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ABSTRACT

Monopulse radar is a well-established technique for extracting accurate target location
information in the presence of target scintillation. It relies on the comparison of at least
two patterns being received simultaneously by the antenna. These two patterns are
designed to differ in the direction in which we wish to obtain the target angle
information. The two patterns are compared to each other through a standard method,
typically by forming the ratio of the difference of the patterns to the sum of the patterns.
The key to accurate angle information using monopulse is that the mapping function from
the target angle to this ratio is well-behaved and well-known. Errors in the amplitude and
phase of the signals prior and subsequent to the comparison operation affect the mapping
function. The purpose of this report is to provide some intuition into these error effects
upon the mapping function.
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1. Executive Summary

This document presents the effects of precomparator and postcomparator phase and
amplitude errors on monopulse systems. Both amplitude and phase monopulse systems
are considered in this document. Equations are given that show the relationship between
the complex monopulse ratio with errors as a function of the ideal monopulse ratio
without errors. Also, a very simple ideal linear monopulse model is developed and used
to present plots and give further insight into the behavior of the various error types. The
advantage of this simple model is that deviation from this model is readily apparent.

The monopulse ratio is the key quantity for monopulse radar systems used in location of
multiple targets simultaneously and in detection of slower moving targets. Since this is
the case, the focus of this document is on the behavior of the complex monopulse ratio in
the presence of these errors.

It is shown that in general, there are a lot of similarities between amplitude and phase
monopulse. As their names imply, the amplitude and phase monopulse use different
methods to provide the input beams, there are some differences. In particular, the roles of
precomparator phase and precomparator amplitude errors are approximately reversed
between amplitude and phase monopulse systems.
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2. Introduction

Monopulse radar is a well-established technique for extracting accurate target location
information in the presence of target scintillation. It relies on the comparison of at least
two differing patterns being received simultaneously by the antenna. These two patterns
differ in the direction in which we wish to obtain the target angle information from the
monopulse system. The two patterns are compared to each other through a standard
method, typically by forming the ratio of the difference of the patterns to the sum of the
patterns. The key to accurate angle information from monopulse is that the mapping
function from the target angle to this ratio is well-behaved and well-known. Errors in the
amplitude and phase of the signals prior and subsequent to the comparison operation
affect the mapping function. The purpose of this report is to provide some intuition into
these error effects upon the mapping function.

Two different types of monopulse systems will be considered in this document. These
are known as amplitude and phase monopulse. In amplitude monopulse, the beams are
squinted via amplitude using a common phase center on the antenna. For an ideal
amplitude monopulse system the ratio of the difference to sum is purely real. In phase
monopulse, the beams are squinted in phase via separate phase centers on the antenna. In
an ideal phase monopulse system the ratio of the difference to sum is purely imaginary.

The reader is assumed to have basic familiarity with the monopulse radar concepts (see

[1D.

The organization of this report starts with general comments on monopulse and errors;
followed by specific discussion of errors in amplitude monopulse, and then in phase
monopulse. A brief section of the report that follows includes miscellaneous
considerations, such as null-depth. The final section is the conclusions. In addition,
Appendix B presents the error equations, and Appendix C presents a simple ideal
monopulse model that is used for comparisons throughout this report.



3. General comments on monopulse ratio and
errors

The purpose of any monopulse radar is to determine the angle to a target. Since this is
the case, the most critical element is the knowledge of how to map the monopulse ratio to
target angle. To accomplish this we need not only a well behaved mapping between
these quantities, but also a very stable mapping, to avoid errors. Precomparator and
postcomparator errors change this mapping function. Often more importantly, if these
errors significantly vary (due to temperature, etc.) at a rate faster than the mapping
function is estimated, they can cause significant errors in the estimation of the target
angle. This memorandum shows how precomparator and postcomparator errors affect
the monopulse ratio, and hence its mapping function.

In amplitude and phase monopulse, the comparator generates the sum and difference
between the RF signals from two squinted beams. This serves to “compare” the two
signals and their respective beam patterns. The RF device used to form the sum and
difference is often called a comparator. For example, a common comparator device is the
so-called “magic-tee”. The comparator provides a natural demarcation point in a
monopulse system. Errors which occur on the signals prior to the comparator are referred
to as precomparator errors. Similarly, errors that occur after the comparator are called
postcomparator errors.

The monopulse ratio is the voltage ratio response of the difference channel to the sum
channel data. In general, this value can be complex, i.e., contain a real and imaginary
part. Typically in literature, we focus on the real part of this ratio for amplitude
monopulse systems, and the imaginary part of this ratio for phase monopulse systems'.
This is because in the absence of errors and noise, the amplitude monopulse ratio should
be real and the phase monopulse ratio should be imaginary. As we will see in this
document, in practice the target information is contained in both the real and imaginary
parts due to system errors.

Since we wish to find the target, we desire a nice monotonic mapping function between
the monopulse ratio and the target angle. In an ideal world this would be a linear
relationship given by [1]:

r=k, [é} (1)

k - normalized amplitude monopulse

m

where:

! Note that we use the symbol 7 as the ideal monopulse ratio. In the absence of errors and noise, we will
choose 7 to be a real quantity for both amplitude and phase monopulse; therefore, for a phase

monopulse system, the ideal monopulse ratio will be jr where j = v-1.

-10 -



r - ideal monopulse ratio
0 - the target angle

0., - the 3 dB beamwidth of the sum pattern

In this document, we have developed an ideal monopulse model that assumes
equation (1) is true. This is model is derived in Appendix C*. The reason for this is that
it simplifies the interpretation of the error effects.

? It is worth repeating from Appendix B, that although the plots in this document assume the simple
monopulse model in Appendix C, in general the equations in this document do not.
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4. Effect of precomparator and postcomparator
errors

This section will consider the effects of precomparator and postcomparator errors in
monopulse using a simplified model to facilitate insight into the effects on the important
monopulse ratio to target location mapping function. We will consider the amplitude and
phase monopulse systems separately based upon the equations presented in Appendix B.

It is typical to divide the errors up into the following four categories: 1) precomparator
amplitude errors; 2) precomparator phase errors; 3) postcomparator amplitude errors; and
4) postcomparator phase errors. In the following sections we will present the analysis for
representative examples of these errors for amplitude, and then phase monopulse
systems.

4.1 Amplitude monopulse systems

We start by considering the amplitude monopulse radar system. In the following
subsections, we consider the effect of precomparator amplitude, precomparator phase,
postcomparator amplitude, and postcomparator phase errors individually and combined,
on an amplitude monopulse system.

Before considering the error cases, we want to make some important comments about the
ideal monopulse ratio characteristics for an amplitude monopulse system. In order to get
a baseline for comparison with the error cases, we start with the simplified model from
Appendix C with no errors. Figure 1 illustrates these characteristics. First, the real part
of the ideal amplitude monopulse ratio is monotonic (ideally linear) within the angles of
regard (typically the beamwidth of the sum pattern). Second, the imaginary part of the
ideal amplitude monopulse ratio is zero. Third, the phase of the amplitude monopulse
ratio is a very sharp step function going from 7 radians to zero radians (or vice-versa) at
the null location of angle zero. Any deviation from these characteristics will be an
indicator of some error that causes the deviation

4.1.1 Effects of individual precomparator and postcomparator errors in
amplitude monopulse

Even though all errors exist in some form or another simultaneously, it is informative to
consider the effect of each of the four error category types in isolation. The reason is that
we can sometimes recognize some of these error components occurring in data from
actual monopulse systems. We will extend the analysis to the properties of the
combination of these errors. This section considers the error effect of the individual
errors on amplitude monopulse.

4.1.1.1 Precomparator amplitude errors in amplitude monopulse

Precomparator amplitude errors were briefly discussed in [2], but we will expand a bit on
the effects on the monopulse ratio here using the simplified model. From Appendix B

-12 -



(also [2]), the monopulse ratio after precomparator amplitude scaling error, g, becomes a
function of the ideal monopulse ratio without error, », given by:

g (1+r) = (1=r)’
|g|2 (l+r)2 +2g(1—r2)+(1—r)2

7=

Figure 2 shows the sum and difference patterns using the model assuming a 0.5 dB
precomparator amplitude error (g =1.06). As pointed out in [2] for the pure
precomparator amplitude error case, the peak of the sum and null in the difference
patterns shift in opposite directions. The null itself is still infinitely deep. Reference [2]
gives a little more intuition into this behavior.

Figure 3 shows the characteristics of the all-important monopulse ratio from equation (2).
We will include these plots throughout this document so I will spend a little time
explaining them here. In these monopulse ratio plots, we plot: (a) the real part of the
monopulse ratio; (b) the imaginary part of the monopulse ratio; and (c) the “angle” or the
phase of the monopulse ratio, i.e., the arctangent of the imaginary part over the real part.

Figure 4 shows the difference between the real part of the monopulse ratio with a
precomparator error and one without. We see a few things about precomparator
amplitude errors from these figures. First, the zero-crossing of the real part of the
monopulse ratio is shifted, as is the step function location in the angle of the monopulse
ratio. Second, a slight non-linear component is added to the real part of the monopulse
ratio®. Third, precomparator amplitude errors by themselves do not add an imaginary
part to the resulting monopulse ratio, which is readily observed from equation (2), as
well.

We can rewrite g =1+ ¢, and then if ¢, is small, we can approximate equation (2) as:

g
CONPS R N )
2 2 2

This approximation clearly shows the zero-crossing shift and non-linear component of
the monopulse ratio with a precomparator amplitude error. The approximation is shown
in Figure 4, as well. Note that equation (3) is an approximation for small values of ¢,

and will not be valid everywhere; however, it does provide good insight into effects of
small precomparator amplitude errors.

* This non-linearity is somewhat monopulse model dependent.
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Figure 2: Simulated amplitude monopulse patterns with 0.5 dB precomparator amplitude
error (one-way, in dB)

4.1.1.2 Precomparator phase errors in amplitude monopulse

Precomparator phase errors were briefly discussed in [2], and again we will expand on
the effects on the monopulse ratio here using the simplified model. From [2] and
Appendix B, the monopulse ratio after precomparator phase error, &, as a function of the

ideal monopulse ratio without errors is:

. 2 _ (l—rz)singg
r= +J
1+r2+(1—r2)cos§ 1+r2+(1—r2)cos§

Figure 5 shows the sum and difference beams assuming the model with a 10°
precomparator phase error. Figure 6 shows the characteristics of the monopulse ratio
with the precomparator phase error. Figure 7 shows the deviation of the real part of the
monopulse ratio with the precomparator phase error from the ideal model monopulse
ratio with no errors.
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Figure 3: (a) real part (b) imaginary part (c) angle of amplitude monopulse ratio
with precomparator amplitude error of 0.5 dB
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Figure 4: Change in real part of amplitude monopulse ratio due to 0.5 dB precomparator
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Figure 5: Simulated amplitude monopulse patterns with 10° precomparator phase error
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From Figure 5 we note that the peak of the sum and the null of the difference patterns
have not shifted, but that the null depth is no longer infinite. This also follows from
discussions in [2] about null depth®. Note from this and the other figures, that although
the null itself appears to be broader, the slope of the real part of the monopulse ratio has
changed only slightly for this small phase error.

Figure 6 highlights the important amplitude monopulse ratio differences. First, from
Figures 6 and 7, for a small precomparator phase error there is a relatively small change
in the real part of the monopulse ratio, which is the most important factor for target
location. Also, the zero-crossing for the real part of the monopulse ratio has not been
shifted. Next, Figure 6 shows that there is a new non-linear component added to the
imaginary part of the monopulse ratio. This, combined with the loss of the step-function
(i.e., smoothing) in the angle of the monopulse ratio (and loss of null depth) are tell-tale
signs of a precomparator phase error in amplitude monopulse. Note that the angle of the
monpulse is readily calculable from equation (4) as:

ZF = atan {m}

2r

As with the precomparator amplitude error, we now provide a small error approximation
formula to equation (4):

) 2 s 2 1 )
rzr(1+%j—r %+](Ej(l—r )f

The real part of equation (6) is also shown in Figure 7. From equation (6) we can see the
various characteristics discussed above, e.g., zero-crossing, quadratic imaginary part,
small cubic and linear changes to the real part of the monopulse ratio, etc.

To a first order the null depth is approximately limited to”:

amplitude monopulse null depth = 20log,, |§ | -6 indB

Using equation (7), a 10° precomparator phase error reduces the null depth to 21.2 dB
which appears to match Figure 5. Figure 8 shows a comparison of the null depth in
amplitude monopulse from the model with the approximation in equation (7) for various
precomparator phase errors.

* More discussion about null depth is presented in a section later in this report, as well.
5 .. . . .
This is essentially the same equation as can be found in [2].
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with precomparator phase error of 10°
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Figure 7: Change in real part of amplitude monopulse ratio due to 10° precomparator
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Figure 8: Comparison of null depth in amplitude monopulse from precomparator phase
errors using the model and approximation in equation (7)
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4.1.1.3 Postcomparator amplitude errors in amplitude monopulse

Postcomparator amplitude errors are presented in this section. From Appendix B, the
monopulse ratio after a postcomparator amplitude scaling error, y, is:

F=yr (8)

This very simple equation is self-apparent and says that a postcomparator amplitude error
simply scales the monopulse ratio. In general this leads to a scaling of the estimated
target location. Since this is key in target location, this can be a significant issue. The
effects of have been previously discussed in [2].

Obviously, the zero-crossing of the real part of the monopulse ratio does not shift; the
imaginary part of the monopulse ratio is zero and the phase is still a nice step function as
in Figure 4c.

4.1.1.4 Postcomparator phase errors in amplitude monopulse

Now we examine postcomparator phase errors. From Appendix B, the amplitude
monopulse ratio after a postcomparator phase error, y , only is:

F=re"” =rcosy + jrsiny 9)

Again, the postcomparator error is a very simple equation, which in this case rotates
information from the desired real part of the monopulse ratio to the unwanted imaginary
part of the monopulse ratio. Even though the equation is quite simple in this case, we
will go ahead and plot the characteristics of the monopulse ratio because it does add a bit
of insight. Figure 9 shows the monopulse ratio characteristics in the presence of a 10°
postcomparator phase error only. Figure 10 shows the deviation of the real part of the
monopulse ratio from the ideal case due to a postcomparator phase error of 10°. From
Figure 10, we see that the error in the real part of the monopulse ratio is a linear scaling
error just like in the postcomparator amplitude error. The scale factor is now cosy and
the scaling error is cosy —1. All the issues for a scaling error in monopulse are the same
as with the postcomparator amplitude error. From Figure 9, we have an imaginary part of
the monopulse ratio which is also a scaling of the monopulse ratio without an error. If
not corrected or accounted for, this can be thought of as a wasted term. Finally, we note
in Figure 9c that the angle of the monopulse is still a step function, but that the whole
step function is shifted in phase by v .

A very interesting case of postcomparator phase error occurs due to differences in timing
delays between A/Ds on separate channels. This time delay causes an IF frequency
dependent postcomparator phase error, .i.e., y is changing with range. The result is that
the observed monopulse ratio is changing with target range in accordance with the above
discussion.
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with postcomparator phase error of 10°
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Figure 10: Change in real part of amplitude monopulse ratio due to 10° postcomparator
phase error

4.1.1.5 Summary of individual errors in amplitude monopulse

The above sections have shown the characteristics of isolated precomparator and
postcomparator errors with respect to the assumed model. In this section, we summarize
the effects of the individual errors on the complex monopulse ratio. Although all such
errors tend to be present together, knowing the individual characteristics lends some
intuition into the behavior of real system.

The individual errors have the following effects on amplitude monopulse:

1) Precomparator amplitude errors shift the relative location of the null of the
difference and peak of the sum pattern. They also shift the zero-crossing of
the real part of the monopulse ratio, and the step response of the angle of the
complex monopulse ratio.

2) Precomparator phase errors decrease the null depth in the difference pattern.
They do not shift the null location. They change the real part of the
monopulse ratio slightly, and add a non-linear term to the imaginary part of
the monopulse ratio. They tend to smooth out the step function in the angle of
the complex monopulse ratio.

-23-



3) Postcomparator amplitude errors simply scale the real part of the monopulse
ratio.

4) Postcomparator phase errors rotate the information from the real part of the
monopulse ratio into the imaginary part of the monopulse ratio. This results
in scaled values of the original monopulse ratio in both the real and imaginary
parts of the resulting monopulse ratio. In doing this, they also shift the angle
of the complex monopulse ratio by an amount corresponding to the
postcomparator phase error.

4.1.2 Combinations of errors in amplitude monopulse

The situation is complicated in the real world because all of these errors co-exist. One
can see from the general equations and the approximations in Appendix B that there are
various cross-terms added that make separation more difficult. This section shows some
of the complexity that arises due to the errors. To do so, we will first consider the effect
of pairwise errors, followed by all errors simultaneously. As before, we use the simple
monopulse model from Appendix C to illustrate the issues.

4.1.2.1 Precomparator amplitude and phase errors combined in
amplitude monopulse

Figure 11 shows the monopulse ratio plots for a precomparator phase error of 10° and a
precomparator amplitude error of 0.5 dB together. We note from Figure 11 that the
combined effect of each of the individual errors are observable, namely shifts in the zero-
crossing of the real part of the monpulse ratio, shift in the monopulse ratio angle, non-
linear effects in the imaginary part of the monopulse ratio, and smoothing of the step
function in the phase of the monopulse ratio. Figure 12 shows the combined effects on
the sum and difference patterns. These affects are a shift in the location of the difference
null relative to the sum peak, and loss in null depth. Figure 13 shows the change in the
real part of the monopulse ratio from the ideal due to these errors.

The approximation to the error equation from Appendix B for this case becomes®:

fzg—g—g—;+r —8—g2+§—2 T . A + 7 &
2 4 4 4 4 4 4

T -4

We see from the approximation that for modest errors, the cross-terms in this case are
negligible in the real part of the monopulse ratio which explains why in this case we will

® Recall from the Appendix B that these approximations have limitations in the valid range of error
parameters so use the approximations presented in this document with that in mind.
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tend to observe the superposition of the effects of these individual errors. However, we
see that there are cross-terms in the imaginary part of the monopulse ratio that could
make separation of the effects difficult in practice.

4.1.2.2 Precomparator and postcomparator phase errors combined
in amplitude monopulse

Figure 14 shows the monopulse ratio plots for a combination of a precomparator phase
error of 10° and a postcomparator phase error of 10°. Again we see the combined effect
of linear and non-linear components in the imaginary part of the monopulse ratio, as well
as bias and smoothing of the step function in the phase of the monopulse ratio. Note that
the patterns will be the same as in Figure 5 above. Figure 15 shows the change in the real
part of the monopulse ratio due to these errors.

The approximation to the error equation for this case becomes:

fz—g—w+r[1—w—2+§—2j+(§—w)r2 —(5—2}’3
2 2 4 2 4
(11)

It should be pointed out that for this case, we see that the cross-terms in the real part of
the monopulse ratio can be important, but not necessarily in the imaginary part.

4.1.2.3 Precomparator amplitude and postcomparator phase errors
combined in amplitude monopulse

Figure 16 shows the monopulse ratio plots for a combination of a precomparator
amplitude error of 0.5 dB and a postcomparator phase error of 10°. Figure 17 shows the
change in the real part of the monopulse ratio from the ideal linear case. Again, we see
the combined effects of a shift in zero-crossing and linear and non-linear changes in the
real part of the monopulse ratio. We also note that since the postcomparator phase errors
do not affect the beam magnitudes, the patterns will follow those in Figure 2 above.

The approximation to the error equation from Appendix B for this case becomes:

2 2 2 2
prale fe, 1_€_g_l,u_2 T I B
2 4 4 2 2 4 4

(12)

For modest errors, the cross-terms are negligible in the real part of the monopulse ratio,
but may be present in the imaginary part of the monopulse ratio.
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Figure 14: (a) real part (b) imaginary part (c) angle of amplitude monopulse ratio
with a precomparator phase error of 10° and a postcomparator phase error of 10°
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Figure 15: Change in real part of amplitude monopulse ratio due to 10°
precomparator phase and 10° postcomparator phase errors
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Figure 16: (a) real part (b) imaginary part (c) angle of amplitude monopulse ratio
due to a 0.5 dB precomparator amplitude and 10° postcomparator phase errors
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Figure 17: Change in real part of amplitude monopulse ratio due to 0.5 dB
precomparator amplitude and 10° postcomparator phase errors

4.1.2.4 Precomparator and postcomparator amplitude errors
combined in amplitude monopulse

This section considers the effects of a combination of a precomparator amplitude error of
0.5 dB and a postcomparator amplitude error of 0.5 dB. Figure 18 gives the monopulse
ratio plots and Figure 19 presents the change in the real part of the monopulse ratio from
the ideal linear case. Since there are no phase errors, the imaginary part and the angle of
the monopulse ratio are the same as ideal. The real part of the monopulse ratio is affected
as shown in Figure 19.

The approximation to the error equation for this case becomes:

2 2 2 2
prle fe Bt gy Selyp fe 5% Se g o) S
2 4 2 4 2 2 4 4

In equation (13), the cross-terms are modest, but in general we should account for these
terms. Also, as was just stated, we observe that there are no imaginary terms in the
approximation.
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Figure 18: (a) real part (b) imaginary part (c) angle of amplitude monopulse ratio
due to a 0.5 dB precomparator amplitude and 0.5 dB postcomparator amplitude
errors
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Figure 19: Change in real part of amplitude monopulse ratio due to 0.5 dB
precomparator amplitude and 0.5 dB postcomparator amplitude errors

4.1.2.5 Postcomparator amplitude and phase errors combined in
amplitude monopulse

The combination of postcomparator amplitude and postcomparator phase errors is a bit
more straightforward to interpret. Figure 20 shows the model under a postcomparator
amplitude error of 0.5 dB and a postcomparator phase error of 10°. Figure 21 shows the
deviation of the real part of the monopulse ratio from the ideal monopulse ratio. For this
combination of errors, the individual effects are readily apparent.

The approximation to the error equation for this case becomes:
l//2
fzr[1+ey—7]+jrl//(l+3y) (14)

In general, this combination of errors is the easiest to measure with an internal calibration
circuit. Likewise, once we measure these errors, we can remove its effects in the
processing. It is important to do so because changes in either of these quantities scale the
real part of the monopulse ratio leading to target angle scaling errors [2].
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Figure 20: (a) real part (b) imaginary part (¢) angle of monopulse ratio with a
postcomparator amplitude error of 0.5 dB and a postcomparator phase error of
10°
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Figure 21: Change in real part of monopulse ratio due to 0.5 dB postcomparator
amplitude and 10° postcomparator phase errors

4.1.2.6 All errors combined in amplitude monopulse

The simultaneous combination of all errors is complicated by cross terms that influence
the complex monopulse ratio. We will plot the results from a couple of cases using the
model. The first case is for precomparator and postcomparator amplitude errors of 0.5
dB, and precomparator and amplitude phase errors of 10°. The second case is for a
precomparator amplitude error of 1 dB, a precomparator phase error of 30°, a
postcomparator amplitude error of 0.5 dB, and a postcomparator phase error of -10°.
Figures 22 and 23 show the former case. Figures 24 and 25 show the latter case.
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Figure 22: (a) real part (b) imaginary part (c) angle of monopulse ratio with
pre and postcomparator amplitude errors of 0.5 dB and pre and
postcomparator phase errors of 10°
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Figure 23: Change in real part of monopulse ratio due to 0.5 dB pre and
postcomparator amplitude errors and 10° pre and postcomparator phase errors
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Figure 24: (a) real part (b) imaginary part (c) angle of amplitude monopulse
ratio with precomparator amplitude error of 1 dB, a precomparator phase error

of 30°, a postcomparator amplitude error of -0.5 dB, and a postcomparator
phase error of -10°
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Figure 25: Change in real part of amplitude monopulse ratio due to
precomparator amplitude error of 1 dB, a precomparator phase error of 30°, a
postcomparator amplitude error of -0.5 dB, and a postcomparator phase error

of -10°

4.2 Phase monopulse systems

This section repeats the previous analysis with the difference being that we examine
phase monopulse here, rather than amplitude monopulse. We saw in the previous section
that the various errors alter the mapping function between the monopulse ratio and the
target angle, including shifting information around between the real and imaginary parts.
What we want to understand in this section is what the difference is between the error
effects on phase monopulse versus amplitude monopulse.

As with the amplitude monopulse, we illustrate the ideal phase monopulse ratio from
Appendix C in Figure 26. Note that the roles of the imaginary and real parts of the phase
monopulse ratio are reversed from those in the amplitude monopulse. The other subtle
difference is that the angle of the phase monopulse ratio is shifted by 7/2 from the ideal

amplitude monopulse ratio shown in Figure Ic.

Following the pattern established above, we will first consider the effects of the
individual precomparator and postcomparator errors, and then the combinations of the
individual errors.
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Figure 26: (a) real part (b) imaginary part (c¢) angle of phase monopulse ratio for the ideal
phase monopulse system

4.2.1 Individual precomparator and postcomparator errors in phase
monopulse systems

This section considers the precomparator amplitude and phase, and postcomparator

amplitude and phase errors individually to simplify the insight in the effects of each of
these errors.

4.2.1.1 Precomparator amplitude errors in phase monopulse
systems

Precomparator amplitude errors for phase monopulse model are presented in this section.
From Appendix B, the monopulse ratio after precomparator amplitude scaling error, g,
becomes a function of the ideal phase monopulse ratio without error, 7, given by:
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J(i+g’)+2¢(1-7) T (1+7) 1+ g )+ 22(1-7)

Figure 27 shows the sum and difference patterns using the model assuming a 0.5 dB.
Unlike in the amplitude monopulse case, the null depth for phase monopulse is affected
by a precomparator amplitude error. As with an precomparator phase error in amplitude
monopulse, the null depth is affected, but not the null location. We will return to this in a
while.

Simulated patterns (dB)
o o

-0.5 0 0.5
b

n

Figure 27: Simulated phase monopulse patterns with 0.5 dB precomparator
amplitude error

Figure 28 shows the effect on the phase monopulse ratio of a precomparator amplitude
error. Note that this is very similar to the effect of a precomparator phase error on the
amplitude monopulse ratio shown in Figure 6 above. In this respect, a precomparator
amplitude error in phase monopulse is analogous to a precomparator phase error in
amplitude monopulse.

The approximation for equation (15) is given by:

fz(Z—gj[l—%)(l+r2)+j{r—%§r(l+r2)} (16)
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We can observe the analogy between the precomparator phase error in amplitude
monopulse and precomparator amplitude error in monopulse by noting the similarities in
the approximations from equations (6) and (16), respectively.

Based upon equation (16), the null depth for phase monopulse is approximately given by:

phase monopulse null depth ~ 20log,, |£g| —6in dB (17)

For a 0.5 dB precomparator amplitude error, equation (17) says that the null depth is
reduced to approximately 30.5 dB which appears to match Figure 27. Also, the
approximation says that the zero crossing of the imaginary part of the monopulse ratio is
not shifted.

The difference in the imaginary part phase monpulse ratio with a precomparator
amplitude error from the ideal phase monopulse ratio is plotted in Figure 29 alongside the
approximation from equation (16).

Figure 30 shows a plot of the null depth for phase monopulse using the model and the
approximation in equation (17).

4.2.1.2 Precomparator phase errors in phase monopulse systems

In this section the effect of precomparator phase errors on phase monopulse are
presented. The equation for the monopulse ratio in this case is given by:

[(l - rz)sin§ + 2rcos.§]

’a:J(1+r2)+(1—r2)cos§—2rsin§

(18)

Right away, we notice that unlike the amplitude monopulse case, a precomparator phase
error does not affect the null depth, but does shift the zero-crossing of the imaginary part
of the phase monopulse ratio. Note that in this respect, a precomparator phase error in
phase monopulse is analogous to a precomparor amplitude error in amplitude monopulse.

Figure 31 shows the sum and difference patterns based on the models we are using in this
document. Interestingly, as opposed precomparator amplitude errors in amplitude
monopulse, precomparator phase errors in phase monopulse shift the peak of the sum
beam and the null of the difference beam in the same direction.

Figure 32 shows the phase monopulse ratio for a precomparator phase error. We see the
shift in the zero-crossing in both the imaginary part of the phase monopulse ratio and the
angle of the monopulse ratio. Again we note that this is similar to precomparator
amplitude errors in amplitude monopulse.

An approximation to equation (18) is given by:
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f‘zj{§+r[l+%j+§rz+%r3} (19)

This approximation permits us to readily interpret some of the previous discussion.
Using the approximation in equation (19), we see that there is no real part to the phase
monopulse ratio due to a precomparator phase error. This means that as long as the
monopulse ratio is reasonably well behaved, there is no effect on the null depth. We also
see that the y-intercept (i.e., zero crossing of the imaginary part of the monopulse ratio) is
shifted as previously discussed. We also see that additional linear and non-linear
components to the imaginary part of the monopulse ratio are added with this error.

Figure 33 shows the difference in the imaginary part of the monopulse ratio from the
ideal monopulse ratio due to a precomparator phase error. Figure 33 also shows the a
comparison with the approximation in equation (19).
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Figure 28: (a) real part (b) imaginary part (c) angle of phase monopulse ratio with
precomparator amplitude error of 0.5 dB
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Figure 29: Change in imaginary part of phase monopulse ratio due to 0.5 dB
postcomparator amplitude error
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Figure 30: Comparison of null depth in phase monopulse from precomparator amplitude
errors using the model and approximation in equation (17)

20

-60

Simulated patterns (dB)

-80

-100

-120
-0.5 0 0.5

)

n

Figure 31: Simulated phase monopulse patterns with 10° precomparator phase
error
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Figure 32: (a) real part (b) imaginary part (c) angle of phase monopulse ratio with
precomparator phase error of 10°
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Figure 33: Change in imaginary part of phase monopulse ratio due to 10°

4.2.1.

postcomparator phase error

3 Postcomparator amplitude errors in phase monopulse

systems

Postcomparator amplitude errors (and as we will soon see, phase errors) are very similar
between amplitude and phase monopulse. Other than being in the imaginary part rather
than the real part, the phase monopulse ratio after a postcomparator amplitude scaling

error, ¥, is the same as for amplitude monopulse’:

F=jyr

As in the amplitude monopulse case, this error scales the monopulse ratio and has the

same effect of a scaling error on the target angle estimation.

The zero-crossing of the imaginary part of the phase monopulse ratio does not shift; the
real part of the monopulse ratio is zero; and the phase is still a nice step function as in

Figure 26c¢.

7 Recall that for the ideal case of either phase or amplitude monopulse, we have defined 7 to be real.
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4.2.1.4 Postcomparator phase errors in phase monopulse systems

Postcomparator phase errors exhibit the same behavior for phase monopulse as they do
for amplitude monopulse. The complex monopulse ratio in this case becomes:

7= jre’ =—rsiny + jrcosy

For phase monpulse, the postcomparator phase error rotates information from the desired
imaginary part of the monopulse ratio to the unwanted real part of the monopulse ratio.

4.2.1.5 Summary of individual errors in phase monopulse systems

Consistent with amplitude monopulse analysis, we now summarize the effects of the
individual errors on the complex monopulse ratio.

The individual errors have the following effects on phase monopulse:

1) Precomparator amplitude errors decrease the null depth in the difference
pattern. They do not shift the null location. They change the imaginary part
of the monopulse ratio slightly, and add a non-linear term to the real part of
the monopulse ratio. They smooth out the step function in the angle of the
complex monopulse ratio.

2) Precomparator phase errors shift the relative location of the null of the
difference and peak of the sum pattern. They also shift the zero-crossing of
the imaginary part of the monopulse ratio, and the step response of the angle
of the complex monopulse ratio.

3) Postcomparator amplitude errors scale the imaginary part of the monopulse
ratio.

4) Postcomparator phase errors rotate the information from the imaginary part of
the monopulse ratio into the real part of the monopulse ratio. This scales vthe
original monopulse ratio in both the imaginary and real parts of the resulting
monopulse ratio. They also shift the angle of the complex monopulse ratio by
an amount corresponding to the postcomparator phase error.

4.2.2 Combinations of errors in phase monopulse systems

As in the amplitude monopulse case, the combination of errors observed in practice
complicates the analysis. We repeat the errors examples we used in the amplitude
monopulse cases now for phase monopulse.
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4.2.21 Precomparator amplitude and phase errors combined in
phase monopulse

Figure 34 shows the phase monopulse ratio plots for a precomparator phase error of 10°
and a precomparator amplitude error of 0.5 dB together. Figure 35 shows the deviation
of the imaginary part of the phase monopulse ratio with these errors.

An approximation for the errors in this case from Appendix B is:
2 2
2 4 2 2 4 2
52 2 2 82
+j L P +r2(£]+r3 s %
2 4 4 2 4 4

Equation (22)implies that modest errors superimpose in the imaginary part of the
monopulse ratio and that there are some additional cross-terms that may need to be
accounted for in the real part. It is rather interesting to look at the symmetry between
equation (22) for the phase monopulse and equation (10) for the amplitude monopulse.

(22)

4.2.21 Precomparator and postcomparator phase errors combined
in phase monopulse

Figure 34 shows the phase monopulse ratio plots for a combination of a precomparator
phase error of 10° and a postcomparator phase error of 10°.

The approximation equation for this case becomes:

L Ly 2(5‘//]
FR—Z——ry —r | =—
Y 2

+j{§+r(l—%2+%j+r2 (§j+r3 (%ZH

For this case, the error effects combine in the imaginary part of the monopulse ratio, but
there are cross-terms than could creep up in the real part.

(23)
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Figure 34: (a) real part (b) imaginary part (c) angle of phase monopulse ratio with
a precomparator phase error of 10° and a precomparator amplitude error of 0.5 dB
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Figure 35: Change in imaginary part of amplitude monopulse ratio due to 10°
precomparator phase and 0.5 dB precomparator amplitude errors
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Figure 34: (a) real part (b) imaginary part (c) angle of phase monopulse ratio with
a precomparator phase error of 10° and a postcomparator phase error of 10°
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Figure 35: Change in imaginary part of phase monopulse ratio due to 10°
precomparator phase and 10° postcomparator phase errors

4.2.2.2 Precomparator amplitude and postcomparator phase errors

combined in phase monopulse

Figure 36 shows the phase monopulse ratio plots for a combination of a precomparator
amplitude error of 0.5 dB and a postcomparator phase error of 10°. Figure 37 shows the
change in the imaginary part of the phase monopulse ratio from the ideal linear case.

The approximation equation in this instance given by is:

2
f~g—g—g—g—rl//+r2 L L
4 2 4

£ & £ g2
+j{ ;Wﬂ{l—f—% +r2(%j—r3 Tg

The cross-terms are limited to the imaginary part for combined precomparator amplitude
and postcomparator phase errors.
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Figure 36: (a) real part (b) imaginary part (c) angle of phase monopulse ratio due to a
0.5 dB precomparator amplitude and 10° postcomparator phase errors
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Figure 37: Change in imaginary part of phase monopulse ratio due to 0.5 dB
precomparator amplitude and 10° postcomparator phase errors
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4.2.2.3 Postcomparator amplitude and phase errors combined in
phase monopulse

As with amplitude monopulse, the combination of postcomparator amplitude and
postcomparator phase errors is straightforward to interpret. Figure 38 shows the model
under a postcomparator amplitude error of 0.5 dB and a precomparator phase error of
10°. Figure 39 shows the deviation of the real part of the monopulse ratio from the ideal
monopulse ratio. For this combination of errors, the individual effects are readily
apparent. The following equation is the approximation for this case:

(25)
v,e
2
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Figure 38: (a) real part (b) imaginary part (¢) angle of phase monopulse ratio
with a postcomparator amplitude error of 0.5 dB and a postcomparator phase
error of 10°
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Figure 39: Change in imaginary part of phase monopulse ratio due to 0.5 dB
postcomparator amplitude and 10° postcomparator phase errors

4.2.2.4 All errors combined in phase monopulse

As with the amplitude monopulse case, the simultaneous combination of all errors is
complicated . We will plot the results using the same examples as for the amplitude
monopulse case, previously. The first case is for precomparator and postcomparator
amplitude errors of 0.5 dB, and precomparator and amplitude phase errors of 10°. The
second case is for a precomparator amplitude error of 1 dB, a precomparator phase error
of 30°, a postcomparator amplitude error of 0.5 dB, and a postcomparator phase error of
-10°. Figures 40 and 41 show the former case. Figures 42 and 43 show the latter case.
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Figure 40: (a) real part (b) imaginary part (c¢) angle of phase monopulse ratio
with pre and postcomparator amplitude errors of 0.5 dB and pre and
postcomparator phase errors of 10°
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Figure 41: Change in imaginary part of phase monopulse ratio due to 0.5 dB
pre and postcomparator amplitude errors and 10° pre and postcomparator
phase errors
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Figure 42: (a) real part (b) imaginary part (c) angle of phase monopulse ratio
with precomparator amplitude error of 1 dB, a precomparator phase error of
30°, a postcomparator amplitude error of -0.5 dB, and a postcomparator phase
error of -10°
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Figure 43: Change in imaginary part of phase monopulse ratio due to
precomparator amplitude error of 1 dB, a precomparator phase error of 30°, a
postcomparator amplitude error of -0.5 dB, and a postcomparator phase error

of -10°

4.3 Sources of precomparator and postcomparator errors

This brief list is by no means exhaustive, nor is it sorted, nor prioritized. Sources of
precomparator and postcomparator errors include the radome, antenna, mutual coupling,
isolation issues, reflections, timing errors (e.g., A/D timing offsets), various channel
balance issues, etc.

Note that we have assumed in this document that the precomparator and postcomparator
errors are constant. This is a standard assumption, but does not have to always be the
case. For example, radome and mutual coupling errors can be dependent upon angles. In
addition, delay differences, etc., can lead to frequency dependent errors.
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5. Other considerations

This section discusses implications of precomparator and postcomparator effects, rather
than the error analysis. In this section, we discuss null depth as it relates to the types of
errors presented above. The null depth is used a common measure of monopulse antenna
performance. We also give an incomplete discussion on issues that go into specifying
system error requirements, since that would require yet another document, as well as
more information on the overall system requirements. This is only meant as a brief
introduction to considerations relative to precomparator and postcomparator errors.

5.1Brief note on null depth and precomparator errors

This section provides a brief note on null depth in monopulse. Since the focus in this
document is the precomparator and postcomparator errors, we will only consider their
effects on null depth here. Note that there are more contributors to loss of null depth than
just precomparator errors, and so a more complete discussion of null depth requires
considering all of the causes of loss of null depth [2].

Null depth is traditionally used as an important parameter in specifications for monopulse
radar systems. This author believes that we should consider the knowledge of the
monopulse ratio for some of the more sophisticated applications as the most important
measure. However, null depth will continue to be an important parameter because of its
ease of measurement and its historical significance.

From the previous discussion, it is apparent that the null depth can be an indicator of
precomparator phase errors for amplitude monopulse, and precomparator amplitude
errors for phase monopulse systems. In this context, null depth gives an indication of the
fidelity of matching prior to the comparator. It also indicates how much information has
been rotated out-of-phase from the desired monopulse ratio phase at the null. A finite
null depth indicates that the zero-crossing for the real and imaginary parts of the
monopulse ratio do not coincide in angle space.

Figures 44 and 45 show the plots of the difference channel using the model with errors
that affect the null depth. Figure 44 is plots of the difference for amplitude monopulse
using the model with various precomparator phase errors. Figure 45 shows the difference
channel for phase monopulse using the model with various precomparator amplitude
errors. We note from these plots that as the null depth decreases, the difference channel
curve “flattens” out. Although the difference channel response flattens out and does not
appear as “sharp” with decreasing null depth, the width of the null, as it is typically
defined, does not appear to increase for the assumed model. A typical null width
definition might be the angular separation between the 10 dB points, as an example.

In applications where the radar attempts to track by maintaining a null in power on the
target, the sharpness of the null depth and the null depth are important. This appears to
be one of the traditional reasons for specifying the null depth.
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In more modern applications of monopulse, the target location may be extracted from
only the real (for amplitude monopulse) or imaginary (for phase monopulse) parts of the
monopulse ratio. In any reasonable monopulse system, these parts of the monopulse ratio
will have a zero-crossing, i.e., an infinite “null depth”. Figures 46 and 47 show these
parts of the monopulse ratio with the same assumptions and errors as used in Figures 44
and 45, respectively. The slope change of these monopulse ratios does not appear to be
dramatic. From this we see that usually, we want as good of a null depth as possible®, but
a system designer may have some latitude in relaxing the specification. Note that
although this is the case, we still need to account for these changes in the function that
maps the monopulse ratio to target location. The important point is that we want the
precomparator errors to be very stable’.

N/
AN

\ / £=20 deg

-25 \ / §=30 deg
-30

|

-40

Power in A -channel (dB)

-45

-50
-0.5 0 0.5

0

n

Figure 44: Effect on power in difference channel of amplitude monopulse model for
various precomparator phase errors

® |t is VERY IMPORTANT to emphasize that we are ONLY considering precomparator errors as sources of
the null depth problem in this document. Other sources of null depth loss may not permit this flexibility
to the system designer

? |f we can estimate the changes in precomparator errors faster than they occur in the system, in theory
we can account for these errors. In practice this can be difficult due to several factors, and it is therefore
more important to attempt to design the system so that they are stable.
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Figure 45: Effect on power in difference channel of phase monopulse model for various
precomparator amplitude errors
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Figure 46: Real part of amplitude monopulse ratio using the model for various
precomparator phase errors
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5.2lIssues to consider in error specification

A recurring theme in this document is that for monopulse systems we need to have very
accurate knowledge of the function that maps the monopulse ratio to target angle, and

that we desire that this function have nearly optimal behavior. It can be common to focus
on the latter; however, often the former can be even more critical. In this section, we will

briefly try to make this argument.

A typical monopulse ratio has a normalized monopulse ratio slope, &, of between 1.6 to

m

1.8. We will stick with the 1.8 value used in our simple model. Let us assume that one
of the errors described in the previous sections causes this value to be reduced to 1.7.
The standard angle noise equation given for monopulse from [1] is:

93 dB

o, * —E—
’ k,~N2snr

where:
0, - the standard deviation of the angle noise
snr - the sum signal to difference noise ratio

The increase in the angle noise due to this reduction in normalized monopulse ratio is

about:
A
A, =0 u
” 6[ km j
where:
AUH - the change in standard deviation of the angle noise
A « - the change in the normalized monopulse ratio

For our example, this means that the angle noise increases about 6%. For a 20 dB SNR
target and a 4° beamwidth, this would change the noise standard deviation from about
0.16° to 0.17°, an increase in error of 0.01° which is a relatively small impact on the
angle estimate.

Now let us assume that we do not correct for this same change in monopulse ratio when
processing the target location. In this case, we can invert equation (1) and get:

(7
g ~ Bt

k

m

After manipulation, we can approximate the error in angle estimate is given by:
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(27)

(28)



A, ~0 A, 29
00| 7 (29)

m

If we do not account for this change in slope in the mapping of the monopulse ratio to
target location in this case, the location error at the edge of the scene is 0.1°, a factor of
10 worse than the increase in noise. Therefore, it tends to be more critical in location
applications to know the monopulse ratio to angle mapping function very well. It is less
critical that the normalized slope be 1.7 or 1.8.

What this means in practice is that we can often live with precomparator and
postcomparator errors that may not be ideally zero or some very small value as long as
we know what the resulting complex monopulse ratio is very well. This also implies that
we do not have to know the exact values of the precomparator and postcomparator
amplitude and phase values, as long as we know the resulting monopulse ratio to angle
mapping function very well. The system design implication is that, although we would
like to keep the precomparator and postcomparator errors low, it is more important that
they vary much slower than our ability to estimate the monopulse ratio mapping function.

6. Conclusions

The intent of this report is to give some insight into the effects of precomparator and
postcomparator amplitude and phase errors on the complex monopulse ratio mapping
function. Both amplitude and phase monopulse are considered. Equations are developed
to show the effects of these errors both individually and combined. Many plots are
presented using a simple monopulse model to provide insight into the effect of these
errors on the mapping function.

Although it is not the main intent of this report, precomparator errors and null depth is
briefly presented. Also, an argument is made that knowledge of the exact value of each
of the error types is not as critical as precise knowledge of the resulting complex
monopulse ratio to target angle mapping function.

-67 -



8. References
[1] S. M. Sherman, Monopulse Principles and Techniques, 1° Ed., 1984.
[2] D. L. Bickel, various internal memos on monopulse, 1999-2012.

[3] D. K. Barton, Modern Radar System Analysis, Artech House, 1988.

- 68 -



9. Appendix A: Symbols and terminology

Variable definitions

A - the difference channel

A, - the change in estimated target angle given misknowledge of mapping
function

A . - the change in standard deviation of the angle noise

O,

A « - the change in the normalized monopulse ratio

£, =8~ 1 - deviation of precomparator amplitude gain from ideal (useful in
small error approximations)
¢, =y —1- deviation of postcomparator amplitude gain from ideal (useful in
g - precomparator amplitude gain (ideal is 1)
y - postcomparator amplitude gain (ideal is 1)
¥ - postcomparator phase error in radians (ideal is 0)
k, - normalized amplitude monopulse slope (used as a simplified mapping

from target angle to monopulse ratio) defined in [1]
0 - the target angle

0., - the one-way 3 dB beamwidth of the antenna in the angular direction
being measured by the monopulse ratio
0, =0/0,, -thenormalized target angle

o, - the standard deviation of the angle noise

r -1ideal monopulse ratio (for amplitude monopulse the ideal is 7, for phase
monopulse the ideal is jr)

7 - complex monopulse ratio in the presence of errors
snr - the sum signal to difference noise ratio
2 - the sum channel

& - precomparator phase error in radians (ideal is 0)
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10. Appendix B: Equations for
precomparator and postcomparator errors
and approximations

It is important to note that the equations in this appendix do not assume any particular
model of the monopulse ratio. For example, these equations do not depend upon use of
the model in Appendix C.

Also, note that the accuracy of the approximation equations presented depend upon the
size of the errors; therefore, the approximations should be used with caution if the errors
are anticipated to be large. The exact equations can be used in this case. The
approximations often do provide simpler insight.

Amplitude monopulse comparator error equations
If we have an amplitude monopulse system, assume that the true sum and difference

patterns are given as functions of the amplitude squinted beams V/, and V, as:
A=V, -V,
=V, +V,

r:Re{é}:Re V=V 31)
5 V4V,

(30)

and:

Vg (l_r)
2 (32)

where 7 is the true monopulse ratio.

We let the precomparator error be ge’* and the postcomparator error be ye’ where g is
the precomparator amplitude error and & is the precomparator phase error; y is the
postcomparator amplitude error and y is the postcomparator phase error such that the
observed complex monopulse ratio in the presence of errors becomes:

iy _
F=ye [—gejéVA VBJ (33)
ge’*V, +V,

which can be rewritten as:
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, 2(14+7)Y =(1-7)
f — j/e.l'// § ( 7") ( I") >
g (1+r) +2g(l—r2)cos§+(l—r)
(34)
o 2(1—r2)gsin§
+-]}/e 2 2 2 2
g (1+7) +2g(1—r )cos§+(1—r)
Then using some trig and following through with the algebra it can be shown to yield the
observed monopulse ratio in the presence of errors, 7 :
et (1+ r)z cosy —2;/g(l - r2)sin1//sin§ —y(1- r)2 cosy
V=
g (1+ r)2 +2g(1—r2)cos§+(1—r)2
(35)
| 7g*(1+7) siny + 27/g(1 —~ rz)sincfcosy/ —y(1-r) siny
+J
g (1 +r)2 +2g(1 —rz)cos§+(1 —r)2
It is important to notice that this equation does not assume any inherent model of the
monopulse ratio (e.g., as in Appendix C).
Ifwelet g=1+¢, and y =1+¢, and assume small precomparator and postcomparator
errors then we can approximation equation (35) as:
g, & 2oyt &
Fra—ft-—E— v +—LE 4| 1+e ——g—l’//—+§—
2 4 2 ’ 2 4
2 2
2|l G B SV | £
2 2 4 2 4
(36)

With a very simple change, we can rewrite this equation as the deviation of the
monopulse ratio with precomparator and postcomparator errors from one without errors:
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Phase monopulse comparator error equations

(37)

This section presents a discussion of precomparator and postcomparator error equations
for phase monopulse. Unlike the idealized amplitude monopulse case, in the idealized
phase monopulse the difference channel is 90° out of phase with respect to the sum
channel when the precomparator and postcomparator errors and noise are absent. The
result is that the true monopulse ratio is a purely imaginary quantity.

Assume that the true sum and difference patterns are given as functions of the phase
squinted beams ¥, and ¥, as:

A=V, -V,
=V, +V,

,e Im{é} 1) Va=Vs (39)
> V4V,

and:

so that:
Vs
VA

(38)

(1-r)
(1% 7) (40)

As in the amplitude monopulse case we have that the observed complex monopulse ratio
after precomparator and postcomparator errors is given by:

Sy _
F= el [—ge Vs VBJ @1

gejéVA +V,

which can be rewritten as:
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(147) (e 1)

’a:yew{(1+r2)(1+g2)+2g(1—r2)0055—4gr5in9g

2g[(1—r2)sin§+2rc0s§]
(1+7)(1+g%)+2g(1-r*)cos & —4grsin &

(42)

+J

After substitution and manipulation we get:
g’ cosw(l + rz)—2gsinw[(l —rz)sin§+2rcos§}—cosw(1 + 72)
g2(1+r2)+2g[(1—rz)cos§—2rsin§}+(l+r2)
g’ sinl//(1+r2)+2gcosl//[(1—rz)sin§+2rcos§}—sim//(1+r2)
'S (1+rz)+2g[(l—rz)cos§—2rsin§]+(l+rz)

F=y
(43)

+Jjy

As a side note, we could show a relationship between the denominator for phase
monopulse and amplitude monopulse as:

(1+r2)(1+g2)+2g(1—rz)cos§—4grsin§=g2(1+r)2 +2g(1—7”2)(:os§+(1—r)2

—Z;f(g2 +2gsin§—1)

(44)

We note that the former term on the right-hand-side (RHS) of the equation is the same as
the denominator of the amplitude monopulse equation. The latter term of the RHS is the
new term unique to the denominator of phase monopulse.

We can use the same small error approximation assumptions as we did with the
amplitude monopulse system and come up with the equation:

(45)

Again, a simple substitution lets us see the difference between the monopulse ratio with
errors and one without errors for phase monopulse:
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& & & &
—jrzyg—f—il//+%+r( y—ey s
472 g_g_g_;+gy8g_§‘// 4 £
2 4 2 2 2
£ £ 2
+j é+£lq—éw+rz;——L—Z—+
2 2 T4 02
2
IR % ] S
2 2 2 4 4
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11.  Appendix C: Simplified monopulse
models

This section presents simplified models for amplitude and phase monopulse used in this
document. Although unrealizable, the purpose of this model is to be simple enough to
make the effect of system errors readily apparent.

Amplitude monopulse model

This section presents a very simple model for the various voltages in an amplitude
monopulse system. The basis of this simple model is twofold: first, the monopulse ratio
must be purely linear; second, the sum voltage must be quadratic. The equation of the
former is given by'":

r=k,0, =km( o j
93dB

where 7 is the idealized monopulse ratio, &, is a real constant referred to as the

normalized monopulse ratio slope, and 6, is the target angle € normalized to the 3 dB

angle of the antenna, 6, ,. Likewise, the sum beam voltage is given by:

Ve =1-a,0;
where:
a,=2(2-2)
Given that:
Ve=V,+V,
VA = VA - VB
then:

V,= Gj(l +r)Vy
=[5 )a-nm

The following figure shows the different patterns.

Vv
10 Very important to note that the definition of the monopulse ratio in this case is 7 = Re {—A .
z
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Figure 47: Simple simulated patterns from equations for amplitude monopulse

Phase monopulse model

For the phase monopulse model, we will follow the organization for the amplitude
monopulse to permit comparisons between phase and amplitude monopulse with errors.
We start with defining'":

r=k,0, (5D

where, again, k, is a constant and @, is the normalized angle. Similar to the amplitude
monopulse model we have:

Ve=1-a,0’ (52)

where ¢, was given previously.

Vv
n Very important to note the definition of the monopulse ratio used here is such that » = Im{—A .
b
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In this case, the model for the phase monopulse becomes:
V,=jrly (53)

and

(54)
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