
SANDIA REPORT
SAND2013-3660
Unlimited Release
Printed May 2013

Lightweight Performance Data
Collectors 2.0 with Eiger Support

Benjamin A. Allan

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
I C

A

2

SAND2013-3660
Unlimited Release
Printed May 2013

Lightweight Performance Data Collectors 2.0 with Eiger
Support

Benjamin A. Allan
Scalable and Secure Systems Research Department

MS 9158
Sandia National Laboratories

P.O. Box 969
Livermore CA 94550
baallan@sandia.gov

Abstract

We report on the use and design of a portable, extensible performance data collection tool
motivated by modeling needs of the high performance computing systems co-design com-
munity. The lightweight performance data collectors with Eiger support is intended to be
a tailorable tool, not a shrink-wrapped library product, as profiling needs vary widely. A
single code markup scheme is reported which, based on compilation flags, can send perfor-
mance data from parallel applications to CSV files, to an Eiger mysql database, or (in a
non-database environment) to flat files for later merging and loading on a host with mysql
available. The tool supports C, C++, and Fortran applications.

3

Acknowledgment

We thank Eric Anger at Georgia Institute of Technology for his usage insights and bug fixes
to the Eiger library.

4

Contents

1 Introduction 7

2 Implementation 9

2.1 Dependencies . 9

3 C++ Application Programming Interface 11

3.1 Setup . 11

3.2 Profile sites . 12

3.3 Performance counters . 12

3.4 Building . 13

3.5 Running . 13

4 C application support 15

4.1 C api . 15

4.2 C build . 16

5 FORTRAN application support 17

5.1 FORTRAN api . 17

5.2 FORTRAN build . 18

6 Mixed-language application support 21

7 Instrumentation Reuse 23

8 Performance of the instrumentation 25

8.1 Minutiae . 25

5

9 Data analysis 27

10 Future work 29

10.1 Postscript . 29

References 30

6

Chapter 1

Introduction

Light-weight Performance Data Collectors (lwperf) is a tiny collection of simple, portable
macros and an underlying tiny set of tailorable C++ classes aimed at making it easy to
gather high-level compute cost numbers and the driving algorithm parameters from individ-
ual cluster nodes running real applications. The author’s intended use of these numbers is
to construct models that support interpolation-based estimates of compute costs at other
parameter values.

The collectors support three log formats:

• CSV (tabular) data for modeling with spreadsheets, matlab, and other common tools.

• (optional) Eiger[2] database logging, which requires MySQL libraries and a server.

• (optional) FakeEiger text logging, which avoids the MySQL requirements by generating
portable data files that can be read into an Eiger database later in a MySQL-enabled
environment.

A key constraint is that the code markup scheme this performance tool uses must balance
having minimal affects on the appearance, performance, or compilation of the code while at
the same time not requiring a proprietary library or compiler or analysis tool or interposed
virtual machine. Most prior work sacrifices at least one major aspect of this constraint.

This tool is not intended to collect data for code segments containing inter-node com-
munication code, particularly MPI code. Rather, it is intended for characterizing node-level
serial, locally multi-threaded (OpenMP nests in an MPI/OMP hybrid), or locally acceler-
ated code sections. It is usually the performance of the node or local (co)processor group in
aggregate rather than individual thread performance which is of interest, as it is the group
which provides the total workload to shared local resources such as memory. Single-node but
multi-rank instances of MPI-only codes may also be usefully profiled with this tool. There
is no technical reason lwperf cannot be used to profile MPI calls, but there are better tools
for profiling MPI widely available.

Using simple shell scripts, lwperf has been extended to support C and modern Fortran
(any compiler supporting the BIND(C) feature).

7

8

Chapter 2

Implementation

The collector is aware that node-locally there may be a number of OMP threads or MPI
ranks relevant to performance modeling and expects the user to pass in that information
as part of the initialization or input parameter data at measurement sites. In the case of
multiple MPI ranks on the node, each log file name is suffixed by the MPI communicator
rank and size passed in with an init call. No interprocess communications (except those
of connecting to the Eiger database or the output filesystem) are introduced by using the
collector.

The logger backends (eigerformatter, csvformatter) support eiger, fakeeiger, or CSV. In
the eiger cases, the default is to generate CSV files also. This default can be changed by
passing -D EIGER NOCSV to the c++ compiler.

The backends can also generate text to the screen (in csv format) if the screen option is
turned on by passing -D LWPERF SCREEN to the c++ compiler.

2.1 Dependencies

Eiger The collectors depend on libmpieiger or libmpifakeeiger if -D USE EIGER is applied.
Eiger is not needed if only CSV collection is used.

MPI From MPI, the collectors use only MPI Wtime. This may be easily replaced with
boost or any other available and acceptable high resolution clock difference. The MPI
compiler wrappers are used because of this dependency.

C++ STL classes and variadic macro support.

Fortran Basic macro substitution and the bind(c) feature, which is available in gfortran and
most other fortrans as of 2011. Formally, bind(c) is part of the Fortran 2003 specifica-
tion. Variadic macro support is not required for the Fortran binding.

C Variadic macro support

9

10

Chapter 3

C++ Application Programming
Interface

The C++ interface and usage is presented here. Alternate versions for C and Fortran are
provided in later sections.

3.1 Setup

For C++, the profiled code must include a single header, lwperf.h, which pulls in defi-
nitions for the data collection macros based on the compiler flags: -D USE EIGER and
-D USE CSV. If neither flag is provided, a set of null macros make all the collector-related
code disappear from the build. After lwperf.h is included in the driver and all files where
collection is needed are listed in the updateLoggersCXX.sh script, the driver has a simple
init/configure/run/finalize use sequence.

From application driver cxxapp.cpp:

PERFDECL(PERF::init();)

// collect communicator rank and size : profiling a single-node job using

PERFDECL(PERF::mpiArgs(me,csize);)

PERFDECL(PERF::stringOptions("x5550","gcc","cxxapp.cpp","cxxapp","tesla.",".log");)

Here all the initialization calls are wrapped in PERFDECL, a macro that deletes the calls if
the profiler is not enabled by one of the USE flags. Unlike many tools, performance collection
sites can be disabled on a per-file basis by eliminating from the compiler arguments the -
D USE (CSV—EIGER) flag. On the driver and all files where collection is enabled, the
same flag (EIGER or CSV) must be used; mixing is not allowed.

11

3.2 Profile sites

At any site (usually a loop nest) where data collection is wanted, the collection point is
defined at the beginning of the site with a unique name and additional log names for param-
eters characterizing the work load (usually integer). The values of the parameters do not
need to be available at the beginning of the site; only names are needed. The name given
the site must be unique across the entire application. The parameter names are specific to
the site and may be reused elsewhere.

From a molecular dynamics example, with a variable work load where nlocal is known at
the beginning but nneigh is dependent on double-precision input data arrays:

PERFDECL(int nneigh=0;); // counter used only when profiling

// site Tenergy, log parameter names nlocal, nneigh

PERFLOG(Tenergy, IP(nlocal),IP(nneigh));

for (int i = 0; i < nlocal; i++) { // outer loop

... // fixed work calculating, in part, data_dependent_condition

if (data_dependent_condition) {

for (int j=0; j< numneigh; j++) {

PERFDECL(nneigh+=numneigh;); // assignment needed only for profiling

... // conditional work

}

}

}

PERFSTOP(Tenergy, IP(atom.nlocal),IP(nneigh));

At the end of the site, PERFSTOP computes the elapsed performance measures (at
minimum, wallclock) and these values are logged along with the values passed to the slots
defined in the matching PERFLOG statement. In this case the value of nlocal comes from
data named atom.nlocal. The data-dependent nneigh parameter is declared and updated
only when lwperf is enabled (through use of PERFDECL).

The macros IP or DP must be used on each parameter being recorded at the PER-
FLOG/PERFSTOP sites, or incorrect code will be generated. The generator scripts need
IP/DP to detect the argument types. In the event of a macro or function name conflict with
names IP, DP, these macros can be renamed if all the affected lwperf headers and generator
scripts are correspondingly updated.

3.3 Performance counters

The performance measures captured are defined in csvformatter.h:DEFAULT PERFCTRS,
with supporting definitions and computations required for each in the private data of csvfor-
matter and the start/stop member functions. These are easily extended by the demanding

12

user. At present, support for hardware performance counters is not included as it would add
considerable dependency and portability problems. The enterprising user may tailor lwperf
to collect hardware counters.

3.4 Building

Being lightweight by design, this tool is intended to be used by incorporation into the inves-
tigated application and its build processes rather than as an independent library. In order
to keep performance impact to minimum without introducing a proprietary compiler, some
simple portions of the support classes must be generated based on a scan of the sites defined
in the application code. This scan is performed and the generated code is updated by the
simple utility updateLoggersCXX.sh. This utility may be tailored to the user’s application
source code, in most cases by adjusting the definition of the cfiles variable at the top of the
script.

The logger can be kept consistent with the user code with a simple makefile rule such as:

GENSRC=CSVInitFuncs.h InitSwitchElements.h EigerInitFuncs.h LocationElements.h

$(GENSRC): $(SRC) updateLoggersCXX.sh

./updateLoggersCXX.sh

or by invoking updateLoggersCXX.sh at the beginning of the build process.

3.5 Running

The application is run as normally, but with output going to screen, disk, or eiger database.
A simple example script, runfake, is provided to illustrate a parameter study and basic
handling of the output files. The timing data obtainable should be reasonably accurate for
measured non-overlapping compute sections, but the overall application performance may
be strongly influenced by the extra I/O. The screen output option is for debugging purposes.
Enabling screen output in MPI applications with many measurements has been observed to
consume large amounts of stack data space; all-rank screen output is non-parallel and should
generally be avoided.

13

14

Chapter 4

C application support

4.1 C api

The application code changes are similar to those for C++, inserting macros where needed.
The header to be included is lwperf c.h. For example:

#include "stdio.h"

#include "stdlib.h"

static

int n = 1;

void sub1(int x) {

if (x < n) {

x = x + 1;

printf("x = %d\n", x);

sub1(x);

}

}

#include "lwperf_c.h"

int main(){

int x = 0, nx=0;

double dp = 3.14;

PERF_INIT;

PERF_MPI(0,1);

PERF_OPTS("x5550","gcc","capp.c","capp","tesla.",".log") ;

char buf[26];

printf("Enter number of repeats\n");

fgets(buf,sizeof(buf)-2,stdin);

char *endPtr;

n = (int)strtol(buf, &endPtr, 10);

15

if (endPtr == &(buf[0])) {

printf("given string, \"%s\" has no initial number\n", buf);

exit(1);

}

printf("n = %d\n", n);

PERFLOG(sub1,IP(n)) ;

PERFLOG(sub2,IP(nx),DP(dp));

sub1(x);

PERFSTOP(sub2,IP(nx),DP(dp));

PERFSTOP(sub1,IP(n));

PERF_FINAL;

return 0;

}

The PERFDECL macro is available for C use as it is in C++.

4.2 C build

As with C++, some simple portions of the C binding must be generated based on a scan
of the sites defined in the application code. This scan is performed and the generated code
is updated by the simple utility updateLoggersC.sh and supporting scripts gencsave.body.sh,
and ./gencsave.sh. These scripts may be tailored to the user’s application source code, in
most cases by adjusting the definition of the cfiles variable at the top of updateLoggersC.sh.

The logger can be kept in sync with the user code with a simple makefile rule such as:

cperf._stop.h: $(CSRC) updateLoggersC.sh

./updateLoggersC.sh

Compiling and linking mixed language code is often tricky. Here is an example that may
be inspirational; further explanation is beyond the scope of this note. Several additional
examples are included in the Make.c* build scripts.

mpicc.openmpi -g capp.c -D_USE_EIGER \

cperf.o eperf.o eigerformatter.o csvformatter.o diffrusage.o \

-lmpi_cxx -lstdc++ \

/home/baallan/sst/gatech/eiger-svn/api/gcc/libeigerInterface.a \

/usr/lib/libmysqlpp.a -lmysqlclient \

-o ../capp_u11c

16

Chapter 5

FORTRAN application support

The fortran binding is, as lwperf in general, functional, preliminary, and intended for tailoring
by the user. A preprocessor must be included in the compile step, either by passing a compiler
option to force it or by using a suffix the compiler recognizes as needing preprocessing. The
preprocessor does not need to be a separate C preprocessor; the builtin gfortran preprocessor
is known to work.

5.1 FORTRAN api

The prefix lwperf is used for all lwperf symbols in fortran, to avoid conflicts with user code.
The header to be included is lwperf f.h. The application code changes are similar to those
for C/C++, inserting macros where needed, e.g.:

module test1

integer :: n

contains

recursive subroutine sub1(x)

integer,intent(inout):: x

if (x < n) then

x = x + 1

print *, ’x = ’, x

call sub1(x)

end if

end subroutine sub1

end module test1

#include "lwperf_f.h"

program main

use test1

PERF_USE

integer :: x = 0

17

integer :: nx = 0

integer :: ierr,rank = 0, sz

PERFDECL(real(kind=lwperf_double) :: dp =0) !! 8-byte C double if using lwperf

call MPI_INIT(ierr)

call MPI_Comm_rank(MPI_COMM_WORLD,rank,ierr)

call MPI_Comm_size(MPI_COMM_WORLD,sz,ierr)

PERF_INIT

PERF_MPI(rank,sz)

PERF_OPTS("x5550","gfortran","app.F90","fortapp","tesla.",".log")

if (rank == 0) then

print *, ’Enter number of repeats’

read (*,*) n

end if

call MPI_Bcast(n,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr);

PERFLOG1(sub_1,IP(n))

PERFLOG2(sub_2,IP(nx),DP(dp))

call sub1(x)

PERFSTOP2(sub_2,IP(nx),DP(dp))

PERFSTOP1(sub_1,IP(n))

PERF_FINAL

call MPI_FINALIZE()

end program main

Note that Fortran preprocessors do not support variable-length macros as in C99. Thus,
we must use macro names that include the number of measurements. Also, the PERFDECL
macro in Fortran will not accomodate statements containing commas.

5.2 FORTRAN build

As with C++, some simple portions of the Fortran binding must be generated based on a scan
of the sites defined in the application code. This scan is performed and the generated code is
updated by the simple utility updateLoggersF90.sh and supporting scripts ./gencsave.body.sh,
./gencsave.sh, and ./genfsave.sh. These scripts may be tailored to the user’s application
source code, in most cases by adjusting the definition of the ffiles variable at the top of
updateLoggersF90.sh.

The logger can be kept in sync with the user code with a simple makefile rule such as:

flocations.h: $(FSRC) updateLoggersF90.sh

./updateLoggersF90.sh

18

Compiling and linking mixed language code is often tricky. Here is an example that may
be inspirational; further explanation is beyond the scope of this note. Several additional
examples are included in the Make.f90* build scripts.

mpif90.openmpi fperf.o app.F90 -D_USE_EIGER \

cperf.o eperf.o eigerformatter.o csvformatter.o diffrusage.o \

/home/baallan/sst/gatech/eiger-svn/api/gcc/libeigerInterface.a \

/usr/lib/libmysqlpp.a -lmysqlclient \

-lmpi_cxx -lstdc++ \

-o ../app_u11f90

A full FORTRAN MPI application (gtc) has been instrumented with lwperf, where the
lwperf support code is treated as a library (generated at application build time). This
approach has the least impact on the fortran build process and directory structure; contact
Ben Allan or Gilbert Hendry for access to this example.

19

20

Chapter 6

Mixed-language application support

There is nothing in principle that prevents using lwperf in an application with mixed
C/C++/Fortran sources. In practice, the code generating scripts assume a single list of
files in the corresponding language can be searched with grep for all the profiling sites.
Converting updateLoggersF90.sh to updateLoggersMixed.sh is an exercise left to the reader.

21

22

Chapter 7

Instrumentation Reuse

In benchmarking, code is sometimes manually (or mechanically) translated between C++
and Fortran for various reasons. The macro design of lwperf is intended to support cut-
and-paste reuse of site markup across language boundaries. The Fortran instrumentation
tolerates but does not require trailing semicolons on macro uses, so PERFLOG/PERFSTOP
uses from C++ can be pasted into equivalent Fortran sites. The only modifications needed
being to insert or remove the argument count suffix to obtain the equivalent macro name.

Similarly, LWPERF macro calls from instrumented applications usually may be pasted
directly into the equivalent skeleton applications written using the SSTmacro performance
modeling toolkit[1]. When the mapping is one-to-one, the performance data gathered from
the application and the performance model may be compared element by element.

23

24

Chapter 8

Performance of the instrumentation

The overhead of performance measurements with lwperf is dominated by the costs of writing
output to files or database connections and of calls on the microsecond real-time clock. The
C and Fortran bindings, being wrappers, involve a few extra function invocations compared
to the C++, but this is negligible compared to the I/O at present.

When eiger database profiling is active, the database presents a bottleneck to recording
results from parallel execution. When CSV or flat file (fakeeiger) output is used, there is no
contention for individual files; however, an unshared file is created for each site in each MPI
process. With a very large number of sites and processes on a single host, the maximum
number of file descriptors available from the operating system may be exhausted. Profiling
sites which are never executed do not generate files at all; you pay for what you use.

8.1 Minutiae

The aims of the lwperf implementation tactics are:

• to make lookup of the logging objects (eiger pointer or file pointer containers) inex-
pensive. This is achieved by converting the site names into an enumeration or integer
index. This enumeration must is constructed by analyzing the entire application source
code. The names are prefixed by the code generators so that the names of code enti-
ties (functions, classes, enum members) may be used as site names without conflict in
nearly all cases.

• to avoid reconstructing or reopening complex objects with operating system presence,
such as any file or any eiger object with a commit() member.

• to avoid inter-language string conversion.

In the C++ binding, a local variable is generated that enables a single object lookup to
handle each site. In the C and Fortran bindings, portability and syntactic considerations
force us to use two object lookups per site execution.

25

The only place that inter-language string processing occurs is in the PERF OPTS macro
of the Fortran binding.

26

Chapter 9

Data analysis

Lwperf makes collecting large amounts of performance data easy. Analysis of the data is
beyond the scope of this document. Studying the impact of application parameters and
compiler options on the runtime performance of specific code segments (loop nests) requires
careful construction of a set of benchmark runs spanning some relevant parameter space.
The generated CSV files can be easily aggregated and then imported or translated for use
in any preferred tool, e.g. a spreadsheet, gnuplot, or matplotlib.

Early use of the tool has provided one general insight. When examining the wall-clock
and processor-clock time reported for a profiling site, the two measurements may differ widely
due to process interruptions. The most common interruptions will be reported in the other
rusage fields recorded, though these fields normally report 0 for number-crunching loops.
Consult the system documentation of getrusage for explanation of the reported fields.

The default data collected includes the wall-clock time. This enables production of
timelines which capture what code section was active when, not just how much time was
spent in each call.

27

28

Chapter 10

Future work

There are several tasks of minor housekeeping or performance value:

• Put all the collector related items into a separate c++ namespace. At present, Perf
and EigerPerf classnames and lwperf prefix are used.

• Modify the update scripts to accept an argument list instead of computing the list of
files based on suffix with ls.

• Add dumping to memory buffer (ostringstream) and flush to disk on some schedule
rather than i/o at each time a PERFSTOP is reached. In principle, a reasonable OS
is already doing this for us, but in practice the buffer size is likely to be smaller than
we might like.

• Modify non-eiger stringOptions semantics to put all files in a subdirectory, as noted in
aperf.cpp.

• Revisit using a map instead of an array for the log index in Perf and EigerPerf classes.

• Revisit adding a flag to eliminate MPI-dependence and add boost dependency for
timing. Not terribly interesting for HPC purposes, where MPI is a given.

10.1 Postscript

A rose by any other name would still be thorny. Abandon all hope ye who seek GUIs (and
learn to script a plotter).

29

30

References

[1] Curtis L. Janssen, Helgi Adalsteinsson, Scott Cranford, Joseph P. Kenny, Ali Pinar,
David A. Evensky, and Jackson Mayo. A simulator for large-scale parallel computer
architectures. IJDST, 1(2):57–73, 2010.

[2] Andrew Kerr, Eric Anger, Gilber Hendry, and Sudhakar Yalamanchili. Eiger: A frame-
work for the automated synthesis of statistical performance models. In High Performance
Computing, 2012.

31

DISTRIBUTION:

1 MS 9158 Benjamin Allan, 08961

1 MS 9159 Gilbert Hendry, 08958

1 MS 0899 Technical Library, 8944 (electronic copy)

32

