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Abstract

A systematic approach to defining margin in a manner that incorporates statistical information

and accommodates data uncertainty, but does not require assumptions about specific forms of the

tails of distributions is developed. This approach extends to calculations underlying validation

assessment and quantitatively conservative predictions.
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Chapter 1

Introduction

It is an unfortunate irony of life that

1. The less reliable a design is, the easier it is to make meaningful estimates for probability of

failure.

2. The more reliable it is, the less meaningful are efforts to quantify that reliability.

Quite naturally, the more reliable the system is, the more natural it is to discuss that reliability in

terms of margin. Even margin must be discussed in a probabilistic sense. Added to this conceptual

complexity is the necessity of quantifying our confidence in the margins and probabilities that we

discuss.

The focus of this monograph is to introduce a formalism in which margin, probability and

confidence all fit together quite naturally. Additionally, the necessary computations are intuitive

and reasonably easy to perform.

The approach presented here is “minimalist” in the sense that it involves minimal dependence

on components that are not well known, such as the precise form of the relevant distributions or

the content of the tails of those distributions. This is consistent with the use of the term in design:

using the fewest and barest essentials or elements for a maximal effect. As will be seen below, it

is also constructed to be robust.

Outline of Presentation

The order of this narrative is as follows.

1. Some of the limitations of common approaches to defining margin as well as the difficulties

in connecting margin with probability of failure are discussed here in the introduction.
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2. A new concept for defining margin is presented in Chapter 2. This is a concept which clearly

connects the definition of margin with the calculation of probability of failure. This new

concept, Probability of Exceeding Margin (PEM), minimizes sensitivity of failure probabil-

ity estimates to tail shapes in load and strength probability distributions.

3. Use of re-sampling in calculating confidence values of PEM is demonstrated in Chapter 3.

4. The concept of PEM could be employed in various manners to define validation criteria. One

very natural approach to this is demonstrated in Chapter 4.

5. A theorem of set theory is employed in Chapter 5 to use PEM along with the sort of statistical

information employed in model validation to overcome accuracy limitations of models to

make confidently conservative predictions.

6. Discussion and conclusion.

A Simple Illustration

To introduce our new approach, we begin with a re-examination of the standard reliability

calculation. Consider the structure shown in Figure 1.1. It is base-driven, has 30 discrete masses,

Figure 1.1: An otherwise linear structure with nonlinear elements between nodes 5 and 21.

and responds in one dimension. The quantities x j, j = 0, . . . ,30 denote absolute displacements

of the base and the system masses; these also denote degrees-of-freedom (DOF) of the structure.

The mass of the element under x0 is immaterial to the analysis; the mass is rigid and a motion is

enforced at that location. The elements associated with the displacements x j, j = 1, . . . ,30, have

masses m j, j = 1, . . . ,30. The damper to the left of DOF j is denoted c j, j = 1, . . . ,30. The spring

to the left of DOF j (except for DOF 21) is denoted k j, j = 1, . . . ,30. The spring to the left of DOF

21 is nonlinear, and the restoring force in that spring is denoted R(x21 − x5). The element shown as

solid black that extends down from DOF 5 is a rigid, massless element. The parameters of various

14



elements of this structure must be treated as random variables. This system is described in detail

in Appendix E.

At this stage, for the sake of discussion we shall assume that there are numerous nominal

acceleration histories whose application on the base of the structure is anticipated. Because of

uncertainty in the base acceleration and because of the partially random character of the structure,

the peak load anticipated at the location of a sensitive component at location 26 must be treated

as a Random Variable (RV) L (for Load). For the sake of illustration, we shall assume that 30

realizations have been achieved (either through test or simulation). Additionally, failure loads of

the component at location 26 are also known in a statistical sense. We refer to this random variable

as Strength S. We shall assume that we have 25 realizations of S.

Properly normalized (integrate to 1) histograms of both L and S realizations are shown in Figure

1.2. Define Factor of Safety, FS by

0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-5 Load and Strength Data

 

 

30 Loads
25 Strengths

Figure 1.2: Histogram of 30 loads and 25 strengths. The histograms are each normalized to inte-

grate to one.

FS = Estimate of minimum(S)/Estimate of maximum(L). (1.1)

Examination of these histograms would on several bases suggest that the design is very safe. Di-

vision of the lowest strength (2.02e+04) by the highest load (8.14e+03) yields a comforting Factor

of Safety (FS) of 2.5. Because

Margin = Estimate of minimum(S)−Estimate of maximum(L) (1.2)

we see that FS is another way of expressing Margin. Of course, had we more data, we might expect

that our minimum realization of S would decrease and that our maximum realization of L would
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increase, resulting in a much less optimistic estimate for factor of safety. This can be a serious

difficulty, but it is addressed by recasting the problem probabilistically.

This is done through estimation of the Probability of Failure (PoF). From this point on, we

acknowledge that neither load nor strength can be so well known that they can be considered deter-

ministic quantities. We now refer to load and strength as random variables X and Y , respectively.

A straight-forward estimate of the probability of failure (assuming statistical independence of load

and strength) would integrate the joint probability density function (PDF) of load and strength over

the region where load is greater than strength:

PF =
∫

x>y
fX(x) fY (y)dxdy =

∫ ∞

−∞
fY (y)

(∫ ∞

y
fX(x)dx

)

dy

=
∫ ∞

−∞
fY (y)

[

1−FX(y)
]

dy (1.3)

where fX(x) is the PDF of load, FY (y) is the cumulative distribution function (CDF) of strength.

The quantity in brackets in Equation 1.3 [1−FX(y)] is referred to as the complementary cumulative

distribution function (CCDF).

(Above, we have assumed that random variable X representing load and the random variable Y

representing strength are independent of each other. This is generally a very reasonable assump-

tion, and where it does not hold, an extended version of the following development can be made

for such cases as well.)

Were we to employ the normalized histograms of Figure 1.2 for fX and fY our estimate for

the probability of failure for our system would be exactly zero; there are no loads larger than our

lowest strength. This is clearly wrong. This approach suffers from the same limitation as does our

estimate for the Factor of Safety above; more data could substantially change our estimate for PoF.

For the above reason, it is standard practice to postulate a form for the PDF for load, to postulate

a form for the PDF of strength, to fit those distributions to the available data by some method

(maximum likelihood is used in the following), and then to perform the necessary integrations.

For instance, a typical problem might involve a sampling of applied loads that might be seen by

a component and a sampling of strengths associated with such components. (Load and Strength

are used as proxies for analogous quantities that would arise in other sorts of analysis - such as

electrical, optical, or even financial systems.) A common practice is for the analyst 1) to assert

that each of these sample sets conforms to some standard distribution 1 2, 2) to estimate the

distribution parameters to match the available data, and 3) to employ those fitted distributions to

perform reliability estimation, while setting aside the original data.

As an exercise, three common distributions (normal, log-normal, and generalized extreme

1Often Gaussian, chi-square, exponential, generalized extreme value [13], log-normal, etc.
2The reader may find some footnotes helpful, but the reader could ignore all footnotes without serious loss.
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value) were fit to each of the load and strength data using Matlab R©’s maximum likelihood func-

tions. These distributions are defined in Appendix A; they were chosen for their tendencies to

emphasize or to de-emphasize tails. Plots of those distributions are shown in Figure 1.3.

0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

1
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3

4
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x 10

-4

y

f X
, f
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PDF of Load and PDF of Strength

 

 

normal
normal
extreme value
extreme value
lognormal
lognormal

Figure 1.3: Multiple distributions fitted to the available load and strength realizations. The load

and strength data are indicated by blue and red tick marks, respectively.
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One sees that those distributions look similar in the regions where the data is clustered3. On

the other hand, we know that the asymptotic behaviors of those distributions are quite different for

large arguments [6]. This is borne out by calculation of PoF for each combination of distributions

of load and strength shown in Table 1.1.

Load Strength PoF

extreme value lognormal 3.7e-24

normal lognormal 1.2e-20

lognormal lognormal 5.8e-18

extreme value normal 2.3e-10

normal normal 2.8e-10

lognormal normal 3.5e-10

normal extreme value 4.2e-04

extreme value extreme value 4.2e-04

lognormal extreme value 4.2e-04

Table 1.1: Predicted PoF for 30 loads and 25 strengths.

In Table 1.1 we see ten’s of orders of magnitude difference among the calculated PoFs. This is

a fundamental problem: by postulating a PDF for load or strength, we are effectively extrapolating

the character of the distribution of those quantities far beyond the region where we actually have

data. One might assert that the problem goes away if one were to choose the “right” distribution

form, but generally an adequate distribution form cannot be known a priori. Additionally, as

Weibull points out [23], one cannot expect there to exist a “right” distribution form 4.

From the above, we see that

1. Consideration of margin alone is inadequate; margin may change substantially as new data

becomes available.

2. Consideration of PDF alone is also inadequate; what PoF one obtains by evaluation of Equa-

tion 1.3 may depend dramatically on the forms of PDF postulated for loads and for strengths.

What is needed is an approach to merge PoF and margin in a manner that provides useful

information, but that is also reasonably insensitive to the addition of small amounts of new data

and that does not require extrapolation with respect to the tails of the PDFs.

3None of the PDF forms used to fit the load data failed the Kolmogorov-Smirnov goodness-of-fit test at 5% signifi-

cance and none of the PDF forms used to fit the strength data failed that test. See [2] for a discussion on goodness-of-fit

testing.
4Weibull’s observation is “The objection has been stated that this distribution function has no theoretical basis. But

in so far as the author understands, there are-with very few exceptions-the same objections against all other df, applied

to real populations from natural or biological fields, at least in so far as the theoretical basis has anything to do with

the population in question.”
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An Exploration

Suppose that we did not have the distribution of load data shown in the blue histogram in

Figure 1.2. Instead we consider several other hypothetical distributions of load; each distribution

has shape identical to the original blue histogram, but is offset from the original blue histogram by

an amount M, where M is different for each distribution considered. For each of those values of M

and the corresponding load distributions, we again fit several distributions and calculate probability

of failure.

The calculated PoFs that result are shown in Figure 1.4. At each value of M, there are nine

different computed probabilities of failure. Each corresponds to the calculation as though the load

data of Figure 1.2 were shifted to the right by an amount M. The new load data and the strength

data were each fitted by the PDF forms indicated in the legend, and Equation 1.3 was employed to

calculate the probability of failure.
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Figure 1.4: Probability of Failure (PoF) calculated using multiple distributions fitted to the shifted

load and strength data.

One sees that the orders of magnitude differences in predicted PoF begin to disappear as the

distributions of load realizations approach those of strength. Where we choose to say that the

upper and lower estimates for PoF converge is fairly arbitrary. Examining Figure 1.4, we see that

at about a value of M = 15200, the maximum estimate for PoF is within 50% of the minimum

estimate. Let’s call that value M50. Alternatively, we could consider M95/5 at which the top 5% of

loads extend beyond the bottom 5% of strengths. In this case, M95/5 = 13500. The translation that

results in that overlap is illustrated notionally in Figure 1.5.
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Figure 1.5: A notional depiction of the translation of load realizations that causes the top 5 % of

the revised load to extend beyond the bottom 5 % of the strengths.

In our numerical explorations, the translation M50 that narrows the span of PoFs to within 50%

is generally very close to the translation M95/5 discussed above. The load realizations translated by

M95/5 and the approximating load PDFs, along with the strength realizations and the approximating

strength PDFs are shown in Figure 1.6.
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Figure 1.6: The load realizations translated by M95/5, their approximating PDFs, the strength

realizations, and their approximate strength PDFs.

20



The calculated PoFs for the problem when the loads are translated by M95/5 are shown in

Table 1.2. In this table, we see, as expected, that for this hypothetical problem, the calculated

probabilities of failure are reasonably independent of the postulated forms of the load and strength

PDFs.

Load Strength PoF

extreme value lognormal 1.8e-02

normal lognormal 1.9e-02

lognormal lognormal 1.9e-02

extreme value normal 2.5e-02

normal normal 2.5e-02

lognormal normal 2.6e-02

normal extreme value 6.0e-02

extreme value extreme value 6.0e-02

lognormal extreme value 6.0e-02

Table 1.2: Predicted PoF for 30 loads and 25 strengths and M = M95/5 = 13500.

If it were always the case that the design were so unconservative that a 95/5 overlap of load

and strength data could be counted on, one would then always expect to obtain a (reasonably)

unambiguous estimate for probability of failure.

Comments on Nomenclature

This would appear to be an appropriate place to connect the problem and language of this chap-

ter to that most conventional in the Quantification of Margin and Uncertainty (QMU) community.

The conclusions drawn from the above example could as easily apply to almost any unidirectional

QMU problem via the following:

1. Where load and strength occurred in the above discussion, one could as easily consider any

other performance and threshold variables, respectively. (In the following we continue to

use terms “load” and “strength” for the purpose of continuity.

2. In this problem, both the performance and threshold variables (as is the most general case)

and our knowledge of them is represented by cumulative distribution functions. It often

happens that our knowledge of one or the other of these random variables is so thin that

we represent the character of that variable with a single “cut off” value and the CDF is a

Heaviside function that switches on at that value. The mathematical arguments presented

above and below hold as well in this case as they do in the case where the characters of both

random variables are represented by more continuous CDFs.
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Chapter 2

Probability of Exceeding Margin (PEM)

As one might have anticipated from the previous section, we introduce the notions of Margin

and Probability of Failure in an integrated manner.

The Concept

Let us define the minimum margin Mmin of a problem involving load realizations {x j} and

strength realizations {yk} to be the minimum value M such that the calculated probability of fail-

ure of the load plus Mmin can be calculated with confidence (without dependence on the tails of

presumed PDFs). For every margin M > Mmin we have a corresponding probability of failure

PF(M).

The 95/5 margin M95/5 was defined in the previous section to be the number M95/5 that when

added to each member of the set of load realizations will cause an overlap of the top 5% of the

loads with the bottom 5% of the strengths. It has been the authors’ experience that M95/5 is a

reasonable approximation for Mmin. In the absence of numerical experiments to establish Mmin we

may just approximate it by M95/5:

Mmin ≈ M95/5 (2.1)

The key concept is that statements about a system’s reliability must involve both a margin

M >Mmin and the corresponding probability of failure, calculated using available load and strength

realizations and margin M:

PF(M) =
∫

x+M>y
fX(x) fY (y)dxdy =

∫ ∞

−∞
fY (y)

(∫ ∞

y−M
fX(x)dx

)

dy

=

∫ ∞

−∞
fY (y)

(

1−FX(y−M)
)

dy (2.2)

where fX(x) and FX(x) are as defined after Equation 1.3.

The sense of this integral can be understood either through the translation indicated in Figure

1.5 or by examination of Figure 2.1.
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x

Figure 2.1: Contours of the joint PDF, fX fY (ellipsoids) and integration domains of Equations 1.3

(lower, green cross-hatched region) and 2.2 (blue and green cross-hatched regions).

In that figure, contours of the product of fX and fY are laid out; the region where X > Y is

shaded green. Almost all of the green area lies in a region of very tiny probability, and only

slightly overlaps the outer edge of the outermost contour. The region where X +M > Y is shown

in blue. It completely covers the green region and also covers almost half of the contour plot. Let’s

consider the volume sandwiched by the x and y plane and the fX fY surface. By shifting by margin

M, we are no longer trying to evaluate a region with very little of that volume, instead we now

evaluate over a good fraction of that volume. Even if very little of the integrand fXY lies within the

first region, the quantity M can be made large enough so that the blue region covers a substantial

part of the integrand. A formal proof of this is given in Appendix B.

Making Statements

Statistical Statements

In the problem considered here, one could use the above calculations to make statements such

as

The probability that the load plus 13500 exceeds strength is on the order of 3.5%.
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No assumption of the form of PDF for either Load or Strength is necessary to make the above

statement. Such statements can be made with some confidence because by integrating margin into

the probabilistic statement, we have removed any strong dependence on the tails of the distributions

that underlie our available realizations. (See figure 2.1 for an illustration of the concept or see the

proof in Appendix B).

To illustrate this relative independence from the tails, most of the examples below are presented

with two very different sorts of distribution: one with a common (Gaussian) tail and one with no

tail at all.

Engineering Statements

A statement involving 3.5% probability of failure will not make any system engineer comfort-

able. It must be emphasized that we are not actually talking about a real probability of failure,

but rather we are discussing a 3.5% probability of load plus margin exceeding strength. More

succinctly we now speak in terms of Probability of Exceeding Margin or PEM as defined by the

probability of failure integral (2.2) which we repeat here.

PEM = PF(M) =

∫ ∞

−∞
fY (y)

(

1−FX(y−M)
)

dy (2.3)

where fX(x) and FX(x) are as defined after Equation 1.3.

The rest of the story depends on the engineers. The statisticians provide the probabilistically

derived margin M = M95/5. It is the job of the engineers to provide physics-based arguments as to

why this margin M is conservative. For instance, the engineers might find physically motivated ar-

guments for a lower bound for margin that is larger than the statistically derived margin introduced

above.

More Considerations

1. One could as easily consider a different distribution of strength: YM = Y −M. The calcula-

tions for probability of load plus margin exceeding strength (PEM) are analogous to those

done above and the results are numerically identical.

2. In practice, one would consider a margin ML for load and a margin MS for strength such that

one could argue that both ML and MS are sufficiently conservative and one would perform

the calculations of the previous section employing margin M = ML+MS. Use of ML and MS

together evokes the original ideas used to define Quantification of Margins and Uncertainties

(QMU)[17].
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Prospective and Retrospective Margins

The use here of the concept of margin is retrospective in nature. It is calculated once a design

candidate has been identified and appropriate testing of simulation is performed. Margin is also

commonly used in another sense in which the margin is employed as a design goal and the designer

chooses a strategy to meet or exceed that goal.

The term “factor-of-safety” is also used in similar prospective and retrospective senses. In

aerospace a factor of safety of 1.5 is the standard design goal, though retrospective test/analysis

generally yield larger values.

Implementation without Tails

The key notion above was the definition of margin so that the calculated probability of load plus

margin exceeding strength would be reasonably independent of the forms of distribution assumed.

In this section we demonstrate this approach in a manner where the assumed distribution forms

have no tails. As a point of this formulation is to provide reliability estimates without extrapolation

beyond the existent data, it is only natural to employ in this example distributions whose support

is restricted to the regions where data exist.

For this purpose we approximate

fX(x)≈
1

Nx
∑

j

δ(x− x j) (2.4)

where Nx is the number of realizations of load data, {x j} are those data values, and δ is the Dirac

delta function. Similarly

fY (y)≈
1

Ny
∑
k

δ(y− yk) (2.5)

where Ny is the number of realizations of load data and {yk} are those data values.

The cumulative distributions for load and strength become

FX(x)≈
1

Nx
∑
k

H(x− xk) (2.6)

and

FY (y)≈
1

Ny
∑
k

H(y− yk) (2.7)
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where H() is the Heaviside function. The above are exactly the empirical cumulative distribution

functions for X and Y , respectively (ECDF)1, which we more concisely write as

FX(x)≈ ecdf{x j}(x) and FY (y)≈ ecdf{y j}(y) (2.8)

Substituting approximations 2.4 and 2.8 into Equation 2.3

PF(M) =
1

Nx
∑
k

[

1− ecdf{x j}(yk −M)
]

= 1− 1

Nx
∑
k

ecdf{x j}(yk −M) (2.9)

The above expression is interesting; it shows that for this tailless representation for load and

strength distributions, the PEM is expressed as a sum of the complementary empirical cumulative

distribution function evaluated at points yk−M. The ingredients of this calculation for our example

problem are shown in Figure 2.2. This calculation yields an estimate for probability of exceeding

margin of 3.1%, not too distant from mean value ( 3.5%) over all distribution forms discussed

earlier.
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Figure 2.2: The PEM can be approximated using a combination of the empirical cumulative distri-

bution function of load and a delta function approximation for the PDF of strength.

1The empirical cumulative distribution function is an stair-step estimate for the CDF of an underlying distribution

created by incrementing by 1/n at the location of each data point.
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Illustration Using Kernel Density Estimators

In the previous section, discrete functions were used to represent the relevant distributions and

to calculate the relevant integrals in Equation 2.3. In this procedure, no probability is assigned out-

side the interval where data is observed. Some will assert that eliminating hypothetical data from

the statistical analysis is the best approach. Others may insist that statistical analysis must include

distributions with tails, admitting the possibility of some events occurring outside the observed

interval.

Kernel Density Estimators (KDE) provide a way to allow tails but still concentrate the proba-

bility mass on the observed data [21, 20]. Though the implementation of the necessary numerical

integration is a bit more complicated than that employed in the earlier sections, it is worthwhile to

illustrate KDE in the context of the QMU approach of this monograph. (KDE is discussed briefly

in the box at the end of this chapter, but its details are unimportant to the demonstration presented

here.)

Considering the same load and strength data employed above, the KDE estimates for the com-

plementary CDF for load and for the PDF for the strength are shown in Figure 2.3. Using these

approximations in equation 2.3 to yield an estimate for probability of exceeding margin of 4.9%.

For comparison, the mean probability of failure over many distributions with tails is (3.5%). The

PEM calculated with discrete approximations is 3.1%. These results illustrate clearly how the PEM

approach produces estimates with minimal dependence on the forms of distribution employed. We

have similar estimates 1) for distributions (KDE) where the assumed distribution form entailed a

significant tail 2) where we average over a number of distributional forms and 3) for distributions

that involve NO tail.
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Figure 2.3: The PEM can be estimated by integrating the product of the KDE approximations for

the PDF ( fY ) for strength and the complementary CDF for translated load (1−FX(x−M)). To put

both plots in the same figure, the PDF of strength is normalized by its peak value.
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About KDE Approximation

A Kernel Density Estimator [21, 20]. for a PDF on the basis of a finite set of data is

an expression of the form

fX(x)≈
1

hXNx
∑

j

K

(

x− x j

hX

)

(2.10)

where K is the kernel, a non-negative function of its argument such that
∫ ∞
−∞ K(s)ds = 1

(a probability distribution) and hX is an appropriately chosen characteristic length. Nx are

the number of data points x and {x j} are the values of these data points.

Among the more popular kernel functions K used in KDE is the normal distribution.

When a normal distribution is used as the kernel function, the characteristic length hx is

commonly chosen to be a function of the observed standard deviation σ̂X , that is, hX =
1.06σ̂X(1/Nx)

−1/5. As an illustration using four data points, Figure 2.4 shows the KDE

estimate of PDF (black curve) as well as the contribution of each data point to the final

estimate of the distribution (colored curves).
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Figure 2.4: PFD constructed from a handful of discrete points using Kernel Density Esti-

mation (KDE) and a reference Gaussian distribution.
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Chapter 3

Calculation of Confidence

As is usually the case when making probabilistic statements, one must also make some estimate

for confidence in those probabilistic statements. Thus far, we have avoided parameterized distri-

butions and seek a confidence estimator that is also non-parameterized. Re-sampling techniques

provide such a strategy, and we illustrate the development of confidence values for the quantifica-

tion of margin using the bootstrapping re-sampling technique [10], [9]. Such techniques involve

generation of a multiplicity of artificial sample sets and the estimation of confidence in parameters

of the distribution from which the samples were drawn. Resampling techniques have validity in

estimating features of the underlying distribution only with respect to features comfortably within

the range of the sample set, and this meshes nicely with the PEM approach.

There is a short discussion on bootstrapping in a box at the end of this chapter (which the reader

may skip without engendering significant discontinuity in the presentation) and there is a chapter

on the subject in Appendix D (which the interested reader will find very accessible.)

Confidence Estimation Employing Discrete Distributions

The bootstrap technique is used to generate B = 1000 replicates of the PEM as follows (steps

1 and 2 discussed in the box). For each load replicate and for each strength replicate, an empirical

cumulative distribution function (ECDF, Equation 2.6) was calculated. The bootstrap replicates of

the load ECDF are shown in the left graph of Figure 3.1. This is a visual demonstration of the

sampling distribution of the ECDF. The thick, jagged blue curve indicates the 20 percentile of the

ensemble of load distributions. The bootstrap replicates of strength are plotted in ECDF form in

the right graph of Figure 3.1. The thick, red curve in the figure indicates the 80 percentile of the

ensemble of strength distributions.

These 1000 ECDFs of shifted load and an equal number of PDFs of strength were used to

generate 1000 estimates of PEM (Equation 2.9.) These estimates are sorted in ascending order and

the (1−α)× 100 percent upper limit of the PEM was identified. Our analysis used α = 0.2 and

M = 13500 to obtain an 80 percent confidence that PF (X +13500 >Y )≤ 0.093
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Figure 3.1: Bootstrap re-sampling is used to obtain 1000 other plausible sets of realizations of load

and of strength. The low 20% load and the high 20% strength distributions are shown in thick blue

and red lines, respectively.
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Confidence Estimation Employing KDE

To demonstrate a reasonable independence from the form of distribution employed, we repeat

the above analysis using KDE to represent the PDF of random strengths and the integral of KDE to

represent the CDF of random loads. (Plots of the bootstrapped KDE representations for load and

strength CDFs are shown in Figure 3.2. The solid blue and red curves have the same meanings in

this figure as in Figure 3.1.)
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Figure 3.2: KDE estimates for CDFs for load (left) and strength (right) from 1000 resamplings

each. The low 20% load and the high 20% strength distributions are shown in thick blue and red

lines, respectively.

As before, our analysis used α = 0.2 and M = 13500 to obtain an 80 percent confidence that

PF (X +13500 > Y ) ≤ 0.11. This result is very near the confidence level calculated using the

discrete representations.

Again, the fact that one can perform estimates of confidence of PEM for two such different

distribution forms and achieve such similar results, argues to the robustness of the PEM approach.

33



About the Bootstrap Method Employed Here

The bootstrap is a method for estimating the sensitivity of a distribution to perturba-

tions on the finite sample set from which that distribution is estimated.

The bootstrap may be used to estimate a (1−α)×100 percent confidence limit on the

PEM, (PF (M) in Equation 2.2). The bootstrap procedure follows:

1. Generate NB bootstrap samples from the load data, and NB statistically independent

bootstrap samples from the strength data. (NB is a large number; 1000, for example.)

2. For each bootstrap sample, b = 1, . . . ,NB:

(a) Fit the bootstrap sample of the load data with a distribution and fit the bootstrap

sample of the strength data with a distribution. (We use two distribution types

to illustrate in this section: discrete step functions and KDE.)

(b) Evaluate the PEM, Equation 2.2, and store the result in an NB×1 array, P̂. The

array consists of bootstrap replicates of the PEM statistic.

3. Sort the array P̂ in ascending order.

4. Evaluate the quantity in the sorted array that occupies the (1 − α)Nth
B position,

P̂(1−α)Nth
B

.

The quantity evaluated in step 4 is the bootstrap estimated (1−α)× 100 percent confi-

dence limit on the PEM. This represents a traditional frequentist confidence limit. If the

entire procedure is repeated, (1−α)× 100 percent of the estimated PEMs will be less

than P̂(1−α)Nth
B

.

A much more extensive discussion of the bootstrap technique is presented in Appendix

D.
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Chapter 4

Validation

Any model whose use will have important consequences should be validated prior to its ex-

ercise in practice. For example, models that will be used to make important decisions regarding

operations that may affect human life or safety, or operations that may lead to great expense, should

failure occur, ought to be validated. Validation is defined as “the process of determining the degree

to which a computer model is an accurate representation of the real world from the perspective of

the intended model applications,”[1, 3, 14]. The validation process has been outlined in many pa-

pers, for example [5, 4, 16, 18]. Because validation information is generally known statistically, it

is appropriate to employ statistically-based validation criteria. (Comments 1 in [19] are particularly

cogent.) The PEM framework indeed makes a statistical approach to validation quite natural.

Prior to performance of a validation comparison, the validation must be planned. During the

planning phase, the validation team must:

• Specify the model use and purpose

• Specify validation experiments

• Specify the model

• Specify the physical system response measures of interest

• Specify the validation metrics

• Specify the domain of comparison

• Specify the calibration experiments (Calibration is the operation during which model param-

eters that can be identified only through experiments are estimated.)

• Specify the adequacy criteria (validation requirements)

1“Given the crucial importance of model validation in deciding the utility of a simulation for use in operational test,

it is surprising that the constituent parts of a comprehensive validation are not provided in the directives concerning

verification, validation, and accreditation. A statistical perspective is almost entirely absent in these directives.”
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An important principle of validation is that experiments that are performed to calibrate the

parameters of a model must not be used as the reference against which model predictions are made

to validate a model. In other words, validation experiments must be different and should be of a

different type than calibration experiments.

After planning a model validation we proceed to complete the steps required to determine the

validity of the model:

1. Perform calibration experiments and calibrate model.

2. Perform validation experiments and transmit experimental information to modelers. (In

structural dynamics, for example, these are boundary conditions, initial conditions, applied

loads, etc.)

3. Generate model-based predictions.

4. Perform validation comparisons and judge validity of model.

5. Take action with respect to intended use of model.

A Motivating Structural Mechanics Example

As specified in the bulleted list at the beginning of this section, in order to validate a structural

model, it is necessary to perform experiments on the structure the model is meant to represent

and to generate corresponding model predictions. Structural mechanics problems often involve

investigating the response of an object to shaking or vibrations. In Figure 1.1 we sketched a

structure with linear dampers except for the non-linear spring connecting DOF 5 and DOF 21. In

this completely simulated example of a validation, we use two slightly different models. The full

model contains a non-linear spring between DOF 5 and DOF 21; this is called the Truth model and

is used to simulate the experimental data. The second model approximates the non-linear spring

and the damper adjacent to it with a linear spring and a different damper; this is called the linear

model. It is used to simulate model predictions. For purposes of validation, we choose to excite

the Truth model and its linear approximate model using a classical shock, namely a compensated

random haversine (The analysis of both the Truth Model and its linear approximation are provided

in Appendix E. Compensation is a modification of the haversine shock that permits its use on a

shaker; a compensated shock has first and second integrals that equal zero.) The following analysis

seeks to validate the adequacy of the linear model to predict an aspect of the response of the Truth

Model.

We are interested in how well this structure survives shocks. In particular, it is required that the

absolute peak of acceleration be less than the measured strength of DOF 26. The strength of the

component whose critical response measure is peak acceleration of DOF 26 is known only through
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experimental measurements. The PDF of strength at DOF 26 is approximated by the KDE of the

measured data; the KDE shown in Figure 4.1, and summarizes the true aleatory uncertainty in the

strength of DOF 26.
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Figure 4.1: KDE of measured strength at DOF 26. The strength is specified in terms of peak

accelerations sustainable by the structure at that location.

The haversine shocks that excite the structure come from a source with random amplitude and

random duration. The following distributions summarize the characteristics of these shocks. The

amplitude is a normally distributed random variable with mean and variance (3000,6002); the units

of the shock are in
/

sec2. The duration of the shocks is a normally distributed random variable,

independent of the amplitude, with mean and variance (0.01,0.0022); the units of duration are

seconds. Thirty realizations of the structural excitations used during validation experiments are

shown in Figure 4.2. These represent experimental excitations.

A realization of the Truth Model is excited by each realization of the random shock in Figure

4.2. The shock responses of the Truth Model at DOF 26 are shown in Figure 4.3. Units of the

responses are in
/

sec2.

Generally, we expect to be able to generate more numerical simulations than the number of

physical experiments because the latter require hardware, and therefore, involve substantial ex-

pense. Here, for purposes of demonstration, our “experimental” data were generated, and consist

of the 30 excitation and response accelerations shown in Figures 4.2 and 4.3, respectively. We

generate model predictions by choosing randomly among the 30 experimental inputs and using

each selected input to excite a realization of a stochastic linear model of the structure. For this

demonstration, we choose to generate 100 stochastic linear models and analyze their responses.

The acceleration responses of the stochastic, linear structures at DOF 26 are shown in Figure 4.4.
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Figure 4.2: Thirty realizations of the compensated, random haversine shock excitation used during

validation.
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Figure 4.3: Thirty realizations of response of the stochastic Truth Model excited by the thirty

realizations of shock excitation in Figure 4.2.
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Figure 4.4: One-hundred realizations of response of the stochastic linear structure to randomly

chosen excitation realizations from the collection of inputs in Figure 4.2
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The data generated here will now be used in a validation. Specifically, peak acceleration re-

sponses predicted by the linear model will be compared to peak acceleration responses realized

by the Truth Model. Figures 4.5 and 4.6 show the KDEs of the peaks in the absolute values of

accelerations at DOF 26 in the Truth model and the linear model, respectively. (Here by “KDEs”

we mean the KDE approximations of the PDFs of the relevant random variables.) The probability

distribution of the acceleration peaks predicted by the linear model clearly under-predicts slightly

the acceleration peaks realized in the Truth Model responses. The current validation seeks to gauge

the importance of that under-prediction.
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Figure 4.5: KDE of peaks in absolute value of acceleration response at DOF 26 in the Truth Model.

Use of PEM in a Validation Metric

The PEM, defined in Equation 2.2, is devised to involve minimal dependence on the tails of

load and strength distributions, and that quality makes it a stable measure of response for use in

characterization of experimental and model-predicted responses. In this section, we focus on the

PEM, PF (M), as the system response measure of interest. As before, M is selected to be sufficiently

large to assure that calculation of PF(M) will be reasonably independent of the distribution tails.

There are few restrictions on what the system response measure of interest can be. Frequently

a direct measure of response such as acceleration, velocity or displacement is chosen. However,

when the model will be used to predict structural reliability or probability of failure, use of PEM

as the measure of interest is much more appropriate. Our objective is not to show how to plan and

perform an entire validation, but rather:
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Figure 4.6: KDE of peaks in absolute value of acceleration response at DOF 26 in the linear model.

• To show how PEM can serve as the response measure of interest.

• To illustrate how a validation metric can be formed using the PEM from a physical experi-

ment and the PEM from a model-prediction, and

• To demonstrate how a rational validation requirement can be specified with physically-based

and model-based PEMs, and, given that, how model validity might be judged.

The validation metric is a function of the values of PF (M) computed using “experimental”

data from the Truth Model, P
(Exp)
F (M), and model-generated data from the linear approximation

of the Truth Model, P
(Mod)
F (M). In general, when any model of a physical system under-predicts

(but not by too great a margin) the chance of safety of a design, then the model is conservative.

When the model of the physical system accurately predicts the chance of safety of a design, then

the model is accurate. And when the model of the physical system over-predicts the chance of

safety of a design, then the model is unconservative (or, not conservative) We judge the limits of

acceptability of our estimate of P
(Mod)
F (M) with respect to the estimated statistical variability of

P
(Exp)
F and our appetite for over-conservatism of the model.

Numerous sensible validation metrics are available. We choose to define the validation metric:

vM = log

(

P
(Mod)
F (M)/P

(Exp)
F (M)

)

(4.1)
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where P
(Mod)
F (M) is our best, data-based estimate of PEM predicted by the model, and P

(Exp)
F (M)

is our best, data-based estimate of PEM obtained from experimental data. When the metric is neg-

ative, the model under-predicts PEM; this is unconservative because the physical system is less

safe than predicted. When the metric becomes too small, this is an unfavorable condition. When

the metric is near zero, the model is accurate. When the metric is positive, the model over-predicts

PEM; this is conservative because the physical system is safer than predicted. To an extent, this

circumstance is favorable, but when the metric becomes too large, this is an unfavorable condition.

The validation requirement, as may be inferred from the discussion, above, is written

vmin ≤ vM ≤ vmax (4.2)

Negative vM implies model under-conservatism, therefore, the magnitude of vmin should be spec-

ified based on the statistical variability of the validation metric, vM . The statistical variability in

vM can be approximately assessed using bootstrap analysis. The upper limit, vmax, implies model

conservatism, therefore, it should be specified on the basis of statistical variability of vM, and the

validation team’s appetite for over-conservatism of the model.

To perform a validation analysis we use the data of the previous section of this chapter. That

section showed that when the Truth Model is excited by a compensated haversine its DOF 26

executes the acceleration responses in Figure 4.3. The peaks of those acceleration responses were

gathered and their KDE was computed; it is shown in Figure 4.5. The stochastic linear model

was also excited using the compensated haversine, and its DOF 26 acceleration responses were

computed; they are shown in Figure 4.4. The acceleration peak responses were gathered and their

KDE was computed; it is shown in Figure 4.6.

When the data leading to the KDEs of Figures 4.5 and 4.6 are used to approximate the comple-

mentary CDFs (CCDF) of load for the Truth Model and the linear model, and when these CCDFs

are used with the KDE approximating the PDF of system strength in Equation 2.2, we obtain the

PEMs for the Truth Model and the linear model. They are:

P
(Mod)
F (M) = 0.0357 and P

(Exp)
F (M) = 0.0584 (4.3)

where the margin used in the example is M = 17,555

We use these quantities in the formula for the validation metric, Equation 4.1 to obtain:

vM = log(0.0357/0.0584) =−0.492 (4.4)

In order to establish adequacy – perhaps accuracy – of the model predictions, it is necessary

to establish the scale of statistical variation of vM based on experimental data, and judge whether

or not the realized validation metric of Equation 4.4 lies within rational limits inferred from ex-

perimental variability. To accomplish this task we use the bootstrap. To implement the bootstrap,

let xi, i = 1, . . . ,30 denote the peaks in absolute value of the acceleration response at DOF 26
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during 30 validation experiments; these are load data, samples from the random variable, X . Let

y j, j = 1, . . . ,25 denote the strengths of systems obtained from experiments; these are samples

from the random variable Y . The bootstrap procedure is:

1. Collect a bootstrap sample from the load data. (A bootstrap sample is a sample of 30 of the

xi, i = 1, . . . ,30, taken with replacement.)

2. Estimate the CCDF of X using the bootstrap sample. This is a bootstrap replicate of the

CCDF of X .

3. Collect a bootstrap sample from the strength data.

4. Estimate the PDF of Y using the bootstrap sample. This is a bootstrap replicate of the PDF

of Y .

5. Use the bootstrap replicate of the CCDF of X and the bootstrap replicate of the PDF of Y in

Equation 2.2 to obtain a bootstrap replicate of the PEM, P
(Exp)
F (M)

(b)

6. Use the bootstrap replicate of the PEM from experimental data, P
(Exp)
F (M)

(b)

, along with

the estimate of the PEM from model prediction, P
(Mod)
F (M), in Equation 4.4 to obtain a

bootstrap replicate of the validation metric, v
(b)
M = log

(

P
(Mod)
F (M)/P

(Exp)
F (M)

(b)
)

.

7. Repeat the process of steps 1 through 6 a large number, B, of times to obtain v
(b)
M , b= 1, . . . ,B.

8. Compute the KDE of the v
(b)
M , b = 1, . . . ,B. This is an approximation of the sampling distri-

bution, fVM
(u) ,−∞ < u < ∞ of the statistic, VM , the random variable from which the vali-

dation metrics defined in Equation 4.4 arise during separate random experiments. (Pairs of

percentage points of the PDF of VM form confidence intervals on the values the realizations

vM might assume.)

9. Compute the
[

α
/

2,1−α
/

2
]

×100% percentage points,
[

uα/2,u1−α/2
]

of the sampling dis-

tribution of VM. These form the basis for defining the limits on the validation requirement.

10. Define the validation limits.

(a) Assume that in the present case uα/2 has a negative value. Then we might define vmin =
uα/2. Small values of the validation metric imply the potential for an unconservative

model, therefore, the only factor that justifies a negative validation metric is random

variability in the experiment.
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(b) A minimal value for vmax is u1−α/2. Because positive values of the validation metric

imply a conservative model, validation teams may find a limit higher than u1−α/2 to be

acceptable. For example, we may set vmax = βu1−α/2, where β > 1. The quantity β
might reasonably be set at 2, in practical applications.

(c) Set the validation requirement: [vmin,vmax] =
[

uα/2,βu1−α/2
]

We performed an example model validation using the Truth Model and linear model simulations

described above. The margin was again set to M = 17,555. The approximation to the sampling

distribution of VM obtained during the course of the analysis is shown in Figure 4.7. It is based

on B = 500 bootstrap samples. We chose to base the validation requirement on a [1,99]× 100%

confidence interval on VM. These limits were computed, and are shown by the red hash marks

in Figure 4.7. The red star shows the best estimate of validation metric from Equation 4.4. The

percentage points are [u1,u99] = [−1.621,2.300]. Finally we deemed over-conservatism of the

linear model by a factor of 2 to be acceptable. The validation requirement is:

[vmin,vmax] = [−1.621,4.600] (4.5)

Based on this criterion, the model is judged valid because −0.492 ∈ [−1.621,4.600]. In fact, the

linear model might be judged accurate based on this criterion.
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Figure 4.7: KDE of the sampling distribution of the validation metric where the experimental

values of load and strength are re-sampled. The red ticks are the one and ninety-nine percent

percentage points. The red star denotes the value of the best estimate of the validation metric.
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Chapter 5

On Making Conservative Predictions

We have presented above a formalism for defining Margin and PEM and confidence in PEM

which involves minimal dependence on information in the tails of the distributions. Addition-

ally, we have presented measures for assessing the adequacy of the models, accommodating both

aleatoric and epistemic uncertainty.

We are now in a position to use our models, but we would like to be able to use them in a

manner that results in conservative predictions. Such an approach is developed in the following.

A Triangle Inequality

Say that fX is an approximation for the load PDF obtained from the experimental realizations

{xk}, that fY is an approximation for the strength PDF obtained from the experimental realizations

{yk}, and fZ is an estimate for the load PDF generated by many simulations of our model. These

are all shown notionally in Figure 5.1.

YZ X

Figure 5.1: Approximations for the Probability Density Function (PDF) of load, fX (in blue), the

PDF of strength fY (in red), and the PDF of model load predictions, fZ. In this case, the model is

distinctly non-conservative.

In this case, the model is distinctly non-conservative - the predictions of load are generally
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lower than the experimental load data. Still, as shown in the previous chapter, the load model could

still be considered valid on the basis of the key requirements: it is based on a plausible physics

model whose predictions are repeatedly found to be very close to corresponding experimental data.

Whether our model is found to be unconservative, conservative, or accurate, aleatoric uncer-

tainty might easily result in our predictions not being conservative. To address that issue, we

introduce a quantity MM so that

P(Z+MM < X)< βM (5.1)

where typically 0 < βM ≪ 1.

Quantity MM is the margin that must be added to the model predictions in order to make the

resulting predictions conservative. This is illustrated notionally in Figure 5.2. With margin MM,

M
Z X YZ+M

Figure 5.2: A statistical metric for MM that assures statistically conservative predictions.

the model is distinctly conservative in the sense that the probability of random variable Z +MM

being less than the load X (another random variable) is less than βM. Note that if the model already

is very conservative, MM may be a negative number; then the following analysis may be considered

unnecessary.

In the sense discussed earlier in this monograph, the model predicts (to within its capabilities)

a probability of failure with respect to a margin MP

P(Y < Z+MP)< βP (5.2)

where typically, 0 < βP ≪ 1. All the above probabilities are evaluated as set forth in Equation 2.2.

We shall use inequalities 5.1 and 5.2 to make a statement about the probability of load X

exceeding strength Y . Let Z = Z+MM and Y =Y +MM −MP. Equation 5.1 becomes

P(Z < X)< βM (5.3)

and Equation 5.2 becomes

P(Y < Z)< βP (5.4)
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The theorem proved in Appendix C yields

P(Y < X)< βM +βP (5.5)

which in terms of our original random variables is

P(Y < X +MP −MM)< βM +βP (5.6)

The above sequence shows how the model can be used to predict the probability of failure of our

structure subject to the margin associated with the model (MP) minus the quantity (MM) added

to assure conservatism. The probability of failure is acceptable if MP −MM is large enough and

βM + βP is small enough, as judged by the persons who must make a decision. Further, most

users would wish to assure themselves that the margin, MM , would hold for model predictions in

environments other than those considered, here, and used to define the value, MM.

The above provides a bound on the reliability of the system in terms of the reliability suggested

by our model (expressed in MP and βP) and the confidence we place in our model (expressed in

MM and βM). In terms of the case suggested in Figure 5.1, we have demonstrated a use of a model

which is neither accurate nor conservative. Finally, one should observe that the above strategy

addresses some of the serious concerns about an absence of statistical or objective meaning in

many conventional forms of model validation.

Illustration in our Paradigm Problem

We again examine the model explored in the Validation Chapter of this monograph. The peaks

of the absolute value of the acceleration responses at DOF 26 as predicted by our Truth model (30

samples) and by our Linear model (100 samples) were observed, and the KDE approximations to

their PDFs were computed. Those distributions were presented in Figures 4.5 and 4.6, respectively

and are plotted together in Figure 5.3 for comparison. The square marker identifies the bottom 5%

of the linear model and the triangle identifies the top 5% of the truth model.

We see that the model and truth distributions look very similar, especially given the fact that

they are both based on limited data, but that is not enough. In the previous chapter we validated

the model against “experimental” data. Here we show how model results can be used to make

conservative predictions.

For this, we consider the distribution of modified model predictions shown in Figure 5.4. Here

we consider the predictions of our model, but with all values increased by a margin M = 2540.

This margin is that required to align the bottom 5% of the linear model and the top 5% of the truth

model.
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Figure 5.3: Kernel density estimator of the absolute peak of acceleration responses in the nonlinear

Truth Model (blue) and the linear model (green) at DOF 26. The square marker identifies the

bottom 5% of the linear model and the triangle identifies the top 5% of the truth model.
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Figure 5.4: Shown on left is the kernel density estimator of the absolute peak of acceleration

responses in the nonlinear Truth Model (blue) and the linear model (green) at DOF 26 shifted by

a margin MM = 2540. This margin is that required to align the bottom 5% of the linear model and

the top 5% of the truth model. The same are shown on the right, along with the KDE estimate for

strength.
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The probability that the shifted model is conservative is

P(Z+MM > X) =
∫∫

z+MM>x

fZ(z) fX(x)dxdz =
∫ ∞

−∞
fZ(z)

∫ z+MM

−∞
fX(x)dxdz

=
∫ ∞

−∞
fZ(z)FX(z+MM)dz (5.7)

Both terms in the integrand of Equation 5.7 are shown in Figure 5.5, where the KDE approxi-

mation for fZ is scaled to make it visible.
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Figure 5.5: The factors FX(z+MM) (blue) and fZ(z) (green) in the integrand of Equation 5.7.

Both distributions are estimated using KDE. To put both plots on the same figure, the PDF of Z is

normalized by its peak value.

The integral indicated in Equation 5.7 is evaluated numerically: P(Z +MM > X) ≈ 98.2%.

That is, the probability of being non-conservative is βM = 1−P(Z+MM > X)≈ 1.8%. (The cor-

responding probabilities when the step functions are used for the CDF and delta functions for the

PDF are 99.2% and βM ≈ 0.77%, respectively.) Of course, the above quadrature depends tremen-

dously on which sample points were selected. This can be addressed through an analysis of sam-

pling distribution. Resampling employing 1000 samples each, bootstrap sampling was performed

on both Truth and Model data sets. The relevant KDE approximations for those distributions were

constructed in the manner described earlier (Figure 5.6).

An algorithm similar to that employed earlier is applied to this problem:

1. The integral indicated in Equation 5.7 for P(Z +MM > X) is evaluated numerically for or-

dered pairs of Truth CDFs and Model PDF.
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Figure 5.6: KDE estimators for the 1000 bootstraps for CDF of the truth data and for the 1000

bootstraps for PDF of the model data.

2. Those calculated values for P(Z+MM > X) are stored in an array.

3. The array is sorted in ascending order.

4. For a confidence of β we select the kth element of the sorted array where k ≈ (1−β) ∗NB

and NB is again the number of bootstrap samplings.

For the problem at hand, we desire an 80% confidence in our probability prediction, so we use

the 20 percentile term in our array of quadratures. This is illustrated in Figure 5.7. Numerically, we

find with 80% confidence that P(Z+MM >X)≈ 91.4%. The probability of being non-conservative

at the same level of confidence is βM = P(Z+MM < X)≈ 8.6%. The corresponding values when

the discrete functions are used for the distributions are 94% and βM ≈ 6%, respectively.
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Figure 5.7: The quadratures of Equation 5.7 for the 1000 bootstrap pairs. The 80% confidence is

achieved by employing the 20 percentile term.
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Reliability Calculations with Approximate Model

Now that we have a metric on the approximate model, we can use it to make calculations

relevant to reliability. Analogous to what was done in Section 2, we identify a margin that when

added to the load predictions of the linear model permits us to calculate a PEM that is reasonably

independent of the forms used to approximate both the load and strength distributions. Again

we achieve this by specifying a margin such that the upper 5% of the resulting loads aligns with

the bottom 5% of the strengths. The resulting PDFs of loads and strengths, represented by KDE

estimators, are shown in Figure 5.8.
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Figure 5.8: The linear model shifted by margin 13400 so that the upper 5% of the resulting load

aligns with the bottom 5% of the strengths. Both PDFs are represented by KDE expansions.

Numerical evaluation of Equation 2.2 for this margin and for KDE expansions for load and

strength distributions yields a probability of model predictions plus margin (MP = 13400) of βP =
3.3%. When the relevant distributions are represented by step functions and delta functions, the

integral evaluates to βP = 2.3%.

Again, we really need a Probability of Exceeding Margin that is accompanied by some confi-

dence estimate. Again, this is achieved by performing bootstrap resamplings of loads and strengths.

For our example problem, when we employ 1000 bootstrap resamplings and KDE expansions for

the distributions, we obtain an 80% confidence that the PEM is less than βP = 6.9%. When discrete

expressions for the distributions are employed, our estimate is that we have a 80% confidence that

the PEM is less than βP = 4.2%.

Employing the triangle inequality of earlier in this chapter and the quadratures where we used

KDE expansions for the distributions and recalling that MM = 2540, we may make the following
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assertion with 80% confidence

P(X +13400−2540 > Y )< 6.9%+8.6%

P(X +10860 > Y )< 16% (5.8)

The corresponding statement where we use discrete expressions is

P(X +13400−2540 >Y )< 4.2%+6%

P(X +10860 > Y )< 10% (5.9)

again, with 80% confidence.

We may make two observations here:

1. These two statements for probability of exceeding margin are very close to each other, de-

spite the very different forms assumed for the distributions. This is a feature of the theme of

this monograph.

2. These statements, though far from the statements of traditional reliability theory which may

involve probabilities of failure on the order of 10−6, may be as much as one can actually say

with confidence on the basis of sparse data.
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Chapter 6

Margin, Margin, and Margin

We have spoken about the distinction between design margin (a target) and achieved margin.

Further, uncertainty causes us to refer to the sampling distribution of achieved margin. When

we account for sampling or aleatoric uncertainty, we then talk about yet another margin that is

associated with a confidence value.

There is yet one more perspective on margin: the engineering view. Of the above margins, the

first is aspirational and the rest are based on statistics. There are questions that can be addressed

only with an understanding of the relevant physics:

1. Are the statistically supported margins (even the ones with confidence values) actually re-

liable from an engineering standpoint? Even when all statistical experience and all known

aleatoric uncertainty filtered through postulated model forms assure a large margin, under-

standing of the physics is necessary to know that that margin is sustainable. This notion is

illustrated in Figure 6.1.

Figure 6.1: Two different circumstances that may have the same statistically assured margins.

Consideration of the underlying physics shows them to be associated with entirely different as-

sessments of jeopardy.

2. Whether a statistically supported margin is sufficient to meet the goals of an engineering

design is an engineering question. It must be addressed through both programmatic and

physical considerations.
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Chapter 7

Conclusion

We have introduced here an integrated treatment of margin, probability, and confidence. This

approach is intuitive both in concept and implementation. As part of this development, we intro-

duced a statistically meaningful notion of validation. This definition provides a methodology for

justifying the use of models as engineers and designers are inclined to use them, provided that their

predictions maintain a systematic relation with reality.

One very strong feature of this approach is that it obviates the need to postulate the forms of

the relevant distributions. In particular, the hazard of extrapolating beyond the known data points

into the tails of the distribution is largely removed. The resulting probabilistic statements do not

have the reassuring sound sometimes resulting from traditional reliability calculations such as “The

probability of failure is less than one in a million”. Indeed the analysis presented here argues that

such statements cannot be meaningful. This is consistent with a famous statement of Richard P.

Feynman1[12].

We developed, using the same general approach, a metric for assessing model validity and a

strategy to assuring conservative predictions from that model. Both of these approaches benefit

from having minimal dependence on the tails of the relevant distributions.

There is much left to be done, including extension of this approach to multidimensional analy-

sis and testing of these techniques on real problems.

Finally, we note that no matter how the statistics of models and experiments is handled, there

remains the irreducible issue of extrapolation of testable results into domains where testing is not

possible. Confidence in such extrapolations can come only through both thorough investigation of

the relevant physics and very careful treatment of all data.

1“If a guy tells me that the probability of failure is 1 in 105, I know he’s full of crap”
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Appendix A

The Distributions Employed in Chapter 1

The distributions used in the explorations of Chapter 1 are all discussed in depth in [6], but

their mathematical definitions are summarized here.

1. The normal distribution, also called the Gaussian distribution, is defined by

fX(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

(A.1)

where µ and σ are the mean and standard deviation of the distribution.

The corresponding cumulative distribution is:

FX(x) =
1

2

[

1+ erf

(

x−µ

σ
√

2

)]

(A.2)

where erf is the error function: erf(x) = (2/
√

π)
∫ x

0 exp(−t2)dt.

2. The log-normal distribution is defined by

fX(x) =
1

xβ
√

2π
exp

(

(ln(x)−α)2

2β2

)

(A.3)

where α and β are parameters of the distribution. The mean and standard deviation are:

µ = exp(α+β2/2) and σ =
(

exp(σ2)−1
)

exp
(

α+β2/2
)

.

The corresponding cumulative distribution function is

FX(x) =
1

2
erfc

[

− ln(x)−α

β
√

2

]

(A.4)

where erfc is the complementary error function: erfc(x) = 1− erf(x)

3. The extreme value distribution - actually the Type I extreme value distribution - is defined

by

fX(x) =
1

β
exp

[

x−α

β
− exp

(

x−α

β

)]

(A.5)
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where α and β are parameters of the distribution. This is also sometimes called the Gumbel

distribution. The mean and standard deviation of this distribution are: µ = α− γβ and σ2 =
(1/6)π2β2 where γ is the Euler constant.

The corresponding cumulative distribution is:

FX(x) = exp(−exp(−(x−α)/β)) (A.6)
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Appendix B

Proof with respect to Tails in PEM

A major strength of the approach presented here for defining margin and probability of ex-

ceeding margin as spelled out in Equation 2.2, is that the calculation has minimal dependence on

information in the tails of the distributions. This is the case because the tails contribute very little

to the integral. This notion is made rigorous as follows.

B.1 Equations at Hand

For coherence, we re-derive 2.2 here. We define

PF(M) = P[X +M > Y ]

=
∫

x+M>y
fX(x) fY (y)dxdy =

∫ ∞

−∞
fY (y)

(∫ ∞

y−M
fX(x)dx

)

dy

=
∫ ∞

−∞
fY (y)

(

1−FX(y−M)
)

dy (B.1)

Here fY is the PDF of RV Y and FX is the CDF of RV X . The corresponding PDF for X is fX

and the corresponding CDF of Y is FY . We presume there that M is chosen so that there is sufficient

overlap of fX and fY so that PF(M)≫ 0.

B.2 Defining the Tails

Choose a small ε and define x− such that

FX(x
−) = ε (B.2)

and define x+ such that

1−FX(x
+) = ε (B.3)
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Similarly, define y− and y+ by

FY (y
−) = ε (B.4)

and

1−FY (y
+) = ε (B.5)

B.3 Surrogate Distributions

Let’s define surrogate distributions

f̃X(x) =
(

H(x− x−)−H(x− x+)
)

fX(x) (B.6)

and

f̃Y (y) =
(

H(y− y−)−H(y− y+)
)

fY (y) (B.7)

where H is the Heaviside step function. The above functions are the original distributions with the

tails lopped off. They are themselves not strictly PDFs because they do not integrate to 1.0.

Let’s also define

F̃X(x) =
∫ x

−∞
f̃X(x)dx (B.8)

Note that

FX(x)− F̃X(x)







≤ ε for x < x−

= ε for x− < x < x+

≤ 2ε for x+ < x

(B.9)

B.4 Bounding the Dependence

Our approach is as follows:

1. Consider arbitrary PDFs fX and fY .

2. Demonstrate that when the tails are deleted, the change in PF(M) in Equation B.1 is O(ε)
(of order ε).

3. Observe that since this change is of the same order regardless of the content in the tails, the

integral as a whole is independent of those tails, modulo a term of O(ε).

Let’s begin.

PF(M) =

∫ ∞

−∞
fY (y)

(

1−FX(y−M)
)

dy
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=
∫ y+

y−
fY (y)(1−FX(y−M))dy+O(ε) (B.10)

because 1−FX(x)< 1 for all x.

=
∫ y+

y−
fY (y)

(

1− F̃X(y−M)
)

dy+O(ε) (B.11)

because
∫

fY (y)(FX(y−M)− F̃X(y−M))dy ≤
∫

fY (y)2εdy = O(ε).

PF(M) =
∫ ∞

−∞
f̃Y (y)

(

1− F̃X(y−M)
)

+O(ε) (B.12)

We have established that we can ignore the tails at the cost of introducing an error O(ε) in

PF(M).
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Appendix C

Transitivity Inequality Proof

Let

P(Z < X)< β1 (C.1)

and

P(Y < Z)< β2 (C.2)

It is shown below that

P(Y < X)< β2 +β1 (C.3)

where X , Y ,Z are all independent random variables.

Define some transformations.

R = Z−X S = Y −Z U = Y −X (C.4)

Then the initial specifications translate to

P(R < 0)< β1 (C.5)

and

P(S < 0)< β2 (C.6)

The random variable

U = R+S (C.7)

Therefore, we seek to show, in Eq. (C.3)

P(U < 0) = P(R+S < 0)< β1 +β2 (C.8)

An event that contains R+S < 0 is the event (R < 0)∪ (S < 0). The reason is that when R+S < 0,

either (R < 0) or (S < 0) or both (R < 0) and (S < 0). But, in addition, the event (R < 0)∪(S < 0)
contains outcomes in which R+S ≥ 0. In view of this, we can write

P(R+S < 0)< P((R < 0)∪ (S < 0)) (C.9)
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The law of the total event states that the right hand side can be expanded to

P(R+S < 0)< P((R < 0))+P((S < 0))−P((R < 0)∩ (S < 0)) (C.10)

If we add the final term on the right to the right hand side, only, we make the right hand side larger

than it already is, to obtain

P(R+S < 0)< P((R < 0))+P ((S < 0)) = β1 +β2 (C.11)

Q.E.D.
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Appendix D

Bootstrap Resampling

One of the objectives of statistical analysis is the assessment of variability of estimates of

the parameters of probability distributions of random variables and random processes [7]. In the

“Real-World” framework for variability analysis a sequence of statistically independent, identically

distributed random variables (X1, . . . ,Xn) = X j, j = 1, . . . ,n is sampled once to obtain realizations

(x1, . . . ,xn) = x j, j = 1, . . . ,n. A statistic of the random variables is expressed g(X1, . . . ,Xn) where

g(•) is a deterministic function, i.e., the function has fixed form. The form of the function, g(•),
is obtained through a specific analysis, e.g., maximum likelihood analysis, to form an estimator

of a particular parameter of a probability distribution. For example, in the case of the mean,

g(X1, . . . ,Xn) = X̄ =
(

1
/

n
)

n

∑
j=1

X j; the quantity expressed here is the sample mean, and it is a

random variable because it is a function of the random variables, X j, j = 1, . . . ,n. When we use the

formula on the realizations, g(x1, . . . ,xn) = x̄ =
(

1
/

n
)

n

∑
j=1

x j, we obtain a realization of the random

variable X̄ .

In the Real-World we can, in principle, repeat the experiment where a set of realizations, x j, j =
1, . . . ,n is drawn from the source X j, j = 1, . . . ,n. Usually, the realizations drawn from the random

source on the second trial differ from the realizations drawn on the first (or any other) trial. The

sample mean, x̄, computed from the second set of realizations differs from the first realization of

x̄, etc. If a collection of sample mean realizations, x̄k, k = 1, . . . ,N, is generated, that collection

will represent the distribution of the random variable X̄ and the distribution of X̄ might be inferred

from the data. At least, the Karhunen-Loeve expansion (KLE) can be written as an estimate to the

PDF of X̄ and that is an approximate characterization of the distribution of X̄

When the random source, X j, j = 1, . . . ,n, is normally distributed with mean and variance
(

µX ,σ
2
X

)

, then the sample mean, X̄ , is also normally distributed with mean and variance
(

µX ,σ
2
X

/

n
)

.

Further, the distribution of the random variable, tn−1 = (X̄ −µX)
/(

SX

/√
n
)

is Student’s t with

(n−1) degrees of freedom. The random variable,SX , is the square root of

S2
X =

(

1/(n−1)
)

∑n
j=1(X j −X)2; the latter is the unbiased estimator formula for the variance. The

distributions specified here could all be easily confirmed if multiple realization sets, x j, j = 1, . . . ,n,

were collected and analyzed. The sampling distribution (i.e., the probability distribution that sam-

ples follow) for the random variable (X̄ −µX)
/(

SX

/√
n
)

can be used to establish the standard
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error for the mean and confidence intervals for the mean.

Figure D.1 shows the steps to be taken, in the Real World framework, to estimate the sampling

distribution of a statistic that estimates an arbitrary parameter, G= g(X1, . . . ,Xn), of the probability

distribution of a random variable when multiple realization sets can be collected.

Figure D.1: Procedure for obtaining sampling distribution of an estimator, G.

In spite of all that has been said here, reality dictates that collection of samples costs money,

and one sample, only, is typically available. That is why the normal assumption is useful – when

it applies accurately. In the case of mean estimation, we are fortunate in the sense that The Central

Limit Theorem causes the mean estimator, X̄ , to have a distribution that converges rapidly to the

normal distribution as the number of data, n, increases. That is not always the case for estimators

of other parameters. In those cases, other techniques are required to estimate standard errors and

confidence intervals for parameters. The bootstrap provides an alternate to classical techniques.

The bootstrap is a numerically intensive technique for the assessment of variability of esti-

mates of the parameters of probability distributions of random variables and random processes [8].

Whereas, in principle, the Real World provides the opportunity to gather multiple sets of samples

x j, j = 1, . . . ,n from a random source X j, j = 1, . . . ,n, the Bootstrap World works with the single

set of data x j, j = 1, . . . ,n. The bootstrap framework holds that if we sample x j, j = 1, . . . ,n mul-

tiple times we can explore the variability of estimators. How do we obtain multiple samples from

the single sample x j, j = 1, . . . ,n?
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We define a bootstrap sample from the data x j, j = 1, . . . ,n as a collection x
(b)
i , i= 1, . . . ,n. The

quantity x
(b)
i = x

j
′ is a number taken from x j, j = 1, . . . ,n such that the subscript j

′
is a realization

of a discrete random variable with equal probabilities on [1, . . . ,n]. The sampling is performed

“with replacement;” therefore, the sequence x
(b)
i , i = 1, . . . ,n may contain repeated values from

x j, j = 1, . . . ,n and x
(b)
i , i= 1, . . . ,n may be missing some values from x j, j = 1, . . . ,n. It is possible

to generate as many bootstrap samples from a collection of data as desired. Because the number

of combinations of data in a bootstrap sample is proportional to n! (n factorial) it is unlikely that

bootstrap samples will be duplicated, in a practical analysis, once n surpasses 8, or so Next, we

define a bootstrap replicate of a statistic as gb = g
(

x
(b)
1 , . . . ,x

(b)
n

)

. In the case of the mean estimator

this would be x̄(b) =
(

1
/

n
)

n

∑
j=1

x
(b)
j

Bootstrap analysis requires that for a large number, B, we generate B bootstrap samples of the

data, x
(b)
i , i = 1, . . . ,n, b = 1, . . . ,B, and then compute for each sample the bootstrap replicate of

the statistic, gb = g
(

x
(b)
1 , . . . ,x

(b)
n

)

, b = 1, . . . ,B. The bootstrap analyzes the computed bootstrap

replicates gb, b = 1, . . . ,B, to establish features of the sampling distribution of the estimator G. For

example, the standard error of the estimator may be estimated as the sample standard deviation of

the gb, b = 1, . . . ,B. Confidence intervals may also be estimated.

The procedure for estimation of bootstrap confidence intervals is direct. Denote the CDF esti-

mator formed from the replicates gb, b = 1, . . . ,B, with F̂G (β) ,−∞ < β < ∞. This might be, for

example, the empirical CDF [11, 15] of the gb, b = 1, . . . ,B or it might be the integral of the ker-

nel density estimator [21, 22] However the CDF is estimated, we form the symmetric, two-sided,

(1−α)×100% confidence interval estimates by solving for [L,U ] in

F̂G (L) = α
/

2 F̂G (U) = 1−α
/

2 (D.1)

This requires inversion of F̂G (β), and that can be accomplished with a search when the CDF is

approximated with the empirical CDF, or interpolation when the CDF is estimated based on the

KDE. Figure D.2 shows the steps to be taken, in the bootstrap framework, to estimate the sampling

distribution of a statistic that estimates an arbitrary parameter, G= g(X1, . . . ,Xn), of the probability

distribution of a random variable when one realization, only, can be collected.

Example 1. Collect n = 10 data from a random source known to be non-Gaussian. The data

are listed here:
-0.951 0.563

-0.721 -0.129

-0.286 -1.083

0.057 0.959

-1.202 -0.951

A histogram of the data is shown in Figure D.3, and the empirical CDF of the data is shown in

Figure D.4
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Figure D.2: Procedure for obtaining sampling distribution of an estimator, G., in the bootstrap

framework.
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Figure D.3: Histogram of the data.
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Figure D.4: Empirical CDF of the data.

The sample mean and sample standard deviation of the data are −0.374 and 0.737. The CDF

of the Student’s t-based sampling distribution of the mean is plotted (red) in Figure D.5. One-

thousand bootstrap replicates of the sample mean were generated and analyzed as described above.

The empirical CDF of bootstrap mean estimates – the sampling distribution for the mean – is

shown Figure D.5 (blue). The CDFs match fairly closely; this is attributable to fact that the mean

estimator is nearly normally distributed, even for an average based on ten data. The standard error

for the mean estimate, based on the Student’s t distribution is 0.264; the standard error for the

mean estimate, based on the bootstrap analysis is 0.222. The symmetric, ninety percent confidence

interval on the mean was obtained from the Student’s t distribution; it is [−0.801,0.053] The limits

of the interval are shown as red circles on red CDF curve. The ninety percent confidence interval

on the mean was obtained from the bootstrap analysis; it is [−0.723,0.005]. The limits of the

interval are shown as blue circles on the blue CDF curve. In summary, the experimental bootstrap

data reflect slightly lower variability than would be predicted using the Student’s t distribution.

Figure D.5: PDF of the Student’s t sampling distribution for the mean (red), and KDE of the

sampling distribution for the mean (blue).

Example 2.Consider the ten data listed at the start of the previous example. In this example,
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we estimate the fiftieth percentile of the random variable that is the source of the data, and then

estimate the ninety percent confidence intervals of the estimate of the fiftieth percentile. The

fiftieth percentile is the median of a probability distribution. When a random variable X has CDF

FX (x) ,−∞ < x < ∞, then the median is defined:

x0.50 = F−1
X (0.50) (D.2)

When the random variable is continuous-valued the CDF is monotone increasing, therefore, it

should be a direct matter to establish the percentage point anytime we have an estimate of FX (x)
There is an asymptotic, normal approximation for the sampling distribution of the median when n,

the number of data in the sample is large, but it may not be very accurate in the present case [7].

The computations performed here follow the bootstrap procedure and use the KDE to approx-

imate some CDFs. We start by generating 2000 bootstrap samples of the data. The KDE of each

bootstrap sample was computed, and then integrated to form the CDF of the sample. One hundred

of the 2000 CDFs of bootstrap samples are shown in Figure D.6. Each CDF has a median that

can be computed directly using Equation (a); each computed quantity is a bootstrap replicate of

the sample median, and the collection is denoted x
(b)
0.50, b = 1, . . . ,2000 The PDF of the bootstrap

replicates of the median was estimated with the KDE, and that is shown in Figure D.7. That PDF

reflects the sampling distribution of the median estimator. The symmetric, ninety percent confi-

dence interval obtained from the KDE is indicated by blue circles. The interval is [−0.826,0.022].
The normal, asymptotic approximation to the sampling distribution of the median was also com-

puted and is shown by the red curve in Figure D.7. Its mean and variance are
(

−0.504,(0.375)2
)

.

The ninety percent confidence interval on the median obtained from the asymptotic approximation

is [−1.122,0.112], and is indicated by red circles in Figure D.7. As in the previous example, the

variability of the median estimator is over-estimated by the asymptotic approximation.
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Figure D.6: One hundred (of the 2000 computed) KDE approximations to the CDFs of the boot-

strap samples.
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Figure D.7: KDE of the 2000 bootstrap replicates of the distribution median.
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Appendix E

Discussion of the Nonlinear Dynamic

Example

This appendix details the non-linear structural mechanics example used throughout the report

and in the validation analysis, a completely simulated or virtual example. The virtual structure

under consideration is shown in Figure E.1. The analysis in this appendix explores response of the

structure to random vibration, and uses “measured” responses of the Truth Model to calibrate the

stochastic model for stiffness and damping. The Truth Model and the linear model are used in the

body of the text to assess response of both structures to mechanical shock. For the purposes of

validation and making conservative predictions, the linearized model is used to generate the model

predictions. The linear model should be as close as possible to the Truth model. Because the Truth

model is stochastic, the linear model must be stochastic as well; therefore part of the linearization

scheme involves estimation of a PDF.

Figure E.1: Virtual structure to be analyzed

E.1 The non-linear (Truth) model

The structure to be analyzed is base-driven, has 30 discrete masses, and responds in one di-

mension. The quantities x j, j = 0, . . . ,30 denote absolute displacements of the base and the system

masses; these also denote degrees-of-freedom (DOF) of the structure. The mass of the element
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under x0 is immaterial to the analysis; the mass is rigid and a motion is enforced at that location.

The elements associated with the displacements x j, j = 1, . . . ,30, have masses m j, j = 1, . . . ,30.

The connections between masses are modeled by a damper and a spring. For j = 1, . . . ,30, the

damper to the left of DOF j has damping constant c j and the spring to the left of DOF j (except

for DOF 21) has stiffness k j. The spring to the left of DOF 21 is nonlinear, and the restoring force

in that spring is denoted R(x21 − x5). The element shown as a solid black bar that extends down

from DOF 5 is a rigid, massless element. Masses one through twenty are given by the formula

m j = 0.0045(20.5− j/2) for j = 1, . . . ,20 (E.1)

The structure, DOF 1-20, weighs 529.79 lbs. Stiffnesses one through twenty are given by the

formula

k j = 0.5×104 (20.5− j/2) for j = 1, . . . ,20 (E.2)

These quantities can be used to construct the 20×20 structure mass and stiffness matrices, m0 and

k0. The structure damping matrix is defined as

c0 = α0m0 +β0k0 (E.3)

where α0 = 4.5 and β0 = 2.4×10−5. This form of damping is Rayleigh damping.

Masses twenty-one through thirty are given by

m20+ j =







0.062 for j = 1,2,3
0.6×0.062 for j = 4, . . . ,7
0.4×0.062 for j = 8,9,10

(E.4)

The component, DOF 21-30, weighs 157.95 lbs. Stiffnesses twenty-two through thirty are

given by

k21+ j =







6.7×104 for j = 1,2,3
0.8×6.7×104 for j = 4,5,6
0.6×6.7×104 for j = 7,8,9

(E.5)

These quantities can be used to construct the 10×10 component mass and stiffness matrices,

m1 and k1. (The component is free-in-space.) The component damping matrix is defined by

c1 = α1m1 +β1k1 (E.6)

where α1 = 6 and β1 = 1.3×10−5.

The elastic spring element that connects DOF 5 and 21 exerts the restoring force defined by

R(z) =







klim (z+ zc)−Rc for z ≤−zc

a1z+a3z3 for −zc < z < zc

klim (z− zc)+Rc for z ≥ zc

(E.7)

78



The restoring force is meant to approximate the behavior of an ideal gap element. It does so by

defining a limiting stiffness, klim, effective outside the interval [−zc,zc], and a cubic restoring force

within the interval [−zc,zc]. The cubic is defined to have stiffness at zero deformation of 0.1klim,

and slope of the restoring force at ∓zc that matches the limiting stiffness, klim. Denote by zgap the

width of the gap to be simulated. Then the parameters of Eq. (E.7) are defined as

a1 = 0.1klim and zc = 0.75zgap (E.8)

The parameters a3 and zc are computed iteratively. First, compute a3 = (klim −a1)
/(

3z2
c

)

, and

then ε = −3a3zgapzc +6a3z2
c . Modify zc as long as ε is not near zero. When ε ∼= 0, the iteration is

complete. Finally,

Rc = a1zc +a3z3
c (E.9)

In the present model, klim and zgap are normally distributed random variables with means and vari-

ances
(

75×103,
(

15×103
)2
)

and
(

0.005,(0.001)2
)

.

For example, when the nonlinear spring restoring force parameters are klim = 8.11×104, zc =
0.0042, Rc = 137.77, a1 = 8.11× 103, and a3 = 1.35× 109, the restoring force curve is the one

shown in Figure E.2.

Figure E.2: Typical nonlinear restoring force curve

The equation governing base-excited motion is solved to obtain the response of the structure

in Figure E.1. To write the equation we first define mass, damping and stiffness matrices for the

entire structure.

m =

[

m0 0

0 m1

]

c =

[

c0 0

0 c1

]

k =

[

k0 0

0 k1

]

(E.10)

where the mass, damping and stiffness matrices are the ones defined above, and the 0’s are appro-

priately sized matrices of zeros.
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The equation of motion for the base-excited structure is

mz̈+ cż+kz+R(z) =−mw ẍ0 z(0) = z0 ż(0) = v0 (E.11)

with initial conditions provided to specify the response. The 30× 1 vector z = x−wx0 contains

the relative displacement responses at the structure DOF. The vector w is a 30×1 vector of ones.

The scalar function ẍ0 is the enforced base acceleration. Dots denote differentiation with respect

to time. The bold vector R(z) has dimension 30× 1 and contains mostly zeros. The fifth and

twenty-first elements, R5(z) and R21(z), in R(z) are non-zero, and given by

R5 (z) =−R(z21 − z5)− c jt (ż21 − ż5) and R21(z) =−R5(z) (E.12)

where R(•) is the function defined in Eq. E.7 and c jt is a quantity drawn from a normally dis-

tributed random source with mean and variance (1.5,(0.3)2)). Our definition of klim, zgap and c jt

as random variables allows the structure to be random and captures the aleatory uncertainty in the

properties of the non-linear joint.

The excitation to the structure is a realization from a wide-band, zero-mean, normal random

process drawn from the source with spectral density shown in Figure E.3.

Figure E.3: Spectral density of acceleration of random excitations

The equations governing motion, Eq. (E.11), can be solved using several different approaches.

We choose to solve them using the Runge-Kutta fourth order method. Relative motions between

structure DOFs and the base motion are obtained. These can be used in ẍ=z̈+wẍ0 to compute

absolute measures of response.

E.2 Example: Random Vibration of the Truth Model

A segment of a base-excitation (acceleration) time history that comes from the specified ran-

dom process is shown in Figure E.4. A segment of the total restoring force – nonlinear spring
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restoring force plus linear viscous damper force – across the joint between DOFs 5 and 21 is

shown in Figure E.5. A segment of the absolute acceleration on DOF 26 is shown in Figure E.6.

A segment of the relative displacement across the joint from DOF 5 to DOF 21 is shown in Fig-

ure E.7. A segment of the relative velocity across the joint from DOF 5 to DOF 21 is shown in

Figure E.8 Finally, a plot of the total restoring force across the joint that connects DOF 5 to DOF 21

as a function of relative displacement and relative velocity across the joint is shown in Figure E.9.

(The view is along the relative velocity axis.) Because the nonlinear spring in the joint is elastic

the restoring force curve would appear as a single curved line in the graph of Figure E.9 if the

spring restoring force were plotted as a function of relative displacement across the joint. How-

ever, the graph reflects total restoring force viewed along the axis that is relative velocity across the

joint. The total restoring force appears multi-valued at some points, because the velocity-related

component of total restoring force differs depending on the sign of the relative velocity.

Figure E.4: Segment of acceleration applied to system using the Truth Model

Figure E.5: Segment of total restoring force across joint DOF 5-21 (Truth Model)
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Figure E.6: Segment of absolute acceleration on DOF 26 (Truth Model)
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Figure E.7: Segment of relative displacement across joint between DOF 5-21 (Truth Model)

Figure E.8: Segment of relative velocity across joint between DOF 5-21 (Truth Model)

Twenty realizations of random process excitation like the one shown in Figure E.4 were gen-

erated and used to excite twenty separate, stochastic realizations of the Truth Model. For each

realization we draw klim, zgap and c jt from their respective normal distributions. The nonlinear

spring that joins DOF 5 to DOF 21 has the form of Eq. (E.7), and the spring parameters are ran-

dom variable realizations as described following Eq. (E.9). The responses shown in Figure E.4

through Figure E.8 were recorded during each of the twenty response computations. All the com-

puted responses have the same general character as the time histories shown in Figure E.4 through

Figure E.8, though they differ in details. The twenty generated acceleration responses of the Truth

Model at DOF 26 are shown in Figure E.10. The peaks of the absolute value of the acceleration

responses at DOF 26 were observed, and the kernel density estimator (KDE, an approximation to

the probability density function of a random variable) was computed. It is shown in Figure E.11.
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Figure E.9: Restoring force across joint that connects DOF 5-21 as function of relative displace-

ment across joint, viewed along velocity axis (Truth Model).

Figure E.10: Twenty acceleration responses at DOF 26. Excitations random and structures random.

(Truth Model)
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Figure E.11: Kernel density estimator of absolute peak acceleration responses at DOF 26. (Truth

Model)

E.3 Linear Model

This section describes how we constructed a stochastic linear model of the Truth Model. In

the validation section we consider how well the linear model predicts responses from the nonlinear

Truth Model. There are several possible means for linearizing the Truth model while preserving

the stochastic nature of the structure. A simple approach involves the following steps.

• Linearize the restoring force between DOF five and DOF twenty one for each realization

of the stochastic Truth Model. The linear coefficients describe the equivalent, linearized

mechanical joint stiffness and damping (k jt ,c jt).

• Let (K jt ,C jt) be jointly distributed random variables denoting mechanical joint stiffness and

damping; we have twenty samples from this distribution. Estimate the PDF of the random

source of the jointly distributed pairs with Karhunen-Loève expansion (KLE) with Markov

Chain Monte Carlo (MCMC).

The operation described in the first bullet above was carried out on each set of the twenty input-

response pairs from the Truth Model. The operation amounts to fitting the restoring force across

the nonlinear joint with the linear expression c jt ż+ k jtz

As specified in the second bullet above, we now form a KLE model of the random variable

pair, (K jt,C jt). The model form is

Y = VW1/2U+µY (E.13)

where Y=
(

K jt ,C jt

)T
, V is the 2×2 matrix of eigen-vectors of the covariance matrix of Y, W is the

2×2 diagonal matrix of eigenvalues (both positive when the covariance matrix is positive definite)
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of the covariance matrix of Y, U is a 2×1 vector of zero-mean, unit-variance, uncorrelated (but not

necessarily independent) random variables, and µY is the 2×1 mean vector of Y. The quantities

V, W, and µY, can be estimated using the measured data. Realizations of U that correspond to the

realizations of Y can be computed by inverting Eq.(E.13). The bivariate KDE that approximates

the bivariate probability density function (PDF) of U can be written. The MCMC approach can be

used to sample the bivariate PDF of U. Figure Figure E.12 illustrates this procedure. The blue dots

are twenty linearized sets of coefficients (k jt ,c jt). The red dots are twenty samples of stiffness and

damping from the estimated KLE distribution.

Figure E.12: Generated (red) and Truth-model-based (blue) pairs of equivalent stiffness and damp-

ing

E.4 Example: Linearization of the Truth Model

A linear model was constructed from each of the fifty bivariate pairs of stiffness and damping.

The linear structure is governed by Eq. (E.11). As before, R(z) is a 30× 1 vector containing

mostly zeros, except for two terms. Those two terms are linear functions. Specifically,

ri
5(z) = −ki

jt(z21 − z5)− ci
jt(ż21 − ż5) (E.14)

ri
21(z) = ki

jt(z21 − z5)+ ci
jt(ż21 − ż5) (E.15)

where i = 1, . . . ,50 indexes the linear model and k jt ,c jt are the linearized stiffness and damping.

The same twenty excitations that were used to excite the Truth model as used as inputs to the fifty

linear structure models in this way by choosing one at random. The same response values recorded

during analysis of the Truth Model were also recorded during analysis of the linear model. For the

sake of visual comparison to the Truth model, we present some of the same set of figures (E.5- E.8

for the linear model; Figure E.13 through Figure E.16 show one of the fifty computed response
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measures. Figure E.13 shows a segment of the total restoring force across the joint between DOFs

5 and 21. Figure E.14 shows a segment of the absolute acceleration on DOF 26. Figure E.15 shows

a segment of the relative displacement across the joint from DOF 5 to DOF 21. Figure E.16 shows

a segment of the relative velocity across the joint from DOF 5 to DOF 21.

1 1.1 1.2 1.3 1.4 1.5
-2000

-1000

0

1000

2000

Time, sec

R
(t

)

Figure E.13: Segment of total restoring force across joint from DOF 5-21 (linear model)

Figure E.14: Segment of absolute acceleration on DOF 26 (linear model)

Comparison of Figure E.15 to Figure E.7, relative displacement across the joint connecting

DOF 5 to DOF 21 for the linear to nonlinear structures and Figure E.16 to Figure E.8, relative

velocity across the joint for the linear to nonlinear structures indicates a relatively spiked character

in the nonlinear structure response. This qualitative difference is often observed across hardening

joints.

As mentioned, above, fifty linear model responses were computed. The entire collection of

fifty absolute acceleration responses at DOF 26 is shown in Figure E.17. The peaks of the absolute

value of the acceleration responses at DOF 26 were observed, and the KDE was computed. It is
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Figure E.15: Segment of relative displacement across joint between DOF 5-21 (linear model)

Figure E.16: Segment of relative velocity across joint between DOF 5-21 (linear model)
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shown in Figure E.18 (red) along with the KDE from Figure E.11 (blue) indicating the estimated

distribution of peaks at the same DOF in the nonlinear Truth Model. The results show what should

be suspected, that is, that the joint in the nonlinear structure shows more high acceleration peaks

at DOF 26. This tends to happen in hardening systems. The comparison shown in Figure E.18

can, by no means, form the basis for a validation comparison, because the parameters of the spring

model used in the linear model were obtained from experiments that use the same inputs to both

the Truth Model and the linear model. The responses of both structures to a different form of

excitation needs to be obtained for a validation comparison to be performed. This is carried out in

section 4.

Figure E.17: Fifty acceleration responses in linear model at DOF 26

Figure E.18: Kernel density estimator of absolute peak acceleration responses in Truth Model

(blue) and linear model (red)
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