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Abstract

A systematic approach to defining margin in a manner that incorporates statistical information
and accommodates data uncertainty, but does not require assumptions about specific forms of the
tails of distributions is developed. This approach extends to calculations underlying validation
assessment and quantitatively conservative predictions.
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Chapter 1

Introduction

It is an unfortunate irony of life that

1. The less reliable a design is, the easier it is to make meaningful estimates for probability of
failure.

2. The more reliable it is, the less meaningful are efforts to quantify that reliability.

Quite naturally, the more reliable the system is, the more natural it is to discuss that reliability in
terms of margin. Even margin must be discussed in a probabilistic sense. Added to this conceptual
complexity is the necessity of quantifying our confidence in the margins and probabilities that we
discuss.

The focus of this monograph is to introduce a formalism in which margin, probability and
confidence all fit together quite naturally. Additionally, the necessary computations are intuitive
and reasonably easy to perform.

The approach presented here is “minimalist” in the sense that it involves minimal dependence
on components that are not well known, such as the precise form of the relevant distributions or
the content of the tails of those distributions. This is consistent with the use of the term in design:
using the fewest and barest essentials or elements for a maximal effect. As will be seen below, it
is also constructed to be robust.

Outline of Presentation
The order of this narrative is as follows.

1. Some of the limitations of common approaches to defining margin as well as the difficulties
in connecting margin with probability of failure are discussed here in the introduction.
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2. A new concept for defining margin is presented in Chapter[2l This is a concept which clearly
connects the definition of margin with the calculation of probability of failure. This new
concept, Probability of Exceeding Margin (PEM), minimizes sensitivity of failure probabil-
ity estimates to tail shapes in load and strength probability distributions.

3. Use of re-sampling in calculating confidence values of PEM is demonstrated in Chapter [31

4. The concept of PEM could be employed in various manners to define validation criteria. One
very natural approach to this is demonstrated in Chapter

5. A theorem of set theory is employed in Chapter[3lto use PEM along with the sort of statistical
information employed in model validation to overcome accuracy limitations of models to
make confidently conservative predictions.

6. Discussion and conclusion.

A Simple Illustration

To introduce our new approach, we begin with a re-examination of the standard reliability
calculation. Consider the structure shown in Figure [I.1l It is base-driven, has 30 discrete masses,

b
el

b

X30

Figure 1.1: An otherwise linear structure with nonlinear elements between nodes 5 and 21.

and responds in one dimension. The quantities x;, j = 0,...,30 denote absolute displacements
of the base and the system masses; these also denote degrees-of-freedom (DOF) of the structure.
The mass of the element under x( is immaterial to the analysis; the mass is rigid and a motion is
enforced at that location. The elements associated with the displacements x;, j = 1,...,30, have
masses mj, j = 1,...,30. The damper to the left of DOF j is denoted c;, j = 1,...,30. The spring
to the left of DOF j (except for DOF 21) is denoted k;, j = 1,...,30. The spring to the left of DOF
21 is nonlinear, and the restoring force in that spring is denoted R (x2; — x5). The element shown as
solid black that extends down from DOF 5 is a rigid, massless element. The parameters of various
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elements of this structure must be treated as random variables. This system is described in detail
in Appendix

At this stage, for the sake of discussion we shall assume that there are numerous nominal
acceleration histories whose application on the base of the structure is anticipated. Because of
uncertainty in the base acceleration and because of the partially random character of the structure,
the peak load anticipated at the location of a sensitive component at location 26 must be treated
as a Random Variable (RV) L (for Load). For the sake of illustration, we shall assume that 30
realizations have been achieved (either through test or simulation). Additionally, failure loads of
the component at location 26 are also known in a statistical sense. We refer to this random variable
as Strength S. We shall assume that we have 25 realizations of S.

Properly normalized (integrate to 1) histograms of both L and S realizations are shown in Figure
[[.2l Define Factor of Safety, F§ by

< 10° Load and Strength Data

—— 30 Loads
—— 25 Strengths

3.51

251

| T

Figure 1.2: Histogram of 30 loads and 25 strengths. The histograms are each normalized to inte-
grate to one.

Fs = Estimate of minimum(S)/Estimate of maximum(L). (1.1)

Examination of these histograms would on several bases suggest that the design is very safe. Di-
vision of the lowest strength (2.02e+04) by the highest load (8.14e+03) yields a comforting Factor
of Safety (Fs) of 2.5. Because

Margin = Estimate of minimum(S) — Estimate of maximum(L) (1.2)

we see that Fy is another way of expressing Margin. Of course, had we more data, we might expect
that our minimum realization of § would decrease and that our maximum realization of L would
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increase, resulting in a much less optimistic estimate for factor of safety. This can be a serious
difficulty, but it is addressed by recasting the problem probabilistically.

This is done through estimation of the Probability of Failure (PoF). From this point on, we
acknowledge that neither load nor strength can be so well known that they can be considered deter-
ministic quantities. We now refer to load and strength as random variables X and Y, respectively.
A straight-forward estimate of the probability of failure (assuming statistical independence of load
and strength) would integrate the joint probability density function (PDF) of load and strength over
the region where load is greater than strength:

PF—/ Jx(x) fr (v) dxdy = /fY (/ymfx(x)dx)dy

—/ fr)[1—Fx(y)]dy (1.3)

where fx(x) is the PDF of load, Fy(y) is the cumulative distribution function (CDF) of strength.
The quantity in brackets in Equation[L.3][1 — Fx(y)] is referred to as the complementary cumulative
distribution function (CCDF).

(Above, we have assumed that random variable X representing load and the random variable Y
representing strength are independent of each other. This is generally a very reasonable assump-
tion, and where it does not hold, an extended version of the following development can be made
for such cases as well.)

Were we to employ the normalized histograms of Figure for fx and fy our estimate for
the probability of failure for our system would be exactly zero; there are no loads larger than our
lowest strength. This is clearly wrong. This approach suffers from the same limitation as does our
estimate for the Factor of Safety above; more data could substantially change our estimate for PoF.

For the above reason, it is standard practice to postulate a form for the PDF for load, to postulate
a form for the PDF of strength, to fit those distributions to the available data by some method
(maximum likelihood is used in the following), and then to perform the necessary integrations.
For instance, a typical problem might involve a sampling of applied loads that might be seen by
a component and a sampling of strengths associated with such components. (Load and Strength
are used as proxies for analogous quantities that would arise in other sorts of analysis - such as
electrical, optical, or even financial systems.) A common practice is for the analyst 1) to assert
that each of these sample sets conforms to some standard distribution ! 2, 2) to estimate the
distribution parameters to match the available data, and 3) to employ those fitted distributions to

perform reliability estimation, while setting aside the original data.

As an exercise, three common distributions (normal, log-normal, and generalized extreme

10ften Gaussian, chi-square, exponential, generalized extreme value [13], log-normal, etc.
2The reader may find some footnotes helpful, but the reader could ignore all footnotes without serious loss.
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value) were fit to each of the load and strength data using Matlab®’s maximum likelihood func-
tions. These distributions are defined in Appendix [Al they were chosen for their tendencies to
emphasize or to de-emphasize tails. Plots of those distributions are shown in Figure

<10 PDF of Load and PDF of Strength

8 T

——normal
——normal
- = -extreme value ]|

-

- - -extreme value
-~ lognormal

lognormal

N
T

S e
.

i
T

-’
.
15 2 25 3

35
y x 10

4

Figure 1.3: Multiple distributions fitted to the available load and strength realizations. The load
and strength data are indicated by blue and red tick marks, respectively.
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One sees that those distributions look similar in the regions where the data is clustered®. On
the other hand, we know that the asymptotic behaviors of those distributions are quite different for
large arguments [6]. This is borne out by calculation of PoF for each combination of distributions
of load and strength shown in Table [I.1l

Load Strength PoF

extreme value lognormal 3.7e-24
normal lognormal 1.2e-20
lognormal lognormal | 5.8e-18
extreme value normal 2.3e-10
normal normal 2.8e-10
lognormal normal 3.5e-10
normal extreme value | 4.2e-04
extreme value | extreme value | 4.2e-04
lognormal | extreme value | 4.2e-04

Table 1.1: Predicted PoF for 30 loads and 25 strengths.

In Table[I. 1l we see ten’s of orders of magnitude difference among the calculated PoFs. This is
a fundamental problem: by postulating a PDF for load or strength, we are effectively extrapolating
the character of the distribution of those quantities far beyond the region where we actually have
data. One might assert that the problem goes away if one were to choose the “right” distribution
form, but generally an adequate distribution form cannot be known a priori. Additionally, as

Weibull points out [23], one cannot expect there to exist a “right”” distribution form .

From the above, we see that

1. Consideration of margin alone is inadequate; margin may change substantially as new data
becomes available.

2. Consideration of PDF alone is also inadequate; what PoF one obtains by evaluation of Equa-
tion[[.3lmay depend dramatically on the forms of PDF postulated for loads and for strengths.

What is needed is an approach to merge PoF and margin in a manner that provides useful
information, but that is also reasonably insensitive to the addition of small amounts of new data
and that does not require extrapolation with respect to the tails of the PDFs.

3None of the PDF forms used to fit the load data failed the Kolmogorov-Smirnov goodness-of-fit test at 5% signifi-
cance and none of the PDF forms used to fit the strength data failed that test. See [2] for a discussion on goodness-of-fit
testing.

4Weibull’s observation is “The objection has been stated that this distribution function has no theoretical basis. But
in so far as the author understands, there are-with very few exceptions-the same objections against all other df, applied
to real populations from natural or biological fields, at least in so far as the theoretical basis has anything to do with
the population in question.”
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An Exploration

Suppose that we did not have the distribution of load data shown in the blue histogram in
Figure [[.2l Instead we consider several other hypothetical distributions of load; each distribution
has shape identical to the original blue histogram, but is offset from the original blue histogram by
an amount M, where M is different for each distribution considered. For each of those values of M
and the corresponding load distributions, we again fit several distributions and calculate probability
of failure.

The calculated PoFs that result are shown in Figure [[.4l At each value of M, there are nine
different computed probabilities of failure. Each corresponds to the calculation as though the load
data of Figure were shifted to the right by an amount M. The new load data and the strength
data were each fitted by the PDF forms indicated in the legend, and Equation[L.3| was employed to
calculate the probability of failure.

Probability of Failure vs M
10 T T T

« © ¥
« * ¥ g
) * # <
& ®
-5
10 el &
<
<4 o)
-10 <H’
107 % B
Lo O
(o)
a
X —+—normal-normal
10" 1) normal-extreme value H
—6—normal-lognormal
x extreme value-normal
—k— extreme value-extreme value
20 extreme value-lognormal
107+ ©) I
—<—lognormal-normal
lognormal-extreme value
—=—lognormal-lognormal
1 T T T
0 05 1 15 2

M x 10

Figure 1.4: Probability of Failure (PoF) calculated using multiple distributions fitted to the shifted
load and strength data.

One sees that the orders of magnitude differences in predicted PoF begin to disappear as the
distributions of load realizations approach those of strength. Where we choose to say that the
upper and lower estimates for PoF converge is fairly arbitrary. Examining Figure [.4] we see that
at about a value of M = 15200, the maximum estimate for PoF is within 50% of the minimum
estimate. Let’s call that value Mso. Alternatively, we could consider Mos s at which the top 5% of
loads extend beyond the bottom 5% of strengths. In this case, Mos/5 = 13500. The translation that
results in that overlap is illustrated notionally in Figure
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Load Data and Strength Data

Shifted Load Data and Strength Data
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Figure 1.5: A notional depiction of the translation of load realizations that causes the top 5 % of
the revised load to extend beyond the bottom 5 % of the strengths.

In our numerical explorations, the translation Msg that narrows the span of PoFs to within 50%
is generally very close to the translation Mos 5 discussed above. The load realizations translated by
Moys /5 and the approximating load PDFs, along with the strength realizations and the approximating
strength PDFs are shown in Figure

4 PDF of Lo

ad an
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d PDF of Strength: M=13500
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~
2.8

y

3.6

Figure 1.6: The load realizations translated by Moys s, their approximating PDFs, the strength
realizations, and their approximate strength PDFs.
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The calculated PoFs for the problem when the loads are translated by Mogs/s are shown in
Table In this table, we see, as expected, that for this hypothetical problem, the calculated
probabilities of failure are reasonably independent of the postulated forms of the load and strength
PDFs.

Load Strength PoF

extreme value | lognormal 1.8e-02
normal lognormal 1.9e-02
lognormal lognormal 1.9e-02
extreme value normal 2.5e-02
normal normal 2.5e-02
lognormal normal 2.6e-02
normal extreme value | 6.0e-02
extreme value | extreme value | 6.0e-02
lognormal extreme value | 6.0e-02

Table 1.2: Predicted PoF for 30 loads and 25 strengths and M = Mys ;5 = 13500.

If it were always the case that the design were so unconservative that a 95/5 overlap of load
and strength data could be counted on, one would then always expect to obtain a (reasonably)
unambiguous estimate for probability of failure.

Comments on Nomenclature

This would appear to be an appropriate place to connect the problem and language of this chap-
ter to that most conventional in the Quantification of Margin and Uncertainty (QMU) community.
The conclusions drawn from the above example could as easily apply to almost any unidirectional
QMU problem via the following:

1. Where load and strength occurred in the above discussion, one could as easily consider any
other performance and threshold variables, respectively. (In the following we continue to
use terms “load” and “strength” for the purpose of continuity.

2. In this problem, both the performance and threshold variables (as is the most general case)
and our knowledge of them is represented by cumulative distribution functions. It often
happens that our knowledge of one or the other of these random variables is so thin that
we represent the character of that variable with a single “cut off”” value and the CDF is a
Heaviside function that switches on at that value. The mathematical arguments presented
above and below hold as well in this case as they do in the case where the characters of both
random variables are represented by more continuous CDFs.
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Chapter 2

Probability of Exceeding Margin (PEM)

As one might have anticipated from the previous section, we introduce the notions of Margin
and Probability of Failure in an integrated manner.

The Concept

Let us define the minimum margin M, of a problem involving load realizations {x;} and
strength realizations {y; } to be the minimum value M such that the calculated probability of fail-
ure of the load plus My, can be calculated with confidence (without dependence on the tails of
presumed PDFs). For every margin M > My,;, we have a corresponding probability of failure
Pr(M).

The 95/5 margin Mos s was defined in the previous section to be the number Mys 5 that when
added to each member of the set of load realizations will cause an overlap of the top 5% of the
loads with the bottom 5% of the strengths. It has been the authors’ experience that Mys/s is a
reasonable approximation for My,. In the absence of numerical experiments to establish My;, we
may just approximate it by Mos /5:

Minin ~ M95/5 (2.1)

The key concept is that statements about a system’s reliability must involve both a margin
M > My, and the corresponding probability of failure, calculated using available load and strength
realizations and margin M:

PF(M>:/

x+M>y

e )y = [~ g0 ([ Ao ay

%}

fr»)(1—Fx(y—M))dy (2.2)

—o0

where fx (x) and Fx(x) are as defined after Equation

The sense of this integral can be understood either through the translation indicated in Figure
or by examination of Figure 2.1l
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Figure 2.1: Contours of the joint PDF, fx fy (ellipsoids) and integration domains of Equations[T.3]
(lower, green cross-hatched region) and [2.2] (blue and green cross-hatched regions).

In that figure, contours of the product of fx and fy are laid out; the region where X > Y is
shaded green. Almost all of the green area lies in a region of very tiny probability, and only
slightly overlaps the outer edge of the outermost contour. The region where X +M > Y is shown
in blue. It completely covers the green region and also covers almost half of the contour plot. Let’s
consider the volume sandwiched by the x and y plane and the fx fy surface. By shifting by margin
M, we are no longer trying to evaluate a region with very little of that volume, instead we now
evaluate over a good fraction of that volume. Even if very little of the integrand fxY lies within the
first region, the quantity M can be made large enough so that the blue region covers a substantial
part of the integrand. A formal proof of this is given in Appendix Bl

Making Statements

Statistical Statements

In the problem considered here, one could use the above calculations to make statements such
as

The probability that the load plus 13500 exceeds strength is on the order of 3.5%.
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No assumption of the form of PDF for either Load or Strength is necessary to make the above
statement. Such statements can be made with some confidence because by integrating margin into
the probabilistic statement, we have removed any strong dependence on the tails of the distributions
that underlie our available realizations. (See figure 2.1l for an illustration of the concept or see the
proof in Appendix [BJ).

To illustrate this relative independence from the tails, most of the examples below are presented
with two very different sorts of distribution: one with a common (Gaussian) tail and one with no
tail at all.

Engineering Statements

A statement involving 3.5% probability of failure will not make any system engineer comfort-
able. It must be emphasized that we are not actually talking about a real probability of failure,
but rather we are discussing a 3.5% probability of load plus margin exceeding strength. More
succinctly we now speak in terms of Probability of Exceeding Margin or PEM as defined by the
probability of failure integral (2.2)) which we repeat here.

PEM =Pe(M) = | fy(3) (1= Fx(y— M) dy 23)

where fx(x) and Fx(x) are as defined after Equation .3

The rest of the story depends on the engineers. The statisticians provide the probabilistically
derived margin M = Mos 5. It is the job of the engineers to provide physics-based arguments as to
why this margin M is conservative. For instance, the engineers might find physically motivated ar-
guments for a lower bound for margin that is larger than the statistically derived margin introduced
above.

More Considerations

1. One could as easily consider a different distribution of strength: Y); =Y — M. The calcula-
tions for probability of load plus margin exceeding strength (PEM) are analogous to those
done above and the results are numerically identical.

2. In practice, one would consider a margin M} for load and a margin My for strength such that
one could argue that both M and My are sufficiently conservative and one would perform
the calculations of the previous section employing margin M = My + M. Use of My and My
together evokes the original ideas used to define Quantification of Margins and Uncertainties
(QMU)[17].
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Prospective and Retrospective Margins

The use here of the concept of margin is retrospective in nature. It is calculated once a design
candidate has been identified and appropriate testing of simulation is performed. Margin is also
commonly used in another sense in which the margin is employed as a design goal and the designer
chooses a strategy to meet or exceed that goal.

The term “factor-of-safety” is also used in similar prospective and retrospective senses. In
aerospace a factor of safety of 1.5 is the standard design goal, though retrospective test/analysis
generally yield larger values.

Implementation without Tails

The key notion above was the definition of margin so that the calculated probability of load plus
margin exceeding strength would be reasonably independent of the forms of distribution assumed.
In this section we demonstrate this approach in a manner where the assumed distribution forms
have no tails. As a point of this formulation is to provide reliability estimates without extrapolation
beyond the existent data, it is only natural to employ in this example distributions whose support
is restricted to the regions where data exist.

For this purpose we approximate
1
fe(x) 53 8(x—x)) (24)
X

where Ny is the number of realizations of load data, {x j} are those data values, and 9 is the Dirac
delta function. Similarly

1
fr()= 5 X80 =) 2.5)
k

where Ny is the number of realizations of load data and {y;} are those data values.

The cumulative distributions for load and strength become

1
Fx(x) ~ ﬁZH(x—xk) (2.6)
Xk
and
1
Fr(v) ~ 5 LHO =) @7
Y k



where H () is the Heaviside function. The above are exactly the empirical cumulative distribution
functions for X and Y, respectively (ECDF)!, which we more concisely write as

Fy(x) ~ecdfy, ) (x) and  Fy(y) = ecdfyy 1(y) (2.8)

Substituting approximations [2.4] and [2.8] into Equation

1 1
Pp(M) = vazk" [1 —ecdfy, 1 (v —M)} =1- ﬁxzk:ecdf{xj}(yk —M) (2.9)

The above expression is interesting; it shows that for this tailless representation for load and
strength distributions, the PEM is expressed as a sum of the complementary empirical cumulative
distribution function evaluated at points y, — M. The ingredients of this calculation for our example
problem are shown in Figure 2.2l This calculation yields an estimate for probability of exceeding
margin of 3.1%, not too distant from mean value ( 3.5%) over all distribution forms discussed
earlier.

Strength Data and Compl. ECDF of Load : M=13500
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Figure 2.2: The PEM can be approximated using a combination of the empirical cumulative distri-
bution function of load and a delta function approximation for the PDF of strength.

I'The empirical cumulative distribution function is an stair-step estimate for the CDF of an underlying distribution
created by incrementing by 1/n at the location of each data point.
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Ilustration Using Kernel Density Estimators

In the previous section, discrete functions were used to represent the relevant distributions and
to calculate the relevant integrals in Equation[2.3l In this procedure, no probability is assigned out-
side the interval where data is observed. Some will assert that eliminating hypothetical data from
the statistical analysis is the best approach. Others may insist that statistical analysis must include
distributions with tails, admitting the possibility of some events occurring outside the observed
interval.

Kernel Density Estimators (KDE) provide a way to allow tails but still concentrate the proba-
bility mass on the observed data [21, 20]. Though the implementation of the necessary numerical
integration is a bit more complicated than that employed in the earlier sections, it is worthwhile to
illustrate KDE in the context of the QMU approach of this monograph. (KDE is discussed briefly
in the box at the end of this chapter, but its details are unimportant to the demonstration presented
here.)

Considering the same load and strength data employed above, the KDE estimates for the com-
plementary CDF for load and for the PDF for the strength are shown in Figure Using these
approximations in equation to yield an estimate for probability of exceeding margin of 4.9%.
For comparison, the mean probability of failure over many distributions with tails is (3.5%). The
PEM calculated with discrete approximations is 3.1%. These results illustrate clearly how the PEM
approach produces estimates with minimal dependence on the forms of distribution employed. We
have similar estimates 1) for distributions (KDE) where the assumed distribution form entailed a
significant tail 2) where we average over a number of distributional forms and 3) for distributions
that involve NO tail.
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KDE Load CCDF & Strength PDF: M=13500
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Figure 2.3: The PEM can be estimated by integrating the product of the KDE approximations for
the PDF (fy) for strength and the complementary CDF for translated load (1 — Fx (x — M)). To put
both plots in the same figure, the PDF of strength is normalized by its peak value.
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PDF of Kernel Density Estimation
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Chapter 3

Calculation of Confidence

As is usually the case when making probabilistic statements, one must also make some estimate
for confidence in those probabilistic statements. Thus far, we have avoided parameterized distri-
butions and seek a confidence estimator that is also non-parameterized. Re-sampling techniques
provide such a strategy, and we illustrate the development of confidence values for the quantifica-
tion of margin using the bootstrapping re-sampling technique [10], [9]. Such techniques involve
generation of a multiplicity of artificial sample sets and the estimation of confidence in parameters
of the distribution from which the samples were drawn. Resampling techniques have validity in
estimating features of the underlying distribution only with respect to features comfortably within
the range of the sample set, and this meshes nicely with the PEM approach.

There is a short discussion on bootstrapping in a box at the end of this chapter (which the reader
may skip without engendering significant discontinuity in the presentation) and there is a chapter
on the subject in Appendix [Dl (which the interested reader will find very accessible.)

Confidence Estimation Employing Discrete Distributions

The bootstrap technique is used to generate B = 1000 replicates of the PEM as follows (steps
1 and 2 discussed in the box). For each load replicate and for each strength replicate, an empirical
cumulative distribution function (ECDF, Equation 2.6)) was calculated. The bootstrap replicates of
the load EC