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Abstract

This report presents an efficient and accurate method for integrating a system of ordinary
differential equations, particularly those arising from a spatial discretization of partially differ-
ential equations. The algorithm developed, termed the IMEX a algorithm, belongs to a class
of algorithms known as implicit-explicit (IMEX) methods. The explicit step is based on a
fifth order Runge-Kutta explicit step known as the Dormand-Prince algorithm, which adap-
tively modifies the time step by calculating the error relative to a fourth order estimation. The
implicit step, which follows the explicit step, is based on a backward Euler method, a special
case of the generalized trapezoidal method. Reasons for choosing both of these methods, along
with the algorithm development are presented. In applications that have less stringent accu-
racy requirements, several other methods are available through the IMEX a toolbox, each of
which simplify the fifth order Dormand-Prince explicit step: the third order Bogacki-Shampine
method, the second order Midpoint method, and the first order Euler method. The performance
of the algorithm is evaluated on to examples. First, a two pawl system with contact is modeled.
Results predicted by the IMEX a algorithm are compared to those predicted by six widely used
integration schemes. The IMEX a algorithm is demonstrated to be significantly faster (by up
to an order of magnitude) and at least as accurate as all of the other methods considered. A
second example, an acoustic standing wave, is presented in order to assess the accuracy of the
IMEX a algorithm. Finally, sample code is given in order to demonstrate the implementation
of the proposed algorithm.
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1 Introduction

The IMEX a algorithm is an adaptive time stepping, error-controlled, fifth order implicit-explicit
(IMEX) algorithm. The Matlab toolbox IMEX a has been developed concurrently with several
rigid body dynamic models. These models include inertial sensors [1, 2], elastic-plastic impact
in mechanisms [3–6], energy dissipation across frictional interfaces [7, 8], fluid flow over panels
[9, 10], and chatter in leaf spring-connector pin systems [11, 12].

Each of the problems that are mentioned above are generally classified as stiff nonlinear prob-
lems. A stiff system is characterized by having a differential equation that necessitates most nu-
merical methods to take infinitesimally small step sizes in order to achieve numerical stability.
These problems often exhibit behavior in which the numerical solution in a given regime can ei-
ther oscillate about the true solution (leading to computational inefficiencies due to the changing
sign of the velocity terms), or else grows unbounded. By Dahlquist’s theorem [13], explicit meth-
ods are unstable when it comes to solving stiff systems. Implicit integration schemes, however, are
often low accuracy methods. The IMEX a algorithm thus seeks an efficient, stable solution for the
temporal integration of stiff systems of equations.

The IMEX a toolbox is an approach to discretizing and integrating a system of equations.
Several existing approaches are currently built into Matlab, such as the ‘ode’ family of solvers.
These solvers, though, are generally explicit methods that often do not converge for sufficiently
stiff problems [2] or introduce large amounts of numerical damping. The IMEX a algorithm, by
contrast, is shown to be a more efficient approach to numerically solve a stiff, nonlinear system of
differential equations, as demonstrated in Sections 4 and 5. The theoretical basis for the algorithm
is first presented in Section 2, and details about the code implementation are provided in Section
3.
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2 Theoretical Development

The IMEX a algorithm is composed of two routines: a fifth order Runge-Kutta method for the
explicit step, and a backward Euler method for the implicit step. The time increment for each
step is adaptively determined using a Runge-Kutta fourth and fifth order Dormand-Prince method
concurrently with the explicit portion of the integration scheme. The fifth order Runge-Kutta
method is chosen due to its higher accuracy and ability to choose a larger stable time step than
lower order methods; however, this comes at the trade-off of necessitating more evaluations of the
system’s force function. For less stiff problems, or cases where less stringent controls on accuracy
are required, the algorithm can potentially be more efficient with a lower order method. For this
reason, an option is included in the IMEX a toolbox to use a second and third order Runge-Kutta
algorithm known as the Bogacki-Shampine method for the explicit step and adaptive time stepping
in place of the Dormand-Prince method. Two additional low order algorithms are also included in
the toolbox for solution of linear systems: a first order Euler method, and a second order Midpoint
method.

2.1 Mathematical Formalism of IMEX methods

A simpler case of an IMEX method (hereafter referred to as the first order IMEX method) is
composed of a first order Runge-Kutta explicit step (an explicit Euler method) with the previously
mentioned backward Euler implicit step. This case is considered in what follows to demonstrate
the mathematical formalism of an IMEX method. Given a system

I
d
dt

(
y˜(t)

)
=Ay˜(t)+ f˜

(
y˜, t

)
, (1)

where I is the identity matrix, y˜ is the system’s “unknown state” vector, t is time, A is the system’s

matrix, and f˜ is the vector of applied forces and all nonlinearities in the system (such as terms like

y3
i ), the first order IMEX method is derived by taking a forward difference approximation for the

time derivative

I

y˜ n+1 − y˜ n

△ t

=Ay˜ n+1 + f˜ n+1 (2)

at integration step n with time step size △ t. Grouping like terms together

(I− △ tA)y˜ n+1 =

(
y˜ n+ △ t f˜ n+1

)
(3)

y˜ n+1 = (I− △ tA)−1
(

y˜ n+ △ t f˜ n+1

)
. (4)

Solution of this equation is then divided into two steps, which distinguishes it from a purely implicit
method

y˜ ∗n = F˜
(
△ t,y˜ n, f˜ n+1

)
, (5)
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where for the first order case

F˜
(
△ t,y˜ n, f˜ n+1

)
= F˜ (1) =

(
y˜ n+ △ t f˜ n+1

)
, (6)

and
y˜ n+1 = (I− △ tA)−1 F˜ (1). (7)

Equations 5 and 6 are a first order Runge-Kutta explicit integration step and Eq. 7 is a backward
Euler implicit integration step. This conceptual division of Eq. 4 is the key aspect of an IMEX
algorithm. While for the first order IMEX method, this is still mathematically equivalent to a gen-
eralized trapezoidal method, higher order approximations for the explicit step will offer improved
computational performance. In the case where the system equation is of the form

M
d
dt

(
y˜
)
+Ky˜ = f˜ ∗, (8)

the framework established in Eq. 1 can be utilized via the identities

A=−M−1K and f˜ =M−1 f˜ ∗. (9)

2.2 Higher Order Extensions

The Fifth Order Runge-Kutta Explicit Step

From (5) and (6), a higher order approximation of the explicit step can be obtained by direct
substitution. In the IMEX a algorithm, a fifth order Runge-Kutta method is used, which replaces
Eq. 5 with

F˜
(
△ t,y˜ n, f˜ n+1

)
= F˜ (5) = y˜ n +

35
384

κ˜ 1 +
500

1113
κ˜ 3 +

125
192

κ˜ 4 −
187

6784
κ˜ 5 +

11
84

κ˜ 6, (10)

where

κ˜ 1 =△ t f˜
(

y˜ n, tn

)
κ˜ 2 =△ t f˜

(
y˜ n +

1
5κ˜ 1, tn + 1

5 △ t
)

κ˜ 3 =△ t f˜
(

y˜ n +
3
40κ˜ 1 +

9
40κ˜ 2, tn + 3

10 △ t
)

κ˜ 4 =△ t f˜
(

y˜ n +
44
45κ˜ 1 − 56

15κ˜ 2 +
32
9 κ˜ 3, tn + 4

5 △ t
)

κ˜ 5 =△ t f˜
(

y˜ n +
19372
6561 κ˜ 1 − 25360

2187 κ˜ 2 +
64448
6561 κ˜ 3 − 212

729κ˜ 4, tn + 8
9 △ t

)
κ˜ 6 =△ t f˜

(
y˜ n +

9017
3168κ˜ 1 − 355

33 κ˜ 2 +
46732
5247 κ˜ 3 +

49
176κ˜ 4 − 5103

18656κ˜ 5, tn+ △ t
)

κ˜ 7 =△ t f˜
(

F˜ (5), tn+ △ t
)

(11)
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and their coefficients in (10) are found via the extended Butcher Tableau [14, 15]. Equation 10 is
the Dormand-Prince [14] fifth order accurate solution to the ordinary differential equations used
to model the system (1). The Dormand-Prince method is a form of the Runge-Kutta explicit inte-
gration equations, and is specifically chosen as it is a more suitable solution method for fifth order
approximations than other, similar methods such as the Fehlberg or Cash-Karp methods [15]. The
quantity κ7 is used in the adaptive time step calculation as discussed in the following section.

The Dormand-Prince Adaptive Time Stepping Method

The time step for the IMEX a numerical integration scheme is determined by first calculating the
error between the fifth order estimate of F˜ (5) (given in Eq. 10), and the fourth order estimate

F˜ (4) = y˜ n +
5179
57600

κ˜ 1 +
7571

16695
κ˜ 3 +

393
640

κ˜ 4 −
92097

339200
κ˜ 5 +

187
2100

κ˜ 6 +
1

40
κ˜ 7. (12)

Thus, the error function is

e˜ n =

∣∣∣∣F˜ (5)−F˜ (4)
∣∣∣∣

e˜ n =

∣∣∣∣( 35
384

− 5179
57600

)
κ˜ 1 +

(
500

1113
− 7571

16695

)
κ˜ 3 +

(
125
192

− 393
640

)
κ˜ 4

−
(

187
6784

− 92097
339200

)
κ˜ 5 +

(
11
84

− 187
2100

)
κ˜ 6 −

(
1

40

)
κ˜ 7

∣∣∣∣ . (13)

The error criteria is then calculated as

χ =

 τ

norm
(

e˜ n

)


1/4

, (14)

for a given error tolerance τ . Equations 10 and 13 are iteratively solved, varying △ t, until χ >
(1/2)1/4 (i.e. until the norm of the error is less than twice the specified error tolerance). In each
iteration, the new time step is calculated as

△ t ≡ χ △ t. (15)

In order to prevent numerical oscillations, △ t is limited to only change by ±10%, provided that
the error is within the maximum specified tolerance τ .

The Bogacki-Shampine Second/Third Order Method

In cases where a lower accuracy solution is acceptable or for a less stiff nonlinear system, some
computational savings can be introduced by means of using a lower order explicit method. The
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Dormand-Prince method, a fifth order accurate method, requires seven evaluations of the system’s
force function at every time step. By contrast, the third order accurate Bogacki-Shampine method
requires only four force function evaluations at every time step. Similarly to the Dormand-Prince
method, the Bogacki-Shampine method chooses the time step size by comparing the error between
two different explicit estimations of the solution. The third order accurate solution is given as

F˜
(
△ t,y˜ n, f˜ n+1

)
= F˜ (3) = y˜ n +

2
9

κ˜ 1 +
1
3

κ˜ 2 +
4
9

κ˜ 3, (16)

with coefficients

κ˜ 1 =△ t f˜
(

y˜ n, tn

)
κ˜ 2 =△ t f˜

(
y˜ n +

1
2 △ tκ˜ 1, tn + 1

2 △ t
)

κ˜ 3 =△ t f˜
(

y˜ n +
3
4 △ tκ˜ 2, tn + 3

4 △ t
)

κ˜ 4 =△ t f˜
(

F˜ (3) n, tn+ △ t
)
,

(17)

where the weights in Eq. 16 are determined by the extended Butcher Tableau [14,15]. The second
order accurate solution, used for determining the relative error and estimating the next △ t is

F˜ (2) = y˜ n +
7

24
κ˜ 1 +

1
4

κ˜ 2 +
1
3

κ˜ 3 +
1
8

κ˜ 4. (18)

Similarly to the Dormand-Prince method,

e˜ n =

∣∣∣∣F˜ (3)−F˜ (2)
∣∣∣∣ , (19)

and the same criteria are used for calculating the time step size

χ =

 τ
norm(e˜ n)

1/4

, (20)

△ t ≡ χ △ t. (21)

The Euler-Midpoint First/Second Order Method

In order to provide an efficient methodology for linear systems, two other methods are available in
the toolbox: a first order Euler method, and a second order Midpoint method. It is advantageous
to have a simple and efficient method to apply when the system contains no nonlinearities (i.e.
is purely linear); however, even some linear systems still are better solved using the higher order
algorithms. With those considerations in mind, these two methods are included, and adaptive time
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stepping is determined as the error between these two estimates. The first order estimate is given
in Eq. 6, and the second order estimate is

F˜ (2) = y˜ n+ △ t f˜
(

y˜ n +
1
2
△ tF˜ (1), tn + 1

2
△ t

)
. (22)

Similarly to the methods discussed previously,

e˜ n =

∣∣∣∣F˜ (2)−F˜ (1)
∣∣∣∣ , (23)

and the same criteria are used for calculating the time step size

χ =

 τ
norm(e˜ n)

1/4

, (24)

△ t ≡ χ △ t. (25)

Alternative Explicit Methods

Other methods (see [14, 15]) were investigated as alternatives to the Dormand-Prince and the
Bogacki-Shampine methods as well as the Euler and Midpoint methods, such as the second order
Runge-Kutta method referred to as Heun’s method, the fourth order Runge-Kutta method referred
to as Fehlberg’s method, the fourth order Adams-Bashforth method, and the second order Adams-
Bashforth-Moulton method. The last two methods, attributed to Adams, Bashforth, and Moulton,
belong to a separate family of numerical algorithms from the Runge-Kutta family; however, they
are also explicit methods for integrating systems of equations. For each of the methods consid-
ered, the numerical stability was not as high as for the Dormand-Prince and Bogacki-Shampine
methods, with the exception of Fehlberg’s method; however, Fehlberg’s method does not offer any
significant advantages over either the Dormand-Prince or the Bogacki-Shampine methods, and is
not discussed here. Thus, the final version of the toolbox only employs the four explicit methods
detailed in the previous sections.

2.3 Implicit Integration Step Comments

In Eqs. 4 and 7, a backward Euler method implicit integration step is utilized. This method belongs
to a class of schemes termed the generalized trapezoidal method [13], and is a linear, multi-step
method. Dahlquist’s theorem [13], makes three statements regarding linear multi-step methods

1. An explicit, unconditionally stable linear multi-step method does not exist.

2. A third order accurate, unconditionally stable linear multi-step method does not exist.

12



3. The second order accurate, unconditionally stable linear multi-step method with the smallest
local truncation error is the trapezoidal rule.

Stability for the trapezoidal method requires that for a given period T , with numerical period error
T̄ −T ,

T̄ −T
T

≤ 0.05, (26)

which is equivalent to
△ t
T

≤ 0.125.

This inequality must hold true for the highest frequency of interest. Thus, for a given frequency
ωn, the period is Tn = 2π/ωn, and the time step must satisfy

△ t
Tn

≤ 0.125. (27)

The general trapezoidal method, in its most general form, seeks solutions to

M
d
dt

(
y˜
)
+Ky˜ = f˜

(
y˜, t

)
. (28)

Note that this is the same as Eq. 8. For systems where the independent variable is time, the terms
d
dt

(
y˜
)

and y˜ respectively correspond to the system’s velocity and displacement. There are two

approaches for the solution of Eq. 28: the velocity form and the displacement form. The goal of
each form is to eliminate either the displacement or the velocity from the system of equations by
estimating it in terms of the velocity or displacement, respectively. The displacement form of the
solution, given in what follows, is a more efficient method when M is diagonal, which is the case
for the IMEX a framework. For systems with a non-diagonal matrix M, the system can be forced
to be block diagonal through the use of the common approach of mass lumping or by multiplying
(28) by M−1. Assuming that the displacement and velocity of the system is known at time step n,
the state of the system is estimated for the next time step

y˜ ∗n+1 = y˜ n +(1−α) △ t
d
dt

(
y˜ n

)
. (29)

Second, the displacement at the next time step (n+1) is calculated via

y˜ n+1 = α △ t (M+α △ tK)−1
(

f˜ n+1 +
1

α △ t
My˜ ∗n+1

)
. (30)

The velocity at time step n+1 is then found via a backward difference

d
dt

(
y˜ n+1

)
=

y˜ n+1 − y˜ ∗n+1

α △ t
. (31)
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This form further simplifies when the velocity vector is not needed, which can introduce further
computational savings. In this case, the displacement vector can be directly calculated as

y˜ n+1 = (M+α △ tK)−1
(
(M− (1−α) △ tK)y˜ n+ △ t

(
α f˜ n+1 +(1−α) f˜ n

))
. (32)

The selection of α is discussed in [13]. For the case where (λ △ t) → 1, where λ is the largest
eigenvalue of the system, α → 1, and Eq. 32 simplifies to

y˜ n+1 = (M+ △ tK)−1
(
My˜ n+ △ t f˜ n+1

)
. (33)

Recasting this equation in the form of (1), with M= I, and K=−A, Eq. 33 becomes

y˜ n+1 = (I− △ tA)−1
(

y˜ n+ △ t f˜ n+1

)
, (34)

which is identical to Eq. 4. Thus, according to Dahlquist’s theorem, this is the implicit scheme for
the solution of (1) with the smallest local truncation error possible.
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3 Code Implementation

The IMEX a algorithm is called from the Matlab function IMEX a.m by

[eta, t, F, UD] = IMEX a(func, Amat, t0, t1, params).

This function has four outputs, eta, t, F, and UD, which are described in Table 1. If an output
quantity is not needed, it may be replaced in the function call by a ∼.

Output Quantity Description

eta The system’s solution, given in Eq. 1 as y˜, in matrix form with each column

corresponding to each output time step.
t The vector of output time steps.
F The matrix of forces applied to the system, given in Eq. 1 as f˜ , with each

column corresponding to each output time step.
UD The user defined output structure specified by the options described in Table

3.

Table 1. Description of the outputs of the IMEX a algorithm.

Only the first four arguments of IMEX a.m (func, Amat, t0, and t1) are required; the remaining
arguments contained within the structure params, if left unspecified, are assigned default values.
The required arguments are detailed in Table 2.

Input Argument Description

func The force function for the simulation, given in Eq. 1 as f˜ .

Amat The system matrix for the simulation, given in Eq. 1 as A.
t0 The starting time for the simulation.
t1 The final time for the simulation.

Table 2. Description of required inputs for the IMEX a algo-
rithm.

With these four arguments, a system described by Eq. 1 is simulated from time t0 to t1. The
remaining arguments, which are not required, are summarized in Table 3. The parameters of Table
3 are designed to give the user control over the convergence properties of the simulation (with dt,
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dtmin, dtmax, tol, IC, and method), the output resolution and metrics (output res, output flag,
and UO func), and the termination criteria (ES func, cutoff). The two user specified functions
in particular (UO func and ES func), enable the user to perform such actions as record impact
velocities or terminate the simulation after a particular system state is achieved. This functionality
is further documented in the next section.

Parameter Description

dt The initial time step to use, △ t in Eq. 4. After the first time step, △ t is automati-
cally adjusted by the algorithm. If unspecified, dt= (t1− t0)/106.

dtmin The minimum time step size for the simulation. This minimum places a lower
bound on △ t. If unspecified, dtmin= min(dt,10−12).

dtmax The maximum time step size for the simulation. This maximum places an upper
bound on △ t. If unspecified, dtmax= 10−3.

tol The tolerance for the error in calculating the adaptive time step, given in Eq. 14
as τ . If unspecified, τ = 10−3.

IC The vector of initial conditions for the degrees of freedom in y˜. If unspecified,

this is set to be a vector of zeros with the same length as Amat.
output res The temporal resolution of the output. If unspecified, the output is returned for

100 approximately evenly spaced time increments spanning [t0, t1].
output flag Determines whether or not to display progress updates. If output flag = 1,

progress updates will be displayed in the command window, otherwise they will
not be displayed.

UO func A user defined output function that specifies quantities to be saved into the UD
output structure. By default, this feature is disabled unless specified, and the
output variable UD is returned as having a value of 0.

ES func A user defined early termination criterion. By default, this feature is disabled
unless specified.

cutoff In case of poor convergence, this is the elapsed cpu time (in seconds) to terminate
the simulation at. By default, this is set to approximately 35 days.

method An option to use either the fifth order accurate Dormand-Prince method (the de-
fault, and chosen explicitly by specifying method = 5), the third order accurate
Bogacki-Shampine method (chosen by specifying method= 3), the second order
accurate Midpoint method (method= 2), or the first order accurate Euler method
(method= 1).

Table 3. Description of optional parameters for the IMEX a al-
gorithm.

The algorithm, itself, uses five Matlab functions: IMEX a.m, RK5.m, RK3.m, RK2.m, and
RK1.m. In IMEX a.m, the parameters for the simulation are established, and during the simulation,
the output quantities described in Table 1 are generated. The implicit portion of the algorithm is
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found in IMEX a.m, and the explicit portion and the adaptive time stepping algorithms exist in
the files RK5.m, RK3.m, RK2.m, and RK1.m, depending on whether the Dormand-Prince method
(RK5.m), the Bogacki-Shampine method (RK3.m), the Midpoint method (RK2.m), or the Euler
method (RK1.m) is specified, all of which are called by IMEX a.m.
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4 Example 1: Computational Savings of the Method
Demonstrated on A Two Pawl Mechanism with Impacts

As an example application, the two pawl system illustrated in Fig. 1 is presented. This mechanism
consists of two preloaded pawls that are part of a larger latching mechanism. Each pawl has
moment of inertia J j, rotational spring stiffness K j, mass M j, preload angle φ j, equivalent viscous
damping c j, applied torque due to external excitation Tj, angular displacement θ j, and a center of
mass located a distance LG j from the center of rotation. The first pawl, taken to be on the left,
is preloaded against and constrained from displacing in the negative θ1 direction by a contact pin
located at a distance ℓ from the center of rotation of the pawl. The second pawl, conversely, is
preloaded against the first pawl. Under certain excitations, it is possible for the second pawl to
unintentionally slip under the first pawl, which would be considered a device failure. The two
pawls nominally contact one another at a distance L1 from the center of rotation of the first pawl
and a distance L2 from the center of rotation of the second pawl.

L
1

l

L
2

K
1

K
2

θ
1

θ
2

Figure 1. The two pawl system considered in the example appli-
cation.

The equations of motion for the two pawls are given in state space form as


θ̇1
θ̈1
θ̇2
θ̈2

=


0 1 0 0

−K1/J1 −c1/J1 0 0
0 0 0 1
0 0 −K2/J2 −c2/J2




θ1
θ̇1
θ2
θ̇2

+


0

F2ℓ−F1L1+T1+K1P1
J1
0

F1L2+T2+K2P2
J2

 . (35)
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The nonlinear forces acting on the pawls are

F1 = FC(θ1L1 −θ2L2, θ̇1L1 − θ̇2L2) (36)

F2 = FC(−θ1ℓ,−θ̇1ℓ), (37)

where FC is specified by the constitutive model used for contact [4] and is a function of contact
interference and relative velocity. The excitation Tj is modeled as a haversine impulse acting on
the center of mass of the two pawls

Tj =

{
M jLG jΩ

(
1− cos

(2πt
τ
))

0 ≤ t ≤ τ
0 otherwise.

(38)

with time t.

Casting this problem into the framework of Eq. 1,

y˜ =


θ1
θ̇1
θ2
θ̇2

 (39)

A=


0 1 0 0

−K1/J1 −c1/J1 0 0
0 0 0 1
0 0 −K2/J2 −c2/J2

 (40)

f˜ =


0
F2ℓ−F1L1+T1+K1P1

J1
0

F1L2+T2+K2P2
J2

 . (41)

Once these equations are coded into Matlab, IMEX a.m is called via

params.dt= 10−7;
params.dtmin= 10−9;
params.dtmax= 10−3;
params.tol= 10−6;
params.IC= [0; 0; acos(1− (r1 + r2)

2/2L2
2); 0];

params.output res= 10−5;
params.output flag = 1;
params.UO func=@(t,dt,y,UD,flag)Mech Output func(t,dt,y,UD,sysparams,flag);
params.ES func= @(t,y,UD)Mech ES func(t,y,UD,sysparams);
params.cutoff = 6000;
params.method= 5;
[eta, t, F, UD] = IMEX a.m(@(t,y,UD)Mech force func(t,y,sysparams,UD),

A, 0, 1, params);

Each of the functions called above are detailed in what follows. The structure sysparams contains
all of the pertinent geometric and material properties for the system.
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4.1 An Example Force Function

This subsection provides sample code for @(t,y,UD)Mech force func(t,y,sysparams,UD), the
force function referenced above.

function dY = Mech force func(T, Y, sysparams, ˜ )
% Function Mech force func calculates the force vector for the two pawl mechanism.
% It takes inputs: time T, state vector Y, and geometric/ material parameters sysparams
% It returns the force vector dY for the system described by dydt = Ay+f.
% The structure UD is not needed in this function, and is thus replaced with a ˜ .

% Calculate the torques at this time step due to the Haversine shock
if T < sysparams.Duration

Tapl1 = sysparams.inertia1*(1-cos(T*(1/sysparams.Dur*2*pi)))/2 ;
Tapl2 = sysparams.inertia2*(1-cos(T*(1/sysparams.Dur*2*pi)))/2 ;

else
Tapl1 = 0 ;
Tapl2 = 0 ;

end

% Calculate the gap between the pawls
gap = sqrt((sysparams.l2*(1-cos(Y(3)))+sysparams.l1*(1-cos(Y(1))))ˆ2 ...

+ (sysparams.l2*sin(Y(3))-sysparams.l1*sin(Y(1)))ˆ2) - sysparams.r1 - sysparams.r2 ;

% Calculate contact forces between the pawls
if gap > 0

% Reset the contact model, code omitted.
F1 = 0 ;

else
F1 = sign(sin(Y(3))*sysparams.l2-sin(Y(1))*sysparams.l1) ...

*contactForce([-gap; Y(2)*sysparams.l1-Y(4)*sysparams.l2]) ;
end

% Look at the gap between pawl one and the contact pin
if Y(1) > 0

% Reset the contact model, code omitted.
F2 = 0 ;

else
F2 = contactForce([-Y(1)*sysparams.l3; -Y(2)*sysparams.l3]) ;

end

% Cast forces in the vector structure necessary for the algorithm
dY = [0;

(sysparams.l3*F2-sysparams.l1*F1+Tapl1+sysparams.preload1)/sysparams.J1;
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0;
(sysparams.l2*F1+Tapl2+sysparams.preload2)/sysparams.J2] ;

clear Tapl1 Tapl2 F1 F2 gap
end

4.2 An Example Output Function

The function @(t,dt,y,UD,flag)Mech Output func(t,dt,y,UD,sysparams,flag), which is called
above, is the user defined output function, and is detailed in what follows. The variable flag is
set by the main function of the algorithm. When flag = 1, the algorithm is recording data that
corresponds to the output time vector t in the call to IMEX a.m. Thus, for an output metric that
has the same temporal values as the solution (eta in the original call), data should be recorded
only when flag = 1. At all other intermediate time steps (flag = 0), it is recommended that only
integral/scalar quantities be calculated, such as wear work rates, as creating a vector of quantities
indexed at every intermediate time step potentially could become prohibitively large (that is, on
the order of millions of elements).

function UD = Mech Output func(˜,dt,Y,UD,sysparams,flag)
% Function Mech Output func calculates the gaps, contact forces, and wear work rates for the
% two pawl mechanism.
% The input for time is not required, and is thus replaced with a ˜ in the declaration.
% It takes inputs: time step size dT, state vector Y, and geometric/ material parameters
% sysparams, and output flag flag. It returns the structure UD, which includes a vector of gap
% sizes and contact forces recorded at every time step for debugging purposes, as well as the
% wear work rates recorded at the same resolution as output res in the main algorithm.

% Calculate the gap between the pawls
gap = sqrt((sysparams.l2*(1-cos(Y(3)))+sysparams.l1*(1-cos(Y(1))))ˆ2 ...

+ (sysparams.l2*sin(Y(3))-sysparams.l1*sin(Y(1)))ˆ2) - sysparams.r1 - sysparams.r2 ;

% Calculate contact forces between the pawls
if gap > 0

f1 = 0 ;
else

f1 = sign(sin(Y(3))*sysparams.l2-sin(Y(1))*sysparams.l1) ...
*contactForce([-gap; Y(2)*sysparams.l1-Y(4)*sysparams.l2]) ;

end

% Calculate contact forces between pawl one and the contact pin
if Y(1) > 0

f2 = 0 ;
else
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f2 = contactForce([-Y(1)*sysparams.l3; -Y(2)*sysparams.l3]) ;
end

% For flag == 1, data is being archived by the main algorithm for this time step.
% However, it may be useful to record additional, data on the forces and gaps.
% UD.gaps, UD.f1, and UD.f2 will all have the same length as the time vector
% returned by the main algorithm.
if flag == 1

if isfield(UD,’gaps’)
UD.gaps(end+1) = gap ;
UD.f1(end+1) = f1 ;
UD.f2(end+1) = f2 ;

else
UD.gaps = gap ;
UD.f1 = f1 ;
UD.f2 = f2 ;

end

% For flag == 0, no data is being archived by the main algorithm, so quantities of
% interest must be recorded, specifically the wear work rates for the system:
else

if isfield(UD,’wears’)
UD.wears = UD.wears + ...

dt*[abs(f1*(Y(2)*sysparams.l1-Y(4)*sysparams.l2));
abs(f2*(Y(2)*sysparams.l3))] ;

else
UD.wears = dt*[abs(f1*(Y(2)*sysparams.l1-Y(4)*sysparams.l2));

abs(f2*(Y(2)*sysparams.l3))] ;
end

end

clear gap f1 f2
end

4.3 An Example Early Termination Function

The last user defined function @(t,y,UD)Mech ES func(t,y,UD,sysparams), is the early termi-
nation function called above.

function S flag = Mech ES func(T,Y,˜,sysparams)
% Function Mech ES func determines whether to terminate the simulation based off of
% the displacement of the pawls.
% It takes inputs: time T, state vector Y, and geometric/ material parameters sysparams.
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% For this application, the input UD is not needed and is replaced with a ˜.
% It returns the early termination flag S flag.
% If S flag = 0, continue, else terminate the simulation.
% Early termination is defined here as either the second pawl slipping below the first,
% or the first pawl returning to its initial position after the end of the shock.

S flag = ((T > sysparams.Duration) && (Y(1) < 0 || Y(3) < 0)) ;
end

4.4 Comparison to Other Integration Methods

Property Value
Pawl 1
Damping Coefficient, c1 10 N·mm·s/rad
Moment of Inertia, J1 0.32 N·mm2

Spring Stiffness, K1 46.5 N·mm/rad
Length, L1 12 mm
Center of Mass, LG1 1.6 mm
Contact Pin Distance, ℓ 4 mm
Mass, M1 1.5 g
Preload Angle, φ1 1 rad
Pawl 2
Damping Coefficient, c1 1 N·mm·s/rad
Moment of Inertia, J2 0.01 N·mm2

Spring Stiffness, K2 8.8 N·mm/rad
Length, L2 5 mm
Center of Mass, LG2 0.4 mm
Mass, M2 0.2 g
Preload Angle, φ2 2.9 rad
Excitation
Nominal Shock Amplitude, Ω 100,000 g’s
Nominal Shock Duration, τ 1 ms

Table 4. Properties of the two pawl mechanism.

The performance of the IMEX a algorithm for simulating the dynamics of the two pawl system
of Fig. 1 with properties listed in Table 4 is compared to that of six other algorithms that are built
into Matlab and described in Table 5. Of note, ode23t uses a method based on the generalized
trapezoidal rule, which is the same as the implicit step for the IMEX a algorithm. As well, ode45
uses a Dormand-Prince fifth order Runge-Kutta adaptive time stepping method, which is the same
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method used for the default explicit step of the IMEX a algorithm, and ode113 uses a Bogacki-
Shampine third order Runge-Kutta adaptive time stepping method, which is the same method used
for the explicit step of the IMEX a3 algorithm. The ode23tb algorithm is a multi-step method with
a low order Runge-Kutta first step followed by a backward Euler second step, which is similar to
the basic IMEX algorithm detailed in Section 2.1. Two of the remaining algorithms are implicit
methods (ode23t and ode15s), and the last three algorithms are explicit methods (ode23s, ode45,
and ode113).

Method Description
ode15s A multi-step, medium accuracy solver for stiff systems that uses implicit backward

differentiation formulas.
ode23s A one-step, low accuracy solver for stiff systems that uses the second order Rosen-

brock formula.
ode23t A one-step, low accuracy solver for moderately stiff systems based on the trapezoidal

rule.
ode23tb A multi-step, low accuracy solver for stiff systems that uses an implicit Runge-Kutta

formula with a backward differentiation second step.
ode45 A one-step, medium accuracy solver for nonstiff systems that uses a fifth order

Runge-Kutta (Dormand-Prince) method.
ode113 A multi-step, medium accuracy solver for nonstiff systems that uses a third order

Runge-Kutta (Bogacki-Shampine) method.

Table 5. Built in solvers for differential equations in Matlab.

The computational efficiency of the seven different algorithms (including the default Dormand-
Prince fifth order adaptive time step algorithm referred to as IMEX a and the Bogacki-Shampine
third order adaptive time step algorithm referred to as IMEX a3) is detailed in Table 6. The mean
values and standard deviations listed in Table 6 are calculated based off of ten different simulations
using each method. The IMEX a method is demonstrated to be the most computationally efficient
of the numerical methods studied, with the third order explicit step implementation of IMEX a3
requiring only 5% more time for this specific problem due to the stiffness of the system. The next
most efficient method is, unsurprisingly, ode23t (which is based on the generalized trapezoidal
rule). The Dormand-Prince method (ode45) is observed to be the least computationally efficient
approach for this problem, as it is not well suited for simulating the dynamics of stiff systems.

Figure 2 shows the predicted response for five of these algorithms for the same input. The two
methods not shown (ode15s and ode23s) show similar trends. Somewhat alarmingly, none of the
algorithms agree despite the plot showing converged results for each. The generalized trapezoidal
method (ode23t) incorrectly predicts that the mechanism will fail (i.e. the right pawl slips under the
left pawl as is evidenced by a negative gap), while all other algorithms predict that the right pawl
never slips under the left pawl. Thus, even though ode23t is the next fastest method, the accuracy
is too low to be considered useful for this problem. Similarly, the other implicit method, ode15s,
also predicts incorrect behavior: namely oscillations about an unstable point in the system. Clearly,
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Method
Mean Computational Standard Increase Over

Time (s) Deviation (s) IMEX a
IMEX a 0.343 0.0023 —
IMEX a3 0.361 0.0027 5%
ode15s 0.495 0.0111 44%
ode23s 2.232 0.0485 552%
ode23t 0.411 0.0717 20%
ode23tb 1.317 0.0706 284%
ode45 2.368 0.0323 591%
ode113 2.282 0.0387 566%

Table 6. Computational efficiencies of the algorithms for the two
pawl mechanism.

for the nonlinearities involved in this system, the two implicit methods built into Matlab are not
suitable. The numerical damping introduced by the explicit methods, such as ode45, is evident in
the increased settling time following the initial transient (i.e. the longer predicted settled gap size).
The most similar method, ode23tb, which uses a two step, implicit-explicit scheme, yields similar
results but requires an additional 284% of the computational time required by IMEX a.

When the computational performance is extrapolated to the number of simulations required for
the robust optimization of this system, which could require over 100,000 simulations, the computa-
tional savings become more dramatic. For a robust optimization that has 100,000 simulations, the
IMEX a method will require 9.5 hours of computational time. The next most efficient methods, the
two fully implicit methods (ode15s and ode23t), would require 13.75 and 11.5 hours of computa-
tional time respectively; however, these two methods demonstrated the lowest amount of accuracy
as noted above. By contrast, the explicit methods each have reasonable predictions for the dynam-
ics, though they introduce significant amounts of numerical damping. In terms of computational
efficiency, though, they require 60-66 hours of computational time. For models that require signif-
icantly more computational time, say 10 seconds for one simulation using the IMEX a method, the
computational savings for a robust optimization requiring 100,000 simulations becomes even more
significant: 11.5 days for the IMEX a method compared to 75 to 80 days for the explicit methods.
Thus, for this type of problem, the IMEX a algorithm proves to be the best choice due to the
computational efficiency, lack of numerical damping introduced into the system, and reasonable
predictions of the system’s dynamics.
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Figure 2. The gap size in the two pawl system following a shock.
Shown are the responses predicted by IMEX a (blue, —), ode45
(red, – –), ode23t (black, · · · ), ode23tb (purple, – · –), and ode113
(green, ◦).
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5 Example 2: Accuracy of the Method Demonstrated on the
Simulation of an Acoustic Standing Wave

In the previous example, the computational efficiency of the IMEX a method is discussed; how-
ever, due to the lack of a closed form solution for the response of the system, it is difficult to assess
the relative accuracy of each method presented. In this second example, a known solution exists
such that the accuracy of the IMEX a method can be calculated. An acoustic standing wave is
modeled using the one-dimensional linearized Euler equations [16], which can be expressed in the
form

d
dt

{
u
p

}
=A

{
u
p

}
(42)

in terms of the velocity field u and pressure field p. For details of the modeling of this system or
the exact, analytical solution, refer to [16]. Despite the straightforward form of Eq. 42, numerical
solution of this system is often challenging due to the added damping and period error inherent in
most numerical schemes [17].

Because the system is expressed without a force vector, there are two options for how the
IMEX a method can be called. The first option is to consider there to be no force function. In this
framework, calls to the IMEX a method will result in a purely implicit integration scheme that is
based on the generalized trapezoidal method (and is referred to as IMEX a Implicit in the following
discussion):

[eta, t, ∼, ∼] = IMEX a(@(t,y,UD) 0, A, 0, 100);

where the simulation spans a time from 0 to 100 s. The alternative approach, which is adopted in
what follows, is to treat the right hand side of Eq. 42 as a force term. This approach results in a
purely explicit integration scheme:

[eta, t, ∼, ∼] = IMEX a(@(t,y,UD)A× y, zeros(length(A)), 0, 100);

Figure 3 presents the relative errors of the IMEX a method and the ode45 method normalized
with respect to the norm of the exact solution. The mean of the error for ode45 is 4.4% for the
velocity field, and 5.7% for the pressure field, whereas the mean of the error for the IMEX a method
is 3.1% for the velocity field and 2.7% for the pressure field. Thus, the error for the velocity field
and pressure field is 42% and 111% less, respectively, for the IMEX a method as compared to
the ode45 algorithm. At the same time, the IMEX a required 92% of the computational time that
ode45 required. For more coarse tolerances on both methods, significantly faster solutions can be
achieved; however, the errors significantly increase. Comparisons of the relatively accuracy and
efficiency of several different methods are presented in Table 7.

All results presented in Table 7 are calculated using the same error tolerance and maximum step
size (for both the IMEX a toolbox and the ode family of algorithms, with the third order Bogacki-
Shampine method given as IMEX a3, the second order Midpoint method given as IMEX a2, and
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Figure 3. The relative error of the numerical solutions of the
acoustic standing wave in one-dimension (normalized with respect
to the norm of the exact solution) for the IMEX a method (red, —),
and the ode45 method (blue, · · · ).
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Method
Difference in Computational Normalized Error Normalized Error

Time From IMEX a in Velocity in Pressure
IMEX a — 3.0% 2.6%
IMEX a3 -18.9% 3.0% 2.6%
IMEX a2 +886.1% 3.8% 3.0%
IMEX a1 +2602.8% 38.4% 171.6%
IMEX a Implicit +35.4% 164.0% 151.8%
ode15s +3.2% 4.3% 5.3%
ode23s +2680.3% 4.2% 4.6%
ode23t -41.0% 4.5% 4.6%
ode23tb -6.1% 4.2% 4.6%
ode45 +8.2% 4.4% 5.7%
ode113 -46.7% 4.2% 4.9%

Table 7. Computational efficiencies and accuracies of the algo-
rithms for the acoustic standing wave.

the first order Euler method given as IMEX a1). Because this example is a purely linear problem,
it does not take advantage of the numerical efficiencies that the IMEX a algorithm demonstrates
for stiff, nonlinear systems; however, the performance of the IMEX a algorithm is still favorably
compared to the other methods. From the results of Table 7, several conclusions are able to be
made. First, casting the problem such that a purely implicit solution results from running the
IMEX a toolbox (listed as IMEX a Implicit) results in an inaccurate and inefficient solution due to
the fixed step size and no application of error control. Second, with the maximum step sizes and
error tolerance held constant for all algorithms, the lowest error, as compared to the exact solution,
is achieved using both IMEX a and IMEX a3. Other methods, for this specific problem, exhibit
low errors and fast computational times (such as ode23t, ode23tb, and ode113), but the percent
error introduced by these methods is between 40% and 80% greater than the error observed with
the IMEX a method. Increasing error tolerances for the other methods can result in a significantly
improved solution; however, the computational time simultaneously increases, and the error is not
reduced to a level below that exhibited by the IMEX a method. This demonstrates that not only
is the IMEX a method more efficient than other available numerical integration schemes (when
applied to stiff, nonlinear problems), but it is also more accurate than the other methods considered
for this problem.
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6 Summary

The derivation of the IMEX a ordinary differential equation numerical integration algorithm is
presented in this report. The algorithm consists of two steps: an explicit predictor step, and an
implicit solution step. The explicit step is based on a fifth order Runge-Kutta explicit step known
as the Dormand-Prince algorithm, which adaptively modifies the time step by calculating the error
relative to a fourth order estimation. The implicit step is based on a backward Euler method, and
is shown via Dahlquist’s theorem to minimize error in the system. An alternative explicit step,
the third order Runge-Kutta method attributed to Bogacki and Shampine, is also included in the
toolbox for problems with less stringent accuracy tolerances or less stiff systems in addition to a
first order Euler method and a second order Midpoint method for well behaved linear systems.

Sample code is presented in order to demonstrate how the IMEX a algorithm can be incor-
porated into a simulation framework, along with examples of the optional functions used by the
IMEX a algorithm. The code is developed to give the user a large amount of control over the
convergence and termination criteria of the algorithm, as well as specifying complex, user defined
output metrics.

Finally, this report presents two examples. The first example, a two pawl mechanism, is pre-
sented in order to quantify the computational advantages of the IMEX a algorithm over six other
widely used numerical solvers when applied to a stiff, nonlinear system. It is demonstrated that
the IMEX a algorithm is more computationally efficient than each of the other solvers. Further,
in comparing the IMEX a algorithm to the numerical solvers that made reasonable predictions of
the system’s dynamics, the IMEX a algorithm required approximately 12% of the computational
time required by the other algorithms, a significant computational savings that is expected to fur-
ther enable sensitivity and optimization studies. The second example, a one-dimensional acoustic
standing wave, is presented to demonstrate that the IMEX a algorithm can be more accurate than
other numerical algorithms. For this particular example, the IMEX a algorithm is demonstrated to
have 40% and 80% less error than the ode family of solvers.
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