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Abstract 
 
This report documents results from an LDRD project for the first-principles simulation of the 
early stages of spray formation (primary atomization). The first part describes a Cartesian 
embedded-wall method for the calculation of flow internal to a real injector in a fully coupled 
primary calculation. The second part describes the extension to an all-velocity formulation by 
introducing a momentum-conservative semi-Lagrangian advection and by adding a compressible 
term in the Poisson’s equation. Accompanying the description of the new algorithms are 
verification tests for simple two-phase problems in the presence of a solid interface; a validation 
study for a scaled-up multi-hole Diesel injector; and demonstration calculations for the closing 
and opening transients of a single-hole injector and for the high-pressure injection of liquid fuel 
at supersonic velocity.   
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1 INTRODUCTION	
   
 
Radical changes in engine design to meet high efficiency and low emission demands require 
better predictive computational capabilities. The sophisticated combustion codes that have been 
developed at Sandia must be provided with the correct boundary conditions – namely the 
distribution of fuel spray near injection if direct liquid injection is the mechanism to deliver fuel 
to the combustion chamber. Direct observation of fuel atomization into drops is difficult: nozzles 
are typically about a millimeter long and a fraction of a millimeter in diameter, and the flow 
moves at speeds of the order of several hundred meters per second. Multiple scattering renders 
much of the optical diagnostics of limited use near the injector. The fact that the fuel can 
partially vaporize in the nozzle adds another level of complexity. Overall, the understanding of 
the physics that controls the fuel/air distribution of many combustion devices, particularly at high 
pressure, is quite limited.  
The main objective of this project is to predict the spatial spray distribution from high-pressure 
injection. Throughout this report the liquid phase will be considered sub-critical, therefore with a 
distinguishable gas-liquid interface. A recent review of modelling techniques for fuel injectors 
[1] indicates that a direct numerical simulation (DNS) of a two-phase flow with sharp and time-
resolved liquid-gas interface, while computationally expensive, is feasible thanks to the small 
volume where primary atomization takes place. The main challenge of this project was then to 
select an existing computer code for free-surface flow and to augment it with the capability to 
handle complex, possibly moving, injector geometries and high-pressure states of the fuel.   
The computer code CLSVOF (Combined Level Set Volume Of Fluid) was selected as the 
platform best suited for further development. CLSVOF is a finite-volume, pressure-based, 
multigrid solver for the incompressible, multi-fluid Navier-Stokes equations [2]. The 
distinguishing feature of the code is the CLSVOF technique that is used to capture the gas-liquid 
interface in time-resolved manner. The solver can also access a coarse-grained, grid-adaptive, 
parallel, computational environment thanks to the library Boxlib, developed at the Berkeley Lab 
to enable a common platform for high-performance computing [3].  

The application of CLSVOF to fluid dynamic problems relevant to fuel injection in aero- and 
rocket engines [4] was initiated by the author of this report and carried out in collaboration with 
the code main developer, Professor Mark Sussman from Florida State University [5]. CLSVOF 
has been validated in fuel atomization calculations with large liquid/gas density ratios (up to 
1000:1) and large Weber numbers (up to 200). Reference [6] provides a good description of the 
capability of the code in the early phase of this project. A like-on-like jet impingement 
simulation for low, moderate, and high injection velocities was compared to experimental data, 
showing that the salient features of the spray fan breakup and ligament frequencies were in 
overall agreement with both trends and magnitudes reported in the experiment. Particularly, the 
spray droplets distribution converged to the phase Doppler particle analyser data as the grid 
density was increased. These simulations represent an almost unique instance of primary 
atomization calculation executed without subgrid models on the scale and at the conditions of an 
actual experiment and directly validated with spray distribution measurements. One of such 
validation studies was carried out as a task of the LDRD.  
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The first part of this report describes a new embedded wall method for a Cartesian mesh. This 
method was chosen as the least intrusive approach to CLSVOF to retain the superior efficiency 
of interface capturing on a Cartesian mesh. The embedded wall method is designed so that the 
fluid dynamics solver can operate on each grid block unaware of the existence of a solid body 
within it: this approach requires the correct setting of face values for the computational cells that 
are traversed by the solid boundary. 

The second part of the report briefly highlights the two modifications in the code that enable the 
extension of the incompressible pressure solver to an all-velocity formulation: a momentum-
conservative semi-Lagrangian advection; and the addition of a compressible term in the 
Poisson’s equation. Density advection is carried out for each phase separately. Moreover, a 
simulation can be set up by choosing whether each material is compressible (and in that case, 
what its equation of state is), or incompressible. This arrangement is convenient in many fuel 
injection simulations when only the gas phase needs to be treated as compressible, while signal 
transmission in the liquid phase can be ignored. A demonstration of fuel injected at a velocity 
larger than the sound speed of the gas phase – causing a leading oblique shock followed by 
several weaker acoustic waves in the gas phase – illustrates this point. The time evolution of the 
transient fuel spray from the simulation is compared with synchrotron x-radiography, showing 
good qualitative agreement in the strength of the leading shock.  

As noted in the Conclusion, at the end of this project not all the validation cases of the 
incompressible solver have been repeated for the compressible version: doing so will be a 
priority for future projects. Funding opportunities, some of which have already materialized, will 
leverage on the capabilities developed in this LDRD. 
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2 AN EMBEDDED LEVEL SET METHOD FOR SHARP-INTERFACE 
MULTIPHASE SIMULATIONS OF DIESEL INJECTORS1 

	
  
 

2.1 Abstract 
We propose a comprehensive approach for treating complex wall boundaries in two-phase, free-
surface flow simulations on a Cartesian adaptive grid. The external liquid-gas interface is 
handled by the well-known combined level-set volume-of-fluid (CLSVOF) method. The new 
element is the coupling with the wall boundary representation obtained using a second level-set 
function. The merging and separation of multiple solid bodies can be easily accommodated in 
this framework. The no-slip boundary condition at the walls is enforced by properly populating 
the ghost cells of a narrow band inside the solid body with a simple and numerically robust 
treatment for the contact line. Verification tests with grid convergence analysis are presented for 
a stationary/oscillating body in single-phase flow and for a drop on an inclined plane. Two 
examples demonstrate the suitability of the proposed approach to study liquid injection. The first 
is a validation study with data from a scaled-up, transparent Diesel injector, to demonstrate how 
the seamless calculation of internal flow and jet primary atomization can be accomplished. The 
second is a demonstration of transient atomization response to a fully three-dimensional needle 
displacement of the injector. 
 

2.2 Introduction 
There are many free-surface flows that also require the management of complex boundary walls. 
One example is the process of spray formation from liquid injection. The simulation from first 
principles of spray atomization requires a non-trivial model of the injector in order to correctly 
define the boundary conditions of the calculation. The method for time-resolved interface 
capturing called CLSVOF (combined level-set volume-of-fluid) was applied, under various 
implementations, to model bubble and drop dynamics in viscous and viscoelastic environments 
[2, 7 ,8], ship waves [9], and underwater explosions [10]. Validation was carried out for sprays 
formed from jets subject to gas crossflow [11] or impinging on each other [12], in the latter case 
with excellent agreement with the statistics derived from experimental measurements.  
Under the assumption that internal flow characteristics had limited effects on primary 
atomization, a simple plug flow velocity profile was assigned as a boundary condition in Arienti 
et al. (2013). A more realistic inflow, via correlated random velocities with assumed length scale 
and turbulence intensity, was generated at the orifice exit of a jet injection simulation by Ménard, 
et al. [13], but very few studies have attempted to include the inflow turbulent conditions that 
result from the actual injector geometry. Notably, in the simulation of jet injection in gas 
crossflow by Herrmann [14], the injector was modeled as a short pipe tapering into a flush 

                                                
1	
  The	
  content	
  of	
  this	
  chapter	
  was	
  submitted	
  to	
  the	
  International	
  Journal	
  of	
  Multiphase	
  Flow	
  on	
  Jan.	
  19th	
  2013.	
  It	
  is	
  
in	
  the	
  process	
  of	
  being	
  re-­‐submitted	
  with	
  modifications	
  that	
  address	
  the	
  reviewers’	
  comments.	
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orifice. A single-phase, pre-computed large eddy simulation of pipe flow was stored as a time 
sequence of the pre-taper portion of the injector in the subsequent two-phase simulation. 

In this paper we develop a general approach to include the whole injector geometry in a primary 
atomization simulation. This is accomplished by introducing a second level set function to 
represent the injector’s walls in addition to the level set used to capture the gas-liquid interface. 
This approach is a valid alternative to boundary-fitted methods, where issues of grid 
deformation, re-generation and interpolation at each physical timestep can become critical in the 
case of moving walls. The solution we propose is to let solid boundaries and phase interfaces 
have unrestricted motion across underlying fixed grid lines. Not being constrained by wall 
shapes, the choice of the computational grid can be optimized for free-surface flow by selecting 
an isotropic and equispaced – Cartesian – grid.  
The most delicate and time consuming operation with Cartesian methods becomes the 
intersection of the solid body with the regular grid. This has prompted the development of 
several efficient algorithms for cut cells (for instance, in [15]). Motion and deformation of the 
solid body, possibly governed by a separate solver, as in [16], can still be fully coupled to the 
flow simulation. However, since cells cut by the solid wall can be arbitrarily small, explicit 
update schemes become overly restrictive for time-dependent problems, requiring either to 
extend the difference stencil of the spatial terms [17] or to use a cell-merging approach [18]. 

With a moving or deforming solid, the second issue for Cartesian methods is how to enforce the 
correct velocity boundary condition at the interface. The immersed boundary method originated 
by Peskin [19] is one of the widely used methodologies that introduce a smeared interface; the 
effect of solid boundaries on the flow velocity is modeled by a set of body forces distributed over 
the nearby field. A sharp solid wall is instead recovered by the embedded boundary formulation 
of Yang and Balaras [20], which introduces a field-extension strategy for the velocity and 
pressure of the computational cells that emerge from solid body motion.  
The aforementioned methods and several others are well established for single-phase flow, and 
their accuracy can be quite high. In developing methods for two-phase flow, an additional layer 
of complexity emerges because of the numerical treatment of the contact line at the intersection 
of the liquid-gas interface with the solid boundary: the contact line must be allowed to move, 
even if such motion is a mathematical paradox because of the no-slip boundary at the solid 
surface. This situation results in a degradation of the convergence properties of single-phase 
algorithms for solid body treatment when they are adapted to multi-phase problems. 

In the body-conformal finite element method by Baer et al. [21], the slip is imposed at the mesh 
nodes forming the contact line. In the sharp-interface approach by Liu et al. [22], the level set 
field in the vicinity of the contact line is redistanced in order to impose a specified contact angle; 
the slip condition is imposed on grid points in the vicinity of the contact line. In the level-set 
only method for sharp interfaces and arbitrary boundaries by Krishnan et al. [23], a local, two-
dimensional level-set field is reconstructed by fitting the interface to a parabolic curve that 
intersects the solid surface at exactly the given contact angle. The same embedded boundary 
approach by Yang and Balaras [20] was later complemented by a level-set based ghost-fluid 
method to treat gas-liquid interface [24] in the study of wake-ship interaction. In the volume-of-
fluid (VOF) continuum surface force (CSF) method by Afkhami and Bussmann [25], the contact 
line slip is achieved implicitly because the advection scheme for the liquid volume fraction 
utilizes face-centered velocities; in this way, the center of the cell is removed one half cell width 



 12 

away from the wall. A similar approach is used in this paper, but with the extension of a solid 
boundary arbitrarily positioned with respect to the Cartesian mesh, whereas in Afkhami and 
Bussmann (2009) the solid wall coincides with the boundary domain. In fuel injection simulation 
demonstrations, a level-set based ghost-fluid method for the gas-liquid interface with sharp solid 
wall treatement was explored by Noël et al. [26] and by Arienti and Sussman [27]. 
We propose to augment the CLSVOF method with a second level set function to capture the 
motion of multiple solid boundaries of arbitrary complexity. The level set framework enables 
contact, merging, and separation of solid boundaries in a more straightforward manner than body 
surface parametrization or triangulation (used, for instance, by Yang and Stern, 2009). The 
methodology we propose for the treatment of the contact line is somewhat simpler than the one 
by Afkhami and Bussmann (2009), but it is demonstrated to be robust for an arbitrary position of 
the solid wall in two and three dimensions. Finally, there is no need for pressure field extension, 
as required in the methods by Yang and Stern (2009) and Noël et al. (2012). Given these 
simplifications, the outcome of the verification tests presented in this paper is rather satisfactory, 
opening the way to future algorithmic improvements. The validation study with an actual Diesel 
injector presented later is also relevant, since there appears to be very few studies on the effects 
of non-trivial orifice geometry on spray formation. 
The numerical aspects of the embedded solid boundary algorithm are described first. The method 
is then verified with a single-phase crossflow passing over a half cylinder at low Reynolds 
number; the vorticity field arising from the interaction with the curved wall is compared with the 
results from more specialized, higher-order methods for single-phase flow, showing the lack of 
computational artifacts and acceptable rate of convergence. Next, the shape of a drop on a wall 
surface is calculated for different contact angles. The new element in these tests is that the wall is 
at an angle with respect to the Cartesian axes. The convergence properties of the final drop shape 
and the rate of volume conservation are discussed, including dynamic cases where the initial 
drop shape is different than the assigned one. 

For validation purposes we consider an early experimental study by Arcoumanis et al. [28], 
where the flow velocity inside a scaled-up Bosch six-hole transparent Diesel injector was 
measured with laser Doppler velocimetry for evaluating average and fluctuating components. 
The asymmetric spray obtained from the simulation is briefly discussed to point out the 
relevance of an injector simulation that can capture both internal and external flows. The last 
example concerns a transient injection where the injector’s needle moves relative to its cap. The 
geometry and motion data belong to a real injector, from the extensive data set by the Engine 
Combustion Network (ECN) reported in Karstengren et al. [29]; the calculation demonstrates the 
ease of the proposed methodolgy in dealing with moving boundaries and a changing topology 
(merging and separation) of the solid boundaries. 
 

2.3 Numerical Method 
The Navier-Stokes equations for incompressible flow of two immiscible fluids are solved with 
the one-fluid approach according to the level-set equations for multiphase flow [30]: 
 

! 

"(#) Du
Dt

= $%p + 2%(µ(#)D) $&' %H(#)      (1) 

!"u = 0          (2) 
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In the equations, u is the vector field, p the pressure, φ the level-set function, κ the interface 
curvature, and D the deformation tensor, D = (

! 

"u+(

! 

"u)T)/2; H is the Heaviside function and 
D/Dt the material derivative; σ is the surface tension coefficient. The smooth zero level of φ 
represents the time-evolving gas-liquid interface. The properties of density, ρ, and dynamic 
viscosity, µ, are function of φ everywhere in the computational domain. The same constant 
temperature is used for the liquid and the gas phases.  

In the coupled level-set/volume-of-fluid (CLSVOF) method, the advection equation for the 
liquid volume fraction, 

    

! 

DF
Dt

= 0        

 (7) 

is solved in step with φ so that the level-set can be re-initialized in a local mass-preserving fix; 
the liquid volume fraction F is used with the interface normal from φ to construct a volume-
preserving distance function.  

The non-linear advection terms in Equation (1) are calculated in non-conservative, semi-
Lagrangian unsplit form. Variables are located according to the staggered MAC grid 
arrangement; see Figure 1. A second velocity field for the liquid phase is extrapolated to the gas 
phase to advect the VOF function [31]. The liquid velocity is numerically divergence-free in the 
liquid region (but not necessarily divergence-free in the gas region, which might cause small 
over- or under-shoots in the VOF function). A full account of the CLSVOF interface capturing 
method and of the multiphase flow solver developed by Sussman can be found elsewhere 
(Sussman et al. 2007), together with verification studies of surface tension-driven oscillations of 
a spherical drop and of ligament pinch-off induced by capillary instability. 
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Figure 1. Schematics for face velocity treatment near a solid wall for the MAC 

arrangement on a Cartesian grid.  
 

2.3.1 Solid wall level set 

The solid boundary is represented as the zero level set of a second signed distance function, ψ. 
By convention, the field ψ is positive outside the body and negative inside it. The magnitude of 
ψ is the minimal distance between the cell centroid and the surface of the body. This function is 
calculated using the solid boundary description, which may consist of a parameterized curve or 
of a triangulation listing the surface nodes and their connectivities. In the latter, more general 
case, the calculation sweeps over all the triangles comprising the body surface and must account 
for the possibility that the minimal distance occurs either at the corners of triangle, along the 
edges of triangle, or inside the triangle.  

The methodology described next works for the solid geometries considered in this paper, but the 
reader interested in a more efficient approach is referred to the report by Mauch in 2000 [32]. 
Here, for simplicity of implementation and to increase execution speed, the ψ calculation is 
carried out on an auxiliary Cartesian box, labeled S, which is sized to contain the entire solid 
body. The result is the auxiliary ψ I,J,K; indices in capital letters are used to distinguish the 
function defined on the auxiliary grid from the local ψ i,j,k function defined on a grid block. The 
procedure to find the signed distance function from the Lagrangian elements, expressed as a list 
of elements and node coordinates, is as follows: 

 
1. For elements containing more than 3 nodes, break up the element into multiple triangles 

(so that each element has exactly 3 nodes). 
2. Traverse all elements: for a given triangle, if one of its sides exceeds the mesh spacing of 

the auxiliary grid, ΔxS, then split the largest side of that element in half in order to form 
two new triangles. Repeat until no more triangles exist with sides larger than ΔxS. 

3. Initialize the signed distance function from the refined element/node list, ψ, to a large 
positive value. Also, initialize their tag to zero for all the cells. 
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4. Calculate the node normal nnode as the average of the normals nelement of the adjoining 
triangles to the node. When required, derive the edge normal nedge from linear 
interpolation of the node normals from the two nodes that make up the edge.  

5. Traverse all the refined Lagrangian elements: 

a. For each triangle, find the Cartesian cell (I, J, K) whose center is closest to the 
triangle’s centroid. 

b. Traverse the 3×3×3 stencil about cell (I, J, K). For each cell (I’, J’, K’), check if the 
projection from its center onto the plane of the triangle is in its interior: 

i. If “yes”, compute d = (xI’, J’, K’ - xcentroid)·nelement.  
If tag = 0 or | d | < | ψ I’, J’, K’ | then set ψ I’, J’, K’ = d and tag = 1; 

ii. If “no”, then check if the projection is in the interior of the triangle’s edge 
for each of the three edges. If “yes”, find the distance from the cell center 
to its projection on the edge, dproject. If tag = 0 or | dproject | < | ψ I’, J’, K’ | then 
set ψ I’, J’, K’ = dproject·sign((xI’, J’, K’ – xprojection)·nedge) and tag = 1; 

iii. If “no”, then the closest distance from the cell center to the element must be 
at one of the element’s three nodes. For each node compute the distance 
dnode. If tag = 0 or | dnode | <  
| ψ I’, J’, K’ | then set ψ I’, J’, K’ = dnode· sign((xI’, J’, K’ – xnode)·nnode) and tag = 1. 

6. Extend the distance the signed distance function from the cells that have tag = 1 into the 
cells that are not tagged.  

 
When N solid bodies exist, the corresponding level set functions are generated in sequence, one 
per body: ψ1 and ψ2, ..., ψN. The functions are then combined on S according to the relation 
 

  

! 

" = min("1,  " 2,…,  "N )       (8) 
 
The reason why the minimum is sought in this operation is the convention that ψ > 0 in the fluid 
region. Evaluating Eqn. (8) cell by cell makes it particularly easy to merge solid bodies without 
issues of connectivity or of skewed computational cells.  
The last step is to quadratically interpolate the auxiliary ψI,J,K onto the local ψi,j,k of an AMR 
block. In case of moving wall boundaries, ψI,J,K needs to be calculated at every timestep; for 
stationary solid bodies, ψI,J,K is only calculated at the beginning of the simulation, whereas ψi,j,k is 
interpolated at run-time as requested by the AMR remeshing. The timing of this algorithm is 
discussed for two cases of fixed and moving boundaries in Sections 4 and 5, respectively.  
 

2.3.2 Boundary conditions at the wall 
 
The components of flow velocity at the wall are made consistent with the no-slip boundary 
condition through the Poisson equation and the projection operator. The solid wall velocity is 
first stored for all the nodes in the tessellation. Then, for each cell of the auxiliary grid whose 
center xI,J,K is the closest to an element of the tessellation, the value vI,J,K is assigned as a 
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weighted average of the nodes’ values belonging to the element; the weights are defined as the 
normalized inverse distance of xI,J,K to the nodes positions. At this point, vI,J,K is only known in a 
few cells of S. The values of vI,J,K are extended in a narrow band from the solid surface by a 
simple front-advancing procedure where an unmarked cell takes its value from the neighboring 
cells that have already been marked. The procedure is concluded by the quadratic interpolation 
the auxiliary variable vI,J,K onto the local vi,j,k.   

In transferring data to the solver’s face velocities, it is convenient to refer to Figure 1, which 
provides a two-dimensional schematics of the conventional MAC grid: cell and face values that 
need to be populated at every iteration are indicated by empty symbols. For a cell in the fluid 
region, ψ i, j, k > 0, a solid face is a face in which the solid level set function is negative in at least 
one of the adjoining cell centers: for instance, ψ i, j ,k . ψ i+1, j, k < 0. The velocity at the i +1/2 face 
is then calculated as the average of the cell values vi, j, k and vi+1, j, k. 
The boundary condition for the pressure projection step can be formally written as 

! 

"p # n face = $i+1/ 2, j,k ui+1/ 2, j,k
* % vi+1/ 2, j,k( )# n face = 0 ,     (9)

 

where u* is the provisional field computed from the velocity and volume fraction fields of the 
previous time step. Thus, in the actual implementation, the Poisson equation

 
is solved under the 

conditions that u* = v and ∇p . nface = 0 at solid faces. 

!"!

t2!

!

gas!
liquid!

solid!

Figure 2. Contact angle schematics. The zero ψ  iso-contour (thick red line) represents 
the solid wall and the zero φ  iso-contour (thinner blue curved line) represents the gas-

liquid interface. 
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2.3.3 Curvature and contact angle 

 
In calculating curvature at the gas-liquid interface, the “method of heights” based on the level set 
function φ is followed. This procedure can be described for simplicity in two dimensions (see 
Figure 1 and Figure 2), but it is implemented in the code also for three dimensions. The use of 
the level set function in the method of heights was introduced in Sussman and Ohta (2009) in a 
departure from the previous approach in the CLSVOF method (in Sussman et al. 2007 and 
Stewart et al. 2008) based on volume fraction. It was suggested by Sussman and Ohta (2009) that 
computing the curvature from the level set function is easier in the context of an adaptive 
hierarchy of grids and slightly more accurate, especially when two interfaces come in close 
proximity to each other.  

As in the case with the volume fraction, a 5-point stencil needs to be considered for cell (i, j). 
Curvature is computed if  

     

! 

"i, j # "i', j ' $ 0  and 

! 

"i, j # "i', j ' ,        (10) 

 

where (i’, j’) belongs to the stencil. The only difference with respect to the volume-fraction 
based method is that to determine the heights hi-1, hi, and hi+1 it is necessary to look at where the 
sign of φ changes, e.g., to find hi one has to consider the values φ i, j* with j* = j-3, …, j+3.   
To implement the contact between the gas-liquid interface and the solid wall, the algorithm for 
curvature reverts to calculating the divergence of the interface normals,   

 

! 

" =#$ n% =#$ #% #%( ),      (11) 

 

if any cell of the height function stencil is in the solid domain, ψi’, j’ < 0. The finite difference 
formulation, albeit less accurate than the method of heights, enables the straightforward 
enforcing of a prescribed contact angle θ.  
The 3×3 stencil necessary for this calculation is represented in Figure 2 by the dashed line. Finite 
differences between adjacent centers are used to calculate the normal vectors nφ at the corners, 
identified by crosses in the schematics. If one of the cell centers falls in the solid region, nφ is 
replaced by the normal determined from θ and from the normal to the local zero solid level set, 
nψ = ∇ψ/|∇ψ |. For this, auxiliary vectors t1 and t2 need to be calculated,  

 

! 

t1 = n" # n$          (12) 

and 

! 

t2 = n" # t1.         (13) 
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The vector t2 is tangential to the solid surface and points away from the liquid phase by 
construction. The contact normal is calculated as   
 

! 

˜ n cont = sign(n" # t2) sin$ t2

t2

% cos$ n&       (14) 

with   

! 

ncont = ˜ n cont ˜ n cont .        (15) 

 
The process is concluded by evaluating the curvature at the face centroids. Surface tension is 
only applied where i) φ changes sign across adjoining cells and ii) ψ is positive. Because cell 
face velocities are used, the slip length is always Δx/2. 
 

2.3.4 Adaptive mesh refinement 

 
Another component of the simulation capability presented in this paper is the use of block-

structured, adaptive mesh refinement (AMR) for computationally intensive calculations. Starting 
from the base level, boxes (with a minimum size of, say, 323 cells) are combined to cover all the 
tagged cells within the assigned coverage efficiency. This new set of blocks with the same grid 
spacing forms level 1. The refinement ratio between two consecutive levels is two. The new 
level can in turn be tagged for refinement, and the process is repeated until the input grid 
resolution is achieved. Data on the fine level are either copied from a previous time step or, when 
the grid structure has changed locally, they are conservatively interpolated from the underlying 
coarse level. The liquid-gas interface is always embedded in the finest grid level to avoid gross 
interpolation errors (Kadiouglu and Sussman 2008).  

The definitions and operators necessary to carry out the AMR tasks are provided by the BOXLIB 
library [33], which is developed and maintained by the Center for Computational Sciences and 
Engineering group at Lawrence Berkeley National Laboratories. 
The advective terms are calculated on all levels, and the updated data on a fine level are averaged 
down to the underlying coarser one. The sparse matrix system that results from discretizing the 
pressure correction equation with discontinuous coefficients on the AMR blocks is solved by the 
multigrid preconditioned conjugate gradient method (MGPCG). Compared to our previous 
studies on the topic of spray atomization (Li et al. 2010 and Arienti et al. 2013), the current work 
takes advantage of a new MGPCG method by Duffy et al. [34], which is specifically developed 
for the adaptive hierarchy of grids. With an optimal blocking factor, it is found that the new 
MGPCG AMR method no longer consumes the majority of CPU time per timestep as the 
number of adaptive levels increases. 
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2.4 Verification tests 
 

2.4.1 Crossflow over a half cylinder 

 
A verification problem for which there is a large pool of numerical and experimental results is 

the calculation of the two-dimensional flow around a circular cylinder of diameter D. The 
purpose of this test is to show that the embedded solid boundary technique does not generate 
artifacts and that the convergence is at least first-order. Flow in the far field is assumed to be 
uniform, u = U∞ for t > 0. The Reynolds number is defined as Re = DU∞/ν. At sufficiently small 
values of Re, as in this test, the flow can be considered symmetrical and only a half cylinder is 
used. The half cylinder is located at x = 10D and  side = 0 in a 18D×6D Cartesian domain with 
symmetry boundary condition along the bottom side.  

Medium and fine grid resolutions are obtained by halving Δx in both coordinate directions, 
starting from the coarsest grid of 64×192 cells. An even finer grid resolution is calculated with 
512×1536 cells. 

A close-up of the contours of vorticity around the half-cylinder, both inside and outside the 
solid boundary, is shown in Figure 3 at Re = 20. The zero iso-contour of the solid level-set 
corresponds to the red line. No spurious effects due to the embedded boundary implementation 
are observable, and the plot qualitatively agrees with the one obtained by Calhoun (2002) based 
on solving the streamwise vorticity equations. The dotted, dashed and continuous lines 
correspond to the coarse (64/6 cells per unity length), intermediate (128/6) and fine grid 
resolution (256/6). The finest grid resolution (512/6) coincides almost exactly with the fine grid 
resolution and it is not shown in the plot. 

The convergence properties for this case are listed on Table 1. Since there is no closed-form 
solution for this flow, we evaluate convergence by comparing two simulations at consecutive 
grid refinements. The norms are 

! 

l2 = " i
2

i=1

N
#( )

1/ 2
, 

! 

l1 = " ii=1

N
#  and 

! 

l" = max
N
# i , where δ = {δi} is the 

vector difference of the field values (the two components of velocity and vorticity) taken from 
two consecutive grid resolutions; N is the total number of grid points of the coarser of the two 
grids. Thus, the column in Table 1 that is labeled “fine-xfine” lists the norms of the difference 
vector between the 256×768 grid and the 512×1536 grid, with one grid point every two skipped 
on the latter. Finally, the last column in Table 1 is the convergence rate calculated from the slope 
of the linear fit of the three points listed on each row. Note that the l1 and l2 norms are divided by 
N. The l∞ norm shows most clearly that the convergence rate is of first-order for the two 
components of velocity and of zeroth-order for vorticity. The computational cells with the largest 
difference between two consecutive grid resolutions are located, as expected, at the boundary of 
the solid body. 
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Figure 3. Contours of vorticity around a half-cylinder in crossflow at Re =20. The 

contours, from -6 to 0 in steps of 0.2, are superimposed to the zero solid level-set line (in 
red), which represents the boundary of the cylinder. The dotted, dashed and continuous 
lines correspond to the coarse (64/6 cells per unity length), intermediate (128/6) and fine 

resolution (256/6).  
 

The last element of this test is the evaluation of the reattachment length L from the cylinder’s 
trailing edge. Values at Re = 20 and Re = 40 are listed on Table 2 as a function of grid spacing. 
The differences of consecutive values of L are 0.251, -0.086 and 0.018 for Re = 20; and 0.503, -
0.214 and 0.039 for Re = 40. These differences correspond, in both cases, to a more than linear 
convergence. The experimental results of Dennis and Chang [35] and the numerical results of 
Calhoun [36] are also listed on Table 1: the measured reattachment lengths fall between the 
results from the present calculations and the values reported by Dennis and Chang (1970). 
 
 

Table 1. Error norms and convergence rates for the two components of velocity (ux, uy) 
and vorticity ω z for pairs of increasingly finer grids. 

 
 Coarse-

medium 
medium-
fine 

fine- 
xfine 

convergence  
rate 

ux     
l2/ N 0.0011935 3.2936e-4 2.7023e-5 2.73 
l1/ N 0.027651 0.015710 0.0022279 1.82 
l∞ 0.14596 0.070753 0.035915 1.01 
uy     
l2 / N 7.5492e-4 8.2722e-5 1.1274e-5 3.03 
l1/ N 0.069099 0.0044771 0.0009688 3.08 
l∞ 0.14596 0.041539 0.035915 1.15 
ωz     
l2/ N 0.0055727 0.0016805 0.0005150 1.72 
l1/ N 0.064975 0.028570 0.0098922 1.36 
l∞ 1.81089 2.22074 1.81129 -1.60e-4 
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Table 2. Reattachment length L evaluated from the cylinder’s trailing edge as a function 

of grid spacing. 
 

 Δx/D = 
0.09375 

 
0.04688 

 
0.02344 

 
0.01172 

Dennis &  
Chang 
(1970) 

Calhoun 
(2002) 

L (Re = 20) 0.825 1.076 0.990 1.008 0.94 0.91 
L (Re = 40) 2.130 2.633 2.419 2.458 2.35 2.18 

  
 
 
 
 
 

2.4.2 Oscillating cylinder 
 
The cylinder is now subject to the horizontal motion 

! 

x = "Asin(2#f t)           (16) 

The two relevant parameters for this flow are the Keulegan-Carpenter number, KC = Umax/(f D) 
= 2πA/D and the Reynolds number Re = UmaxD/ν. The values used here, KC = 5 and Re = 100, 
correspond to a regime of periodic, symmetric vortex shedding.  
Unphysical, temporal oscillations of the pressure fields have been reported for non boundary-
conformal methods when the body is moving or deforming. The primary source of this error is 
that some computational cells belonging to the solid suddenly become active fluid cells. Seo and 
Mittal [37] make the case that the violation of local mass conservation near the immersed 
boundary causes these spurious pressure oscillations. 

In Figure 4, the drag coefficient derived from an oscillating cylinder calculation is compared 
with results from Dütsch et al. [38]. The calculation is started from a quiescent field and 
integrated in time for 3 cycles, until periodic vortex shedding is established. The computational 
domain is 16D × 8D, with Δx = 0.0156D and Δt = 0.008 D/Umax. The cylinder is located at x = 
8D and y = 0.  
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Figure 4. Drag coefficient as a function of time. Comparison with results from Dütcsh et 

al. 1998. 
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(g) (h) 
 
Figure 5. In-line oscillating cylinder in a fluid at rest (Re = 100 and KC = 5). Pressure and 

vorticity contours at four different phase-angles.!-1.1 < P < 1.1 with intervals of 0.09 and!-
26 < ω  < 26 with intervals of 0.95. (a) 0°; (b) 96°; (c) 192°; (d) 288°. Dashed lines 

correspond to negative iso-values. 
 

 
The good agreement with the calculation by Dütsch et al. (1998) is encouraging, considering that 
their result was obtained with the much more problem-specific configuration of a body-
conformal grid oscillating with the cylinder and that the wall grid resolution in the two cases is 
comparable. The pressure artifact is rather modest for this particular choice of Δx and Δt, even 
though the drag coefficient exhibits some ringing, visible at the crests and troughs of the curve in 
Figure 4. In agreement with the error analysis by Seo and Mittal (2011), we indeed observed 
increasing spurious oscillations if the same simulation was run with a much smaller timestep but 
with the same grid spacing. 
The pressure and vorticity flow fields, as shown in Figure 5, are also devoid of spurious effects. 
As the cylinder moves to the left, a thin boundary layer develops from the upper wall and 
eventually detaches in a vortex (the same process would occur symmetrically on the bottom half 
of the cylinder). Vortex generation stops when the body reaches its extreme left location, as 
shown in frames (c)-(d). Then the cylinder moves backwards, and the same process takes place 
on its right side. The flow fields in Figure 5 compare well with the analogous plots in Dütcsh et 
al. (1998) and Yang and Balaras (2006) and indicate that the present method can properly 
capture the dynamics of the vorticity field. This and the previous tests suggest a convergence rate 
that is approximately linear with grid refinement. Such a low order of convergence, compared to 
already existing methods specialized for single-phase flow, is not a concern as we tackle the 
interaction of the liquid-gas interface with the solid boundary. In that more challenging context 
we will show that linear convergence or higher is maintained, at least in the case where the static 
contact angle is 90o. 
	
  

2.4.3 Static drop on a horizontal plane	
   
We first consider a half-drop on a plane aligned with one coordinate direction. Simulations are 
carried out first in two dimensions for ease of discussion. As in all the other tests in this Section, 
the density of the liquid is 1000 kg/m3 and the density of the gas is 1.20 kg/m3. The viscosities of 
the two phases are 0.0010 kg/m-s and 1.78⋅10-4 kg/m-s, respectively. Surface tension is 0.0709 
N/m. A symmetry plane is established at the left of the domain with outflow boundary conditions 
at the other sides. The computational domain is a square with 32×32 cells. For contact angle θ = 
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90o, the initial condition with symmetric boundary is a quarter of a circle with radius slightly 
larger than eight computational cells.  

In Figure 11, the shape of the drop after 100 iterations (when the solution approximately reaches 
steady state) can be compared with the exact solution, drawn as a dashed line. It appears that the 
final shape of the drop depends in part on the location of the solid wall. Two cases are 
considered: in Figure 6(a), the ψ = 0 line overlaps cell faces whereas in Figure 6(b) the line ψ = 
0 passes through cell centroids. The wall-at-the-cell-face case corresponds to an almost flawless 
initial reconstruction of the half circle, which is essentially preserved in the rest of the 
simulation. This is shown by the superposition of φ = 0 isocontours drawn at regular intervals. 
The maximum variation (in absolute value) of the drop volume with respect to the initial 
condition is very small: 0.02%.  
 
 

 

AB

 
(a) (b) 

 
Figure 6. Effect of wall location for static drop. The starting and prescribed angles are 
both the 90o angle. The curved continuous lines are the φ  = 0 isocontours at different 

times. In frame (a), the wall (thick horizontal line) overlaps the cell faces: all the 
isocontours overlap. In frame (b), the wall passes through the cell centroids. The exact 
solution is shown as a dashed circle line. Line A is drawn at time t = 0; line B is drawn 

after five time steps.	
  	
  
 
 
Conversely, the wall-at-the-cell-centroid case is the least ideal situation: the wall boundary 
treatment is unable to correctly reconstruct the curved surface, which appears flattened at the 
contact point. This unbalance triggers a small oscillation (~Δx/2) of the drop shape, which 
eventually stabilizes in a slightly oblong shape. The maximum variation of the drop volume with 
respect to the initial condition is larger than in the previous case, but still rather modest for this 
grid resolution: 0.85%. We verify that the drop shape outcome is intermediate when the solid 
wall traverses an intermediate position between the centroid and the cell face.  
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2.4.4 Effect of changing contact angle 
 
A second set of tests consists in starting from the quarter of circle shape and assigning a contact 
angle different than 90o. The response of the drop provides an indication of the behavior with a 
dynamic contact angle. The dependence on the position of the solid wall is examined for θ	
  =	
  120o 
contact angle (Figure 7) and for θ	
  =	
  60o angle (Figure 8). The notation and the initial conditions 
are the same as in the previous test. The initial drop radius is R0 ≅ 8 Δx.  
The steady-state solution is a truncated circle with the same area. The final radius, Rθ (in 
radians), is a function of the contact angle 0 < θ  < π, 

    

! 

R" =
#

2" $ sin2"
R0.      (17) 

Clearly, Rθ (θ = π/2) = R0. The value of Rθ is used to draw the circular arc corresponding to the 
exact solution in Figure 7 and 8.  

 

 
Figure 7. Effect of wall location for a drop with 120o contact angle starting at 90o. The 
curved continuous lines are the φ  = 0 isocontours at different times. In frame (a), the wall 
(thick horizontal line) overlaps the cell faces. Line A is drawn at time t = 0; line B and C 
after one and two time steps; line D after 15 time steps. In frame (b), the wall passes 
through the cell centroids. The exact solution is shown as a dashed circle line. Line A is 
drawn at time t = 0; lines B and C after three and five time steps; line D after 15 time 
steps. 
 
 

The steady-state solution is reached within a few hundred iterations. In the case of wall at the cell 
face, the average area variation with respect to the initial value is 0.13% with maximum variation 
of 0.28%. For the same contact angle, but with the wall located at the cell centroid, the average 
variation is 4.1%, with maximum variation of 7.7%.  
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B
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C
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A closer examination of Figure 7(a) indicates that the 120o angle is not represented exactly. The 
correct drop shape begins to be recovered in the first cell away from the solid wall, leaving an 
artifact of size Δx. The size of the artifact increases to 3/2 Δx in Figure 7(b) because the location 
of the solid wall is just such that the cell containing the contact point is not active (ψi,j < 0). This 
discrepancy causes the drop to be slightly deformed with a larger area variation compared to the 
face-aligned case.  
A similar behavior is observed for the 60o contact angle. Figure 8 underscores that the cell 
containing the contact point cannot resolve the correct contact angle, but that the drop profile 
away from that cell is captured correctly. As in the previous examples, there is a dependency of 
the result on the location of the solid wall. Particularly, the average value of area variation with 
respect to the initial value is 0.11%, with maximum 0.40%, when the wall is located at the cell 
face. With the wall located at the cell centroid, these variations are larger and similar to the 
values for the 120o contact angle case. The case in Figure 8b is arguably the worst in terms of 
position of the solid wall: by displacing the wall downward by a tiny fraction of the grid size, the 
cell intersected by the solid wall becomes an active cell, and the simulation (not shown here) 
recovers area variations as small as the ones in the cell-aligned case.  

	
  
 

B
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Figure 8. Effect of wall location for a drop with 60o contact angle starting at 90o. The 

curved continuous lines are the φ  = 0 isocontours at different times. In frame (a), the wall 
(thick horizontal line) overlaps the cell faces. Line A is drawn at time t = 0; lines B and C 
are drawn after one and two time steps; line D, after 15 time steps. In frame (b), the wall 
passes through the cell centroids. The exact solution is shown as a dashed circle line. 
Line A is drawn at time t = 0; line B and C after one and five time steps; line D after 15 

time steps.  
 
 

2.4.5 Convergence study for a static drop on an inclined plane 
 
A more general situation with respect to the static drop test of Sub-section 2.4.3 is when the wall 
is not aligned with a Cartesian direction. Since the previous tests indicated artifacts on a size at 
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most comparable with the grid size, we expect to recover linear convergence with grid 
refinement even in this case. Contact angles of 90°, 120°, and 60° are considered, but this time 
with the solid wall inclined at an angle of 18°. Starting from a computational grid corresponding 
to 8 cells across the drop diameter, grid resolution is increased by a factor of two until there are 
approximately 256 cells across the diameter, as shown on Table 3. 
The metrics used for this test are the percentage variation with respect to the exact drop height, e0 
(calculated in the normal direction to the wall),  

    

! 

e0 = 1+ cos(" #$ )( )R0,      (18) 

and the percentage variation with respect to the base length, L0,  

    

! 

L0 = 2sin(" #$)R0 .      (19) 

To evaluate the simulation values of the height and base of the drop, the φ = 0 iso-contour needs 
to be intersected with ψ = 0. This is accomplished by looking at the edges of the zero level of the 
function ξ = min(φ, ψ), which is used in post-processing to exclude the ghost region portion of 
the drop.  
The variations in e and L capture the drop shape deformations, so that a narrower base, for 
instance, corresponds to a larger height. Area fluctuations due to the treatment of the liquid 
surface can be completely ignored for 16 or more cells per diameter.  

For θ = 90° the convergence of L to 2R0 is more than linear and that the difference with respect 
to the exact value is quite small. A similar trend is found for the convergence of e to R0. For 
instance, for Δx/D = 1/32, the drop recovers almost exactly the shape of a half circle, narrower at 
its base (-1.3%) and slightly taller (+0.16%) The small error and super-linear convergence rate 
are of course due to the 90° contact angle, which forces a condition close to symmetric boundary 
and benefits from a curvature evaluation almost as accurate as that away from the solid 
boundary. 
For contact angles larger or smaller than 90°, the discrepancy in height and base length increases 
substantially. For instance, if θ = 60° and there are only eight computational cells across the drop 
diameter, the drop shape is sufficiently deformed to suffer rather large deviations in L and e. 
However, with Δx/D = 1/32, the error becomes of the order of 1% or less. A similar behaviour is 
observed for θ = 120°. For both angles, the rate of convergence is linear, or less than linear but 
never below 0.5. Tests carried out with different plane inclinations confirm the reduction of the 
convergence order if the contact angle is not ninety degree. A similar outcome is reported by 
Afkhami and Bussmann (2009) for the contact line curvature of a three-dimensional drop resting 
on a Cartesian boundary: with their special setting, the curvature converged quadratically for θ = 
90° and linearly for other contact angles.   
This test concludes a rather extensive examination of the proposed embedded boundary 
algorithm. The rate of convergence is on average first order, and, when present, artefacts are only 
of the size of one grid spacing near the contact point. The examples that follow demonstrate the 
robustness of the method in two-phase flow simulations. Thus, while simpler with respect to 
existing, but less general, algorithms (because limited to contact point treatment with specially 
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aligned boundaries, or to single-phase flow), the current staircase approach constitute a good 
starting point for future improvements. 
 
 
 
Table 3. Convergence for a drop at different contact angles on a plane inclined by 18° for 
three contact angles 90°, 120° and 60°; e is the height of the drop at rest and L is the base 

length. 
 

 
 
 

2.5 Validation with Diesel injector data 
 
The injector chosen for the validation calculation is the scaled-up Bosch six-hole diesel nozzle 
by Arcoumanis et al. (1998). The nozzle was manufactured at a 20:1 scale to allow flow 
measurements inside the sac volume and the injection holes; the nominal hole size of the model 
was 3.52 mm, which corresponds to about 0.176 mm in the real injector. The conical element 
(the needle) was placed at 6 mm above its seat, at the maximum lift of the second stage of a two-
stage injector. A cross-sectional view of the sac and the cylindrical orifice tube is shown on 
Figure 9.  

The test fluid had density and kinematic viscosity of 893 kg/m3 and 1.64⋅10-6 m2/s, respectively. 
The measured flow rate of the 6 mm lift configuration was 5.8⋅10-4 m3/s, corresponding to the 
average velocity of 10.2 m/s reported by the authors for the orifice. Based on this velocity and on 
the orifice diameter, the Reynolds number is approximately 2⋅104. LDV measurements were 
taken in vertical planes across the injection hole; as shown in Figure 9, the planes were located at 
9.5, 10.5, 13.5 and 16.5 mm from the axis of symmetry of the injector.  

The measured pressure difference across the transparent injector was 0.85 bars, giving a total 
discharge coefficient of the needle seat and injection holes of 0.78. Because the pressure in the 
recirculation zone at the entrance to the hole could decrease below the vapour pressure of the 
liquid, the occurrence of cavitation could not be excluded in the experiment. The onset of 
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Convergence  
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90°        
ΔL (%) 0.08995 -1.804 -1.296 -0.02686 -0.1076 0.02589 1.14 
Δe (%)  0.07685 -0.05861 0.1599 0.08282 0.02847 7.879e-4 2.69 
120°        
ΔL (%) 8.6273 0.4063 0.5106 0.8001 0.7584 0.2524 0.632 
Δe (%) 0.2148 0.8081 0.3105 0.5934 0.07909 0.06727 0.500 
60°        
ΔL (%) -18.99 -5.258 0.01349 1.098 -0.9131 -0.6358 0.735 
Δe (%) -1.971 -1.863 -1.045 -0.5870 -0.1089 0.03595 1.20 
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cavitation was found to strongly depend in the experiment on the needle lift and eccentricity, but 
cavitation is actually not modelled in the simulation presented here. 

The surface tension coefficient used in the simulation is 0.024 N/m. The static contact angle is 
90°. An important difference with respect to the experimental setup is the absence of the 
expansion tube that collects the test liquid after passing the orifice: in the problem setup the 
liquid is injected into air at standard conditions. This setting may affect the exit velocity of the 
jet, but has the advantage of showing the direct link between spray characteristics and nozzle 
internal flow.  

For ease of discussion, we will refer to the side where the sac is located as “bottom”, in the 
negative y direction of Figure 9. The uniform inlet boundary velocity is applied along the open 
area that is visible at the top side in the figure to deliver a sixth of the mass flow rate reported in 
the experiment. However, to reduce the computational cost, the simulation includes only a 
quarter of the injector and one of the six orifices. This configuration is displayed in Figure 10. 
The domain of 100×100×40 mm is sufficiently large to include the development of the jet for 
several orifice diameters downstream of the orifice exit. With a coarse mesh of 80×80×32, the 
four levels of adaptive refinement used in the simulation provided the finest grid resolution of 
0.0781 mm in the liquid phase. The orifice diameter measures approximately 45 grid cells. 
The injector walls were described by a triangular mesh of 28,800 elements with smallest grid 
size of 0.4 mm. Within one solution cycle, the handling of the solid wall required 5.7% of the 
CPU time, much less than the treatment of the gas-liquid level set (34.7%), the pressure solve 
iterations (33.4%), and the nonlinear advection term solution (15.5%). This cost does not include 
the calculation of the solid level set, which is performed only once on the auxiliary grid at the 
start of the simulation. In the interval used for this analysis, the average sum of all the 
computational cells was 3.7⋅107. Calculations were carried out on the Redsky Sandia cluster 
using (on average) 48 SUN X6275 blades (2.93 GHz dual socket/quad core configuration with 
12 GB RAM per compute node). 
Upstream of the injection hole, a time-averaged pressure drop of approximately 0.75 bar occurs 
through the portion of the injector that is included in the calculation. This value compares well 
with the value 0.78 reported in the experiment. The highest flow velocities in the internal flow 
occur at the upper corner of the hole inlet, where the lowest fluid pressures can be expected. This 
is clearly visible in Figure 9, where the Reynolds-Averaged Navier-Stokes (RANS) velocity field 
reported in Arcoumanis et al. (1998) (Figure 9a) is compared with a snapshot from the current 
simulation (Figure 9b). In the RANS calculation, turbulence was simulated by the two equation 
k-ε model on a coarser, co-located, non-uniform, non-orthogonal numerical grid. In the snapshot 
from the CLSVOF simulation, only one in twenty vectors is shown, due to the much greater grid 
density than in the RANS calculation; the continuum black line is the intersection of the ψ = 0 
iso-contour with the slicing plane.  
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(a) (b) 
Figure 9. Vector flow field along a domain cross-section. A RANS simulation result from 
Arcoumanis et al. (1998) in frame (a) compared to an instantaneous snapshot from the 

present calculation in frame (b). 

 
Figure 10. Terminal tip of the injector. Simulation snapshot at time t = 35 ms of the full 

domain.  
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The examination of several snapshots suggests that the recirculation re-attaches approximately 
past half of the hole. For a more quantitative analysis of the flow, the mean and root mean square 
(rms) velocity are compared to the LDV measurements in Figure 11. The plots are drawn along 
the orifice radius from the four cross-sections shown on Figure 9b and normalized by the mean 
orifice velocity of 10.2 m/s. In each plot, the distance of the axial coordinate is counted from the 
top of the cross-section and normalized by the diameter of the cross-section.  
The velocity mean values compare favorably with the experiment; however, the measured 
recirculation zone is broader and longer than in the simulation and faster acceleration of the 
computed flow can be seen at x = 13.5 mm. Where data points exist near the walls, it can be 
noted that are the computed boundary layer is thicker: this aspect can be attributed lack of 
resolution near the wall, or to the absence of a turbulence model near the wall. For this Re = 
10,000 case, we find that the average wall shear velocity, uτ = (τw/ρ)1/2 is of the order of 0.02 m/s, 
corresponding to a location in wall units of the first point away from the wall of r+ = Δx uτ /ν ~ 1.  

Pressure fluctuations with respect to the average cross-section value (not shown here) are mostly 
positive in the upper half of the exit orifice, consistently with the lower mean velocity values in 
that zone. Occasionally, negative pressure variations are observed in the upper half because of 
flow unsteadiness. The measured rms values of velocity are however consistently larger than in 
the calculation, with the largest discrepancy in the recirculation zone (this rms peak is similarly 
lost in the RANS calculation from Arcoumanis et al. 1998). Velocity fluctuations near the 
orifice’s walls are actually of the correct magnitude, but they decrease toward the center of the 
orifice. This defect in rms is common to under-resolved simulations that attempt to capture the 
unsteadiness of turbulent flow without a turbulence model. It is also possible that cavitation near 
the entrance of the orifice contributes to the large fluctuations there. A cavitation model will 
need to be added in future validation studies. 
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Figure 11. Comparison with LDV measurements along the injection hole. The symbols 
correspond to measurements, the line to calculated results. Left column: mean axial 

velocity along the injection orifice at four cross-sections along the injection hole (see 
Figure 9 for reference). Right column: root mean square values of axial velocity. From 

top to bottom: x = 9.5, 10.5, 13.5, and 16.5 mm. 
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   (a)  (b) 

 
Figure 12. Droplet size distribution in the half the spray that is closer to the injector’s tip 

(a) and farther away (b) at t = 35 ms.  
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Considering now the process of spray formation, in Figure 10 a few drops larger than the orifice 
diameter can be observed in the initial build-up of the jet, with one large drop attached the 
injector’s wall. Droplets begin to detach from the jet approximately two orifice diameters 
downstream of the hole, and from there a complex network of ligaments and drops rapidly 
consumes the liquid core.  
The most apparent feature of the jet outside the nozzle is that it slightly bends upward (in the 
positive y direction in Figure 9), away from the tip of the injector. This is due to the occurrence 
of larger velocities in the bottom half of the orifice compared to the upper half. As the faster side 
of the jet spreads less outwardly, it is relevant to interrogate the simulation about the 
corresponding drop size. Droplets are identified as isolated blobs from the φ = 0 liquid surface. 
Their volume is translated into the effective diameter of the same-volume sphere, producing a 
histogram of diameter distribution. The one shown in Figure 12, for a snapshot taken at t = 35 
ms, seems to suggest that the half of the spray that is closest to the tip of the injector has fewer 
droplets in the range from 200 to 400 mm. At this point, as with the other results reported in this 
section, more data would need to be collected before quantitative statements can be made 
 

2.6 Demonstration with moving parts 
 
The last test consists of an instance of rigidly moving wall that is used to demonstrate the 
flexibility of the new method. The test takes advantage of current efforts by the Engine 
Combustion Network (ECN) to characterize the internal geometry of automotive injectors. Five 
nominally identical Diesel Bosch injectors with single axial orifice form the baseline that is 
presently identified as “Spray A” (ECN 2012). X-ray tomography, X-ray phase-contrast imaging, 
silicone molding, and optical microscopy are combined in this effort to define a database of the 
internal geometry (including deviations from the nominal shape) in a format that is immediately 
accessible to simulation. The ECN makes also available a trajectory file with the three-
dimensional motion of the needle determined from X-ray phase-contrast and recorded by a high-
speed camera.  
Three snapshots of the needle motion are displayed in Figure 13. The needle tip (in green) 
translates according to the specified trajectory with respect to the injector cap. For instance, in its 
fully open position in frame (a) the base of the needle is outside of the computational domain, to 
the left of the dashed line: the lift of the needle from its seat opens an annular passage to the 
liquid. Conversely, in frame (b) the needle base is almost completely inside the computational 
domain. Frame (c) shows the measured deviation of the needle motion from a perfectly axial 
trajectory and the resulting non-axisymmetric annular passage. As in all the other injectors of the 
Spray A batch, the SN 210675 geometry [39] used in this test is affected by slight manufacturing 
defects: off-center position with respect to the sac, tapering of the hole, and deviation of its 
cross-section from a perfectly circular shape of diameter 90 mm. These geometrical 
characteristics are discussed by Kastengren et al. [29].  

In the CLSVOF simulation, the solid velocity necessary to populate the boundary condition of 
the needle is calculated directly by differentiation of the displacement values in the trajectory 
file. The measured injection pressure of 155 MPa is applied as constant boundary value at the 
boundary face. The exit pressure is applied to the other five sides of the computational domain 
box. The gas phase has density of 22.8 kg/m3, corresponding to an ambient pressure of 6 MPa at 
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900 K; the liquid gas/density ratio is therefore 30.8. The dynamic viscosity of the liquid is 
0.00613 g/cm-s; the dynamic viscosity of the gas is 0.00022 g/cm-s. The surface tension 
coefficient used in the simulation is 0.024 N/m. The static contact angle is 90°. 
The base computational domain is a Cartesian 64×64×192 box with the longest side oriented 
along the injector’s axis measuring 5.1 mm. Two levels of refinement are added to obtain the 
minimum grid spacing of 6.64 mm. The resulting 13.5 cells per orifice diameter, while adequate 
for this simple demonstration, are obviously not sufficient for an in-depth study of Diesel 
injection during transients.  

The average sum of all the computational cells was 1.0 107 in the interval used for this study. 
Timing the simulation shows that the handling of the solid wall rises to 47.3% of the CPU time 
within one solution cycle, and it is now comparable to the pressure solve iteration (45.4%). The 
third most expensive item is the solution of the nonlinear advection term (4.4%). The increased 
CPU time percentage is due to the calculation at every time step of the needle level set ψ2, which 
is carried out on an auxiliary grid of 93×93×144. It is noted, however, that the full calculation of 
ψ2 is not strictly necessary in this case because of the simple motion of the solid body, and that a 
faster algorithm for this task could be easily implemented even for a more complex trajectory. 
The representation of the injector’s moving geometry and the pressure boundary condition 
enable a realistic variation in time of mass flux through the orifice. To illustrate this point, Figure 
14 shows the pressure field on a section plane passing through the axis of the injector in a close-
up of the full computational domain. The black line corresponds to the intersection with the 
instantaneous jet surface; the red line is the intersection with the solid wall. Contours of pressure 
inside the solid domain are due to the overlapping of refinement levels (therefore their variation 
in time bears no physical significance).  

The first frame in Figure 14 captures a moment before the needle returns to its seat, when 
pressure in the liquid phase gradually decreases between inlet and orifice exit. The second frame 
displays the partial closure of the flow in the upper half (negative y direction in the plot 
reference) of the injector. The flow upstream of the contact line finds its way only through the 
bottom passage, therefore the pressure drop is more localized near the constriction. The jet 
outside of the orifice still maintains a turbulent appearance, with drops forming a few diameters 
downstream. 
In the third frame of Figure 14 the passage between needle and cap has closed, the mass flux 
through the pressure inlet has dropped to zero, and the pressure in the sac and orifice region is at 
this moment slightly lower than in the outside environment. The jet carries a residual 
momentum, but its appearance has reverted to laminar and drop formation is much delayed. A 
large chunk of liquid is on the point of detaching from the remaining liquid in the sac. Sequences 
of the three-dimensional rendering of the liquid surface during the opening and closing of the 
orifice are shown in Figure 15 and in Figure 16, respectively. The end of the sequence in Figure 
16 coincides with the orifice opening again, and with a new flow of fuel coming through the 
injection hole. The flow at these conditions is very rich in features and deserves further analysis 
in a following work. 
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(a)    (b)    (c) 

 
Figure 13. Relative motion of the two injector’s components. The dashed line is the trace 

of the boundary plane in the simulation. 
 
 
 
 
 
 
 

 
a) t = 1690 ms 



 36 

 
b) t = 1710 ms 

 
c) t = 1740 ms 

Figure 14. Snapshots of plane sections through the injector axis. The black line is the 
intersection with the jet surface; the red line is the intersection with the solid wall.   
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Figure 15. Orifice opening sequence. 
 
 

 
 

Figure 16. Orifice closing sequence. 
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3 MULTIPHASE COMPRESSIBLE CAPABILITY 
 

In this Section, the multiphase capability for fuel injection simulation is extended to the 
compressible domain. This extension was carried out at Florida State University (Tallahassee, 
Florida) by Professor Sussman and his Ph.D. student Matthew Jamison. LDRD funding made it 
possible to follow their research and to execute a few computational tests related to liquid fuel 
injection: one of these tests is reported in detail here. The compressible, multiphase semi-implicit 
method is described in detail in [40], and only a few components related to the compressible 
formulation will be highlighted in the following.  
It is important to point out that the interface reconstruction algorithm, CLSVOF, from Section 1 
is now replaced by a more general multi-material methodology called Moment of Fluid (MOF). 
The MOF method tracks liquid volume fractions through advection, as does VOF, but uses the 
centroid of a material region (i.e., the first moment) inside a computational cell to determine the 
orientation of the interface [41]. The interface is chosen as the piece-wise linear reconstruction 
that exactly captures the volume fraction and minimizes error in the centroid. Centroid error can 
be interpreted as curvature in the interface, which ultimately is what should trigger adaptive 
mesh refinement. A description of the MOF method in the context of free-surface flow can be 
found in [42] together with the discussion of several computational tests (including a six-orifice 
injector simulation analogous to the one in Sec. 2.5). 
A second difference with respect to the CLSVOF formulation is the concept of momentum-
conserving projection to find velocities at cell faces [40]. The projection relies on the concept of 
departure region of a cell under advection. In Figure 17 the green region is solid, the yellow 
region is liquid, and the remainder is gas. The departure region ΩD represents the forward-Euler 
approximation of the cell that is mapped to the cell enclosed by dashed purple lines (in this case, 
the control volume associated with a cell-face velocity). Ω1 to Ω4 are the intersection of the 
departure region with the control volumes. 

 

 
Figure 17. Illustration of semi-Lagrangian discretization for cell-face velocity. 
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3.1 Numerical model 
In the multiphase, compressible formulation of the Navier-Stokes equations, density becomes a 
function of pressure and temperature as well. Momentum and mass conservation equations are 
written as 
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Pressure is evaluated according to the equation of state (EOS) for the fluid,  

! 

p = EOS(e,"),        (22) 

where e is the internal energy.  
For single-phase flow, Kwatra et al. [43] take advantage of the pressure evolution equation to 
alleviate the CFL condition imposed by the sound speed in simulating inviscid compressible 
flow with shocks, contacts and rarefactions. The pressure evolution equation 
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can be derived from the mass conservation equation and from the material derivative Dρ/Dt = 
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This expression is equivalent to Eqn. (23) if we ignore the second term on the right-hand side of 
Eqn. (24) and recall that c2 = (∂p/∂ρ)s. Since pressure is not a conserved quantity, it is neither 
necessary nor physically relevant to use a conservative advection strategy. Intermediate, 
advected values (ρu)a and (ρE)a, however, are calculated with a momentum-conservative 
strategy. E is the total energy, E = e+1/2|u|2. With these updated values, the pressure is updated 
following Eqn. (23):  
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On the left-hand side of Eqn. (25) we recognize a formulation of the Poisson’s equation with 
variable coefficients. On the right-hand side, care must be taken in discretizing ∇·ua using 
advective face velocities that are consistent with the pressure projection update of velocity; see 
[40] for details. After evaluating pressure at cell faces, the cell-averaged momentum and energy 
are updated 
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In the case of multiphase flow, wherever liquid and gas phases coexist in a computational cell Ωj, 
this needs to be separated in a liquid (Ωj

L) and gas (Ωj
G) regions. Volume fractions are advected 

and the MOF reconstruction is performed in order to reconstruct the interfaces in the cell of 
interest. Mass is kept separate, therefore two equations must be solved for density.  
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for the liquid phase and 
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for the gas phase. Finally, any material in the simulation can be treated as compressible or 
incompressible or as a rigid body, as shown in the following example. 
 

3.2 The Argonne experiment 
 
A demonstration was carried out by replicating the conditions of the experiment reported in [44] 
by the Advanced Photon Source and Energy System Division at the Argonne National 
Laboratory in collaboration with Cornell University. Synchrotron x-radiography and a fast x-ray 
detector were used in the experiment to record the time evolution of fuel spray from a high-
pressure injector. The diesel injection system was a high-pressure common-rail device that can 
be typically found in a passenger car, but with a specially fabricated single-orifice nozzle, 178 
mm in diameter. The injection pressure was varied between 50 and 135 MPa. SF6, a heavy gas 
with molecular weight of 146, was used to replicate the relatively dense ambient gas 
environment during the adiabatic compression part of the engine cycle, when the diesel fuel is 
normally injected. The sonic speed in SF6 at room temperature is 136 m/s, considerably less than 
the 330 m/s speed of sound in air at the same conditions. 

Published simulation results for the Argonne experiment have relied on the representation of the 
liquid phase with discrete Lagrangian parcels [46]. Similar to models developed for dilute 
sprays, each Lagrangian element, or parcel, represents several particles with identical fluid 
properties, such as velocity and temperature. However, since the interaction of a liquid element 
in the jet core with other liquid elements is in general different from the interaction of an isolated 
drop with the surrounding gas flow, such a Lagrangian parcel approach remains empirical in that 
the mass, momentum, and energy coupling terms between parcels and with the gas phase need to 
be carefully evaluated for each injection configuration.  

A fully Eulerian approach to the calculation of supersonic injection is presented in [45]. This is 
an alternative approach where the multiphase flow is treated as a mixture supplemented with 
additional equations for the mass fraction of the mixture constituents. However, without 
explicitly solving for mass, momentum and energy equation for each phase, it becomes very 
challenging to model Eulerian closure terms in a manner that is consistent with the 
thermodynamics of the system, particularly the acoustic speed of the resulting homogenized 
multiphase system. In general, an equilibrium formulation must be assumed, so that the 
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temperatures, pressures and velocities for both phases in the gas/liquid mixture are the same. The 
flow in [45] is treated as inviscid, whereas it has the correct viscosity (of liquid and gas) in the 
current simulation. 
The results presented here were carried out using the all-speed capability coupled to the MOF 
interface-capturing technique. The total injection pressure reported for this case was 135 MPa 
and corresponded to a condition where the fuel jet velocity increased monotonically and always 
exceeded the sound speed in the gaseous phase. Because of the unavailability from [44] of the 
injector geometry, or even only the pressure drop measured across the device, a simple hollow 
cylinder was used to generate a pressure drop corresponding to the initial leading edge velocity 
of the jet (the cylinder is visible on the top left-hand side of Figure 18). The jet tip velocity, 
reported as a function of time in [46], was used to estimate the pressure drop. With a value at the 
start of injection of 200 m/s, the pressure boundary value was assigned to be 5 MPa in the 
simulation.  
The computational domain was reduced to a quarter by imposing symmetry conditions at two 
orthogonal planes passing by the injector’s axis. Outflow boundary conditions were set on the 
remaining domain boundaries. The computational domain measured 2 cm in the axial direction 
of injection and 1 by 1 cm in the transverse direction. The base level consisted of 32×32×64 
computational cells, with six levels of refinement. At run time, cells were tagged for refinement 
according to two distinct criteria: liquid volume fraction above a 0.05 threshold; or local pressure 
gradient sufficiently steep. In this way, the liquid surface and the leading shock wave could both 
be resolved with the maximum available grid density. A snapshot of the adaptive grid taken at 
the same instant of Figure 18 is shown in Figure 19. One can easily track the location of the 
leading shock as well as the main body of the jet. Each level of refinement is composed by up to 
a few thousand grid blocks. Each grid block had maximum grid size of 64 cells. The coverage 
efficiency, that is, the ratio of cells meeting the refinement criteria to the cells eventually tagged 
for refinement, was 0.90. The simulation shows long ligaments, but only a limited amount 
droplets surrounding the jet. The simulation proceeded by calculating the stable time interval at 
each step. To capture in a time-resolved manner the leading shock in the gas phase, both sound 
speed and flow velocity were used to estimate the time interval, whereas only the flow velocity 
(and not the much larger sound speed) was used for the liquid phase. As a result, after an initial 
transient where Δt decreased to 10-10 s, the time step eventually stabilized at around 2⋅10-9 s. 
 
 



 42 

 
Figure 18. Simulation snapshot at 38 ms from injection with contour plot of the gas 

density saturated at 0.0075 g cm-3 to highlight the leading edge oblique shock wave and a 
system of weaker compression waves neat the liquid jet. The insert at the top of the 

figure shows the surface of the jet tip, colored by velocity. The simulation snapshot is 
compared at the same instant with the average of 20 x-radiography images from distinct 

fuel injection cycles (in the bottom right-hand side insert). The false-color levels of x-
radiography were set to accentuate small differences in the x-ray intensity arising from 

the slightly increased x-ray absorption in the compressed gas. 
 
 
In examining the density plot in Figure 18, one can also notice oblique waves propagating from 
the body of the jet. A similar pattern can be observed in one optical Schlieren image from [44], 
although in a different configuration and condition than in the simulation. The Schlieren image 
displays a broad, dark region near the jet leading edge. This region corresponds to the optically 
dense cloud of droplets surrounding the thin, main fuel jet. This is obviously only a 
demonstration simulation that requires further verification and validation tests before carrying 
out an in-depth study of the features of the jet core. 
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Figure 19. Superimposed levels of refinement on one side of the computational domain 
at the time corresponding to Figure 18. 
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4 CONCLUSION 
 
In this LDRD project, a new simulation capability was developed where internal and external 
flows can be calculated seamlessly across an injection orifice. The external liquid-gas interface is 
handled by the combined level-set volume-of-fluid (CLSVOF) method and the solid wall 
boundary is represented by a different level-set function on the same block-structured grid. This 
approach shifts the burden of handling complex internal geometries to the much simpler task of 
obtaining a tessellation of the injector surfaces, therefore sidestepping volume mesh generation 
altogether.  

The numerical technique for handling solid boundaries belongs to the group of Cartesian grid 
methods with embedded boundaries, but the capability to model at the same time liquid jet 
formation and free-surface turbulence is unique. Moving parts of the injector and contacts, such 
as they occur when the needle shifts during operation cycle, are trivial to include because they 
simply require a level-set recalculation. The accuracy of the embedded boundary method appears 
to be at best first-order accurate, but improvements can be borrowed from other methods, mostly 
single-phase, at the price of increased implementation complexity.  
In the last part of the project, this multiphase capability was extended to compressible flow. The 
new algorithm uses a semi-implicit pressure update scheme that asymptotically preserves the 
standard incompressible pressure projection method in the limit of infinite sound speed. This 
attribute makes the new method applicable to compressible and incompressible flows, while 
allowing for larger time steps than the standard explicit CFL restriction. Shocks are captured and 
material discontinuities are tracked, without the aid of any approximate or exact Riemann solver. 
An example relevant to Diesel injection is presented at the end of the report. This new capability 
opens many new modeling opportunities in multiphase applications where compressibility plays 
a big role. 

Further work will address issues associated with internal flow in real-size injectors, such as 
cavitation and liquid phase compressibility. The most outstanding challenge remains the essential 
“stiffness” of this class of problems, that is, the injection physics requires the stable timestep to 
be several orders of magnitude smaller than the full injection cycle time.  

During the course of this project, a few opportunities have emerged, sometimes outside the 
automotive field, that directly leverage on the capabilities developed in the past two years: 

•  A new LDRD project was awarded in 2012 by the Geo-Science Foundation to study the 
scattering properties of atmospheric aerosol ($245k/year for three years). Key simulations are 
expected to be carried out with CLSVOF. 
•  An LDRD proposal in Engineering Science ($500k/year for three years) was down-selected in 
2013: the decision on the final awards is pending at this moment. The project concerns the 
development of a Large Eddy Simulation framework for primary atomization. Because of the 
diagnostics’ difficulties in accessing the near-injection region, CLSVOF will provide “truth” 
simulations that will be used for model development.   
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•  An exploratory study on fiber manufacturing processes for polymers will begin in Summer 
2013 with $38k in funding: the capability of maintaining a sharp liquid-gas interface at very 
large gas velocities (even supersonic) was considered a unique asset for modeling this complex 
manufacturing process.  Collaborations to explore the behavior of molten metals in highly 
turbulent gas flow are under consideration. 
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