
SANDIA REPORT
SAND2013-5748
Unlimited Release
Printed July 2013

Design Issues in the Semantics and
Scheduling of Asynchronous Tasks

Stephen L. Olivier

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2013-5748
Unlimited Release
Printed July 2013

Design Issues in the Semantics and Scheduling of
Asynchronous Tasks

Stephen L. Olivier
Scalable System Software Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1319
slolivi@sandia.gov

Abstract

The asynchronous task model serves as a useful vehicle for shared memory parallel pro-
gramming, particularly on multicore and manycore processors. As adoption of model among
programmers has increased, support has emerged for the integration of task parallel language
constructs into mainstream programming languages, e.g., C and C++. This paper examines
some of the design decisions in Cilk and OpenMP concerning semantics and scheduling of
asynchronous tasks with the aim of informing the efforts of committees considering language
integration, as well as developers of new task parallel languages and libraries.

3

Acknowledgment

The observations in this paper draw on discussions over several years with members of the OpenMP
language committee, including Federico Massaioli, Alejandro Duran, and Brian Bliss.

4

Contents
1 Introduction . 7
2 Syntax and Semantics of Cilk and OpenMP Tasks . 8

2.1 Cilk and Cilk Plus . 8
2.2 OpenMP Tasks . 9

3 Rationale and Scheduling Implications . 10
3.1 Work-first Scheduling in Cilk . 10
3.2 Help-first Scheduling . 10
3.3 Work-stealing for OpenMP Tasks . 10
3.4 Victim Selection in Work Stealing . 11
3.5 Parallel Depth-first Schedules . 11

4 Conclusion . 12
References . 13

Figures
1 Calculating Fibonacci numbers in Cilk and OpenMP. 8

Tables

5

6

1 Introduction

Many of the concepts used in task parallel programming languages originated in early attempts at
multithreaded programming using functional languages, e.g., MultiLisp [11]. Cilk borrowed from
and expanded upon these concepts to design and to implement a seminal task parallel extension
to the declarative C programming language [4, 7]. Its authors made several key choices in favor
of language simplicity, compiler support, and run time efficiency that have been widely imitated
in more recent task parallel languages such as OpenMP 3.0. In other key decisions, the languages
have taken divergent paths. This paper explores those decisions and their implications, as an under-
standing of these issues may guide the development of future task parallel frameworks, including
those in preparation for inclusion in the C and C++ language standards.

Section 2 presents the basic syntax and semantics of the task model as specified in Cilk and
OpenMP, while Section 3 examines the rationale behind the decisions and their implications for
scheduling. Section 4 summarizes the issues and offers some further observations. Note that the
objective of this paper is not to condemn or sanction particular design decisions, but to clarify and
examine them in context.

7

2 Syntax and Semantics of Cilk and OpenMP Tasks

2.1 Cilk and Cilk Plus

A Cilk program is a C program with three additional keywords: cilk, spawn, and sync. The
cilk keyword indicates the declaration of a Cilk procedure, i.e., a function that may be executed
in parallel. Parallel invocations to Cilk procedures are made using the spawn statement. When
a new (child) task is generated, the currently executing (parent) task is suspended and the child
task begins execution. The parent procedure may be executed concurrently on another thread, or
following the execution of its descendants on the same thread. The sync statement ensures the
completion of any outstanding child Cilk procedures spawned by the current procedure up to that
point.

Intel R© CilkTM Plus changes the keywords spawn and sync to cilk spawn and cilk sync1. It
also adds and implicit cilk sync at the end of every function that contains a cilk spawn. Cilk
Plus provides a family of templated classes called hyperobjects to share and to update concurrent
data objects safely. Hyperobjects are global objects with member functions and overloaded oper-
ators to present a well-defined interface to the implicitly synchronized data [8]. For example, a
variable count that may be modified by different spawned procedures, the programmer simply de-
clares it as an object of class cilk::reducer opadd<int> and update it with a simple statement
like count++.

cilk int fib(int n) {
if (n < 2)

return n;
else {
int x, y;

x = spawn fib(n-1);

y = spawn fib(n-2);
sync;
return (x+y);

}
}

int fib(int n) {
if (n < 2)

return n;
else {
int x, y;
#pragma omp task

x = fib(n-1);
#pragma omp task

y = fib(n-2);
#pragma omp taskwait
return (x+y);

}
}

Figure 1. Calculating Fibonacci numbers in Cilk and OpenMP.

1Intel and Cilk are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

8

2.2 OpenMP Tasks

The OpenMP R© API’s task parallel model is expressed through a compiler-supported language
extension2, the design of which has been helpfully documented [1]. Version 3.0 of the OpenMP
specification for Fortran and C/C++ shared memory parallel programming introduced explicit task
parallelism to complement its existing data parallel constructs [14]. The task and taskwait
directives resemble Cilk spawn and sync statements respectively, as shown in Figure 1. However,
the OpenMP task directive generates a task from a statement or structured block, not a procedure.
In addition to the taskwait synchronization, the OpenMP barrier construct also provides task
synchronization. Threads encountering a barrier must complete all outstanding tasks generated by
threads in that team before they may pass the barrier. Data clauses specify whether tasks share
variables from surrounding scopes or whether they make private or initialized private copies of the
variables.

An unexecuted OpenMP task may be scheduled onto any thread. OpenMP defines two classes
of tasks based on restrictions of task suspension and rescheduling: tied and untied tasks. As spec-
ified in OpenMP 3.0, they differ in two important ways. First, a tied task may only be suspended
at specific task scheduling points, e.g., generation of new tasks, taskwait synchronizations, and
barriers. An untied task may be suspended at any point during execution. Second, a tied task can
be scheduled initially onto any thread but is not allowed to migrate between different threads dur-
ing execution. An untied task may migrate between different threads during execution. Care must
be taken if threadprivate variables or thread numbers (obtained through omp get thread num())
are used in untied tasks. A threadprivate variable is a global variable of which each thread has a
copy. Thus, an untied task may access different copies of threadprivate variables at different points
in the execution of the task.

2OpenMP is a registered trademark of the OpenMP Architecture Review Board.

9

3 Rationale and Scheduling Implications

3.1 Work-first Scheduling in Cilk

The implementation of the Cilk run time system is based on a distributed scheduler. Each thread
has its own queue of spawned procedure frames. Work stealing enables concurrent execution: idle
threads steal procedure frames from the queues of busy threads. Recall that upon each new proce-
dure spawn, Cilk suspends execution of the parent procedure, places its frame on the local LIFO
queue, and begins execution of the child procedure. This approach is called work-first scheduling.
By always scheduling the child procedure immediately, Cilk maintains sequential execution order
of all work since the last steal. Several desirable properties follow: If a sequential execution of the
original program has good temporal locality, so does a parallel execution. (The design of the queue
– local access in LIFO order and stealing in FIFO order – is also crucial to maintaining locality.)
A single-threaded execution of a Cilk program follows the same execution order as its sequential
equivalent. If hyperobjects are used (in Cilk Plus), local views of the object in a parallel execution
are maintained based on the work-first assumption, and they are combined in an order matching
a single-threaded execution. For efficiency, book keeping for synchronization can be avoided in
a procedure until it is stolen. Finally, time, space, and communication bounds have been proven
based on the work-first approach.

3.2 Help-first Scheduling

All suspended spawned procedures in Cilk are partially executed. Thus, to enable concurrent exe-
cution, a work-first scheduler must allow the migration of partially-executed procedures. Consider
instead a scheduling discipline in which the newly spawned child procedure is placed on the queue
and the parent procedure continues execution. This approach is called help-first scheduling. In
a help-first scheduler, queues would contain spawned procedures that have not yet begun execu-
tion. Such a scheduler could achieve concurrent execution without supporting the migration of
partially-executed tasks. Furthermore, help-first scheduling can allow work to be distributed more
quickly when new procedures are spawned in quick succession from a common generating par-
ent and placed on the queue immediately for stealing by other threads. The earlier generation of
sibling procedures exposes available parallelism earlier in the execution, which can be helpful for
task graphs that are wide and shallow [9]. Unfortunately, sequential ordering is not maintained,
and proven space guarantees are not established for help-first scheduling. Schedulers that switch
between work-first and help-first schedulers based on available parallelism and space constraints
have been demonstrated [10].

3.3 Work-stealing for OpenMP Tasks

Since tied tasks in OpenMP are prohibited from migrating between threads once they have been
partially executed, a work-first scheduler would serialize the execution of an OpenMP program

10

using only tied tasks. No parent task would be eligible for stealing. However, a help-first sched-
uler could execute a program consisting of tied tasks in parallel, since executed child tasks on
the threads’ queues could be stolen. An OpenMP program consisting of untied tasks could be
scheduled for parallel execution using either work-first or help-first scheduling [6].

Note that an OpenMP implementation can choose to treat untied tasks the the same as tied
tasks, i.e., suspending tasks only at task scheduling points and not migrating suspended tasks. In
practice many do, using a help-first or even a breadth-first scheduler. OpenMP 3.1 [15] introduces
the taskyield construct to allow the user to specify a custom task scheduling point, informing
the run time that task suspension at that point in the code may be useful and enabling such a
suspension. OpenMP 4.0 [16] allows the suspension of untied tasks only at task scheduling points
rather than at any point in the execution. This restriction makes reasoning about correctness easier.
As of OpenMP 4.0, the only remaining difference between tied and untied tasks is that untied tasks
are allowed to migrate.

3.4 Victim Selection in Work Stealing

Another requirement of Cilk is that the selection of the victim to steal from must be random. The
work, space, and communication bounds for Cilk are based on this assumption. With processor
topologies evolving in design, complexity, and heterogeneity, it is not clear that randomized steal-
ing remains the best choice in practice. For example, it could be better for a thread to steal from
its neighbor running on a different SMT thread on the same core rather than from a thread on an-
other core. On a multi-socket system, it may better to steal from another thread running within the
same chip rather than a thread on another chip. Locality-based scheduling remains an area ripe for
research and can have profound impacts on performance [12].

3.5 Parallel Depth-first Schedules

Approaches outside the realm of work stealing are also worthy of consideration for task schedul-
ing. The parallel depth-first (PDF) schedule is an approach designed to coordinate the threads
to execute as close as possible to a single path in the computation, resulting in a lower memory
requirement. The particular single path to be followed is the sequential order. Because sequential
execution is depth-first, concurrent execution according to sequential order can be approximated
using a LIFO queue shared among all threads. The resulting space bound is better that that of the
work-first work stealing scheduler [3]. While work stealing is well suited to private caches, PDF
scheduling is well suited to shared caches [2, 5]. On the other hand, PDF scheduling can cause
sharing or false sharing of data in cache lines in a system using private caches, which causes the
cache lines to bounce back and forth between cores. A hybrid approach combining work stealing
and PDF scheduling can be used to schedule tasks hierarchically on systems with complex memory
architectures such as NUMA systems and combinations of shared and private caches [13].

11

4 Conclusion

Semantics and scheduling are intimately intertwined in task parallelism. Restrictions on task
scheduling, whether arising from semantic requirements or theoretical models, should be care-
fully considered before they are adopted in new task parallel programming frameworks, such as
those under discussion for future C and C++ standards. Particular attention should be paid to the
handling of thread-local variables and views of global variables. In OpenMP, the use of threadpri-
vate variables is a primary motivation for tied tasks, which points away from the use of work-first
scheduling. On the other hand, the use of reducers in Cilk Plus points toward work-first scheduling.

Work-first, help-first, PDF, locality-aware, and hybrid scheduling all have their merits and ex-
hibit significant trade-offs. Allowing flexibility in scheduling would allow further innovation in
this space for languages and libraries adopting the task parallel model.

12

References

[1] Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin, Federico Mas-
saioli, Xavier Teruel, Priya Unnikrishnan, and Guansong Zhang. The design of OpenMP
tasks. IEEE Transactions on Parallel and Distributed Systems, 20:404–418, March 2009.

[2] Guy E. Blelloch and Phillip B. Gibbons. Effectively sharing a cache among threads. In SPAA
’04: Proc. 16th ACM Symposium on Parallelism in Algorithms and Architectures, pages 235–
244. ACM, 2004.

[3] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias. Provably efficient scheduling for
languages with fine-grained parallelism. Journal of the ACM, 46(2):281–321, 1999.

[4] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system. Jour-
nal of Parallel and Distributed Computing, 37(1):55–69, August 1996.

[5] Shimin Chen, Phillip B. Gibbons, Michael Kozuch, Vasileios Liaskovitis, Anastassia Aila-
maki, Guy E. Blelloch, Babak Falsafi, Limor Fix, Nikos Hardavellas, Todd C. Mowry, and
Chris Wilkerson. Scheduling threads for constructive cache sharing on CMPs. In SPAA ’07:
Proc. 19th ACM Symposium on Parallel Algorithms and Architectures, pages 105–115. ACM,
2007.

[6] Alejandro Duran, Julita Corbalán, and Eduard Ayguadé. Evaluation of OpenMP task schedul-
ing strategies. In Rudolf Eigenmann and Bronis R. de Supinski, editors, IWOMP ’08: Proc.
Intl. Workshop on OpenMP, volume 5004 of Lecture Notes in Computer Science, pages 100–
110. Springer, 2008.

[7] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Cilk-5 multithreaded
language. In PLDI ’98: Proc. 1998 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 212–223. ACM, 1998.

[8] Mateo Frigo, Pablo Halpern, Charles E. Leiserson, and Stephen Lewin-Berlin. Reducers
and other Cilk++ hyperobjects. In SPAA ’09: Proc. 21st ACM Symposium on Parallelism in
Algorithms and Architectures, pages 79–90. ACM, August 2009.

[9] Yi Guo, Rajkishore Barik, Raghavan Raman, and Vivek Sarkar. Work-first and help-first
scheduling policies for async-finish task parallelism. In IPDPS ’09: Proc. 2009 IEEE Intl.
Symposium on Parallel and Distributed Processing, pages 1–12. IEEE, 2009.

[10] Yi Guo, Jisheng Zhao, Vincent Cave, and Vivek Sarkar. SLAW: a scalable locality-aware
adaptive work-stealing scheduler for multi-core systems. In PPoPP ’10: Proc. 15th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 341–342.
ACM, 2010.

[11] Robert H. Halstead, Jr. MULTILISP: A language for concurrent symbolic computation. ACM
Transactions on Programming Languages and Systems, 7(4):501–538, 1985.

13

[12] Stephen L. Olivier, Bronis R. de Supinski, Martin Schulz, and Jan F. Prins. Characterizing and
mitigating work time inflation in task parallel programs. In SC 12: Proc. Intl. Conference on
High Performance Computing, Networking, Storage and Analysis, pages 65:1–65:12. IEEE
Computer Society Press, 2012.

[13] Stephen L Olivier, Allan K Porterfield, Kyle B Wheeler, Michael Spiegel, and Jan F Prins.
OpenMP task scheduling strategies for multicore NUMA systems. Intl. Journal of High
Performance Computing Applications, 26(2):110–124, May 2012.

[14] OpenMP Architecture Review Board. OpenMP API, Version 3.0, May 2008.

[15] OpenMP Architecture Review Board. OpenMP API, Version 3.1, July 2011.

[16] OpenMP Architecture Review Board. OpenMP API, Version 4.0 (Release Candidate 2),
March 2013.

14

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic copy)

15

16

v1.38

