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Abstract

This document summarizes the results from a level 3 milestone study within the CASL VUQ
effort. We compare the adjoint-based a posteriori error estimation approach with a recent variant
of a data-centric verification technique. We provide a brief overview of each technique and then
we discuss their relative advantages and disadvantages. We use Drekar::CFD to produce numerical
results for steady-state Navier Stokes and SARANS approximations.
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0.1 Motivation

Verification is a necessary, but occasionally neglected, process that helps to assess the predictive
capabilities of a numerical simulation. While the precise definition of verification may vary be-
tween disciplines, one of the main objectives in verification is usually to determine whether or not a
discretized problem is an accurate representation of a continuous system, and whether the discrete
approximation converges to the continuous solution as the discretization is refined. Often, there
are well-established asymptotic convergence rates for the numerical algorithms employed by the
simulation. In such cases, verification usually involves solving an idealized problem, i.e., one with
an analytical or manufactured solution, on a sequence of discretizations and checking whether the
rate of convergence of various quantities of interest matches the theoretical rate. Unfortunately,
such idealized problems often do not necessarily represent the normal operating conditions for the
simulation, and therefore, may not provide a reliable assessment of its predictive capabilities.

In response to this observation, recent verification work has focused on estimating the asymp-
totic rate of convergence for more realistic simulations where the asymptotic value of the quantity
of interest is unknown. The drawback is that several levels of refinement may be necessary to
infer both the asymptotic value of the quantity of interest and the asymptotic convergence rate.
Richardson extrapolation can be used to infer the asymptotic value of the quantity of interest, but
this also requires three numerical approximations in the asymptotic range. Thus, recent research
has focused on techniques that can provide asymptotic information and uncertainty estimates with
a minimal number of simulations. The Grid Convergence Index (GCI) [18] is perhaps the first
attempt to infer these asymptotic parameters from data along with an estimate of the uncertainty
in the estimates. A variety of similar techniques have subsequently been developed (see e.g.,
[20, 16, 15] and the references therein): each using different assumptions and/or user experience
to determine the appropriate safety or correction factors to improve the reliability of the uncertainty
estimates without gross overestimation.

Tangentially, a posteriori error estimation techniques have become a common means to quan-
tify the reliability of predictions from numerical simulations. This methodology has been devel-
oped for a large number of methods and is widely accepted in the analysis of discretization error
for partial differential equations [1, 6, 7]. While many a posteriori techniques focus on estimating
the error in a particular norm, such as the L2 or the energy norm, the adjoint-based (dual-weighted
residual) method, is motivated by the observation that oftentimes the goal of a simulation is to
compute a small number of linear functionals of the solution, such as the average value in a region
or the drag on an object, rather than controlling the error in a global norm. This method has been
successfully utilized to estimate the error in quantities of interest for a class of transient nonlinear
problems and has recently been extended to estimate numerical errors due to operator splittings [8]
and operator decomposition for multiscale/multiphysics applications [3, 10, 11]. The a posteriori
error estimation approach does not require as many simulations to infer the asymptotic values of
the quantity of interest and the convergence rate, but it is also subject to accuracy concerns if the
simulation is not near the asymptotic regime. Moreover, the adjoint problem can only be defined
for a certain class of quantities of interest and therefore a posteriori error estimate are only available
for these quantities of interest. The limitations of this approach are discussed further in section 0.4.
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The goal of this report is to provide a concise discussion of the relative advantages and disad-
vantages of the adjoint-based and data-centric approaches to verification, and to demonstrate each
of these on a set of simulations of interest to CASL. In this report, we restrict the discussion to
the solution of steady-state nonlinear coupled systems of partial differential equations. The sim-
ilar comparison for time-dependent problems would be of interest, but the current capabilities in
Drekar::CFD do not allow for time-dependent adjoint simulations. This is work in progress and
may be discussed in a future report. The remainder of this report is organized as follows. In sec-
tion 0.2, we briefly describe the data-centric approach to verification and how the approach taken
in [17] differs from previous approaches. In section 0.3, we describe the adjoint-based error es-
timation technique and discuss how the adjoint solution is approximated in Drekar::CFD. Next,
in section 0.4, we compare the two approaches and give a short description of their relative ad-
vantages and disadvantages. In section 0.5, we use Drekar::CFD to compute various quantities
of interest and the adjoint-based error estimates from steady state Navier Stokes and Reynolds
Averaged Navier Stokes (RANS) models. Finally, some concluding remarks are presented in sec-
tion 0.6.

0.2 Data-Centric Verification Techniques

In this section, we summarize the data-centric verification technique in [17] and describe how this
technique differs from previous approaches, e.g., [add cites]. However, following [17], it is useful
to start with a discussion of error and what assumptions can are reasonable to make. We assume
that the goal of the simulation is to provide accurate estimates of quantities of interest from the
following systems of partial differential equations,

FFF(zzz) = 000, (1)

defined on some domain Ω ⊂ Rd . Here, zzz is the continuous solution of the system of PDEs. We
allow (1) to be nonlinear and time-dependent, but we assume that it is a deterministic problem in
the sense that repeated evaluations given the same discretization, initial/boundary conditions, and
model parameters (a.k.a scenario) provide the same solution. Since analytical solution of systems
like (1) are rarely available, we must resort to numerical approximations of the solution. We let ZZZ
denote the numerical approximation of zzz and we use eee = zzz−ZZZ to denote the error.

In general, the error depends on variety of factors:

1. Spatial discretization errors (mesh size).

2. Temporal discretization errors (time-stepping).

3. Numerical quadrature errors.

4. Errors due to linear and nonlinear solver tolerances.

5. Operator splitting errors.

10



6. Implementation errors.

7. Errors due to inconsistencies in the discrete formulation.

8. Rounding errors due to finite machine precision.

9. . . .

While a few of these can be eliminated, namely, 6 and perhaps 7, most are present in some amount
for any numerical approximation.

We emphasize that while the error itself is unknown, it is not random and one should assume
that a probabilistically characterization is appropriate [16, 15]. This is due to the fact that all of the
sources of error are completely deterministic which follows from our assumption that the model
itself is deterministic. There are plenty of model that are inherently stochastic, such as models
for stock prices or molecular dynamics, and for these models the error has both deterministic and
stochastic contributions.

To simplify the verification process, one would prefer to consider one factor at a time by driving
the other factors down to so that their contributions are negligible. This would allow one to verify
that the error converges optimally with respect to each factor. In this report, we focus on the
spatial discretization error and while we acknowledge that the other sources of error are present,
we assume that they are negligible. This leads to the following ansatz for a quantity of interest:

q(zzz) = q(ZZZ)+Chr + higher order terms , (2)

where q(zzz) is the true value of the quantity of interest, which is unknown, q(ZZZ) is the numerical
approximation, h is a parameter associated with the spatial discretization, and C and r are the
unknown parameters associated with the spatial discretization error. Typically, we are given a set
of mesh sizes {h1,h2, . . . ,hN} and a set of values of numerical approximations of the quantity of
interest (data) {q1,q2, . . . ,qN}. The objective is then to infer the values of q(zzz), C, and r from the
data. One might attempt to use Richardson extrapolation to estimate q(zzz), but it is usually more
effective to allow the optimization scheme to find the value of q(zzz) that best fits the data according
to the ansatz. Similarly, one might assume that r is known based on a priori assumptions on the
numerical approximation, but this is also prone to complications since the continuous solution may
not have sufficient regularity to converge at the optimal rate. In our view, it is best to leave q(zzz), C
and r as unknown and find the values that best fit the data with respect to some metric. However,
the choice of metric affects how one may interpret the results.

The standard approach is to use nonlinear least-squares to approximate the unknown parame-
ters in (2). While this gives a reasonable approximation of the parameters, an issue arises if one
chooses to use the misfit between the least squares approximation and the data to say anything
about the uncertainty in the parameter approximations. The issue is described in detail in [17], but
the point is that, for any regression scheme, the assumption that the misfits can be used to esti-
mate the error in the parameter approximations relies on the assumption that the neglected terms
in (2) are random variables with a particular distribution. For example, the assumed distribution is
Gaussian for least squares regression. As previously mentioned (and emphasized in [17]), there is
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no theoretical justification for such assumptions. Nevertheless, such approaches are quite common
and have been utilized in a very large number of verification exercises.

Consequently, the novelty of the approach taken in [17] was the use of an ensemble of regres-
sions to generate a set of estimates of the parameters and to use the median of the estimates (not the
mean!) for verification purposes. The ensemble of regressions are generated using various metric
on selected subsets of the data. Typically, subsets of the data are selected by starting with the
values of the quantities of interest on the finest discretizations and adding the values from coarser
discretizations as appropriate. In [17], a wide variety of metrics were used for regression: L2, L1,
L∞, and a weighted L2 where the results on finer grids are given higher weighting. The authors
also considered several metrics where the convergence rate was assumed and only the asymptotic
value of the quantity of interest and the constant, C, were optimized. In this report, we focus on
the standard metrics: L2, L1, L∞, and weighted L2. Again, following [17], we use the median
deviation to produce an estimate of the uncertainty in the asymptotic approximations rather than
making a probabilistic assumption on the higher order terms in the ansatz.

0.3 Adjoint Based Error Analysis

As previously stated, the goal is adjoint-based error estimation to relate the error in a quantity
of interest, which is usually not computable, to a weighted residual, which is computable. The
weights on the residual are given by the solution to an appropriately defined adjoint problem. This
is very similar to way in which adjoints are used in optimization and uncertainty quantification
to provide sensitivity/derivative information. We remark that, in general, adjoints are not unique
and basically any supplementary problem can be used to derive a representation for the error in
a quantity of interest. The adjoint problem is usually defined so that all of the terms in the error
representation are either computable (given an approximation of the adjoint solution) or negligi-
ble. For many problems, several different adjoints can lead to computable error representations
and the choice of the adjoint problem depends mostly on the approximation properties of the ad-
joint solution and the ease of implementation in the simulation framework. We take a particularly
straightforward approach in Drekar::CFD which we describe in section 0.3.5. For more details on
the implementation of adjoint-based a posteriori error estimates in Drekar::CFD, see [19].

0.3.1 General Nonlinear Problem and Notation

We consider the following system of partial differential equations,

FFF(zzz) = 000, (3)

defined on Ω ⊂Rd , d = 2,3, a polygonal (polyhedral) domain (open, bounded, and connected set)
with boundary ∂Ω. Specific examples of FFF and zzz will be given in subsequent sections. We assume
that sufficient boundary conditions are provided so that (3) is well-posed. We present the definition
of the adjoint problem and the a posteriori error analysis using the general problem formulation
(3).
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0.3.2 Strong Form Adjoint Operators

The goal in adjoint-based error analysis is to relate a linear (or linearized) functional of the error
to a computable weighted residual. The linear adjoint operator in strong form can be defined via
the duality relation

(L vvv,www) = (vvv,L ∗www) (4)

where L is a linear operator. For a general nonlinear PDE one approach to define the linear
operator L is to assume FFF is convex and use the Integral Mean Value Theorem yielding

FFF ′(zzz)eee = FFF(zzz)−FFF(zzzh)

where zzz lies on the line connecting zzz and zzzh, and eee = zzz− zzzh. In practice, zzz is unknown so we
linearize around zzzh giving,

L eee = FFF ′(zzzh)eee = FFF(zzz)−FFF(zzzh)+h.o.t.

Notice that the operator L is the same linear operator used in computing the step in Newton’s
method. This fact is often exploited to ease construction of the discrete adjoint operator.

For the linear functional denoted by the duality pairing (ψψψ, ·) the error can be represented using
the definition of the adjoint. We follow the standard approach and neglect the higher order terms
in the error representation, see e.g. [2, 1, 9, 11], giving

(ψψψ,eee) = (ψψψ,L −1(FFF(zzz)−FFF(zzzh)) = (φφφ ,FFF(zzz)−FFF(zzzh)) (5)

where φφφ is defined by the adjoint problem

L ∗
φφφ = ψψψ. (6)

0.3.3 Variational Formulation

We assume that (3) has an equivalent variational formulation seeking zzz ∈VVV such that,

fff (zzz,www) = 000, ∀www ∈VVV . (7)

Note that fff is assumed to be linear www. Specific examples of fff and VVV will be given in subsequent
sections. The discrete problem is defined by choosing VVV h ⊂VVV to be a discrete subspace associated
with the partition, Th, and letting zzzh ∈VVV h satisfy,

fff (zzzh,www) = 000, ∀www ∈VVV h. (8)

This statement combined with the linearity in www is equivalent to Galerkin orthogonality, and in
what follows we will refer to these interchangeably.

Deriving the adjoint of the variational formulation follows the same pattern as the strong-form
operator. To define the error representation the Integral Mean Value Theorem is again applied
giving

fff ′(zzz;eee,www) = fff (zzz,www)− fff (zzzh,www) (9)

13



where

aaa(zzz;vvv,www) =
∂

∂ε
fff (zzz+ εvvv,www)

∣∣∣
ε=0

= fff ′(zzz;vvv,www). (10)

Again linearizing about zzzh and neglecting high order terms, the error in a linear functional defined
by the duality pairing (ψψψ, ·) can be written as

(ψψψ,eee) = aaa(zzzh;eee,φφφ) =− fff (zzzh,φφφ) (11)

where φφφ is the solution to the adjoint problem

aaa(zzzh;www,φφφ) = (ψψψ,www), ∀www ∈VVV . (12)

Given φφφ the error representation Eq. 11 is easily evaluated. However, usually the solution to
the adjoint problem Eq. 12 is not given explicitly and we must approximate the solution using an
appropriate discretization. In section 0.3.4, we discuss various strategies to approximate the adjoint
solution and how these approximations affect the accuracy of the adjoint-based error estimate.

0.3.4 Accuracy of Error Estimate

One of the challenges in goal-oriented a posteriori error estimation is the fact that the adjoint solu-
tion needs to be approximated using a finer discretization than was used for the forward problem.
Occasionally we can to use the same approximation for the forward and adjoint problems, but this
requires that the adjoint solution be projected into a finer space [2, 1]. While this is appealing
from a computational perspective, in general it is difficult to define such projection operators and
consequently the error estimate are often inaccurate. In Drekar::CFD, we use piecewise linear
Galerkin finite elements with SUPG stabilization to solve the forward problem and a higher-order
(quadratic) finite element approximation with stabilization to solve the adjoint problem. Using a
higher order approximation to solve the adjoint is generally regarded as the most robust approach
to obtain accurate error estimates. The increase in computational cost associated with the higher-
order basis functions is somewhat mitigated by the fact that the adjoint problem is linear.

In general, we can rewrite the error representation (11) using an approximate adjoint solution,
φ̃φφ ≈ φφφ , as follows,

(ψψψ,eee) =− fff (zzzh, φ̃φφ)− fff (zzzh,φφφ − φ̃φφ).

The second term is a product of the forward residual and the adjoint error. We can safely assume
that the second term is negligible if the error in solving the adjoint is smaller than the error in
solving the forward problem. We can actually get away with a much weaker assumption, namely,
that the error in solving the adjoint is small in regions where the error in solving the forward
problem is large. Stated another way, the adjoint does not need to be accurate in regions where the
forward error is small. This has led to research into the use of different physical discretizations for
the forward and adjoint problem, but this is beyond the scope of this paper.
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0.3.5 Drekar Implementation

Drekar::CFD is a massively parallel unstructured fully-implicit (or semi-implicit) finite element
Navier-Stokes solver build upon Trilinos [14]. The automatic differentiation tools allow for rapid
code development and a straightforward implementation of advanced capabilities such as embed-
ded uncertainty quantification and adjoints. We summarize the implementation of the adjoint-based
error estimates in Drekar::CFD in Algorithm 0.3.5.

Algorithm 1 Computation of the a posteriori Error Estimate
Given low order and high order approximation spaces: VVV L and VVV H respectively.
Given a low order approximation of the forward solution, zzzL ∈VVV L satisfying

fff τττ(zzzL,vvvL) = 0, ∀vvvL ∈VVV L.

Given a QofI defining adjoint data:

ψψψH = (ψψψ,vvvH) , ∀vvvH ∈VVV H .

Project forward approximation into higher order space (usually trivial):

PzzzL = zzzH .

Compute residual of forward problem in higher order space:

rrrH =− fff τττ(zzzH ,vH), ∀vvvH ∈VVV H .

Compute adjoint of Jacobian in higher order space such that:

JJJT
Hφφφ H = aaaτττ(zzzH ;vvvH ,φφφ H), ∀vvvH ∈VVV H .

Solve the adjoint problem:
JJJT

Hφφφ H = ψψψH .

Compute the error estimate as a weighted residual:

(ψψψ,eee) = (rrrH ,φφφ H) .

0.3.6 Adjoint Consistency

Adjoint consistency is an issue whenever the adjoint of the discretization of the forward problem
does not correspond to a discretization of the formal adjoint problem. This is known to be problem-
atic for certain adjoint inconsistent formulations, e.g. stabilized Galerkin methods [5] and interior
penalty discontinuous Galerkin methods [13, 12, 5]. Often, the adjoint of the discretized system is
preferred due to ease of implementation, but it has been shown that for SUPG stabilized methods
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a discretization of the formal adjoint system may produce better results, see [4] for an example
in an optimization setting. In Figure 1, we illustrate that there may exist an additional layer of

Figure 1. Chart showing the relationship (or lack thereof) be-
tween the forward and adjoint operators and their respective stabi-
lized and discrete variants.

complexity. Namely, the problem formulation itself may be modified, usually in a consistent fash-
ion, before discretization. Often, this modification affects both the operator and the data, and is
designed to introduce additional stability in the discrete formulation, but it is not always the case
that the adjoint of the modified problem corresponds to a modification of the adjoint problem. In
this case, the formulation is not adjoint consistent.

The adjoint implementation in Drekar::CFD uses a discrete adjoint. Thus far the results have
been favorable using the discrete adjoint approximation. The framework and adjoint implementa-
tion in Drekar::CFD are flexible enough to allow for an approximation of the continuous adjoint,
but this has yet to be explored.

0.4 Advantages and Disadvantages

In this section, we make a number of concise statements regarding the relative advantages and
disadvantages of the data-centric and adjoint-based techniques. Each statement is following by a
brief explanation. This list is by no means exhaustive, but it is meant to serve as a starting point
for those interested in applying either algorithm for verification.

The data-centric approach is completely non-intrusive, while the adjoint approach requires modi-
fications to the model.

This is perhaps the most significant advantage for the data-centric approach. The fact that one
needs to implement and solve an adjoint problem can be a non-starter. To state this another way, the
data-centric verification process can be performed by anyone with access to the simulation output
and knowledge of the discretizations used to generate the data. The adjoint approach requires
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significant knowledge of the simulation environment to implement the adjoint problem and the
compute the error representation. The implementation in Drekar::CFD uses a discrete adjoint
approach which does not depend on the system of partial differential equations to be approximated
(Navier Stokes, RANS, MHD, etc.), but it is subject to difficulties if the formulation is not adjoint
consistent [add cites].

The data-centric approach is applicable for a broader class of responses, e.g. maximum values.

While the adjoint-based approach can be extended to a certain class of nonlinear functionals,
there are other classes of responses for which the adjoint problem is not easily defined. While this
an active area of research, to the best of our knowledge there is no solution for this.

The adjoint approach requires only one grid, while the data-centric approach requires at least
three grids.

If the objective is to estimate the error for a particular discretization, then this is true. However,
for robustness, the adjoint approach requires a higher order approximation of the adjoint solution
which is roughly equivalent to solving a linear problem on a finer mesh. As previously mentioned,
there are some postprocessing techniques that allow one to solve the adjoint on the same mesh, but
these are not very robust. If one also wants to infer the convergence rate of the error, then at least
two grids are required for the adjoint approach.

The data-centric approach can be applied to any number of quantities of interest, while the adjoint
approach requires an adjoint solution for each QofI.

This is certainly an advantage for the data-centric approach. The computational cost for addi-
tional quantities of interest can be somewhat mitigated through the use of block-solvers since (for
steady-state problems) this corresponds to solving the same linear systems with multiple right-
hand sides. This capability has not been implemented in Drekar::CFD, but is the subject of future
research.

The data-centric approach cannot distinguish between different sources of error, i.e., spatial and
quadrature errors, and does not provide a local error indicator to be used for adaptive mesh
refinement. Meanwhile, the adjoint approach provides a natural decomposition of errors into local
contributions from various sources.

The ansatz for the data-centric approach can be modified to include interactions between dif-
ferent sources of error, but this does complicate the process and requires more parameters to be
estimated. In section 0.3, we did not describe how the error representation can be decomposed into
localized contributions from various sources of error, but this is fairly standard analysis and can be
found in almost any text or journal article on adjoint-based error estimation. This ability to isolate
local error contributions allows one to define local error indicators that may be used for adaptive
mesh refinement.

The adjoint approach does not formally require the forward solution to be in the asymptotic regime
and can provide accurate error estimates even on coarse meshes.
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This is true if the adjoint solution can be approximated reasonably well. It is often claimed
that the adjoint problem is easier to solve than the forward problem, but this is problem dependent.
While the linearity of the adjoint problem certainty makes the discrete problem easier to solve,
the adjoint solution itself may be more difficult to approximate than the solution of the forward
problem, particularly if the solution to the forward problem is smooth enough to be given analyt-
ically. In section 0.5, we consider a case where the forward problem is much easier to solve than
the adjoint problem, but nevertheless, the adjoint-based error estimate is still reasonably accurate.

Certain formulations do not have adjoints.

This is debatable. At the continuous level, most well-posed systems of PDEs have adjoints.
However, it is often preferable to solve a discretized version of a modified problem. Examples
include stabilized methods, LES models, etc. In such cases, there is no guarantee that the modified
problem will have an adjoint. If this is the case, then one can always resort back to approximating
the solution of the continuous adjoint, but this is much more intrusive than the discrete approach.

The simulation may have a systematic bias that causes the numerical approximation to converge to
the incorrect answer. The adjoint-based approach may be able to detect this, while the data-centric
approach will not.

The data-centric approach only determines whether or not a quantity of interest convergences:
it does not determine if it converges to the correct value. However, verification is process rather
than an algorithm and the systematic biases that cause such false convergence are often due to
implementation errors and should be culled out by performing verification on problems with known
solutions or known quantities of interest.

The adjoint-based approach can be relatively difficult to implement correctly, and even minor
mistakes can lead to inaccurate error estimates.

This is certainly true. The error representation must be implemented correctly in order to
produce an accurate error estimate. Failing to do so typically results in an error estimate that does
not account for all of the sources of error in the numerical approximation and may lead to false
certification of the simulation. In section 0.5, we consider a case where this actually occurs and
we describe the reason for the faulty error estimates.

The adjoint-based error estimate does not account for errors made in approximating the domain,
while the data-centric approach includes this term.

For many practical problems, the computational domain is relatively complicated and cannot
be matched exactly by the mesh. In such cases, there is an additional O(h2) error induced by the
approximation of the domain and it is difficult to determine a priori the relative magnitude of this
error in comparison with other errors in the quantity of interest. The adjoint-based approach does
not automatically account for this source of error and this may be the subject of future research.
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0.5 Computational Experiments

0.5.1 Navier Stokes Channel Flow

In this section, we present numerical results for a two-dimensional laminar flow in a channel with
an analytical solution. While this problem is rather simplistic, it does provide an opportunity to
verify the adjoint solutions and the a posteriori error estimates. The computational domain is
[0,5]× [0,1]. Along the top and the bottom of the domain we enforce no-slip (uuu = 000) boundary
conditions. The flow for this problem is usually driven by specifying a parabolic profile for ux
along the inflow boundary. This introduces an additional error in the quantity of interest if we
solve the forward problem using piecewise linear finite elements. The adjoint-based error estimate
can account for this error adding a term of the form,∫

Γ

(−ν∇φφφ −qI)nnn (uuu−uuuh) ds,

along the inflow boundary, where φφφ and q are the adjoint solutions corresponding to the velocity
and pressure fields. This term is computable since uuu is given on the boundary, but the straightfor-
ward implementation in Drekar::CFD does not include this term in the error representation.

Thus, we consider an alternative approach to drive the flow. The left and right boundaries are
inflow and outflow boundaries respectively. The flow is driven by a forcing term,

ggguuu =
(

1
0

)
,

which acts as a pressure gradient. This formulation has the same analytical solution as the standard
formulation and the error estimate is fully computable in Drekar::CFD. The magnitude of the
velocity vector for ν = 1E-2 is shown in Figure 2. The x-velocity follows a parabolic profile, the
y-velocity is zero, and the pressure is zero.

To discretize, we partition the computational domain into uniform quadrilateral (square) el-
ements with mesh size h. The forward problem is solved using piecewise linear finite elements
with SUPG and PSPG stabilization. The adjoint problem is solved using Algorithm 0.3.5 with
piecewise quadratic finite elements. The adjoint data, ψψψ , is determined by the quantity of interest.
We use ψψψx, ψψψy, and ψψψz to denote the x, y, and z components of ψψψ respectively. Since uy and the
pressure field can be represented exactly in the finite element space we are only interested in errors
in ux, we consider the following quantities of interest associated with ux for verification:

1. The value of the x-velocity at (4,1/2) for which

ψψψx = δ(4,1/2) ≈
400
π

exp(−400(x−4)2−400(y−1/2)2).

2. The average value of the x-velocity over [3,4]× [0,1] for which

ψψψx = χ[3,4]×[0,1] =

{
1, (x,y) ∈ [3,4]× [0,1],
0, otherwise.
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Figure 2. Magnitude of the forward velocity for the channel ver-
ification problem.

The exact values of the quantities of interest for the chosen Reynolds number are easily calculated
to be

Q1 = 12.405849827, Q2 =
25
3
≈ 8.333333333.

In Table 1, we provide the numerical approximations of the quantities of interest for a sequence
of discretizations. Since the solution is known, we also provide the exact error for both quantities
of interest on each mesh. It is clear from the data in Table 1 that the discretizations (except perhaps

h Q1 e1 Q2 e2

1/10 12.2347875 0.1710623 8.25 0.0833333
1/20 12.3850150 0.0208348 8.3125 0.0208333
1/40 12.4006598 0.0051900 8.328125 0.0052083
1/50 12.4025300 0.0033198 8.33 0.0033333
1/80 12.4045561 0.0012937 8.33203125 0.0013021
1/100 12.4050237 0.0008261 8.3325 0.0008333
1/120 12.4052776 0.0005722 8.33275463 0.0005787
1/150 12.4054854 0.0003644 8.33296296 0.0003704

Table 1. Values of the quantities of interest for a sequence of
discretizations.

the coarsest) are in the asymptotic regime and therefore both of the verification methods should
perform quite well.
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First, we use the data-centric verification approach to approximate the asymptotic value of
the quantities of interest and the convergence rates. The constant C in (2) is also approximated
but not reported here. As previously mentioned, we consider the standard metrics () and perform
regression on subsets of the data. The first subset contains the data from the three finest grids.
Subsequent subsets are selected by adding data on coarser grids. For this data in Table 1, this
results in 24 different regression results. The estimated convergence rates for the ensemble of
regressions in shown in Figure 3 and the estimated asymptotic values of the quantities of interest
are shown in Figure 4. We calculate the median of the predicted parameters, Qmedian and rmedian

Figure 3. Estimated convergence rates for the ensemble of re-
gressions for Q1 (left) and Q2 (right).

Figure 4. Estimated asymptotic values for the ensemble of re-
gressions for Q1 (left) and Q2 (right).

and compute the median deviations, ΣQ,median and Σr,median. Following [17], we use 3Σ∗,median to
approximate the bounds on the median values. This gives the following approximations for the
asymptotic values

Q1 = 12.405852538±7.906298999e-6, r1 = 2.004127413±0.016976748
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Q2 = 8.333333328±1.227539669e-8, r2 = 2.000005841±1.710263022e-5.

As expected, the median asymptotic rates and values of the quantities of interest are nearly exact
and the error in the predicted values and the known values is well within the bounds provided.
However, upon closer inspection of Figures 3 and 4, we see that the estimates are much worse
for the sixth subset, which is the case that include all of the data points. It is quite likely that
the coarsest mesh is unable to resolve Q1 since the integral is approximated using quadrature.
Therefore, we reanalyze the ensemble with the sixth subset omitted. This gives:

Q1 = 12.405854693±3.637486989e-7, r1 = 2.000221938±8.936006080e-4.

Not only are the approximated values of the parameters closer to the known values, the bounds are
much tighter. Omitting the sixth subset had a negligible effect on the estimates and bounds for Q2
and r2.

Next, we use the adjoint-based approach to estimate the error for both quantities of interest on
each mesh. Recall that this requires solving a higher-order, but linear, adjoint problem for each
quantity of interest on each mesh. It is standard practice in a posteriori error estimation to report
the effectivity ratio:

Effectivity Ratio =
Estimated Error

True Error
,

as a measure of accuracy of the error estimate. Naturally, this is possible only if the true error in
known. The a posteriori error estimates and effectivity ratios are provided in Table 2. As one might

h e1 Effectivity e2 Effectivity
1/10 7.70081e-2 0.45 8.33333e-2 1.00
1/20 2.07794e-2 0.99 2.08333e-2 1.00
1/40 5.19508e-3 1.00 5.20833e-3 1.00
1/50 3.32485e-3 1.00 3.33333e-3 1.00
1/80 1.29877e-3 1.00 1.30208e-3 1.00
1/100 8.31213e-4 1.01 8.33333e-4 1.00
1/120 5.77231e-4 1.01 5.78704e-4 1.00
1/150 3.69428e-4 1.01 3.70370e-4 1.00

Table 2. Values of the a posteriori error estimates and effectivity
ratios for a sequence of discretizations.

expect, the effectivity ratios are very good for all simulations except for Q1 on the coarsest mesh.
As previously mentioned, this is probably due to the fact that the linear functional is not integrated
very well on this mesh.

The a posteriori error estimate can be used to estimate the asymptotic value of the quantities of
interest by adding the error to the approximation. In Figure 5, we plot the approximated asymptotic
values and we see that all of the approximations are quite good except for Q1 on the coarsest mesh.
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Figure 5. Approximate values of the quantities of interest as well
as the sum of the approximations and the error estimates for Q1
(left) and Q2 (right).

The adjoint-based approach only provides an estimate of the error in a quantity of interest on
a given mesh. It does not provide bounds or estimates of the error in the error estimate. However,
we could treat the predicted asymptotic values and error estimates as additional data and combine
the data-centric and adjoint-based approaches to estimate the asymptotic rate of convergence of
the error and to provide bounds on the estimates. For the asymptotic values, we could then add the
numerical approximations of the quantities of interest in Table 1 and the error estimates in Table 2
and perform the ensemble of regressions on the sum. Unfortunately, the data from Drekar::CFD
was provided with only seven digits of accuracy, and while this usually sufficient, the error in the
sum is well below this threshold for most of the discretizations. Thus, there is a systematic bias in
the data and the regressions perform quite poorly. Of course, one would not expect to encounter
this issue when dealing with more practical problems.

We can still combine the data-centric and adjoint-based approaches to estimate the rates of
convergence. We start with the ansatz,

e = Chr + higher order terms ,

and perform an ensemble of regressions on the data in Table 2. This gives the following approxi-
mations for the convergence rates:

r1 = 1.999999567±1.866173069e-6. r2 = 2.000000235±2.334115517e-6,

which are nearly exact to within the precision of the data and the bounds reflect the accuracy in the
data. We also computed the medians with the data from the coarsest mesh omitted, but this had a
negligible effect on the results.
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0.5.2 RANS Model for Axisymmetric Expansion

In this section, we consider the axisymmetric sudden expansion problem (Benchmark #2 from TH-
M). The computational domain consists of two cylinders of different radii as shown in Figure 6.
The flow is in the z-direction and we do not consider the case with swirl.

Figure 6. Coarsest (left) and finest (right) computational meshes
for the axisymmetric sudden expansion problem.

Mesh Number Elements Nodes
1 10656 11307
2 35964 37396
3 80896 83349
4 166500 170406
5 287712 293311

Table 3. Number of nodes and elements on each of the five
meshes.

We use a Reynolds Averaged Navier Stokes (RANS) model to approximate a steady solution
to the problem described above at a Reynolds number of about 2500. We use a Spalart-Allmaras
RANS model which requires the solution of a time-dependent advection-diffusion-reaction equa-
tion to approximate the turbulent viscosity. We solve the forward problem using a stabilized contin-
uous Galerkin method with piecewise linear basis functions. The adjoint problem is solved using
Algorithm 0.3.5 and uses piecewise quadratic basis functions. The significant increase in degrees
of freedom for the adjoint problem did not pose a problem for the linear solver since the physics
based algebraic multigrid preconditioner performed well in all simulations. The main challenge
in solving the adjoint problem was due to the increased memory requirements to assemble and
store the adjoint Jacobian which was much denser than the Jacobian of the forward problem. Thus,
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all of the numerical results were obtained using the Redsky capacity machine at Sandia National
Laboratories on between 128 and 2048 cores.

We integrate the forward problem in time until t = 50 at which point a steady state has been
reached. In fact, a steady state is reached a bit earlier, but we perform additional time stepping to
insure that all of the transient are removed from the solution. Then we solve the steady state adjoint
and compute an a posteriori error estimate using Algorithm 0.3.5. For this particular problem, the
fact that we need to solve a time-dependent forward problem and a steady-state adjoint problem
actually renders the total solution time for the adjoint problem about an order of magnitude less
than the solution time for the forward problem, despite the use of the higher-order basis functions.

In the first experiment, we prescribe a uniform inflow velocity, uuuz = 1 on the inflow of the
smaller tube. No-slip boundary conditions (uuu = 000) are imposed on all other boundary except the
outflow of the larger tube where a natural outflow condition is chosen. We consider the following
quantities of interest associated with uz for verification:

1. The value of the z-velocity near (0.0450,0.1) for which

ψψψz = 3100exp(−400(x−0.045)2−400(y)2−400∗ (z−0.1)2).

2. The average value of the z-velocity over the entire domain for which

ψψψz =
1
|Ω|

.

3. The average value of the z-velocity for 0.18 ≤ z ≤ 0.2 for which

ψψψz =

{
1

0.02(π0.052) , 0.18 ≤ z ≤ 0.2,

0, otherwise.

The numerical approximations of these quantities of interest are reported in Table 4. A quick

Mesh Number Q1 Q2 Q3

1 1.44020926e-1 1.50579962e-1 1.59236405e-1
2 1.49755223e-1 1.55737659e-1 1.62925617e-1
3 1.50095835e-1 1.55827310e-1 1.52577120e-1
4 1.53843384e-1 1.59340034e-1 1.51289017e-1
5 1.54736999e-1 1.60150819e-1 1.69128152e-1

Table 4. Values of the quantities of interest for a sequence of
discretizations using a prescribed inflow velocity.

inspection of the data would indicate that Q1 and Q2 may be converging, but probably not Q3. Nev-
ertheless, we perform an ensemble of regressions on all three quantities of interest and compute the
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median asymptotic values and convergence rates as well as the median deviation for each quantity
of interest. Since this problem is more challenging than the laminar Navier Stokes example, we
perform a constrained optimization where we restrict the convergence rate to within the interval
[0.25,2]. This gives:

Q1 = 1.59240880e-1±1.02994326e-2, r1 = 1.05414626±0.34630880,

Q2 = 1.63998250e-1±9.04053287e-3, r2 = 1.08317760±0.55660220,

Q3 = 1.60363486e-1±3.92977461e-3, r3 = 0.86072531±0.22793075.

The estimated convergence rates and asymptotic values for each ensemble member are provided
in Figure 7 and Figure 8 respectively. Quite surprisingly, the median convergence rates are very

Figure 7. Estimated convergence rates for the ensemble of regres-
sions for Q1 (upper-left), Q2 (upper-right), and Q3 (lower-middle).

close to the expected value of 1 despite the fact that there are several outliers within the ensemble.
In contrast to the results in the previous section, no particular subset appears to be causing the
outliers. The variation in the predicted values is reflected in the relatively large bounds for the
convergence rates.

Next, we solve the adjoint problem for each quantity of interest and report the a posteriori error
estimates in Table 5. At first glance, the error estimates appear to be converging at a reasonable
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Figure 8. Estimated asymptotic values for the ensemble of re-
gressions for Q1 (upper-left), Q2 (upper-right), and Q3 (lower-
middle).

Mesh Number e1 e2 e3

1 -1.73453e-3 -9.24103e-5 -9.16013e-3
2 -1.33005e-3 -3.74300e-5 -2.73042e-3
3 -1.44005e-3 -2.46298e-5 -1.74194e-3
4 -6.14935e-4 -1.27056e-5 -1.15997e-3
5 -4.18171e-4 -8.70172e-6 -1.95917e-4

Table 5. Values of the error estimates for a sequence of discretiza-
tions using a prescribed inflow velocity.

rate. Performing an ensemble of regressions gives the following estimates for the convergence
rates of the error:

re1 = 1.41747878±1.18095318,

re2 = 2.10054191±0.34524074,

re3 = 2.61035252±1.04263704.

27



Note that we did not constraint the optimization algorithm since the errors appear to be converg-
ing. However, we also notice that the magnitude of the error estimate is much smaller than the
magnitude of the variation in the data. Moreover, the predicted convergence rate is much higher,
albeit with larger bounds. This indicates that there is probably a component of the error that the a
posteriori error estimate is not accounting for. For this particular problem, there are several poten-
tial sources for this additional error. One issue is due to the inflow boundary where we set uz = 1
on the inflow face and we set uz = 0 on the side of the smaller cylinder. This introduces an error
in the interpolation of the boundary conditions since the nodes common to both boundaries can be
either 0 or 1.

To mitigate this issue, we modify the problem to be driven by a pressure gradient rather than a
prescribed inflow velocity. We set the pressure gradient so that the Reynolds number is fairly close
to the previous case. In Table 6, we provide the numerical approximations of the three quantities
of interest on each mesh.

Mesh Number Q1 Q2 Q3

1 1.19399798e-1 1.25705177e-1 1.30725526e-1
2 1.26371320e-1 1.32560106e-1 1.38197096e-1
3 1.30495505e-1 1.36662326e-1 1.33800602e-1
4 1.21417426e-1 1.27037231e-1 1.20816139e-1
5 1.22591353e-1 1.28248290e-1 1.35645515e-1

Table 6. Values of the quantities of interest for a sequence of
discretizations using a pressure drop to drive the flow.

We perform the same ensemble of regressions which gives

Q1 = 1.25079995e-1±1.69518368e-3, r1 = 0.95816574±0.37831641,

Q2 = 1.30984086e-1±1.34550707e-3, r2 = 0.96170827±0.26145869,

Q3 = 1.28348004e-1±7.45314446e-4, r3 = 0.87331692±0.30038723.

The estimated convergence rates and asymptotic values for each ensemble member are provided in
Figure 9 and Figure 10 respectively. While the asymptotic values of the quantities of interest are
different due to the modified formulation of the problem, the estimated convergence rates and the
error bounds are comparable to the previous case.

Next, we solve the adjoint problem for each quantity of interest on each mesh and report the
a posteriori error estimates in Table 7. These error estimates certainly appear more reasonable,
but it is evident that there might be another source of error that the adjoint-based estimate is miss-
ing. In Section 0.4, we noted that the adjoint-based error estimate is unable to account for errors
due to approximations of the geometry. It is possible that the error estimate is only capturing the
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Figure 9. Estimated convergence rates for the ensemble of regres-
sions for Q1 (upper-left), Q2 (upper-right), and Q3 (lower-middle).

Mesh Number e1 e2 e3

1 -6.26274e-2 -6.672304e-2 -6.92621e-2
2 -1.67401e-2 -1.762705e-2 -1.83955e-2
3 -1.92805e-2 -2.033776e-2 -1.99137e-2
4 -1.28515e-3 -1.330209e-3 -1.31282e-3
5 -1.24453e-3 -1.293814e-3 -1.29362e-3

Table 7. Values of the error estimates for a sequence of discretiza-
tions using a prescribed inflow velocity.

discretization errors and missing the geometrical errors. Another possibility, also mentioned pre-
viously, is that using the adjoint of the SARANS model is causing an instability in the discrete
adjoint problem. Finally, we note that the numerical approximation does not appear to be in the
asymptotic range, which might be also be affecting the a posteriori error estimate. All of these
possibilities will need to be investigated in the future.
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Figure 10. Estimated asymptotic values for the ensemble of
regressions for Q1 (upper-left), Q2 (upper-right), and Q3 (lower-
middle).

0.6 Conclusions

Our objective in this report was to provide a brief overview of the adjoint-based and data-centric
verification techniques and to give a summary of their respective advantages and disadvantages.
We showed that in the case of a numerical solution within the asymptotic range of convergence,
both methods performed quite well and were even complementary in the sense that data-centric
technique can be applied to the a posteriori error estimates to yield extremely accurate convergence
rates and tight bounds. We also showed that for more challenging problems where the solution is
away from the asymptotic range, both methods may struggle. In the data-centric approach, the
result is relatively wide bounds on the predicted quantities of interest and convergence rates. For
the adjoint-based approach, the result is unreliable error estimates. Nevertheless, both approaches
are reasonable in a range of scenarios and the fact that they can even be combined to make more
precise bounds and estimates is a promising avenue for future research.
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