it is a 
multi-scale, iterative registration technique that uses a minimum least squares metric instead of 
complex correlation to control its search engine. Because it is non-parametric and non-coherent, 
it is equally effective in applications ranging from CCD to TwoColor MultiView to Stereoscopy. 
This algorithm has remained at the core of all subsequent registration developments in the Signal 
Processing and Technology Department up to and including the subject of this report, MREG. It 
has been successfully applied to a very large number of two-image and multi-image SAR 
registration problems for almost two decades. 
 
MSREG is a classic multi-scale registration algorithm. Numerous passes are made through the 
image pair, starting with a very small, highly downsampled, low resolution version of the 
images, and progressing through higher and higher resolution stages until the last pass is made at 
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full resolution. The accumulated registration offsets for all preceding stages are used to predict 
the offsets at the current stage, and the new differential updates computed are then added to the 
accumulator. 
 
This strategy has a number of important advantages in the typical SAR application. Firstly, since 
the first stage is performed at a very low spatial resolution, very large initial offsets can be 
accommodated with a rather small search space (a few pixels at low resolution represents large 
distances in meters). Secondly, the method is non-parametric, as an exhaustive search is 
conducted at each resolution stage, albeit over a limited set of offsets. The search is not limited 
to any preconceived model; therefore completely random values and spatial distribution of 
differential layover may be accommodated. Thirdly, since the final search iteration is performed 
on the full resolution data, sub-pixel registration accuracy is readily achieved. Finally, the 
method achieves a high level of performance, the stages accomplishing a large, arbitrary search 
space with a relatively small number of computations. 
 
2.5 SNL REGI 
 
The SNL REGI code is not, in itself, an image registration code. Rather, it incorporates the 
MSREG registration engine embedded in a much larger, multi-purpose piece of software. 
Written largely by Terry Calloway, the REGI code is actually an end-use application, with 
complex image pairs as inputs, and a wide variety of final or intermediate products as outputs. 
REGI was conceived firstly as an intelligent processor for Coherent Change Detection (CCD). In 
addition to the basic registration / complex correlation CCD processing elements, it also has a 
large repertoire of automated phase compensations, both deterministic and data-driven, to help 
achieve the best possible CCD correlation and phase maps. It has the ability to make use of third 
party Digital Elevation Models (DEMs), where available, to aid this process. REGI makes rich 
use of image metadata, imaging geometry and frequency space characteristics of the input 
images, in order to (a) automatically choose optimal processing parameters, and (b) apply 
various signal compensations to improve performance. The code has provisions for tailoring the 
signal processing for numerous applications: CCD, TwoColor Multiview, Stereoscopy and DEM 
generation, Interferometry, Subsidence measurement, and generating Anaglyphs. Of these, only 
the CCD outputs are produced by the REGI code itself, but it performs most of the image pair 
processing steps on the path to the other products. 
 
Since its introduction in 2005, REGI has become the workhorse code for practically all coherent 
pair and non-coherent pair processing tasks in the Signal Processing and Technology 
Department. Further, it has been embedded in large, multipurpose interactive SAR workstations 
such as SLOAN and CSISAR, as well as in specialized codes producing orderable products for 
national users such as DAILY WATCH. It has been applied to image pairs from dozens of 
different SAR systems, US and foreign, airborne, spaceborne, and bistatic. 
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3. SNL MREG 
 
 
SNL MREG breaks no new ground from an algorithmic standpoint. It employs the same multi-
scale registration philosophy of MSREG and REGI. In fact, the signal processing functions are 
largely carried over from the latter. However, for certain applications, REGI has grown too 
complex and all-encompassing. MREG was conceived as a more single purpose code, namely 
robust registration of SAR image pairs, without the internal complexity of REGI. In this way, it 
is something of a return to the philosophy of MSREG. On the other hand, it benefits from years 
of experience with the later code in incorporating a canonical parameter set for easy, effective 
application to real world problem sets. MSREG never achieved this level of application. 
 
MREG has other characteristics that lend it to embedded applications. It is a clean-sheet rewrite 
of the multi-scale algorithm in ANSI-C. Whereas its predecessors are amalgamations of Fortran 
77, Fortran 90, and C, modified and extended over the years as experience was gained, MREG is 
much more structured and tightly written. It has 4% the lines of code as does REGI, albeit with a 
simpler task to accomplish. However, in most SAR pair-product applications, the image 
registration portion represents the overwhelming lions’ share of the total computational load. 
Thus, by excising this critical task from the much larger REGI code, MREG provides a critical 
building block toward a more modular approach in embedded environments. 
 
Finally, the MREG source code, along with this report, provides the first detailed documentation 
of this very effective and versatile registration algorithm. Neither of its predecessors has been 
documented in any meaningful way, and their source code is somewhat obscure. Every effort 
was extended in the rewrite to make the source code as transparent as possible while trading 
away nothing in performance. 
 
3.1 MREG Preliminaries 
 
MREG is registration code for complex SAR images. For the purposes of this document, a 
complex image is represented by a two-dimensional array of pixels, each of which is comprised 
of two single-precision floating point values, a real and an imaginary component. Since ANSI-C 
does not have an intrinsic complex value data type, MREG uses a two-valued structure to define 
a complex variable. Thus, the storage requirements of a complex SAR image are 64 bits per 
pixel. 
 
The object of a registration algorithm is to resample one of the input images such that it exactly 
overlays the other image. That is, if we were to examine individual pixels of the registered 
images at a given array position, they will coincide with the exact same ground position in the 
scene. Furthermore, since the images are complex, both the magnitude and phase of the pixel 
values of that scene position will be correctly represented. Some terminology is in order. 
Following widespread convention, the two input images to be registered will be referred to as the 
Reference Image and the Mission Image. The Mission Image is to be resampled to overlay the 
Reference. After resampling, the Mission Image becomes the Registered Image. Thus, the 
Registered Image contains the scene content of the Mission Image (at the moment in time the 
Mission Image was collected), but coincides with the sampling grid of the Reference Image. The 
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registration code should therefore accept as inputs the Reference and Mission complex images 
(along with their associated metadata), and produce as an output the Registered Image. The 
Reference Image is assumed to be unchanged by the registration process. 
 
Unlike its predecessors, MREG is designed to be an embeddable algorithm, not an interactive or 
command line executable. The controlling routine, called mregister(), is called with six 
arguments: pointers to complex arrays containing the Reference and Mission images, a pointer to 
a complex array that will hold the Registered Image, two pointers to structures holding the 
Reference and Mission image metadata, and a pointer to a structure holding MREG runtime 
parameters. Since the Reference, Mission, and Registered images must perforce all be resident in 
memory simultaneously, the memory requirements of MREG are overwhelmingly driven by 
these three arrays. Indeed, as will be seen, the memory required in almost all situations may be 
easily estimated as 3.25 times that of the Reference Image. 
 
SAR image metadata always plays an important role in the registration process. Generally 
speaking, SAR images may be treated as a particular mapping of a portion of the earth’s surface 
onto an image plane. The nature of the mapping, as well as the particulars of the image plane 
sampling grid, varies considerably from SAR system to SAR system and even among particular 
images of a given system. Examples of SAR image planes and sampling grids include slant 
planes and ground planes, and Range-Doppler, Cartesian, Range-Cross Range, and many other 
grids. Sometimes the image plane may not even be a plane at all; geocoded images produced on 
a map projection or a Digital Elevation Model (DEM) surface being examples. The image 
metadata fields inform the registration code about the particulars of its input images. Under 
certain very simple situations where the Reference and Mission images were deliberately imaged 
by the same SAR system, with the same parameters, sample grids, image planes, and viewing 
geometry, this metadata may not play an important role. However, in most real-world situations, 
the two input image parameters and viewing geometry may be significantly or radically different. 
MREG uses the metadata to perform a deterministic prewarp, discussed later, in order to avoid 
costly extra computation in the registration process. 
 
Metadata is passed between routines via a structure denoted SARTAGS. The SARTAGS 
structure is defined in the include file sartags.h. This structure definition supports not only 
MREG but nearly all other SAR signal processing codes in Dept. 5962. It also functions as the 
metadata container for SAR images in the SRF file format, the native format used for all 
applications in the Department. The SARTAGS structure has a very comprehensive set of 
metadata fields. Various fields provide for descriptions of the data source, image array fields, 
radar geometry fields, SAR dispersed (frequency space) domain fields, geodetic fields, 
interferometric fields, and phase history fields. All are expressed in the most canonical manner 
possible, in double precision floating point, MKS units, and an ECEF coordinate system. The 
MREG software only requires a very small subset of these parameters, however. In particular, 
the following table lists the SARTAGS parameters that must be present when mregister() is 
called. 
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Field Type Units Description 
 

Mode string  ‐  “C8” or “IQ4” denoting complex data format. 

Source string  ‐  Name of image source, i.e. platform. 

Dim[2] integer  ‐  (X,Y) dimensions of image array. 

Geo_Flag string  ‐  Y = Georeferenced Image; N. 

Corners[8] double  decimal degrees  Corner Coordinates: Lat, Long. 

Post_sp[2] double  decimal degrees  Sample spacing for Georeferenced Images. 

FPN[3] double  meters  Focus plane normal (ECEF). 

APC[3] double  meters  Aperture phase center (ECEF). 

GRP[3] double  meters  Scene reference point (ECEF). 

Img_GRP[2] integer  ‐  Array pixel (X,Y) corresponding to GRP. 

SF[2] double  meters  Pixel scale factors, (X,Y) at GRP. 

IPR[3] double  meters  Image plane unit vector, Range (ECEF). 

IPCR[3] double  meters  Image plane unit vector, Cross Range (ECEF). 

 
Table 1: SARTAGS Fields Utilized by mregister(). 

 
MREG is capable of intelligently handling georeferenced images in geographic (lat, long) 
coordinates. If the input images are georeferenced, the Geo_flag field must be set to “Y” and the 
Corners and Post_sp fields must be filled. Otherwise, the latter fields are ignored. Conversely, 
Img_GRP is ignored if Geo_flag = “Y”. 
 
While mregister() is the actual executive routine for MREG, the software does have a wrapper 
function, called mreg(), provided for command line applications. mreg() is the interface between 
the Dept. 5962 – specific processing environment and mregister(). As such, it provides for a 
command line parser, inputs the Reference and Mission images along with their metadata in SRF 
format, allocates memory for the Registered Image, calls mregister(), and outputs the Registered 
Image in SRF format. For command line applications using other complex SAR image formats, 
it would be a simple matter to duplicate these functions following the example of mreg(). 
 
When using the command line wrapper mreg(), the command parser allows the user to specify 
various runtime parameters. These will be discussed in the User Guide Section. The runtime 
parameters are passed between functions using a structure called PARGS defined in the include 
file mreg.h. Embedded applications also need to populate this structure before calling 
mregister(). 
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3.2 mregister() 
 
The function mregister() is the principal executive routine for MREG. As noted previously, it is 
called with six arguments: pointers to the Reference, Mission, and Registered complex images, 
pointers to the input images’ metadata structures, and a pointer to the runtime parameter 
structure. The function returns with the Registered Image placed in the array pointed to by the 
passed address and returns a status integer to the calling routine. A status = 0 indicates overall 
success; any other return status indicates an error condition. 
 
This function performs the following tasks: 1) resizes the Mission Image, 2) scales and computes 
input image magnitudes, 3) Performs a prewarp on the magnitude mission image, 4) computes a 
dense set of image control points, and 5) resamples the mission image according to the just 
computed control points. We will describe the first two tasks here, leaving a more complete 
description of tasks (3), (4) and (5) for the next sections. Many, but not all, of the signal 
processing functions can be efficiently parallelized. MREG source code includes OPENMP 
pragmas to produce multi-threaded executables whenever the appropriate compiler directive is 
set. 
 
Since MREG does not modify the Reference Image in any way, the assumption is made that the 
Registered Image produced is made identical in dimensions to the Reference. The Mission Image 
is not constrained to be of those dimensions. Hence, the first task of mregister() is to resize the 
Mission Image to that of the Reference. This is done in one of two ways depending on whether or 
not the input images are geocoded. If the inputs are not geocoded (e.g. are in radar image 
coordinates; Geo_Flag = “N”), then the Mission image is truncated or zero-filled, whichever is 
necessary, in order to make its dimensions equal to those of the Reference. This is done in such a 
way that the GRP pixels (Img_GRP) are coincident, so some amount of translation may be 
accomplished in this step as well. If the input images are geocoded (Geo_Flag = “Y”), then the 
GRP pixel coordinates are ignored and the corner coordinates in latitude and longitude are used 
instead. The Mission image is resized such that it corresponds to the geographical bounding box 
of the Reference. This section of the code is multi-threaded and uses no additional memory 
(utilizing the allocated, but as-yet unused, Registered array as scratch space). 
 
The next step is to detect and scale the input images. The registration algorithms of MREG do 
not rely on the complex phase of the images. This, in fact, is what makes it a non-coherent 
registration processor suitable for tasks such as stereoscopy and Two-Color Multiview. Instead, 
both input images are magnitude detected. During the course of this process, they are also scaled 
to have the same rms value and to be efficiently represented by 16-bit integer pixel values. The 
16-bit magnitude images are both stored in the Registered image array space, so again no 
additional memory is allocated for this step. The scaling / detection routine is multi-threaded. 
 
3.2.1 Prewarp 
 
The third step is to perform a prewarp on the just-computed magnitude detected Mission image. 
The purpose of prewarping is to remove known deterministic offsets from the input image pair 
that can be determined from the imaging geometry metadata, thus potentially saving a 
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considerable amount of computation in later stages. Note that for geocoded images, this step is 
bypassed since geocoding by its nature produces “nearly” registered images. Some factors that 
are taken into account in the prewarp stage are differential rotations, scale factors, and different 
image planes. Note that ground plane displacements are handled in the resizing step. The 
prewarp is accomplished with an affine transformation, whose 2X2 transformation matrix may 
be defined as: 
 

ࡽ ൌ ૛ࡹ
ି૚	ࡼ૛	ࡾ	ࡼ૚

ି૚	ࡹ૚                                                           (1) 
 
where the subscripts refer to the Reference Image (1) or Mission Image (2), the M matrices scale 
from pixels to meters, the P matrices are ground plane to image plane projections, and R is a 
ground plane rotation. (Straight line projections are used by the P matrices for expediency; more 
precise registration will follow.) What is desired is an overall mapping from image plane pixels 
(Reference) to image plane pixels (Mission). This is accomplished in the five steps above (pixels 
to meters, image plane to ground plane, rotation in ground plane, ground plane to image plane, 
and finally meters to pixels. If we denote 
 

ࢇ ൌ ൫ෝ࢞࢏ 	 ∙ 	 ෝ࢞ࢌ൯ ࢙࢙࢞⁄ 	                                                        (2) 
            

࢈ ൌ ൫ෝ࢞࢏ 	 ∙ 	 ෝ࢟ࢌ൯ ࢙࢙࢞⁄                                                          (3) 
 

ࢊ ൌ ൫ෝ࢟࢏ 	 ∙ 	 ෝ࢟ࢌ൯ ࢙࢙࢟ൗ 	                                                        (4)  
 
In these expressions, the ݔො and ݕො refer to the cross range (x) and range (y) image axis unit 
vectors, the subscripts refer to the image plane (i) and the focus plane (f), and the ss values are 
the x and y image scale factors (m/pix). With these substitutions and combining the M and P 
matrices, it can be shown that the affine matrix Q is: 
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                                     (5) 

 
Here, the matrix subscripts denote the fact that the component coefficients are computed from 
the Reference metadata (1) or the Mission metadata (2) using the equations above. The angle θ is 
the ground plane rotation angle from Reference to Mission. Thus, the matrix Q maps pixel 
locations in the Reference image to corresponding pixel locations in the Mission image. This, of 
course, is an approximate mapping relying only on the image metadata. However, it does 
account for differing image azimuths, depression angles, image planes, and scale factors. The 
matrix Q is computed in a routine called find_prewarp(), which returns the four coefficients of Q 
in the arrays ax[] and ay[]. 
 
What remains is to perform the actual warping. This is accomplished in the routine prewarp() 
using a conventional bilinear interpolator. The code is multi-threaded and allocates an additional 
16-bit image array as scratch space. Note that it is the detected Mission image that is resampled, 
not the complex Mission image. This scratch array represents the single largest memory use 
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besides the three complex images, thus establishing the overall memory requirement of MREG at 
3.25 times that of the Reference image. 
 
3.2.2 Control Point Computation 
 
After prewarping, the routine compute_cp() is called next by mregister. This routine is the heart 
of the multi-scale registration algorithm. Starting with the detected Reference image and the 
resized, detected, and prewarped Mission image (hereafter called the Source image), its function 
is to compute a very dense set of control points or local measurements of image-to-image 
displacements over the extent of the input images. These displacements are stored in two arrays, 
cpxd[] and cpyd[], holding the 2-D x- and y- displacement surfaces respectively. 
 
The methodology used is a classic multi-scale approach. The algorithm loops through typically 6 
stages starting from the lowest resolution and ending at full resolution. At each stage, the 
detected images are low pass filtered and downsampled to the stage resolution. The filtered and 
downsampled images are then compared at many local regions, the displacement vector at each 
region is computed. These displacement vectors are found by minimizing a mean squared 
distance metric, not a cross-correlation. While both msd- and correlation-based metrics are 
suitable for coherent pairs, the msd approach is much more effective for non-coherent image 
pairs. At the next stage, these local displacements are upsampled to the new (higher) stage 
resolution and the process is repeated. The displacements are thus accumulated from stage to 
stage, refining the overall displacement surfaces until they are found at the last, full resolution, 
stage. Since the resolution stages must be sequential, the code multi-threading is accomplished 
within the stage loop by spreading the local region computations across the threads. 
 
This critical component of MREG is controlled by a set of 5 parameters, passed to it in the Pargs 
structure which in turn is defined in mreg.h. These parameters may be optimized for specific 
applications as discussed in the User Guide, but it may be noted that for a great majority of tasks, 
a default set has proven to be quite reliable. We will first discuss these parameters. 
 
As has already been noted, the algorithm progresses in resolution stages. The integer nstages sets 
the total number of stages, and a default value of 6 is generally advisable. Thus, at the first stage, 
the images are filtered and downsampled by a factor of 2ହ. Each subsequent stage has twice the 
resolution of its predecessor, with the final stage at full resolution. 
 
The parameter cpbox[2] controls the size of the local region, in pixels, over which the local 
displacement vectors are computed. This is a two-valued array; the first value establishes the y 
(range) dimension of the local box and the second the x (cross-range) dimension. Unlike REGI, 
MREG does not allow the box size to vary from stage to stage. However, because of the 
downsampling, the effective box size in square meters on the ground varies with the stage 
resolution. The default values of cpbox[] are [31,31]. 
 
A third parameter, cpspa[], controls the spacing of the local boxes at each stage. Again, MREG 
does not allow for this parameter to vary among stages. This parameter determines the density of 
control points; image-to-image displacements for warping are subsequently interpolated from 
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these control points to the full image resolution. The default values are [21,21] in the y and x 
directions, but some applications such as stereoscopy may call for much smaller values. 
 
A fourth parameter controls the search size for finding local displacement vectors at the lowest 
resolution (first) stage. This parameter is called cpsrch[2]. The default values are [2,2], but are 
sometimes set significantly larger than this. A search value of k means that the local 
displacement vector will be exhaustively searched in that dimension over +/- k pixels at the first 
stage. This corresponds to a full-resolution search distance of (2k + 1)2௡ pixels, where n is the 
downsample factor for the first stage. Using default values, this is equivalent to a total local 2-D 
search area of 160 x 160 = 25,600 full resolution pixels, remembering that deterministic offsets 
have already been removed in the prewarp. While this is adequate for most situations, for large 
image sizes and significant terrain-induced displacements, this parameter must be substantially 
increased at the cost of computation time. 
 
The final parameter, cpfiltbox[2], is rarely modified from its default value of [7,7]. This 
parameter controls a 2-D median filter that is applied to the computed displacement surfaces at 
each stage to remove spurious local measurements. 
 
Having introduced the control parameters, we now present a summary of the multi-stage control 
point computation. It will be seen that image registration by the multi-scale approach is an 
exercise not so much in signal processing as it is in bookkeeping. That is, the actual 
computations required are relatively trivial, but keeping track of all of the loop variables and 
pixel indices is quite exacting. Thus, this section is more descriptive than mathematical. 
 
At the outset, we will note that, while numerous scratch arrays are allocated from memory, they 
are individually quite small compared to that required for the input complex images. 
Collectively, they are also small compared to the scratch array allocated by prewarp(), so the 
total memory requirement discussed earlier stands. The multi-threading is accomplished perforce 
within the multi-scale loop, so all memory allocation is performed but once outside of that loop. 
 
Except for the aforementioned memory allocations, all of the code in compute_cp() occurs within 
a resolution stage loop. The first iteration of the loop uses a decimation factor of ݀݁ܿ݅ ൌ
	2ሺ௡௦௧௔௚௘௦ିଵሻ, and the factor is reduced by 2 for each subsequent stage. All stages use the same 
values for cpbox[], cpspa[]. The search size starts with cpsrch[] for the first stage, but the value 
is decreased by a factor of 2 for each subsequent stage. This parameter is bounded from below by 
1 for all stages except the last (full resolution) for which it is bounded from below by 2. Thus, at 
least a +/- 2 pixel search in both dimensions is performed at full resolution. 
 
The first step in the stage loop is to upsample previously determined 2-D displacement surfaces 
to the new resolution. The prior displacement surfaces are stored in the arrays cpxdp[] and 
cpydp[] and are upsampled into the arrays cpxd[] and cpyd[]. The algorithm also keeps track of 
regions outside the domain of legitimate image data, as for example the zero-filled portion of the 
resized or prewarped Mission image. These areas are denoted by a NULL value of -9999 in the 
surface arrays. In the first (lowest resolution) loop stage, cpxd[] and cpyd[] are initialized to the 
NULL value. This step is not multi-threaded. 
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The second step is to filter and downsample the detected Reference and the resized, prewarped, 
and detected Source image by the factor deci. The filter used is a boxcar filter of size (deci+1) in 
each dimension. This routine is normalized to unity gain and is multi-threaded. 
 
Next, we enter a nested pair of loops over the set of control points (in the y- and x- directions). 
These extensive loops are multi-threaded. Patches of the Reference and Source images, centered 
at each control point location, are extracted from the corresponding detected arrays, type 
converted to floats, and equalized, i.e. the reference patch values are offset by a constant such 
that both patches have the same rms value. 
 
We then enter a pair of even deeper loops (within the control point loops) over the y- and x- 
search distances. For each y- and x- control point (outer two loops), and each y- and x- search 
space value (inner two loops), we find the “best” displacement vector. The search space is 
centered not on the control point location, but rather that location summed with the (previous 
stage’s) accumulated displacement surfaces cpxd[] and cpyd[] at that location. For each search 
value, a cpbox[] sized patch is again extracted from the Source image and compared to the 
previously extracted, equalized Reference patch. The comparison is made by computing the 
mean squared difference: 
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where the sum is over the [m,n] size of the image patches. The value for msd is computed for 
every x- and y- search space value in the inner loops, identifying the global minimum. For all 
stages except the last, the integer values of the x- and y- search values yielding the global 
minimum mean squared distance are then summed to the displacement surface accumulators 
cpxd[] and cpyd[]. For the last stage, the two-dimensional array of search space msd values are 
interpolated to sub-pixel accuracy by a 3x3 point interpolator before being summed to the 
accumulators. Reviewing the above, it will be seen that we determine the minimum msd over an 
exhaustive search space given by: 
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That is, for each control point location in x- and y-, we find the minimum msd over the 2D 
search space interval ݕ ∈	[-cpsrch[0],+cpsrch[0]], ݔ ∈	[-cpsrch[1],+cpsrch[1]] centered on the 
(offset) control point location. 
 
After the outer (control point) loops are exhausted, the thus-far accumulated displacement 
surfaces cpxd[] and cpyd[] are median filtered in the routine medfilter(). The filter size is 
determined by the parameter cpfiltbox[2]. This quite standard function is accomplished by a call 
to the Numerical Recipes routine nr_select(). Finally, after the last resolution stage is completed, 
compute_cp() exits back to mregister(), passing the accumulated displacement surfaces. 
 
3.2.3 Complex Image Warp 
 
Having found the two-dimensional displacement surfaces cpxd[] and cpyd[], all that remains is to 
resample the original complex Mission image to overlay the Reference image. This output 
Registered image array has already been allocated (and used as scratch memory at various steps). 
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This resampling step must take into account both the deterministic affine transformation used in 
the prewarp as well as the non-deterministic two-dimensional displacement surfaces found by 
compute_cp(). Furthermore, the displacement surfaces were determined on the control point grid, 
which is coarser than full-resolution by the cpspa[] box spacing, thus necessitating an 
interpolation to full resolution. Note that even though the final warp encompasses both the 
deterministic and non-deterministic components, only one complex resampling is performed on 
the Mission image, rather than two successive warps. This is done to minimize the frequency 
space scalloping that, however minimized, is an unavoidable consequence of any resampling 
filter. 
 
The complex image warp is accomplished in the routine cwarp() which in turn calls the routine 
spline_warp_c(). cwarp() performs the “bookkeeping” and spline_warp_c() performs the actual 
4x4 point complex-valued spline interpolation. The code is multi-threaded at the outermost loop 
and requires essentially no additional memory. Looping on the samples of the output image array 
(denoted (i,j)), cwarp() first finds the four nearest neighbors from the control point displacement 
surfaces cpxd[] and cpyd[]. These displacement values are bilinearly interpolated to the output 
sample location (i,j). The contribution from the prewarp affine transformation, Q, at this location 
is then summed in. At this point, we have computed the full-resolution, floating point location in 
the Mission image (denoted (i’,j’)) corresponding to (i,j). Generally speaking, this Mission image 
location (i’,j’) does not fall on a discrete sample value (i.e. the floating point values of i’ and j’ 
are not integers). The interpolator in spline_warp_c() then performs a 4x4 point Catmull-Rom 
cubic spline interpolation in the neighborhood of (i’,j’) to determine the complex value of the 
Mission image at (i’,j’). This value is placed into the output Registered image array at location 
(i,j). The interpolator has a (1D) kernel given by [ (Glassner 1995)]: 
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3.2.4 Outputs 
 
The primary output of mregister() is, of course, the Registered complex image with dimensions 
exactly equal to those of the Reference image. Two other outputs are optionally available. These 
are the actual x- and y- displacement surfaces. These outputs are critically important in 
applications of stereoscopy since they provide the subsequent stereo mapping algorithms with 
the complete 2-D correspondence map. This includes both the deterministic as well as the 
terrain-induced components. Therefore, these two output files, xmap.srf and ymap.srf contain 
important metadata fields for use by subsequent functions. The output of these arrays is handled 
by the function write_xy(). 
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4. MREG USER’S MANUAL 
 
 
The processing algorithms of MREG may be executed from the command line via the mreg() 
wrapper. Conversely, they may be executed in an embedded application via the mregister() 
routine. Either way, the behavior of the software and its outputs are identical. In this section, we 
will focus on the command line environment. However, suggestions on selection of runtime 
parameters apply equally to the embedded situation. 
 
4.1 The MREG command line 
 
MREG is executed from the command line. A built-in help menu may be accessed by typing: 
 
 %mreg 
 
In order to register an image pair, MREG requires two input image arguments and accepts 
several options. The two input images must be in .SRF format and complex, i.e. image pixels are 
represented by I- and Q- values, either floating point (C8) or short integers (IQ4). If we denote 
these two images as image1.srf and image2.srf, then the simplest possible command is: 
 
 %mreg image1.srf image2.srf 
 
The first image (i.e. image1.srf) will be treated as the Reference Image and the second as the 
Mission Image. Execution will result in three output files, the complex Registered Image, reg.srf, 
and the two displacement surface images, xmap.srf  and ymap.srf. These two are in real, floating 
point (R4) format. 
 
4.2 Command line arguments 
 
With no other command line parameters specified, the above example will result in the 
registration algorithms employing the default runtime parameters. These default parameters may 
be determined by accessing the help menu. The operation of MREG may be altered through the 
use of command line options. Options are invoked by a dash (-) followed by an option keyword 
and argument. Only the first letter, or specified critical letter, of any keyword need be typed. 
Options may be specified in any order, but its corresponding argument must follow immediately. 
The options supported are: 
 

-correlation_box_size n  This option specifies the values for cpbox[]. While the 
software supports different row and column values for cpbox[], the command line 
wrapper is confined to equal row and column values of n. Values for n must be odd. 
Values exceeding 255 might be considered imprudent. See discussion below. 
 
-s(p)acing_size n  This option specifies the values for the correlation box spacing, 
cpspa[]. Again, the command line wrapper confines the choice to equal row and column 
values of n, although the software supports unequal values. This spacing is generally 2/3 
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of the correlation box size. The values of cpspa[] also determine the downsample ratio 
applied to the x- and y- displacement surface files. 
 
-search_size n  The search distance parameters, cpsrch[], can be specified by this option. 
Again, the command line wrapper only supports equal row and column values. As 
discussed in Section 3.2.2, the specified search size applies only to the first iteration of 
the control point computation. Subsequent iterations are computed as discussed therein. 
These values have a very large impact on computation time and, of course, search 
distance. 
 
-filter_size n  The median filter size parameters, cpfiltbox[], are rarely changed. The 
value for n must be odd and is constrained by the command line wrapper to be equal in 
row and column values. 
 
-number_stages n  This value specifies the number of multi-resolution stages, nstages. 
As such, it controls a great many aspects of the control point computation process. 
 

4.3 Discussion 
 
The default values of the runtime parameters have been carefully chosen and will result in 
excellent performance in many situations. However, there are certain applications that may call 
for somewhat different choices of runtime parameters for optimum performance. We will discuss 
these situations here in a general way. Any given application may call for some fine tuning of 
these parameters beyond these general considerations. 
 
4.3.1 CCD 
 
Generally speaking, CCD applications require that the images to be registered must be imaged 
using a fairly strict set of geometrical constraints on differential depression angles and azimuth 
angles (see (Jakowatz 1996)). However, CCD may be pursued using quite different squint angles 
(ground track angles) for the pair. Thus, we have two situations. For a parallel ground track 
image pair geometry, the closely similar depression, azimuth, and squint angles limits the total 
amounts of differential layover and rotation in the image pair to rather benign values, even where 
substantial amounts of terrain relief are present. In this case, the default runtime parameter values 
should prove adequate. In fact, where highly accurate geometry repeats are engineered into the 
system, it may be possible to improve computational throughput by reducing the number of 
stages and/or increasing the box spacing over the default values. 
 
On the other hand, substantially differing ground tracks present a formidable registration 
problem in large terrain relief areas due to differential layover. This is similar to the stereo 
registration problem discussed below and has the same solution. For these situations, we require 
the registration algorithm to a) search over a larger displacement space, and b) produce a finer 
grid of control points in order to accommodate the spatially-varying layover component. Should 
the default parameter set prove inadequate for this situation, it is recommended (in order of 
preference) to reduce the spacing size, increase the search size, decrease the correlation box size, 
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and increase the number of stages. It is unlikely that all of these changes would prove necessary 
except in the most extreme situations, but the first two are rather more likely. 
 
4.3.2 TwoColor MultiView 
 
TwoColor MultiView (2CMV) is rather like CCD except the image pair need not be phase 
coherent. This lack of a coherency requirement means that the geometrical imaging constraints 
placed on the collection of such a pair of images can be significantly relaxed over that imposed 
for CCD. This exacerbates the registration effort required. Relaxed constraints on differential 
depression, squint, and azimuth angles all lead to more rotation, scale change, and differential 
layover effects in the image pair. With accurate metadata available, the prewarp stage of MREG 
can accommodate much of the registration discrepancy attributed to deterministic sources of 
rotation, translation, and change of scale. However, differential layover is terrain and geometry 
dependent and therefore cannot be deterministically removed via the prewarp. (In passing, we 
note that the use of a terrain model input source can further eliminate much of the terrain induced 
spatially variant layover. This capability has been developed for the REGI processing 
environment. It may be introduced into the MREG environment at some future time.) The default 
parameter set has proven to be adequate for most 2CMV applications to date, but some situations 
may call for a finer control point grid (smaller box spacing size) and a larger search space 
(increased search size and stages). 
 
4.3.3  Stereoscopy 
 
SAR stereoscopy makes deliberate use of height dependent layover in order to deduce 3-D 
terrain [(Eichel 2002)]. The requisite registration process must therefore accommodate 
significant differential layover in the range, cross-range, or both dimensions. Because the 
collection geometries are chosen with substantial differences in grazing, azimuth, and squint 
angles, this application is arguably the most demanding on the registration process. 
Consequently, stereoscopy will often require more liberal (and time consuming) choices in 
runtime parameters. Typical stereoscopy applications in Dept. 5962 have used a correlation box 
size of 17, search size of 11, spacing of 7 or 9, and 6 or 7 stages. The very dense control point 
spacing is required to generate high resolution x- and y-displacement maps for subsequent 
processing into 3-D data. Note that for SAR images covering many square kilometers, large 
differences in grazing or azimuth angles, and significant terrain relief, spatially dependent 
differential layover of hundreds or even thousands of pixels is not unusual. Such extreme 
situations may be accommodated by increasing the search distance and number of stages 
accordingly. 
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5. CONCLUSIONS 
 
 
In this report we have traced the evolution of a series of increasingly powerful SAR image 
registration algorithms that have played a critical role in the development of extremely useful 
applications such as two-pass interferometry, CCD, TwoColor MultiView, and SAR stereoscopy. 
This evolution culminated in the SNL REGI processing suite, circa 2005. While extraordinarily 
capable, that software has not been well documented and is intractable for embedded 
applications. This report describes in detail the subsequent MREG software that, while based on 
the same processing algorithms, is at once more transparent, more accessible, and eminently 
embeddable. We hope this document sheds vital clarification on this extremely robust SAR 
image registration technique.  
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