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ABSTRACT 
 

The Gamma Detector Response and Analysis Software (GADRAS) software package is capable 

of simulating the radiation transport physics for one-dimensional models. Spherical shells are 

naturally one-dimensional, and have been the focus of development and benchmarking. 

However, some objects are not spherical in shape, such as cylinders and boxes. These are not 

one-dimensional. Simulating the radiation transport in two or three dimensions is unattractive 

because of the extra computation time required. To maintain computational efficiency, higher-

dimensional geometries require approximations to simulate them in one-dimension. This report 

summarizes the theory behind these approximations, tests the theory against other simulations, 

and compares the results to experimental data. Based on the results, it is recommended that 

GADRAS users always attempt to approximate reality using spherical shells. However, if fissile 

material is present, it is imperative that the shape of the one-dimensional model matches the 

fissile material, including the use of slab and cylinder geometry. 
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EXECUTIVE SUMMARY 
 

One-dimensional geometries, such as spheres, are attractive for modeling because the associated 

radiation transport calculations are solved quickly on personal computers. Spherical shells are 

one-dimensional because they can be described by only a single dimension, the radial position of 

the shells. Sometimes a real object is not well described by spherical shells, for example, 

cylinders are two-dimensional (2-D) objects and boxes are three-dimensional. While it is 

possible to model these higher dimensions explicitly, doing so increases the computation time by 

orders of magnitude, making its usefulness on a personal computer limited. 

To circumvent this computational barrier, the buckling approximation is reviewed and a point-

source-reduction approximation is developed. These approximations are applied to one-

dimensional models to simulate them as two- or three-dimensional (3-D). This brings the result 

of the 1-D solution closer to the higher-dimensional solution while maintaining the 

computational efficiency. 

The accuracy of buckling approximations are compared to higher-dimension simulations for 

highly enriched uranium (HEU) in various geometric configurations. The buckling 

approximation is able to match the criticality state computed by higher dimensions within 10% 

as long as the transverse dimensions (length and width for slabs, height for cylinders) are greater 

than a few mean-free-paths of the source neutron. The leakage from the geometry was compared 

to 3-D Monte Carlo n-Particle eXtended Software (MCNPX) simulations and experimental data. 

These approximations allowed the simulated leakage for depleted uranium (DU) plate, HEU 

plate, and neptunium cylinder to match the MCNPX simulated data well. The experimental data 

compared well for the DU and HEU plates, but not for the neptunium cylinder. It is unclear 

whether there is experimental error, or an error in the approximation. 

Overall, the ability of these approximations to simulate higher-dimensional geometries using 

one-dimensional approximations is good. It is advisable to GADRAS users, however, to 

approximate reality using spherical shells whenever possible. Only when fissile material is 

present in the shape of a slab or cylinder should a user utilize these higher-dimensional 

geometries. A list of recommendations and advice for modeling higher-dimensional geometries 

is found in the conclusion section of this document. 
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1 INTRODUCTION 
 

In addition to a rich library of neutron and gamma detector responses, the software package 

Gamma Detector Response and Analysis Software (GADRAS) is capable of simulating sources 

utilizing deterministic radiation transport routines. Efficient radiation transport calculations are 

crucial as the inverse problem solver in GADRAS requires sequential solutions to converge. This 

approach relies on one-dimensional (1-D) deterministic radiation transport solutions, which are 

computationally efficient compared to 2-D or 3-D deterministic or Monte Carlo (MC) 

calculations. 

Because spherical objects naturally have polar and azimuthal symmetry, it is convenient and 

often accurate to model many problems as spherical shells. Even geometries that are not 

spherical in nature can be modeled as such if the materials within the line-of-sight from the 

source to the detector are placed in spherical shells, with the thickness of each shell equal to the 

distance traversed in that material. However, for some geometries this approximation is not 

valid. An example of a problematic geometry is nuclear reactor plate fuel. This slab-type 

geometry is inherently a 3-D problem. With sufficient source-to-detector distance the plate may 

be reduced to a point source and the spherical approximation for intervening materials may work 

well. However, the estimation of the source strength is reliant on the multiplication of the 

system, which must be modeled in this higher-dimensional geometry. To maintain the efficiency 

of the radiation transport, efforts are made to approximate 3-D slab geometries in 1-D. This 

report reviews the theory and validity of these approximations in a variety of geometric 

configurations by comparing simulated and experimental data. 
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2 THEORY 
 

2.1 Buckling Approximation 
 

The well-established diffusion approximation to the time-independent Boltzmann transport 

equation for all energies is given by 

 

          
 

 
      (1) 

 

where   is the diffusion coefficient given by        and     is the transport cross-section (all 

cross sections are in units of [    ]). By defining the buckling term as 

 

   

   

 
   

 
  (2) 

 

Equation (1) may be re-written as 

 

          (3) 

 

In one dimension (slab geometry), the solution to Equation (3) is 

 

       (  )  (4) 

 

For a slab of width   [  ] in a vacuum, diffusion theory states that the flux must go to zero at 

the extrapolation distance. Therefore the buckling is equal to 

 

  
 

    
  (5) 

 

where   is the extrapolation distance in [  ] given by 0.7104/   . For a highly scattering 

material,     may be approximated with   . This is known as the geometric buckling term. By 

substituting Equation (3) into Equation (1) and integrating over the domain of the problem, the 

transport equation may be re-written as the following balance equation: 

 



14 

 

{       }  {          }  {       } 

{∫       }  {∫      }  {∫
 

 
       }  

∫(      )    ∫
 

 
       

(6) 

 

If the problem domain is infinite, there is no leakage and the     term goes to zero. Thus, an 

alternative formulation to explicitly modeling leakage is to treat the source as if it had infinite 

extent, and approximate the leakage in the system by augmenting the absorption cross section by 

a factor of    , utilizing the geometric buckling defined in Equation (5). This is known as a 

buckling correction.  

This argument is easily extendible to higher dimensions as the buckling term for a two-

dimensional slab with dimensions   and   is 
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Thus, a 3-D slab with dimensions       [  ] may be approximated by explicitly modeling the 

x-dimension and approximating leakage in the transverse directions by introducing a buckling 

absorption cross section equal to 
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and augmenting the absorption cross section by this amount throughout the entire domain. The 

buckling correction in the axial dimension for cylinders is very similar, given by 

 

   
   

 
(

 

           
)

 

  (8) 

 

where z is the height of the cylinder. 

The validity of this approximation hinges on diffusion theory. The accuracy of the diffusion 

approximation becomes worse in highly absorbing media, near boundaries or material interfaces, 

and in highly anisotropic scattering systems. Nevertheless, it remains a convenient alternative to 

explicitly modeling 3-D geometries. 
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2.2 Point-Source Reduction Approximation 
 

In order to maintain consistency with the way GADRAS processes radiation leakage from 

sources that are modeled as spheres, we reduce the leakage from slabs and cylinders to produce 

equivalent point sources emitting radiation into   . There are two obstacles with higher-

dimensional geometries that must be overcome to achieve this equivalence: (1) the leakage that 

is relevant to the detector response pertains to a single facet of the geometry, and (2) the angular 

distribution on the surface of the object affects the probability that the radiation will strike the 

detector. 

For slab geometries, GADRAS imposes symmetry about the origin. Thus, the leakages from both 

sides of the slab are equal. The leakage out the front face only needs to be doubled to account for 

the leakage out the back side, which is not included in the discrete ordinates calculation. 

However, like the top and bottom of the cylinder, there is no information regarding the leakage 

from the other four sides of the slab. A simple approximation is made that the leakage per unit 

area from the other facets is equal to the leakage per unit area from the facet computed. This is a 

valid approximation as long as the slab’s thickness is much less than the length and width, and 

the cylinder’s height is much larger than its radius. 

The second problem regarding the angular distribution is more complicated. In Figure 1, the 

angular distribution of the current on the surface of a slab is depicted by the length of red arrows 

emanating from a point on the surface. On the surface of any geometry, the angular distribution 

of the current cannot be isotropic. For the particle flux to be finite, the current parallel to the 

surface must go to zero. Let   be the angle between the surface normal  ̂ and the angular current. 

The probability distribution function of the current can be represented according to a cosine 

distribution, 

 ( )            

where       ) is the power of the cosine distribution. For finite slab geometries, this non-

uniform distribution causes the source to be “beam-like” as opposed to isotropic, which increases 

the probability of incidence on the detector face for a detector that is normal to the plane of the 

slab.  

 

Figure 1.  Slab Source and Detector Geometry 
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The angular distribution on the surface of any geometry may be ignored in a few special cases: 

1) Small spheres – if the radius of the sphere is much less than the distance to the detector, 

the angular distribution is irrelevant as any increased contribution on one point of the 

sphere is exactly cancelled out by a decreased contribution from another point on the 

sphere.  

2) Large slabs – as the length and width of the slab approach infinity, the angular 

distribution can be ignored. This observation is especially important for terrestrial 

background calculations, where the ground is essentially an infinite plane. Consider a 

detector 1 meter away from a slab of varying extent (length and width). The ratio of the 

detection probability of particles exiting the slab with cosine-power angular distribution 

to the detection probability of particles exiting with a uniform angular distribution is 

plotted in Figure 2 for varying degrees of cosine power,  . Clearly, as the slab 

approaches infinity, the ratios converge to unity regardless of cosine power. 

 

 

Figure 2.  Ratio of Detector Signal from Cosine-Angular-Distributed Slab to Uniform-
Angular-Distributed Slab 

 

3) Tall cylinders – the angular distribution can be ignored for very tall cylinders. Like the 

slab, as the cylinder’s extent approaches infinity, the increased contribution from the non-

uniform angular distribution at the center of the cylinder is exactly cancelled by a 

decrease in contribution from points away from the center. 

 

Except for these three special cases, the angular distribution for the emitted radiation may be 

important. A correction can be applied by computing the ratio of the cosine-distributed surface to 

the uniformly-distributed surface. Consider Figure 3, which has a point in space  ⃗ on a surface 

with normal  ̂  and a detector circle centered at  ⃗ with radius   and normal  ̂ . The source 
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surface normal is projected onto the detector-circle-plane. This projected line is extended to the 

edges of the detector to points  ⃗  and  ⃗ . The angles between vector ( ⃗   ⃗) and  ̂ , and 

between ( ⃗   ⃗) and  ̂  are computed as    and   , respectively. These two angles define the 

edges of the detector in the polar angle dimension. 

 

 

Figure 3.  Arbitrary Source Point and Circular Detector Geometry 

 

With the polar angle limits defined in this way, it is possible to compute the relative probability 

that a cosine-distributed source from this point on the surface will strike the detector versus a 

uniformly-distributed source. First, the probability of being emitted into this polar angle region is 

 

  
∫        

  

  

∫        
   

 

 (9) 

 

The same probability for a uniform source is 

 

         
 (     )

 
 (10) 

 

Thus, the ratio of the two probabilities,  , is 
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There is a closed form solution to this integral using the hyper-geometric function, but its 

complexity makes a simple numerical integration technique more attractive. This formula for   

is the appropriate scaling factor for a single point on the surface. By meshing the slab, cylinder, 

or sphere with evenly spaced points, this formula may be repeated and the results averaged to 

determine the appropriate scaling factor for the entire surface. This approximation only 

integrates over the polar angle dimension and assumes uniformity in the azimuth. An exact 

formulation would integrate over the solid angle subtended by the detector, including the 

azimuthal dimension. However, the detector may not be circular, and the relative minor variation 

in the width of the azimuth as a function of polar angle only introduces a small error. 

The cosine power,  , required for these equations is computed by calculating the angular current 

from the angular flux at the outer surface of the geometry. The angular current data is fit with a 

cosine distribution function using a simple gradient-descent optimization algorithm. The 

computed cosine power is output to GADRAS’ “.gam” files as the fourth entry on the first line. 

The area-scaling is done prior to creation of the “.gam” file. Therefore, the “.gam” file contains 

the total output from all sides of the object. Because the angular-distribution-scaling is dependent 

on the detector geometry, it is done after the “.gam” file is read, utilizing the fourth entry in the 

“.gam” file as the cosine power. 
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3 RESULTS 
 

The buckling approximation is tested by comparing results from Parallel, Time-Dependent Sn 

Software (PARTISN) [1] and MCNPX [2] and One-Dimensional Linear Discontinuous Software 

(ONELD) [3]. PARTISN is a 1-D/2-D/3-D discrete ordinates deterministic transport code which 

has buckling correction options built-in for 1-D and 2-D geometries. It is used as the 

deterministic neutron transport solver. MCNPX is a 3-D Monte Carlo transport code. It is used as 

the Monte Carlo neutron and photon transport solver. ONELD is a 1-D discrete ordinates 

deterministic code and is used as the deterministic photon solver. GADRAS utilizes PARTISN 

and ONELD in 1-D to simulate the neutron, photon, and electron transport. Thus, utilizing these 

tools directly to examine the accuracy of the buckling correction is appropriate to determine 

GADRAS’ capabilities. 

 

3.1 Highly Enriched Uranium Tests 
 

The test problem is a slab and cylinder of highly enriched uranium (HEU) (93.5% enriched, aged 

20 years), with variable dimensions. The slab geometry is subdivided into three aspect ratios as 

illustrated in Figure 4. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.  Geometries tested include (a) slab configuration A, (b) slab configuration B, (c) 
slab configuration C, and (d) cylinder. The double hash marks indicate which dimensions 

of the object are equal. 

 

The characteristic dimension of each object is taken to be the variable dimension. This 

dimension is varied from 1 cm to 15 cm. For configuration A, all three dimensions are varied 

simultaneously. For configuration B, the x-dimension is fixed at 1 cm while the other two 

dimensions are varied simultaneously. For configuration C, the x-dimension is fixed at 15 cm 

while the other two dimensions are varied simultaneously. For the cylinder, the height is fixed at 

15 cm while the diameter is varied from 1 to 15 cm. Results from neutron (PARTISN/MCNPX) 

and photon (ONELD/MCNPX) transport simulations are compared. While the buckling 

correction does not affect the photon results as strongly as the neutron, it is included for 

completeness. For neutrons, two comparison metrics are considered in this evaluation: the 

calculated k-effective (keff), and the leakage in the positive x-direction (or r-direction for 

cylinders). For photons, only the leakage is compared for the HEU tests. In addition, the effect of 

multiple layers in three dimensions is examined. 
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3.1.1 Neutron Multiplicity 
 

The keff as computed by PARTISN in (1-D/2-D/3-D) and MCNPX (MC) is compared in Figure 5 

through Figure 16. The 1-D and 2-D simulations utilize the buckling correction. In all MC 

simulations, the relative statistical uncertainty on the keff estimate is less than 0.1%. 

3.1.1.1 Slab Configuration A keff Comparison 

 

Figure 5.  Comparison of keff for Slab Configuration A 

 

Figure 6.  Percent Difference of 1-D and 2-D from 3-D Computed keff for Slab 
Configuration A 
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Figure 7.  Percent Difference of 1-D/2-D/3-D from MC Computed keff for Slab Configuration 
A 

 

3.1.1.2 Slab Configuration B keff Comparison 

 

Figure 8.  Comparison of keff for Slab Configuration B 



22 

 

 

Figure 9.  Percent Difference of 1-D and 2-D from 3-D Computed keff for Slab 
Configuration B 

 

Figure 10.  Percent Difference of 1-D/2-D/3-D from MC Computed keff for Slab 
Configuration B 
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3.1.1.3 Slab Configuration C keff Comparison 

 

Figure 11.  Comparison of keff for Slab Configuration C 

 

Figure 12.  Percent Difference of 1-D and 2-D from 3-D Computed keff for Slab 
Configuration C 
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Figure 13.  Percent Difference of 1-D/2-D/3-D from MC Computed keff for Slab 
Configuration C 

 

3.1.1.4 Cylinder keff Comparison 

 

Figure 14.  Comparison of keff for Cylinder Geometry 
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Figure 15.  Percent Difference of 1-D from 2-D Computed keff for Cylinder Geometry 

 

Figure 16.  Percent Difference of 1-D and 2-D from MC Computed keff for Cylinder 
Geometry 

The good agreement between the 3-D and MC simulations indicate that the PARTISN and 

MCNPX solvers are calculating a reasonable keff from their respective cross-section libraries and 

transport routines. The keff as computed by the 1-D and 3-D simulations are comparable for 

objects greater than a few centimeters in size, except for slab configuration C geometry. The 

approximation on cylindrical geometry has good agreement for all dimensions of the cylinder. 
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3.1.2 Neutron Leakage 
 

Based on the good agreement between the full-dimensional deterministic and the Monte Carlo 

simulations, the leakage out the “front face” (x-dimension for Cartesian, r-dimension for 

cylindrical) of each of the geometries is compared in 1-D versus the full-dimension (3-D for 

Cartesian, 2-D for cylindrical), which is taken as the “true” answer. Furthermore, achieving 

reasonable uncertainties for low probability events, such as a thermal neutron leaking from the 

system, is a difficult feat using Monte Carlo techniques. Comparing the deterministic results 

grants a full-spectrum comparison. 

The average difference between 1-D and 3-D results over the 80 energy-group structure is 

computed as a function of the characteristic dimension and is shown in Figure 17. For reference, 

an example plot comparing the 1-D and 3-D results for the box geometry at 1 cm characteristic 

dimension (where the error is highest) is shown in Figure 18. There is excellent agreement 

between the models (less than 5% error) for object sizes greater than a few centimeters except for 

the slab configuration C geometry, which may not be appropriate to model in 1-D. The error at 

small dimensions stems from the high error in keff, on which the multiplication factor is based.  

Again, the error in the cylindrical geometry is consistently low for all object sizes. 

 

Figure 17.  Average Error of Leakage Current between 1-D and Full-Dimensional 
Deterministic Models 
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Figure 18.  Comparison of Leakage Current Computed by 1-D and 3-D Deterministic 
Models for a 15 cm Box 

 

3.1.3 Photon Leakage 
 

Because ONELD is only a 1-D code, the leakage current out the front face as computed by 

ONELD is compared to results produced from MCNPX. The average error in the photon leakage 

spectrum is shown in Figure 19. Although the error may seem high compared to the neutron 

leakage, there is systematic error introduced by comparing the 1-D deterministic code to a 3-D 

Monte Carlo code. For example, the cross-sections in ONELD are collapsed into a 100-group 

structure based on empirical cross-section data, while MCNPX uses point-wise cross-sections. 

The important point is that the error is relatively constant over the characteristic dimensions as 

compared to the neutron leakage error, which is a strong function of dimension. This 

independence further strengthens the point made earlier that the photon leakage is not as 

dependent on the buckling correction. 
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Figure 19.  Average Error in Photon Leakage Current for Various Geometries Using the 1-
D Approximation 

 

3.1.4 Multi-Layered Geometries 
 

When analyzing geometries with material layers present in the transverse directions, using the 

physical size of the object as the buckling height and width in 1-D simulations is not appropriate. 

For example, a cube of HEU embedded in a larger cube of polyethylene (PE) has material 

changes in all three Cartesian directions. Using the physical dimensions of the PE cube as the 

buckling width and height is equivalent to making a slab of HEU with those same dimensions, 

larger than the actual HEU slab, overestimating the multiplication of the system. Alternatively, 

the dimensions of the HEU cube may be used as the buckling width and height; this, however, 

will underestimate the criticality.  

To demonstrate this effect, a toy HEU model is simulated. The model is a slab of HEU 10 cm 

wide, 30 cm tall, and 5 cm thick. It is completely surrounded on all sides (in three directions) by 

a 2 mm layer of steel followed by a 4 cm layer of polyethylene and 1 cm of lead. Thus, the 

physical size of the object is 10.2 cm x 15.2 cm x 35.2 cm. This is modeled using the physical 

dimensions of the object for the buckling height and width, and the dimensions of the HEU slab 

for the height and width. The 1-D results are compared to 3-D results in Table 1. The computed 

leakage currents are shown in Figure 20 and Figure 21. Even with the better agreement achieved 

using the transverse dimension of the fissile layer, the error incurred may be large depending on 

the shape of this layer. Multi-layered geometries are not well represented using the 1-D 

approximations. In such cases it is usually best to use a spherical representation of the model, 

unless the layers in the transverse directions are thin relative to the layers in the primary 1-D 

coordinate. 
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Table 1.  Comparison of keff and Leakage Current Error for 3-D and 1-D Simulations 

 Using Physical Height/Width Using HEU Height/Width 

3-D keff 1-D keff Average 
Current 

Error 

1-D keff Average 
Current 

Error 
0.815 0.999 29 % 0.790 11% 

 

 

Figure 20.  Simulated Leakage Current from 1-D and 3-D Models Assuming Physical 
Dimensions of the Object for the Buckling Height and Width 
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Figure 21.  Simulated Leakage Current from 1-D and 3-D Models Assuming Dimensions 
of the HEU Slab for the Buckling Height and Width 

 

Better agreement between the 1-D and 3-D simulations is achieved if the dimensions of the HEU 

material are used as the buckling height and width. Although the average current error is still 

high at around 11%, the computation time required for the 3-D simulation was 3400 seconds on 

a 3.3 GHz single processor compared to 1.7 seconds for the 1-D simulation. 

 

3.2 Comparison to Experimental Data 
 

A series of measurements were taken with an 85% high-purity germanium (HPGe) detector 

using an HEU plate, DU plate, and neptunium-237 cylinder as the source. The HEU plate is 

square with side length 4.17 inches and 0.085 inches thick with a mass of 446 grams. The DU 

plate is a double-stacked plate with length also 4.17 inches, 0.17 inches thick total with a total 

mass of 951 grams. The neptunium is contained in a stainless steel cylinder that is 0.75 inches 

outer diameter and 0.75 inches in total height. The total mass of neptunium is estimated to be 

111 grams. The DU and HEU were measured at 2 meters while the neptunium was measured at 3 

meters to reduce detector dead time. 

These geometries are inherently multi-dimensional. The ability of GADRAS to model these 

geometries using the one-dimensional buckling approximation is compared against MCNPX and 

against the measured data. To remove any dependence on the source terms generated by 

GADRAS, the MCNPX source terms are computed with both RadSrc [4] and for comparison the 

GADRAS source terms. RadSrc computes the discrete gamma lines for any radioactive element 

mixture with proton number greater than lead, as well as an estimate on the bremsstrahlung 

continuum for U-238 chain radionuclides. The leakage current from the side of each object as 

computed by GADRAS and MCNPX is compared in Figure 22 through Figure 24. The coarse 
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energy group structure shown is not representative of the spectroscopic capabilities of GADRAS, 

as the leakage current from discrete gamma energies is computed separately by ray tracing. 

 

Figure 22.  Simulated Photon Leakage Current from DU Plate 

 

Figure 23.  Simulated Photon Leakage Current from HEU Plate 
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Figure 24.  Simulated Photon Leakage Current from Neptunium Cylinder 

 

Overall, the 1-D simulations from GADRAS with the buckling approximation compare well to 

the 3-D MCNPX simulations. The major discrepancies occur at higher energies (> 3 MeV), and 

around 500 keV with the neptunium cylinder. The higher energy discrepancy stems from RadSrc 

not computing the prompt photons from spontaneous fission, which is a continuous source that 

extends to high energies. The difference at around 500 keV with neptunium is from GADRAS 

utilizing a photon source database which has additional energies not specified in evaluated 

nuclear structure data file (ENSDF), on which the RadSrc calculation is based. Despite these 

differences, the overall agreement is good and confidence can be placed in the GADRAS leakage 

calculation and source terms.  

As previously mentioned, GADRAS utilizes ray-tracing to compute the discrete uncollided 

photon leakage current, which comprise the photopeaks observed in detector signals. The 

buckling approximation and point-source-reduction approximations only apply to the group-

averaged data. The ray-traced component is exact even for 3D geometries [5]. Combining the 

results from ray-trace and deterministic calculation for non-spherical geometries is a subject of 

ongoing research; however, preliminary results are promising. The experimental data is 

compared to the simulated results with and without ray-tracing in Figure 25 through Figure 27. 

The peaks from the deterministic simulations appear distorted or incorrect from the use of coarse 

energy groups. 
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Figure 25.  Comparison of Experimental (black), GADRAS-Simulated without Ray-tracing 
(red), and with Ray-tracing (green) HPGe Detector Signal from DU Plate 

 

Figure 26.  Comparison of Experimental (black), GADRAS-Simulated without Ray-tracing 
(red), and with Ray-tracing (green) HPGe Detector Signal from HEU Plate 
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Figure 27.  Comparison of Experimental (black), GADRAS-Simulated without Ray-tracing 
(red), and with Ray-tracing (green) HPGe Detector Signal from Neptunium Cylinder 

 

The agreement between the simulated and experimental data is very good for the HEU and DU 

plates. However, the neptunium cylinder comparison without ray-tracing is much worse. Based 

on the good simulation agreement between the MCNPX and GADRAS leakage terms, the 1-D 

buckling approximation can be removed as a source of error. The agreement between the 

simulation with ray-tracing and the experiment indicates that the discrepancy may be caused by 

an error in the implementation of the point-source-reduction approximation. Unfortunately, this 

cylinder is the only experimental data currently available.  

For comparison, the ability of all available geometries to approximate a spherical geometry 

experiment is also examined. The experiment measured the gamma signal from a 3 kg DU 

sphere using an HPGe detector. This sphere is simulated in GADRAS using a sphere, cylinder, 

and box. The cylinder height and diameter are made equal. The slab is made equal on all sides. 

The comparison between the experiment and simulated results, without the ray-traced 

component, are shown in Figure 28. The results are almost indistinguishable, giving credence to 

the methods studied and developed in this research. 
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Figure 28.  Comparison of Experimental (black), Simulated Sphere (red), Simulated 
Cylinder (green), and Simulated Slab (blue) for a 3 kg DU sphere measured with a HPGe 

detector 
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4 CONCLUSIONS 
 

The ability to replicate results from 3-D radiation transport simulations utilizing approximate 1-

D simulations was examined for HEU in a variety of geometries. For HEU placed in slab 

geometries with characteristic dimension greater than a few centimeters, the neutron leakage 

current computed by 3-D simulations may be replicated to within 5%, and keff to within 10% 

using the buckling correction approximation in 1-D. The leakage current and keff are 

approximated within 5% for the cylindrical geometry for all dimensions. However, the leakage 

in the transverse cylinder direction was fixed at 15 cm. The buckling approximation is never 

appropriate for simulating square-rod geometries where the x-dimension is along the length of 

the rod. It can be used to estimate the neutron leakage current with caution. 

In general, the buckling correction appears to be valid and useful for objects where the transverse 

dimensions in which leakage is approximated are greater than a few centimeters. Related to this 

requirement is the mean-free-path of the fission neutrons, which is 2.8 cm in HEU. The built-in 

extrapolation distance used in PARTISN is most likely too large for these geometries in which 

the transverse dimensions are comparable to the mean-free-path of the neutron. 

Geometries which are layered in two or more dimensions are also not appropriate for this 

approximation. For example, a cube of HEU embedded in a larger cube of polyethylene. The 1-D 

approximation requires uniformity in the traverse dimensions. Applying the dimensions of the 

polyethylene or HEU will result in an overestimation or underestimation of the multiplication. 

The simulated data produced by GADRAS and MCNPX was also compared to a set of 

experiments performed on a DU plate, HEU plate, and neptunium cylinder. While the simulated 

results between GADRAS and MCNPX compared well for all three experiments, only the 

experimental results for the DU and HEU plates matched the simulations well. It is unknown at 

this time what the cause is for the discrepancy between the neptunium simulations and 

measurements. 

 

4.1 Recommendations for GADRAS Users 
 

1) Whenever possible, approximate the geometry using spherical shells. 

2) Avoid modeling multi-layered geometries (e.g. cube within a cube or cylinder within a 

cylinder) using slabs or cylinders. Use spherical shells instead. 

3) The length and width of a fissile slab, or the height of a fissile cylinder, should be at least 

a few centimeters. 

4) The larger the length and width of the slab, the better the result. 

5) The taller the height of the cylinder, the better the result. 

6) Slab-geometry sources extend across the entire length and width of the slab. Thus, 

spherical sources shielded by a slab are better modeled by a sphere. 

7) Cylindrical-geometry sources extend across the entire height of the cylinder. Spherical 

sources inside cylinders should be modeled as a sphere. 

8) If using a cylinder, the detector should only be measuring the side of the cylinder, not the 

top or bottom. 
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9) If using a slab, the detector should be measuring either the large front or back face, not 

the other sides. 

10) Table 2 contains a list of simple source and shielding configurations that will aid in 

selection of the appropriate model. The red areas indicate the distribution of the source or 

fissile material. 
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Table 2.  Reference for Selecting Appropriate Geometry 

When the actual geometry looks like: Use: 

 

Sphere 

 

Sphere 

 

Sphere 

 

Cylinder 

 

Sphere 

 

Slab 

 

Sphere 
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