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Abstract

We performed an investigation into explicit algorithms for the simulation of incompressible
flows using methods with a finite, but small amount of compressibility added. Such methods
include the artificial compressibility method and the lattice-Boltzmann method. The impetus
for investigating such techniques stems from the increasing use of parallel computation at
all levels (processors, clusters, and graphics processing units). Explicit algorithms have the
potential to leverage these resources.

In our investigation, a new form of artificial compressibility was derived. This method,
referred to as the Entropically Damped Artificial Compressibility (EDAC) method, demon-
strated superior results to traditional artificial compressibility methods by damping the numer-
ical acoustic waves associated with these methods. Performance nearing that of the lattice-
Boltzmann technique was observed, without the requirement of recasting the problem in terms
of particle distribution functions; continuum variables may be used.

Several example problems were investigated using a finite-difference and finite-element
discretizations of the EDAC equations. Example problems included lid-driven cavity flow,
a convecting Taylor-Green vortex, a doubly periodic shear layer, freely decaying turbulence,
and flow over a square cylinder. Additionally, a scalability study was performed using in
excess of one million processing cores. Explicit methods were found to have desirable scaling
properties; however, some robustness and general applicability issues remained.
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Nomenclature

AC artificial compressibility

CNS compressible Navier–Stokes

EDAC entropically damped artificial compressibility

GFLOPS billion floating point operations per second

GPU graphics processing unit

INS incompressible Navier–Stokes

KRLNS kinetically reduced local Navier–Stokes

LB lattice Boltzmann

Ma Mach number

MMS method of manufactured solutions

NS Navier–Stokes

Pr Prandtl number

Re Reynolds number

St Strouhal number

SUPG streamline-upwind/Petrov Galerkin

cp specific heat at constant pressure

cs speed of sound

cv specific heat at constant volume

E total kinetic energy

ek kinetic energy

f frequency

F(U) x-direction advection in vector form

g covariant element metric tensor

G grand potential

G(U) y-direction advection in vector form
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JF flux Jacobians for F

JG flux Jacobians for G

k thermal conductivity

L length scale

n wall-normal direction

P pressure

P0 reference pressure

q pressure test function

S rate of strain tensor

s specific entropy

S(U) source terms in vector form

t time

ta acoustic time scale

tc convective time scale

td diffusive time scale

T temperature

T0 reference temperature

U solution unknowns in vector form

u velocity

u0 reference velocity

u∞ free-stream velocity

V simulation domain volume

Vi cell volume

w velocity test function

α isothermal compressibility coefficient

β thermal expansion coefficient

γ ratio of specific heats
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∆x x-direction grid spacing

∆y y-direction grid spacing

∆t time step

ε kinetic energy dissipation

η Kolmogorov length scale

Λ characteristic eigenvectors

λi characteristic eigenvalues

µ dynamic viscosity

ν kinematic viscosity

ρ density

ρ0 reference density

σ viscous stress tensor

τ Kolmogorov time scale

τLB lattice-Boltzmann relaxation time

τP tau parameter for pressure stabilization

τS UPG tau parameter for SUPG stabilization

Φ viscous dissipation

Ω enstrophy

(, ) scalar product in L2

9



This page intentionally left blank.



1 Introduction

The governing equations of continuum fluid mechanics are the Navier–Stokes (NS) equations.
These equations can be broadly split into two classes: compressible and incompressible. For the
compressible case, no assumptions are made regarding the Mach number, and compressibility
effects cannot be ignored. The governing equations include mass conservation, momentum con-
servation, energy conservation, and a thermodynamic equation of state, collectively referred to as
the compressible Navier–Stokes (CNS). Compressibility effects are governed by the Mach number,
Ma ≡ u0/cs, where u0 is the flow velocity and cs is the speed of sound. Time scales of interest
include the acoustic time scale, ta ∼ L/cs, where L is a length scale of interest, the diffusive time
scale, td ∼ L2/ν, where ν is the fluid kinematic viscosity, and the convective timescale, tc ∼ L/u0.

A common simplification of the more general compressible Navier–Stokes (CNS) equations
involves taking the low Mach number limit (Ma � 1) to derive the incompressible Navier–Stokes
(INS) equations. In this case, the acoustic timescale becomes singularly perturbed, i.e., acoustic
pressure disturbances are transmitted instantaneously. The thermodynamic state becomes fixed,
thus the mass and momentum equations become decoupled from the energy equation, simplifying
the system considerably compared with the CNS equations. The strict decoupling of the energy
equation found in the INS can be weakened somewhat via an acoustic filtering procedure that sep-
arates the pressure into mechanical and thermodynamic parts, thus yielding a temperature-only
equation of state for the thermodynamic pressure [33]. These equations allow for a temperature-
dependent density and are typically used in cases where flow-driven compressibility effects are
negligible, yet temperature gradients create large density gradients that cannot be adequately de-
scribed via a Boussinesq approximation.

Although the INS represents a conceptual simplification of the CNS equations, solving the
INS using computational techniques still remains challenging. The instantaneous propagation of
pressure fluctuations (acoustic waves) results in an elliptic-type system that requires an implicit
formulation and nonlocal communication. One method of solution is via the pressure-Poisson
solve common to so many INS solvers. When attempting to scale computational techniques on
many processing cores, this nonlocality results in high interprocessor communication, and conse-
quently, nontrivial parallel scalability. One successful class of solution strategies is the fractional
step approach. These methods have been developed based on a Hodge decomposition of the ve-
locity field, pioneered with the original projection methods of [11, 12]. These methods rely on
some variation of operator splitting [34, 19] to decompose the problem into several steps, which
can often be generalized as the following: a velocity update to an intermediate value, application
of an incompressibility constraint, and a velocity correction step to maintain a solenoidal velocity
field. Original formulations of the projection schemes satisfied the incompressibility constraint
discretely; however, more recent formulations have favored approximate forms that only satisfy
the discrete divergence to the numerical accuracy of the method [2, 28, 7]. This point is important,
since although the equations associated with projection methods may be strictly incompressible,
the discrete solution will contain numerical errors resulting in some degree of nonzero velocity
divergence. The form of the incompressibility constraint is typically formed using the pressure-
Poisson form of the continuity equation, which is elliptic and thus requires an iterative approach to
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solving. A more detailed review on projection-based methods can be found in [7].

The complexity associated with the scalable solution to the INS is compounded by current
trends in high-performance computing. Next generation so-called “exascale” supercomputers will
have processing units (cores) in excess of one-million. For example, the current DOE system Se-
quoia1 contains 1.6 million cores. This trend is also exacerbated by use of graphics processing units
(GPUs) for general purpose computation. GPUs achieve their formidable computational through-
put through massively parallel execution, even within a single GPU. For comparison an Intel Xeon
X5680 (Westmere) processor has a peak performance of 160 GFLOPS, while an NVIDIA Tesla
2050 (Fermi) GPU has a peak performance of 1180 GFLOPS [38]. Algorithms which are capable
of scaling on these resources are desirable now, and will become a requirement with the continuing
evolution of computing towards massively parallel architectures.

In the context of incompressible flows, an explicit and local procedure has the potential to use
these increasingly parallel computational resources. Since elliptic systems cannot be solved ex-
plicitly, one must change the mathematical nature of the incompressibility constraint to remove
the requirement of a pressure–Poisson solve. This can be accomplished by considering a pseu-
docompressible fluid, i.e., a fluid with a small but finite amount of compressibility. One method,
artificial compressibility (AC), accomplishes this by prescribing an artificial equation of state re-
lating changes in pressure to small changes in the density. This strategy was taken early in the
simulation of fluid flows [10]. It is shown that this artificial equation of state is equivalent to the
assumption of the isentropic limit (see section 2), and compressibility effects are O(Ma2). In this
method, the Mach number becomes an artificial parameter, which may be larger than the physi-
cal Mach number, yet small enough to ensure negligible compressibility errors. This method was
originally conceived as a means to iterate towards a steady solution, and many authors have noted
problems with performing time-accurate solutions unless a dual-time-stepping iterative procedure
is used [27, 40, 23, 30], although some evidence exists that with a sufficiently small Mach num-
ber, time-accurate solutions are feasible [18, 35]. The lattice-Boltzmann (LB) method has also
seen success recently [8, 1]. This method, although based on a discrete version of the Boltzmann
equation and kinetic in formulation, ultimately approximates the behavior of a pseudocompress-
ible fluid. Because of this pseudocompressibility, the method is local and amenable to parallel
computation.

As originally postulated by Chorin [10], the standard AC method relies on an artificial equation
of state. One can show that this artificial equation of state is equivalent to providing an additional
thermodynamic constraint to the original compressible Navier–Stokes (CNS) system. This addi-
tional constraint is necessary to eliminate the energy or entropy equation from the CNS reducing
the number of equations and unknowns by one. The traditional AC method of Chorin is isentropic.
While the INS are isentropic in the limit Ma → 0, compressibility effects remain to O(Ma2).
Therefore, the artificial method suggested by Chorin is just one potential (and artificial) closure to
approximate the INS. While acoustic timescales are generally assumed to be isentropic, at longer
viscous and convective time scales, dissipation is important and the isentropic assumption may not
be appropriate.

1https://asc.llnl.gov/computing_resources/sequoia/
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In this report an alternate constraint equation is proposed based on minimizing density fluc-
tuations. By assuming a constant thermodynamic density separate from the low-Mach limiting
process, a thermodynamic constraint is derived relating changes in temperature to changes in pres-
sure. As discussed in section 2, this constraint results in markedly reduced pressure fluctuations by
introducing a smoothing term into the equation governing the evolution of the pressure. Looking
at the entropy balance, one can see that isentropic behavior is not maintained. In effect, the acous-
tic waves are rapidly damped through entropy generation. This contrasts with the isentropic case,
where acoustic wave damping occurs strictly through the coupling of pressure with the momentum
equation. The resulting system of equations subject to the above constraint is referred to as the
entropically damped artificially compressible (EDAC) Navier–Stokes. Physically, at time scales
much larger than ta, acoustic waves have dissipated viscously, which is not a process that con-
serves entropy. It is shown in section 2 that the EDAC equations converge to the INS as Ma→ 0.

This research is in part motivated by a series of papers that also proposed an alternate ther-
modynamic basis for the limit of incompressibility [3, 20, 6], in which the authors noted that an
additional smoothing term is beneficial. This method is referred to as the Kinetically Reduced Lo-
cal Navier–Stokes (KRLNS) method. This research extends the existing KRLNS research in the
following manner: The governing equations are not recast using the thermodynamic grand poten-
tial since this substitution complicates the derivation. Instead, the derivation proceeds directly from
the CNS in terms of the thermodynamic variables of interest. Furthermore, the reduced equations
in [6] are missing an important term, which is identified in section 2 and shown to be critical for
resolving moderate to high Reynolds number flows. Furthermore, we stress that the smoothing or
dissipative term is a direct consequence of an artificially chosen thermodynamic relationship. This
relationship is used in the derivation of [3] as an approximation, yet is stated unambiguously here
as an artificial constraint, and only one possible constraint that approximates the INS to O(Ma2).
Thus, the equations derived in both the EDAC and KRLNS methods do not represent the true
thermodynamic limit of incompressibility, just one potential limit subject to the chosen constraint.

This paper proceeds by closely examining the CNS equations as Ma → 0 in section 2, and
the effect of the various thermodynamic constraints used to derive an artificial equation of state.
Section 3 describes a simple finite-difference discretization of the method and then explores the
performance and accuracy of the EDAC method on several model problems. A characteristic anal-
ysis of the hyperbolic system associated with the EDAC equations is also presented. Much of the
theory development and finite-difference results are available in Clausen (2013) [13]. The theory
development is recapitulated and expounded upon where appropriate; however, only pertinent sec-
tions of the previously published numerical method and results are repeated. Next, section 4.2
describes a more general finite-element version of the EDAC algorithm and investigates its per-
formance on several model problems. More work is needed to make the finite-element version
acceptably robust. Lastly, section 5 details a scalability study using the finite-difference version of
the algorithm. This study is performed on the Sequoia supercomputer, with scalable results demon-
strated on over one-million cores. A discussion of the relative merits for explicit fluid dynamics
solvers is found in section 6.
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2 Thermodynamic Limit of Incompressibility

To study the various forms of artificial compressibility and the nature of the Navier–Stokes equa-
tions in the limit of incompressibility, we start with the dimensional form of the Navier–Stokes [32],
which after using Fourier’s heat flux can be written as

Dρ
Dt

= −ρ∇ · u, (1)

ρ
Du
Dt

= −∇P + ∇ · σ, (2)

ρ
Ds
Dt

=
1
T
∇ · (k∇T ) +

1
T
σ : S, (3)

where u is the fluid velocity, ρ is the fluid density, P is the pressure, t is the time, σ is the viscous
stress tensor, S is the rate of strain tensor, s is the specific entropy, k is the thermal conductivity,
and T is the temperature. Here the entropy balance has been used in lieu of the energy conservation
equation, and the convective derivative is defined as

D(·)
Dt
≡
∂(·)
∂t

+ u · ∇(·).

In order to study the behavior of the CNS in the limit of incompressibility, the CNS equations
are made dimensionless. Accordingly, the variables of interest are scaled according to

ρ∗ = ρ/ρ0 u∗ = u/u0

T ∗ =
T − T0

Pr u2
0/cp

s∗ =
s

cp

P∗ =
P − P0

ρ0u2
0

t∗ =
tu0

L

where starred quantities are dimensionless, and ρ0, u0, L, P0, and T0 are chosen reference quan-
tities. Several dimensionless parameters are of interest: The Prandtl number is defined as Pr ≡
µcp/k, where µ is the fluid shear viscosity, and cp is the specific heat at constant pressure. The
Reynolds number is defined as Re ≡ ρ0u0L/µ. The ratio of specific heats is defined as γ ≡ cp/cv,
where cv is the specific heat at constant volume. Note that we have assumed several fluid material
properties to remain constant: viscosity, specific heats, and thermal conductivity. Dropping the
starred notation hereafter, and assuming all quantities are dimensionless unless otherwise noted,
the dimensionless form of the Navier–Stokes can be written as

1
ρ

Dρ
Dt

= −∇ · u, (4)

ρ
Du
Dt

= −∇P +
1

Re
∇ · σ, (5)(

PrγMa2

A
T + 1

)
ρ

Ds
Dt

=
Ma2γ

A
1

Re

(
∇2T + Φ

)
, (6)
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where Φ ≡ σ : S is the viscous dissipation, A ≡ αρ0cpT0 is an additional dimensionless parameter,
and α is the isothermal compressibility coefficient. The dimensionless forms of the continuity
and momentum equations above should be familiar; however, the entropy equation requires some
algebra. After applying the previously mentioned scalings and noting that (cf. eq 10.3.7 in [32])

u2
0

cpT0
=

Ma2γ

A
, (7)

we can simplify (3) into the form shown in (6). Note that only two thermodynamic variables are
independent, e.g., one can express ρ = ρ(P, s) and T = T (P, s) to ensure the system described by
(4), (5), and (6) is complete.

Further simplification is possible by expressing the density in terms of its thermodynamic rela-
tionship,

dρ = Ma2dP − B
(
PrγMa2

A
T + 1

)
ρds, (8)

where B ≡ βT0, and β is the thermal expansion coefficient. If we combine the time derivative of
(8), the continuity (4), and the entropy (6) equations, the result is

− ρ∇ · u = Ma2 DP
Dt
−

Ma2γ

Re
B
A

(
∇2T + Φ

)
. (9)

The equations given by (9) and the momentum equation (5) do not represent a complete system
since the number of unknowns (two thermodynamic and three momentum) is greater than the
number of equations (four). An additional equation, in the form of an artificial thermodynamic
constraint, is necessary to complete the system. Equation 9 can also be derived by combining
the continuity equation, the thermal energy equation, and the thermodynamic relationship for the
density with pressure and temperature as the independent thermodynamic variables; however, the
derivation from the entropy form is more convenient.

2.1 Isentropic Limit

If we assume isentropic behavior, ds = 0, thus, (9) becomes

DP
Dt

= −
1

Ma2ρ∇ · u. (10)

To obtain the form used by classical AC methods, which are commonly motivated by assuming the
artificial equation of state ρ = Ma2P, requires making two approximations. First, the convective
derivative can be approximated as DP/Dt ≈ ∂P/∂t since the acoustic waves travel much faster than
the convective velocity. Second, the density perturbations are given as ρ ≈ 1 + O(Ma2), thus the
higher-order terms involving the density can be neglected. The resulting update for the pressure is

∂P
∂t

= −
1

Ma2∇ · u, (11)
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which is equivalent to the classical AC methods [10]. While entropy balance (6) shows isentropic
behavior to O(Ma2), (9) clearly shows that both the pressure and entropic contributions contain
terms of the same order. This behavior suggests that an isentropic assumption, while certainly
valid to O(Ma2), may not be the only acceptable choice for a pressure update procedure.

2.2 Minimization of Density Fluctuations

As an alternative constraint, consider imposing no thermodynamic fluctuations in the density, i.e.,
dρ = 0. It is essential to realize that this is an additional constraint imposed separately from
the low-Mach limiting process. To understand the consequences of imposing dρ, consider the
thermodynamic function for the density as function of the pressure and temperature,

dρ
ρ

= γMa2
(
dP −

PrB
A

dT
)
. (12)

If dρ = 0, the term in parentheses is also zero; consequently, a thermodynamic relationship of the
form

dP =
PrB
A

dT, (13)

exists, which can be used to eliminate the temperature diffusion term in (9). We note that this rela-
tionship between pressure and temperature fluctuations was used by [3]; however, their motivation
hinged on the right-hand side of (12) being close to zero from the low-Mach limiting procedure.
It is important to realize that while the density naturally becomes constant (in a Lagrangian sense)
in the low-Mach-number limit for a given material region, (13) represents an additional constraint
that is equivalent to a constant thermodynamic density. Without this additional constraint, (12)
states that O(Ma2) changes in density cause O(1) changes in the dimensionless pressure and tem-
perature and does not allow the simplification stated in (13). This constraint is entirely artificial,
but so is the isentropic constraint, and as is shown in section 3.3, this constraint yields several
desirable properties.

Simplifying (9) using (13) gives

DP
Dt

= −
1

Ma2ρ∇ · u +
γ

PrRe
∇2P +

B
A
γ

Re
Φ. (14)

Several simplifying assumptions are made for the remainder of the investigation: First, the density
is eliminated just as in the isentropic case. Second, we assume Pr = γ, and lastly, the effects
of viscous dissipation are neglected. These simplifications are possible through the appropriate
selection of the dimensionless parameters, although certainly not required. The resulting simplified
version is shown as

DP
Dt

= −
1

Ma2∇ · u +
1

Re
∇2P, (15)

which, when combined with the momentum equation (5) forms a complete system for the solu-
tion of pseudo-compressible flow that is referred to as the EDAC method. Physically, pressure
(acoustic) wave propagation in the EDAC method is damped via an entropy generating mechanism
created via an artificial thermodynamic constraint that relates temperature and pressure fluctua-
tions.
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2.3 Discussion

It is instructive to consider the behavior of both the AC and EDAC methods in the incompressible
limit, Ma → 0. In this case, both methods converge to the INS with O(Ma2) errors, and both
methods are isentropic (as are the INS). Also, as the viscous terms become less important, i.e.,
Re → ∞, both methods demonstrate isentropic behavior. The primary differences occur in the
viscously dominated regime, particularly as Re → 0. In this case the EDAC method converges to
the pressure–Laplacian equation that is valid for Stokes flow,

∇2P = 0, (16)

which also enforces incompressibility. Conversely, the AC method is unaffected by the choice of
Reynolds number. The ability of the EDAC to demonstrate proper behavior at both the viscous and
inertial limits is the key to developing a time-accurate AC method.

The motivation for this research is the existing KRLNS; therefore, it is worth comparing the
newly developed EDAC method with the existing KRLNS [3, 20, 6], method. The KRLNS method
is based on a substitution,

G = P − ek, (17)

where G is stated to be the negative of the grand potential, and ek ≡ ρu · u/2 is the kinetic energy.
After simplifying the CNS using the above substitution, an update procedure is obtained for G
as [6]

∂G

∂t
= −

1
Ma2∇ · u +

1
Re
∇2G. (18)

Taking the EDAC equation (15) and subtracting (18), reveals a difference, shown as

EDAC − KRLNS = ∇ · (uek) +
1

Re
∇u : ∇u. (19)

The first term on the right-hand side is associated with the convection of kinetic energy and is
likely negligible based on the difference in acoustic and convective speeds. The second term is
shown to be important in obtaining a qualitatively correct pressure evolution in section 3.3. We
note that these terms are present in earlier formulations of the KRLNS [3], but they are missing in
the reduced set of equations [6].

In all derivations of the KRLNS [3, 20, 6], a key simplification relates fluctuations in tem-
perature to fluctuations in the grand potential, which is based on the argument that at long time
scales the density is approximately constant. This assumption requires the thermodynamic con-
straint shown in (13), which is not explicitly stated in the derivation of the KRLNS equations.
In [3], the authors make an argument that the precursor equations to the KRLNS represent the
minimal thermodynamic system to represent incompressible flows. We suggest that a more appro-
priate statement would be that the KRLNS precursor (and the EDAC equations) represent only one
potential limit of incompressibility subject to the previously mentioned thermodynamic constraint.
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3 Finite Difference Implementation

3.1 Numerical Method

The finite-difference implementation of the EDAC method (FD–EDAC) is detailed fully in Clausen
(2013) [13] and a brief overview is provided here. The discretization method is a simple Mac-
Cormack predictor–corrector scheme [26]. The MacCormack scheme has a nominal accuracy of
O(∆x2,∆t2). Restating the governing equations in conservative form for a two-dimensional system
gives

∂U
∂t

+
∂F(U)
∂x

+
∂G(U)
∂y

= S(U), (20)

where U ≡ (P,u) is a vector of the solution variables. The functions F and G capture advec-
tion terms, and S contains the source terms, which are discretized using central differences. This
form is readily amenable to the application of the MacCormack method. We alternate between a
forward–back integration and a back–forward step to reduce errors [42]. The stability limit of the
MacCormack scheme is given in dimensionless form for two dimensions as [42]

∆tCFL ≤ σs f

 1
∆x

+
1

∆y
+

1
Ma

√
1

∆x2 +
1

∆y2


−1

, (21)

where σs f is a safety factor and is chosen to be 1/2 in this work. An additional stability limit exists
for the diffusion term such that

∆tdi f f ≤
σs f Re

2

[
1

∆x2 +
1

∆y2

]−1

. (22)

Stability is ensured by selecting a time step such that ∆t = min(∆tCFL,∆tdi f f ).

Code verification is performed by the method of manufactured solutions (MMS) [39]. The
solution form is chosen as a traveling wave problem [29], which has an exact solution for the INS;
however, the AC, KRLNS and EDAC methods only approximate the INS equations with an error
of O(Ma2). Thus, the manufactured solution accounts for this O(Ma2) error, and the errors reported
in [13] are restricted to discretization errors. A grid-refinement study is conducted and the method
demonstrated the expected order of convergence (quadratic).

For comparison purposes, a single-relaxation-time LB method is also used. Although a kinetic
method based on a discretization of the Boltzmann equation, the LB method approximates the INS
equations in the long time limit using a form of pseudocompressibility. The LB method has been
long-known to behave similarly to an AC method [18] with an equation of state P = c2

sρ. The LB
method has been quite successful in simulating a variety of flows including turbulent, suspension,
and multiphase flows. The locality of information propagation, i.e., pseudo-compressibility, of the
method has been key to its scalability, with simulations scaling to O(100, 000) processors [14].
The reader is referred to references [8, 1] for more information on the LB method. It is important
to realize that the LB method is explicit, and as such has time step restrictions just as in AC-based
methods. Time step sizes are limited by the need to maintain Ma � 1, as well as keeping the
relaxation time from being overdamped, which results in a rapid loss of accuracy [15].
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3.2 Characteristic Analysis

The nature of the EDAC equations are now hyperbolic instead of elliptic and a characteristic anal-
ysis can be performed. The characteristic analysis provides a means to describe wave propagation
in terms of characterstic variables and to specify characteristic boundary conditions. These bound-
ary conditions rely on recasting a one-dimensional form of the EDAC equations into characteristic
variables, then handling open boundary conditions such that incoming characteristic waves are
consistent with the physics. Also possible are nonreflecting forms, in which outgoing characteris-
tics waves are allowed to escape the domain such that they are not reflecting. Doing so decreases
the time necessary for artificial acoustic waves to damp out of the domain, particularly at open-flow
boundaries.

Following standard hyperbolic theory [25], the EDAC equations represent the propagation of
waves throughout the domain. The two-dimensional EDAC equations can be written in matrix
form as

∂U
∂t

+ JF
∂U
∂x

+ JG
∂U
∂y

= Source Terms, (23)

where

U =

 u
v

P/ρ

 (24)

is the solution vector and the flux Jacobian matrices are defined as

JF =
∂F
∂U

=

 u 0 1
0 u 0
c2 0 u

 JG =
∂G
∂U

=

 v 0 0
0 v 1
0 c2

s v

 . (25)

For JF this gives the eigenvalues of {u − cs, u, u + c}, which correspond to three characteristic
waves: two associated with the propagation of acoustic waves in either direction, and one as-
sociated with bulk convective motion. The associated left eigenvectors are written as

Λx =

 −c 0 1
0 1 0
cs 0 1

 . (26)

It is possible to write the governing equations in characteristic form by defining Li ≡ λiΛiUx,
substituting into (23), and simplifying[43, 36]. The locally one-dimensional system is written as

∂u
∂t

+
1
2c

[L3 − L1] = 0 (27)

∂v
∂t

+L2 = 0 (28)

∂P
∂t

+
ρ

2
[L1 +L3] = 0. (29)

From these relationships it is possible to enforce boundary conditions in a consistent manner.
For an inlet boundary condition, shown in figure 1(a), in which the velocity at the inlet is specified,
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Figure 1. Schematic of characteristic waves entering and exiting
the domain at flow inlet and outlet. The wave propagation speeds
are also shown.

two characteristic waves propagate into the domain, while one exits. It is easy to verify from (27–
29) that L1 = L3 and L2 = 0, assuming u and v are not functions of time. These relationships
provide a way to specify the pressure boundary condition in order to maintain consistency, where
the time derivative in the pressure is related to outgoing characteristic L1. Since L1 is outgoing,
i.e., no information associated with this characteristic is entering the domain, and all derivatives can
be approximated numerically via extrapolation. For an outflow, only one characteristic is entering
the domain (L1), as shown in figure 1(b). In a typical instance, this characteristic is associated with
specifying a back pressure. In this case, L2 and L3 are calculated via extrapolation, and L1 is set
via the pressure boundary condition, usually through a penalty mechanism[36].

The characteristic boundary conditions can be generalized to a three-dimensional inlet nor-
mal; however, the relationships are only approximations assuming locally one-dimensional invis-
cid behavior. Additional boundary conditions may be necessary for the higher order derivatives
(Neumann conditions, see [36]). For nonreflecting boundary conditions, the characteristic wave
strength entering the domain is set to zero, i.e., Lentering = 0.

3.3 Results

Using the FD–EDAC method detailed above, this section details the ability of the EDAC equa-
tions to model the INS equations in both steady and transient flows. Many of the results in this
section are available in detail in Clausen (2013) [13], and only summaries of the results are given.
These results include those for lid-driven cavity flow, a convecting vortex, and a doubly periodic
shear layer. In some cases, comparisons are made with the KRLNS method, the traditional AC
method, and the LB method. New results for the FD–EDAC include decaying three-dimensional
turbulence. The results show that the EDAC method is capable of accurate simulation of INS flows
even at relatively high Mach numbers. The KRLNS method is qualitatively incorrect, and the tra-
ditional AC method is subject to pressure/divergence fluctuations, which highlight the need for the
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Re = 100 Re = 1000 Re = 5000

Figure 2. Streamlines from the EDAC simulations at Ma = 0.1
showing the formation of three vortices: the primary, bottom left,
and bottom right. At Re = 5000 an additional vortex forms along
the top left of the domain, as is expected. Warmer colors indicate
higher stream function values. Figure from Clausen (2013) [13].

smoothing term present in the EDAC equations.

Lid-driven Cavity Flow

Lid-driven cavity flow is a canonical flow in the evaluation of incompressible flow solvers due to
the complex flow patterns exhibited. Simulations are performed using three methods (AC, EDAC,
and KRLNS) at Re=100, 1000, and 5,000. For the AC method, it is trivial to see that at steady state
(11) is independent of the Mach number and identical to the INS result; however, for the EDAC
and KRLNS methods an error still remains. Thus, Ma=0.1 and 0.3 simulations are performed. All
simulations are performed on a 256 × 256 mesh. The velocity profiles are compared with high-
resolution stream–vorticity formulations [17, 16]. Unlike traditional INS solvers, the pressure
evolution equation requires an additional boundary condition. Following [6], for the AC, EDAC,
and KRLNS simulations a Neumann condition for the pressure is used enforcing ∂P/∂n = 0,
where n is the wall-normal distance. The boundary condition is implemented via a second-order
one-sided finite difference. Simulations are considered steady state when the L2-norms of the
unsteady terms are less than 1.0 × 10−8. For a more thorough description of the results, including
data at all Reynolds numbers as well as vortex locations, see [13]. Here, only salient features will
be discussed.

First, figure 2 shows streamlines at various Reynolds numbers, and the formation of primary,
secondary, and (in high-Re cases) tertiary vortices are shown. Figure 3 shows mid-plane velocity
profiles for the Re = 5000 case. The trends seen at the other Reynolds numbers are also present
at Re = 5000. Excellent agreement is seen with the AC and EDAC methods at all Mach numbers
simulated; however, the KRLNS method shows deviations from the expected results. The error
term in (19) scales 1/Re; however, larger velocity gradients are present at higher Reynolds number,
which creates larger errors. We note that the apparent error in the KRLNS method is not unique to
simulations we performed, but is also present in the results shown in [6].
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Figure 3. LDCF results for Re = 5000 showing excellent agree-
ment for the (a) u and (b) v velocity components Figure from
Clausen (2013) [13].

Traveling Wave

Another problem examined in depth in Clausen (2013) [13] is a convected vortex, which was also
used as the basis for the code verification manufactured solution. The exact INS solution for this
flow is given by

u(x, y, t) =
1
3

+
2
3

{
cos

[
2π

(
x −

t
3

)]
sin

[
2π

(
y −

t
3

)]
exp

(
−8π2t

Re

)}
(30)

v(x, y, t) =
1
3
−

2
3

{
sin

[
2π

(
x −

t
3

)]
cos

[
2π

(
y −

t
3

)]
exp

(
−8π2t

Re

)}
(31)

P(x, y, t) = −
1
9

{
cos

[
4π

(
x −

t
3

)]
+ cos

[
4π

(
y −

t
3

)]}
exp

(
−16π2t

Re

)
(32)

This equation is an exact solution to the INS for a convecting, decaying Taylor–Green vortex;
however, the above is not an exact solution to either the AC or EDAC methods, thus an initial
perturbation is introduced that must decay, and the smoothing term that appears in (15) is crucial to
recover time-accurate dynamics at moderate values of the Mach number. Traditional AC schemes,
which do not contain the smoothing term, require extremely small Mach numbers (and hence time
steps size) in order to keep the pressure fluctuations from polluting the solution domain. The small
Mach-number requirement is especially prevalent at lower Reynolds numbers.

Unlike the LDCF problem, where the KRLNS produced a physically realizable solution, albeit
with some error, the KRLNS result fails to produce a qualitatively correct solution for the traveling
wave problem. To show this error, simulations are performed on a 65 × 65 domain at Re = 1
with periodic boundary conditions and ∆t = 2.96 × 10−5. Simulations are performed using the
EDAC method, the KRLNS method, and the KRLNS method with the error term identified in (19)
added back to the solution. In figure 4(a), the implementation of the reduced KRLNS equations
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Figure 4. Traveling wave solution showing the pressure (a) and
velocity divergence (b) at location (1/2, 1/2) at Re = 1. KRLNS
method error creates qualitatively incorrect behavior unless cor-
rection term is included. Figure from Clausen (2013) [13].

listed in [6] results in a pressure decay that is much too rapid, and an incorrect steady pressure
after the complete decay of the vortex. This pressure error does not decay as the Mach number
is refined, although the divergence error shown in figure 4(b) does show some improvement. The
pressure results obtained using the corrected form, i.e., with the error term in (19) added back into
the solution, agree well with both analytic and EDAC results. The divergence is also closer to the
expected incompressible value of zero. The errors in the pressure and velocity divergence are much
more pronounced than the velocity component errors, which are not shown for these cases. Since
the KRLNS method yields qualitatively incorrect behavior without the correction terms, the focus
throughout the remaining portion of this manuscript will be on characterizing the EDAC method
with respect to AC and LB methods.

The previous experiment is repeated using the AC, LB, and EDAC methods, and the results
are shown in figure 5. Since no LB results were found in the literature for this test case, we used
a simple single-relaxation-time, two-dimensional, nine-direction LB model for comparisons, with
the relaxation time denoted τLB. Further details involving the theory and implementation of the
LB method are outside the scope of this paper and can be found in [1]. The same number of
grid points and time step size are used as the above problem, with the exception of the LB method,
where ∆t = 8.88×10−5 and τLB = 1.62. Oscillations are seen in both the traditional AC method and
the LB method, although the pressure oscillations are much less with the LB method. At larger
Mach numbers (Ma = 0.1), the AC method becomes meaningless, without even a qualitative
resemblance to the physical solution. Note that higher Mach-number LB solutions are not shown
because increasing the Mach number at a fixed Reynolds number requires increasing τLB, which
causes a degradation in the solution accuracy particularly for the single-relaxation time model used
here; thus, LB simulations are limited to Ma = 0.01. Essentially no pressure oscillations are seen
for the EDAC method, and the divergence errors are much smaller than other methods.
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Figure 5. Traveling wave solution showing the pressure (a) and
velocity divergence (b) at location (1/2, 1/2) at Re = 1. Pressure
and velocity divergence errors exist for the AC and LB methods.
The EDAC method rapidly damps the fluctuations showing greatly
reduced errors. Figure from Clausen (2013) [13].

The impressive increase in accuracy of the EDAC method is somewhat tempered by the explicit
nature of the algorithm. At Re = 1 the simulation time step is diffusion limited for cases where
the Mach number increases much beyond 0.01; however, mixed implicit–explicit algorithms are a
possibility. Perhaps more importantly, the poor behavior of the AC method at Ma = 0.1, which
should still approximate incompressible flow, reveals that the underlying physics associated with
the AC method are not generally applicable for transient simulations at all Reynolds numbers.
These restrictions do not exist with the EDAC method. Another complicating factor that deserves
mention is the possibility of pressure-mode coupling created by using collocated (non-staggered)
pressure and velocity variables. Previous research using the AC method on staggered grids found
similar pressure fluctuations to the LB method [18], although some investigators have used AC
on non-staggered meshes [35]. The ability to use the EDAC method on meshes with collocated
pressure and velocity variables reduces code complexity. At higher Reynolds numbers, pressure
smoothing term becomes less dominant; however, retaining the small amount of smoothing is
necessary to maintain oscillation free solutions. For details, see [13].

Doubly Periodic Shear Layer

In Clausen (2013) [13], a doubly periodic shear layer is studied in depth. This problem uses a peri-
odic domain with velocity initial condition that creates two horizontal shear layers of a prescribed
width. A vertical velocity perturbation is also prescribed. This system was first investigated by [4]
and was later studied in depth by [29]. For resolved cases, the shear layers roll-up into a pair of
symmetric vortices; however, for under-resolved mesh resolutions, spurious vortices appear.

The global energy and enstrophy decays are compared between the FD–EDAC and several
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other known numerical results (cf. figures 10 and 11 from [13]). For the coarsely meshed cases,
spurious vortex creation is seen for all methods, including AC and FD–EDAC. The simulations are
performed at Re = 10, 000, thus the amount of dissipation introduced by the pressure-smoothing
term in the EDAC method is minimal. At finer mesh resolutions, the EDAC and AC methods agree
well with the reference pseudo-spectral method. In general, enstrophy decay is insensitive to Mach
number; energy decay shows more oscillations and is unphysically high at large Mach numbers,
e.g. Ma = 0.2. This model problem will be revisited in the context of a finite-element solver for
the EDAC equations in section 4.2.

Freely Decaying Turbulence

The last model problem investigated with the FD–EDAC method is that of freely decaying turbu-
lence. As turbulence decays, energy from the flow is channeled into ever smaller vortical structures,
until the flow is viscously dissipated. While the macro-scale Reynolds number is large, and thus
viscous dissipation is minimal, at the length scales of the smallest structures, viscous dissipation
dominates. In general, higher Reynolds number flows have smaller length and time scales of the
smallest features of turbulence. These scales are known as the Kolmogorov scales [37],

η ≡

(
ν3

ε

)1/4

, (33)

τ ≡
(
ν

ε

)1/2
, (34)

where ν is the kinematic viscosity and ε is the kinetic energy dissipation. The Kolmogorov scales
describe the smallest scales that must be resolved for fully resolved turbulence. The ratio of Kol-
mogorov to macroscopic scales goes as η/L ∼ Re−3/4 and τ/t ∼ Re−1/2. Thus, a simulation at
Re = 2000 in a unit domain has a Kolmogorov length scale around 1/300.

In this case, an initial velocity profile from [22], shown as

u(x, y, z) = sin x (cos 3y cos z − cos y cos 3z) , (35)
v(x, y, z) = sin y (cos 3z cos x − cos z cos 3x) , (36)
w(x, y, z) = sin z (cos 3x cos y − cos x cos 3y) , (37)

is prescribed. This initial profile has been studied extensively in the literature using spectral [22, 5]
and LB methods [21, 9]. The initial conditions are periodic, but they also contain many forms
of symmetry [22]. This symmetry is useful for spectral methods, and results in a considerable
reduction of computation. Non-spectral methods, including the FE and FD EDAC methods, gain
no advantage to the symmetries present. The enstrophy and entropy decay are calculated via

Ω =

N∑
i=1

ω2
i Vi

2V
, (38)

E =

N∑
i=1

(u · u)Vi

2V
, (39)
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respectively, where the summation is over the number of nodes N, Vi is the cell volume, and V is
the overall domain volume. The vorticity is calculated using a 2nd-order central difference.

An EDAC simulation is performed on a (2π)3 domain at Re = 1/ν = 2000 on a 5123 mesh,
thus the simulation is fully resolved. The Mach number is 0.02, and the time step is 5.0 × 10−6,
thus the temporal scales are fully resolved. Figure 6 shows the isosurfaces of vorticity for several
time planes. Vortex stretching and breakup is clearly evident as time advances. Figure 7 shows
the energy and entropy decay as a function of time. The results from [22] are also shown for
comparisons. The results agree fairly well, although the EDAC method predicts slightly lower
enstrophy values past the initial increase in entropy. At long times, enstrophy values decay a
slightly slower rate than the results in [22]. More investigation is needed to determine if this effect
is significant or related to the pressure-smoothing term.
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c) d)

e)

Figure 6. Images of the ωz = 0.8 vorticity contours at times (a)
t = 0, (b) t = 1, (c) t = 2, (d) t = 4, and (e) t = 8. Maximum
enstrophy occurs near (d).
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Figure 7. Freely decaying turbulence showing the (a) energy and
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4 Finite Element Implementation

While the finite difference implementation serves as a useful proof-of-concept for the EDAC
method, a more general fluid simulation capability is desired. Accordingly, a finite element (FE)
implementation of the EDAC method is implemented in the Sierra-TF codebase. Such an im-
plementation provides an unstructured grid capability, and also provides access to a wealth of
physical models that are already implemented. A successful version of the FE–EDAC method is
demonstrated and some preliminary results are reported in the following sections; however, two
unresolved obstacles were discovered. First, the FE–EDAC method demonstrates some robustness
issues, and time steps restrictions appear to be more severe than the finite-difference version. It
is suspected that this lack of robustness is related to interaction with pressure stabilization that is
required for FE fluid dynamics (both explicit and traditional implicit solvers). Second, explicit
algorithms require very efficient assembly routines since the time step restrictions inherent to these
methods require many more steps and nearly all of the time is spent in assembly since there is no
associated linear system solution.

4.1 Numerical Method

The FE–EDAC method uses Q1–Q1 FE basis functions for approximating the velocity and pres-
sure solutions. As is typical for incompressible FE solvers, convection-dominated flows require
additional stabilization, and a variant of SUPG (streamline-upwind/Petrov Galerkin) is used. For
incompressible flows, a purely Galerkin formulation using equal-order basis functions results in
a scheme that does not satisfy the Babuska–Brezzi inf-sup condition, and some form of pressure
stabilization is necessary. The EDAC method is not strictly incompressible, and the pseudocom-
pressibility is sufficient to result in a stable scheme for many situations; however, it is possible to
create pressure locking in cases where the grid resolution of spatial gradients is insufficient; con-
sequently, additional pressure stabilization is needed. The momentum (5) and pressure evolution
(15) are written in dimensional form as

ρ

{
∂u
∂t

+ u · ∇u
}

= −∇P + ∇ · σ, (40)

∂P
∂t

+ u · ∇P = −ρc2
s∇ · u +

µ

ρ
∇2P, (41)

where σ = −∇Pδ + 2µE(u) and E(u) is the rate of strain tensor. Assuming the choice of suitable
velocity and pressure spaces w and q, respectively, the weak form of the solution can be written as

ρ

(
∂u
∂t

+ u · ∇u,w
)
− (P,∇ · w) + (2µE(u) : E(w)) + STAB = 0, (42)(
∂P
∂t

+ ρc2
s∇ · u, q

)
+

(
µ

ρ
∇P,∇q

)
+ STAB = 0. (43)

The notation (φ, ψ) =
∫
φψ dΩ denotes the scalar product in L2 over the domain Ω, and terms

STAB denote additional stabilization terms which will be explored during the study of several
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model problems below. All time integration is performed using a first-order accurate backward
Euler. Typically first order time integration methods are the most diffusive, and thus, the most
stable. Higher-order approaches are left to future investigations.

Stabilization

SUPG stabilization is commonly used to stabilize convection dominated flows. Given a partition
Th of domain Ω into K elements, SUPG stabilization can be written as

STABS UPG =
∑
K∈Th

(
τS UPG ρ

(
∂u
∂t

+ u · ∇u,w
)

+ (∇P,w) , ρu · ∇w
)

K
. (44)

Detailed discussions regarding the formulation of τS UPG are found elsewhere in literature [41]. For
this work, the form of [41] without unsteady terms is used, which is given as

τS UPG =
1√

u · g · u + 12ν2g : g
, (45)

where g is the covariant metric tensor for K.

For explicit simulations, the unsteady term of (44) is not known a priori and is ignored. Fur-
thermore, including the pressure term, while beneficial in the fully implicit INS case, provides a
destabilizing influence on the solution, so this term is also ignored. A full explanation for this
destabilizing effect is not known, although it is suggested that the “convection” of the pressure
wave does not have to occur in the direction of bulk fluid flow, which is a phenomena that does not
exist in the incompressible case.

The pressure is stabilized by augmenting the pressure smoothing term inherent to the EDAC
method for coarse grids. Thus,

STABP =
∑
K∈Th

(
τPρc2

s∇P,∇q
)
, (46)

where τp = τS UPG.

4.2 Results

Several test problems are considered for the FE–EDAC algorithm. The LDCF and convecting
vortex problems are repeated using the new methodology, and quantitative assessments are taken.
A qualitative look at vortex shedding from flow around a square cylinder is also examined. Lastly,
the case of the doubly periodic shear layer is examined, which highlights some issues in the FE
implementation of this algorithm. All results unless otherwise stated include the enhanced pressure
stabilization term.
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Figure 8. Zoom near object showing mesh used for simulating
flow over square cylinder.

von Kármán Vortex Street

The formation of a von Kármán vortex street commonly occurs during flow past blunt objects at
moderate Reynolds numbers. This type of flow is distinguished by alternating vortices that shed in
the downstream wake of the object in a periodic fashion. For ease of meshing, a square obstruction
was chosen, and nonreflecting boundary conditions are used for the side walls and outlet. The
simulation is performed at Re = 100 and Ma = 0.1. Figure 8 shows the mesh near the object used
in this study, which is quite coarse.

First, the flow is simulated with the FE–EDAC method using only SUPG stabilization, and
figure 9(a) shows the pressure-locking phenomena associated with flow around a square object.
Such locking is not unexpected in this case if one compares the relative magnitude of τP compared
with that which would be used in the strictly incompressible case. For this simulation ρc2

sτP ≈ 12.0,
while the EDAC pressure smoothing term µ/ρ ∼ 0.1. Adding the τP based stabilization results
in smooth pressure field, also shown in figure 9(b). The addition of stabilization can affect the
diffusive time step limitation since the term is diffusive in nature. In this case, the time step is
convection limited, thus adding stabilization does not adversely affect the time step.

Images of the velocity fields and vorticity are shown in figure 10. The frequency of oscillations
are described by the Strouhal number, St ≡ f L/u∞, where f is the frequency, L is the square side
length, and u∞ is the free stream velocity. The frequency is determined by plotting the velocity
magnitude in the wake region and averaging 5 consecutive periods to give St = 0.11. This number
compares with numerical results of 0.126 [24] and experimental results of 0.118 [31]. It is likely
that the flow domain is not large enough to preclude the influence of the boundary conditions, and
the sphere cylinder is under resolved. Thus, this comparison is qualitative at best.

Lid-Driven Cavity Flow

For the LDCF case, the Re = 1000 and Re = 5000 test cases are simulated using the FE–EDAC
method and compared with the FD–EDAC method. A grid of 256 × 256 and a Mach numbers of
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b)a)

Figure 9. Pressure field created by flow over a blunt object
demonstrating (a) pressure locking phenomena along the leading
edge where solution gradients are under-resolved, and (b) amelio-
ration of pressure oscillations with suitable pressure stabilization.

0.1 are used. The u and v components of velocity are plotted in figure 11. For the Re = 1000
case, good agreement is seen between previous numerical results and the FD and FE versions of
EDAC; however, at the higher Reynolds number, excessive diffusion is seen in the EDAC case.
Also plotted for comparison is the SUPG solution for the INS in Sierra/TF. Attempts to limit the
pressure smoothing term though a premultiplied constant results in a more accurate solution, but
errors still exist. This situation highlights the need for continued research into more appropriate
pressure stabilization techniques to be employed with AC methods.

Doubly Periodic Shear Layer

The doubly-periodic shear layer case is also repeated with the FE–EDAC method. The simulations
are performed at Re = 10000, and quantitative results include the kinetic energy and enstrophy, as
defined in (39). Results are compared with the FD–EDAC results, the high-accuracy pseudospec-
tral results of [29], and a fully implicit SUPG FE formulation. The initial conditions are given
as

u(x, y) =

tanh (δw(y − 0.25)) , if y ≤ 0.5
tanh (δw(0.75 − y)) , if y > 0.5

(47)

v(x, y) =δp sin (2π(x + 0.25)) , (48)
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a)

b)

c)

d)

Figure 10. Flow over square cylinder showing a von Kármán vor-
tex street. Images show (a) pressure (b) u-component of velocity,
(b) v-component of velocity, and (c) vorticity.
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Figure 11. Comparison of u and v velocity components with the
FD–EDAC method and existing numerical results.
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Figure 12. Vorticity magnitude for (a) FE–EDAC and (b) SUPG
simulations of the doubly periodic shear layer.

where δw is a parameter governing the width of the shear layer and δp is the strength of the initial
perturbation. All cases considered here use δw = 80 and δp = 0.05, which corresponds to the
thin shear layer cases in [29]. Figure 12 shows vorticity plots of the FD–EDAC, FE–EDAC, and
SUPG methods. One can clearly see that the vorticity in the FE–EDAC version is less than the
other versions. Quantitatively, this effect can be seen in plots of the enstrophy and energy, shown
in figure 13.

Discussion

Clearly the stabilization form chosen, while effective at mitigating pressure-locking phenomena, is
too dissipative for general use. Excess dissipation is most evident at higher Reynolds numbers, and
makes the FE–EDAC method unsuitable in its current form for these flows. Low-Reynolds-number
flows appear to be much more accurate, although more rigorous tests are needed. Alternative
forms of stabilization based on a residual formulation are awkward to use in explicit methods,
since the concept of a full solution residual does not exist. Efforts to include more terms in the
pressure stabilization, such as an advection term or lagged mass, resulted in numerically unstable
methods. Including these terms could provide balancing terms for the pressure gradient, which
would decrease the overall amount of stabilization provided. Further investigation is needed in
order to create a robust FE solver of the EDAC equations.
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Figure 13. The decay of (a) energy and (b) enstrophy for a doubly
periodic shear layer simulation using the FE–EDAC method.
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5 Scalability Study

A detailed scaling study is undertaken on the Sequoia computer at Lawrence Livermore National
Lab (LLNL)2. As mentioned in the introduction, Sequoia is a massively parallel BlueGene/Q ar-
chitecture that contains approximately 1.6 million processing cores. These cores are contained in
16 core processing units that comprise a single compute node. Theoretical performance is rated at
20 PetaFlops (quadrillion Floating-Point Operations per Second), with 3 petabyte/s interconnect
bandwidth, and a 60 terabyte/s bisection bandwidth.

The scaling study is undertaken using the finite difference version of the code (FD–EDAC),
rather than the finite element version (FE–EDAC). This choice is driven by two main factors:
First, the FE–EDAC version has remaining robustness issues. Second, the FE–EDAC code is im-
plemented in the Sierra-TF codebase, which depends on a complicated software stack, largely due
to unstructured techniques. This would make building on Sequoia, optimizing the parallel com-
munication routines, and isolating any performance bottlenecks more time consuming, although
certainly feasible.

The FD–EDAC method is a structured Cartesian mesh, thus communications can use the native
MPI Cartesian communicator, with load balanced computation per core. A simple ghosting proce-
dure is used, with communication occurring after each predictor and corrector step. At this point,
file output is not adequately parallel, and will not scale over a moderate number of cores due to file
system limitations. The problem simulated for these benchmarks is the Kida turbulence decay of
section 3.3, at Re = 10000.

In scaling studies, two forms of scalability are commonly used: strong and weak scaling. In
strong scaling, the problem size remains fixed and the number of cores is increased to see how
much faster the simulation runs. This decrease in simulation time is quantified using the speedup,
defined as

speedup =
tbaseline cores

tn cores
, (49)

where t is the physical or wall time, and the n subscript refers to the number of cores. For a
perfectly parallel algorithm, doubling the number of cores halves the computation time, which
yields a speedup of two. Another useful metric is the parallel efficiency

efficiency =
speedup
no. cores

, (50)

which is ideally 100%.

For the strong scaling case, two different simulation domains are used. The first is 1024 ×
1024 × 1024 with 4.3 million unknowns, and the second is 2048 × 2048 × 2048 with 34 million
unknowns. The scalability (speedup) and parallel efficiency of the 1024×1024×1024 case is shown
in figure 14. The smaller case ranges between 4096 and 1048576 cores, with each core responsible
for from 262144 to 1024 finite-difference grid points. Positive scalability is seen all the way to
one million cores, i.e., at no point did increasing the number of cores result in a slower simulation.

2https://asc.llnl.gov/computing_resources/sequoia/
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Figure 14. Strong scaling studies for the 1024 × 1024 × 1024
domain size showing the (a) scalability and (b) parallel efficiency.

Adding more cores would still speed the calculation; however, these additional cores would not
be efficiently used, as the parallel efficiency does degrade quite noticeably in excess of 65536
cores. At more extreme core counts, the amount of computation to communication decreases. For
example, the 262 thousand core case corresponds to a 163 domain (4096 nodes) for each core.
Assuming one level of ghosting, this corresponds to communicating 172 ∗ 6 = 1734 nodes. The
2048×2048×2048 case is shown in figure 15. For the larger overall problem, the relative speedup
and efficiencies are a bit closer to ideal. The largest simulation is again over one million cores, and
corresponds to 8192 finite different grid points per core.

The second metric of scalability is weak scaling, in which the relative computational work per
core is held fixed, while the simulation domain is increased. For a perfectly scalable algorithm, the
addition of more work is offset by the addition of more processing cores, and the total simulation
time should remain fixed. The weak scalability is shown in figure 16 from 512 to 262144 cores.
The corresponding domain sizes range from 2563 to 20483, and the simulations are run for a fixed
number of time steps. Good weak scalability is seen, although there seems to be some variability
in the results as evidenced by the speedup for the 4096 core case.

One caveat to the weak scaling must be mentioned. Figure 16 shows the time to a fixed number
of time steps. In order to maintain a constant time step size, a fixed discretization size is needed
to maintain the same time step size due to stability constraints. This situation would correspond to
increasing the size of the simulation domain, while maintaining the same grid spacing. A perhaps
more useful form of weak scaling is one where the grid resolution is increased, while keeping
all flow parameters fixed. In this case, due to the CFL time step restriction associated with the
propagation of numerical sounds waves, ∆t ∼ ∆x. Thus, increasing the mesh resolution from 2563

to 20483 while maintaining the same Reynolds number, a simulation to the same physical time
would take 8 times as long, and a weak scaling linear in the number of cores would be observed.
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6 Conclusions

We have developed an extension to the standard AC techniques called the EDAC method. This
method uses a new thermodynamic constraint in order to form a modified pressure evolution equa-
tion to use in place of the continuity equation. The original AC formulation [10] enforces isentropic
behavior, which is undesirable since it minimizes dissipation of acoustic pressure waves. These
pressure waves are entirely numerical and undesirable. The EDAC method, in contrast, is not isen-
tropic, which serves to damp out the pressure fluctuations created through the introduction of a
small, but finite, amount of compressibility. The development of the EDAC method follows the re-
cently published KRLNS method [3, 20, 6]; however, the development of the EDAC method does
not rely on a change of variables to the grand potential. Instead, the EDAC method progresses
directly from the CNS equations. By constraining the density to be constant (in a thermodynamic
sense), a relationship between temperature and pressure fluctuations is derived. The result is a
smoothing term in the pressure evolution equation. Additionally, by comparing the EDAC equa-
tions with the KRLNS equations, a term missing from the KRLNS equations is found and is shown
to be vitally important to the simulation of transient flows.

The AC, EDAC, and KRLNS methods are discretized using a simple MacCormack finite-
difference scheme to investigate their behaviors. A characteristics analysis is performed to allow
the application of more advanced boundary conditions. Example simulations include lid-driven
cavity flow, a convecting Taylor–Green vortex, shear-layer roll-up, and freely decaying turbulence.
The KRLNS method is shown to produce erroneous results due to the aforementioned missing
term. The EDAC method results in a noticeable smoothing of the pressure fluctuations present
in the traditional AC method. The errors in the traditional AC method are particularly evident in
lower-Reynolds-number flows. Both the AC and EDAC methods converge to the INS in the limit
Ma → 0; however, differences exist in terms of O(Ma2). As Re → ∞, fluid behavior naturally
becomes isentropic, and the AC and EDAC methods converge. In contrast to the traditional AC
method, the EDAC method is consistent in the limit Re→ 0, since the pressure evolution becomes
the pressure-Poisson equation for a Stokes fluid.

Next, the EDAC method is discretized using the finite element method. Results using this
discretization method proved less fruitful than the finite-difference version, but several important
observations can be made: First, even though the EDAC equations have some minor amount of
compressibility, some form of pressure stabilization is needed in order to prevent pressure-locking
phenomena. This phenomena is most noticeable in cases where high pressure gradients exist,
particularly on under-resolved meshes. The form of pressure stabilization chosen is effective at
mitigating pressure-locking phenomena, but is overly diffusive. Secondly, convective stabilization
is needed for the momentum equation; however, using all terms required in a residual-based for-
mulation is not possible, and frequently an unstable calculation was encountered. Further research
is needed to improve the robustness of a FE version of the EDAC method.

Renewed interest in the general class of pseudo-compressible methods, i.e., methods in which
the flow is allowed to have a small but finite level of compressibility, is motivated by the ability of
these methods to operate in a fully explicit manner when simulating (nearly)incompressible flows,
avoiding the necessarily implicit pressure-Poisson solve. Since explicit methods require only local
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communication, they are capable of scaling on massively parallel architectures including leading-
class supercomputer clusters and GPU based computations. This massively parallel capability has
been one of the reasons that the LB method, also a pseudo-compressible method, has become
popular for certain types of simulation. Unlike LB methods, however, the EDAC methods are
formed based on continuum conservation laws which can alleviate difficulties in applying more
complicated constitutive models as well as alternative numerical discretization schemes (although
as seen with the FE discretization, this application may still not be trivial).

To demonstrate the massive scalability of EDAC methods, a scalability study is undertaken on
the Sequoia supercomputer. Scalability is shown to over one-million cores. Owing to the ability of
the EDAC method to scale to such large core counts, the Scientific Applications and User Support
group at Sandia National Labs plans to use the code in the future to evaluate performance and
scalability of hardware and software stacks on various clusters around DOE including Sequoia and
Cielo. There is also some interest in using the EDAC algorithm to evaluate the performance of
Kokkos, the next generation array container, on hybrid GPU-based clusters.

Despite their attractiveness, fully explicit methods have significant limitations, namely the time
step limitations due to diffusion, acoustic wave propagation, and convection. As such, these meth-
ods excel in transient simulations where time accuracy requires time steps on the order of the
stability limits. Examples include turbulent DNS and suspension and multiphase flows. Whether
explicit methods can become competitive with traditional implicit-based methods remains an open
research question. Explicit algorithms require further research in order to make the algorithms
more robust and in the case of fluid flows, more accurate approximations to the INS equations.
Furthermore, if computational resources continue to trend towards more parallel architectures, the
attractiveness of explicit methods will increase. With AC methods based on continuum variables,
like the EDAC method, more advanced techniques could also be employed, including mixed im-
plicit/explicit algorithms, local time stepping routines, and multigrid methods.
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