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Abstract 

The earth’s atmosphere affects the velocity of propagation of microwave signals.  This 
imparts a range error to radar range measurements that assume the typical simplistic 
model for propagation velocity.  This range error is a function of atmospheric 
constituents, such as water vapor, as well as the geometry of the radar data collection, 
notably altitude and range.  Models are presented for calculating atmospheric effects on 
radar range measurements, and compared against more elaborate atmospheric models. 
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Foreword 

This report details the results of an academic study.  It does not presently exemplify any 
modes, methodologies, or techniques employed by any operational system known to the 
author. 

The specific mathematics and algorithms presented herein do not bear any release 
restrictions or distribution limitations. 

This distribution limitations of this report are in accordance with the classification 
guidance detailed in the memorandum “Classification Guidance Recommendations for 
Sandia Radar Testbed Research and Development”, DRAFT memorandum from Brett 
Remund (Deputy Director, RF Remote Sensing Systems, Electronic Systems Center) to 
Randy Bell (US Department of Energy, NA-22), February 23, 2004.  Sandia has adopted 
this guidance where otherwise none has been given. 

This report formalizes preexisting informal notes and other documentation on the subject 
matter herein. 
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1 Introduction & Background 

A fundamental relationship that is the foundation for all radar is that a target’s range is 
proportional to an echo delay time. The actual relationship requires knowledge of the 
velocity of propagation of the signal whose echo delay time is measured. For a 
microwave signal, if we assume the propagation velocity is constant, the one-way time 
delay of a propagating signal is 

c

rpath
wayonedelay , , (1) 

where 

pathr  = the path that the propagating signal takes, and 

c  = the actual (presumed constant) velocity of propagation over the path. (2) 

For a monostatic radar, the total delay is a two-way delay, which is twice this.  
Consequently, for a monostatic radar 

c

rpath
delay 2 . (3) 

We repeat that an important premise for these equations is that the velocity of 
propagation along the path is in fact constant. 

In radar, we frequently make the assumption that 

truepath rr   = the true geometric range, and 

0cc   = 2.99792458 × 108 m/s = speed of light in free space. (4) 

We note that 0c  is exact because the meter is in fact defined based on this velocity. 

We then infer the true geometric range with the simplistic rule that 

delaytrue
c

r 
2
0 . (5) 

However, this is only strictly true in free space.  It is problematic that our radars typically 
operate in the un-free atmosphere. The question is “How much does the atmosphere 
interfere with calculating the ‘true range’ from propagation delay?” 

The answer is “Somewhat.... It depends on how accurate you want to be.” For example, a 
radar operating at 25 kft altitude, and at 25 km range, might calculate range with an error 
of about 5 m based on the simplistic rule. Maybe this is good enough, and maybe it isn’t. 
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We can make some general comments at this point. 

• The velocity of propagation in the atmosphere is always slower than in free space. 
This means that objects are really ‘closer’ than they appear when using the 
simplistic rule. 

• The velocity of propagation decreases as dry air density increases, and also 
decreases as humidity increases.1,2  These things in fact vary with altitude and 
other factors.  As a consequence, calculated range errors ensue. 

This discussion often falls under the topic of “Atmospheric Refraction”, but more 
accurately is concerned with “Atmospheric Propagation”. 

And finally we note that measuring time delay has its own issues.  The radar typically 
measures time delay by counting cycles of some internal clock, which is designed to be 
accurate and precise, but does in fact exhibit its own errors.  We will hereafter ignore 
time measurement issues, and assume that we can make time measurements with 
negligible error. 

Additionally, we will assume perfect calibration of the radar, in that all internal time 
delays are precisely and accurately known and compensated. 

A Note About Target Location Accuracy 

The larger task is often to locate a target accurately and precisely with respect to an 
external geodetic datum (e.g. latitude, longitude, altitude).  Radar inherently makes 
relative measurements, specifically of range.  Angular direction measurements are made 
with Direction of Arrival (DOA) calculations, often using multiple range measurements 
from different perspectives.  The ability to make absolute measurements relies on the 
ability of the radar to accurately and precisely know its own position, and even its own 
antenna orientation, neither of which are menial tasks. 

Consequently, for accurate and precise target location, making accurate and precise range 
measurements alone are necessary, but not sufficient.  In this report we will confine 
ourselves to the range measurement, and defer the larger target location problem to future 
reports. 
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2 Accounting for the Atmosphere 

The following discussion addresses improvements to the accuracy and precision of range 
measurements; essentially when the simplistic rule isn’t good enough.  We will generally 
assume a geometric optics model for propagation. 

We will follow the analysis in a report by Robertshaw3 prepared for the Joint STARS 
project.   

There are really three ranges to consider for this discussion.  These are 

truer  = the true direct geometric distance from one point to another, 

pathr  = the true distance along the actual path of propagation, and 

radarr  = the radar simplistically calculated range. (6) 

We observe that for a monostatic radar, the simplistic model is the calculation 

delayradar
c

r 
2
0 ,  (7) 

We also note that generally the various ranges are related by 

radarpathtrue rrr  ,  (8) 

with strict equality holding only for free space.  The difference between pathr  and radarr  

is strictly due to the slowed propagation velocity along that bent ray path.  The difference 
between pathr  and truer  is due to ‘bending’ of the ray path itself.   

What follows is an examination of these various ranges.  We necessarily will make some 
assumptions that will allow us to engage this analysis, to wit 

1. We shall assume a spherical earth.  When a numerical earth radius is required, we 
will assume 

eR  = 6378 km = nominal earth radius. (9) 

2. We will assume models(s) for atmospheric refractivity as detailed in an earlier 
report by this author.4 

3. As a basis for comparison, we will equate the ground range, defined as the arc 
length along a constant earth radius between target and aircraft nadir. 
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2.1 Geometric Range 

The geometric range is defined to be ‘truth’, and does not depend on electromagnetic 
propagation, or any associated refraction.  We define the geometry with the parameters 

hs = altitude of target surface, 
ha = altitude of aircraft, 

truer  = true geometric range from aircraft to surface target, 

e = angular difference between aircraft and target from earth center, 
d = depression angle at aircraft (positive below horizontal), and 
g = grazing angle at target (positive above horizontal). (10) 

These are illustrated in Figure 1. 

 

Earth

Radar

Target

Re

Re

ha

hs

d

g

rtrue

e

 
Figure 1.  Spherical earth geometry. 



- 11 - 

 

These parameters are related via the following set of equations, derived using the Law of 
Cosines for planar surfaces. 

   
   ae

true

ae

sa

true

sa
d hR

r

hR

hh

r

hh


















22

1sin ,  

   
   se

true

se

sa

true

sa
g hR

r

hR

hh

r

hh


















22

1sin , and 

   
  aese

satrue
e hRhR

hhr





2

1cos
22

 . (11) 

Furthermore, 

      daesedaetrue hRhRhRr  222 cossin  ,  

        222 2sinsin sasasegsegsetrue hhhhhRhRhRr   , or 

     2cos12 saeaesetrue hhhRhRr   .  (12) 

The arc length along the earth’s surface (assumed to be at the target altitude) between 
nadir and the target, is given by 

  ese hRd  .  (13) 

Combining all this yields the ability to calculate geometric ‘slant range’ from ground 
range as 

    2cos12 sa
se

aesetrue hh
hR

d
hRhRr 




















 .  (14) 

Example 

We offer as example the following input geometry. 

sh  = 0, 

ah  = 10 kft = 3048 m, and 

d  = 100 km. (15) 

From these input parameters we calculate (perhaps with excessive precision) 

truer  = 100069.297 m. (16) 
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2.2 Propagation Path Range 

The propagation path range takes into consideration the bent ray path of propagation, due 
to atmospheric refraction.  It does not consider effects of the speed of propagation 
otherwise.  This range is independent of any time delays along the path. 

From the earlier report we identify the calculation of the propagation path range as the 
line integral 

dhdhr
a

s

a

s

h

h

h

h
path  


























 2cos1

1

sin

1
, (17) 

where the instantaneous angle cosine is calculated from 

 























h

sh
hd

hd

dn

n

e

se
g e

hR

hR
1

coscos  .  (18) 

Herein we identify the refraction index as  

 Nn 6101    = index of refraction proper, and 
N = measure of refractivity in N-units. (19) 

The index of refraction in the atmosphere (where relative permeability is inconsequential) 
is related to the relative permittivity, or dielectric constant as 

rn 
 
, (20) 

where 

r
 
= atmosphere relative dielectric constant. (21) 

These are generally a function of altitude.  Bean and Thayer5 offer a model of how 
refractivity changes with altitude.  We write their segmented model’s dependence of 
refractivity on altitude as 
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1
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hhhNhhN
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h

s
H

hh

ssss

s

  (22) 

where 

Ns = a measure of refractivity in N-units at the surface, 
N1 = a measure of refractivity in N-units at 1000 m above the surface, 

N  = refractivity linear decay constant in N-units per meter, and 
H = refractivity exponential decay constant in meters.  (23) 

Bean and Thayer offer that the refractivity decay constants can be calculated by 

sNeN 005577.000732.0  , and 












105
ln

8000

1N

h
H s  . (24) 

Simpler approximations to this model are offered in the earlier report.  Across the 
continental US, the parameter sN  ranges from about 250 in dry air to about 400 in 

extremely humid air.  It may be calculated from more conventional meteorological data, 
as is discussed in Appendix A.  For completeness, we also identify 

  ss Nn 6101 
 
= index of refraction at the surface. (25) 

The ground range can be calculated as 

dh
hR

hR
dh

hR

hR
d

a

s

a

s

h

h e

se
h

h e

se  
















































 2cos1

cos

tan

1
. (26) 

So, at this point we have the ability to calculate propagation path range pathr  and ground 

range d from an input target height hs, radar height ha, refractivity profile  hN , and 

grazing angle g .  These calculations require an integration (perhaps numerical) of a 

function of refractivity.  What we would like instead is to start with ground range d 
instead of grazing angle g , and therefrom calculate propagation path range pathr .  To 

accomplish this, we offer the following strategy. 
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1. Use your favorite numerical technique to find the right grazing angle g  to yield 

the desired ground range d.  Such a technique might be iterative.  The nature of 
the relationship is conducive to gradient search techniques. 

2. With the proper grazing angle identified, we may calculate the propagation path 
range pathr . 

Example 

We offer as example the following input geometry. 

sh  = 0, 

ah  = 10 kft = 3048 m, and 

d  = 100 km. (27) 

In addition, we will assume the segmented model of Bean and Thayer for refractivity 
versus height, with a surface refractivity of 

Ns = 313 N-units. (28) 

From these input parameters we calculate (again perhaps with excessive precision, but to 
make a point) 

g  = 1.4028 degrees, and 

pathr  = 100069.344 m. (29) 

This differs from the true range by 4.7 cm, which is less than 1 ppm.  

2.3 Radar Range 

The radar range is calculated as proportional to the time delay of the radar signal along 
the propagation path.  The constant of proportionality is an assumed propagation velocity.  
We will make the common assumption that the reference velocity of propagation is that 
in free space.  Specifically, for a monostatic radar we identify 

2
0 delay

radar

c
r


 , (30) 

where 

delay  = the round-trip (two-way) echo delay time. (31) 
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Since the refractivity is a function of altitude, the actual velocity of propagation is also a 
function of altitude.  Consequently, the time it takes the radar wavefront to propagate a 
fixed differential distance also is a function of altitude.  Consequently, the round-trip 
echo delay time can be calculated as a weighted line integral 

dh
c

a

s

h

h
delay  




















2cos1

1
2 , (32) 

where   is a function of the index of refraction as previously given, and the velocity of 
propagation is also a function of the index of refraction as 

n

c
c 0 . (33) 

Combining several of the previous equations yields 

dh
n

dh
n

r
a

s

a

s

h

h

h

h
radar  


























 2cos1sin
. (34) 

As before, we would like to start with ground range d instead of grazing angle g , and 

therefrom calculate propagation path range pathr .   

Example 

We offer as example the following input geometry. 

sh  = 0, 

ah  = 10 kft = 3048 m, and 

d  = 100 km. (35) 

As before, we will assume the segmented model of Bean and Thayer for refractivity 
versus height, with a surface refractivity of 

Ns = 313 N-units. (36) 

From these input parameters we calculate 

g  = 1.4028 degrees, and 

pathr  = 100095.452 m. (37) 

This differs from the true range by 26.154 m, or approximately 261 ppm. 
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2.4 A Comparison of Ranges 

We note from the previous analysis, and especially the examples, that the relative 
differences exhibit the characteristic 

    pathradartruepath rrrr  . (38) 

That is, the effect of the ‘bending’ the propagation path is much smaller than the effect of 
‘slowing down’ the propagation velocity.  This is consistent with the literature, which 
suggests that we may typically assume as a practical matter that 

truepath rr  . (39) 

We explore this some more in the following plots. 

Figure 2 shows the difference in pathr  and truer , for a continental US average surface 

refractivity of 313 N-units, for a rather dry surface refractivity of 250 N-units, and for a 
rather humid surface refractivity of 400 N-units. 

Figure 3 shows the difference in radarr  and truer , for a continental US average surface 

refractivity of 313 N-units, for a rather dry surface refractivity of 250 N-units, and for a 
rather humid surface refractivity of 400 N-units.   

Indeed, these plots show that for even somewhat extreme conditions (i.e. 200 km range, 
shallow grazing angles, humid atmosphere, etc.) the difference between propagation path 
range and true range is rarely greater than 1 m (5 ppm) or so, and is overwhelmed by the 
difference between radar range and true range. 

2.5 Finding the True Range from the Radar Range 

When all is said and done, the radar reports radarr , but we really want truer .  So the task 

at hand is to begin with radarr  and calculate truer  from it, based on knowledge (either real 

or assumed) of the propagation characteristics. 

Using the foregoing analysis, we propose the following general outline for accomplishing 
this with maximum precision and accuracy. 
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Figure 2.  Difference between propagation path range and true range.  Target height for these plots is 
assumed to be 0. 
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Figure 3.  Difference between radar range and true range.  Target height for these plots is assumed 
to be 0. 
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1. We shall assume as input to this process the aircraft/radar altitude ah , the target 

altitude sh , the measured radar range radarr , and a model for the refractivity as a 

function of altitude N(h). 

2. Use your favorite numerical technique to find the right grazing angle g  to yield 

the measured radar range radarr .  Such a technique might be iterative.  The nature 

of the relationship is conducive to gradient search techniques. 

3. With the proper grazing angle identified, we may calculate the ground range d .  
This is also likely a numerical integration. 

4. From the ground range d, we may now calculate the true geometric range truer . 

We stipulate that this is a rather cumbersome procedure.  Hence, we desire something 
simpler to implement, but still with adequate precision and accuracy. 

Ideally, we wish to find an easily calculable function that lets us calculate truer  from 

radarr .  We generically write this as 

 radarcorrecttrue rfr  . (40) 

The principal goal of this report is to develop and/or present suitably simpler, but still 
adequate, functions  radarcorrect rf .  The preference would be something that doesn’t 

involve numerical integrations and iterative techniques. 

2.6 Effects of Unknown Refractivity 

An important question is “What if we guess wrong on surface refractivity?”  Clearly this 
should yield errors in our calculation of true range from the measured radar range.  

We present as example several plots where the radar range was calculated using some 
‘true’ value, but the estimated true range was calculated based on an ‘assumed’ nominal 
value for surface refractivity.  In all cases, the segmented refractivity model of Bean and 
Thayer was used.  Figure 4 uses a reference value of 313 N-units for extreme true values. 
Figure 5 uses an assumed value within 25 N-units of a true extreme value of 400 N-units. 

A simplistic heuristic rule-of-thumb might be that at 25 kft, a surface refractivity error of 
25 N-units will account for approximately 10 ppm error.  This would be roughly doubled 
at 5 kft. 
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Figure 4.  True range estimation error due to using inaccurate surface refractivity. 
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Figure 5.  True range estimation error due to using inaccurate surface refractivity. 
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3 Empirical Approximations 

We offer next an empirical model from the literature. 

The Robertshaw Model 

A report by Robertshaw3 in support of the Joint STARS program derived an empirical 
relationship that can be manipulated to the expression 

 
1

1


















kft

s
radartrue h

N
BArr . (41) 

where 

A  = 0.42 m, 
B

 
= 0.0577 × 103 (kft/N-unit)0.5,

  kfth
 
= radar altitude in kft,

 
sN
 
= measure of surface refractivity. (42) 

We note that the sign on the constant A is different than in the Robertshaw report.  This is 
necessary to make this model consistent with his tabulated results.   

This model was designed to match a higher-fidelity simulation (based on a MITRE ray-
trace method using the Bean and Thayer segmented model) for altitudes from 15 kft to 65 
kft, for ranges from 40 km to 200 km, and a target height of 1 kft.  This model, along 
with ‘truth’ points provided by Robertshaw, is shown in Figure 6.  Robertshaw’s model 
matches his truth points with an RMS error of 1.42 m.  This is actually quite good for as 
simple a model it is. 
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Figure 6.  Solid lines represent the Robertshaw model, whereas asterisks represent ‘truth’ data.  
Each color quartet represents Ns values of 250, 300, 350, and 400 N-units. 
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Several points are worth stressing. 

• Data from Robertshaw’s report shows mean values for surface refractivity are in 
the range of 330 with a standard deviation in the range of 20 or so.  Although this 
is slightly more humid than the continental US average of 313, it is nevertheless 
still pretty close. 

• It is important to remember that this empirical relationship is derived from data 
calculated from the Bean and Thayer segmented model, but over a limited set of 
altitudes, a limited set of ranges, and one specific target height.  Over this 
parameter space there seems to be a relatively good fit.  There is no indication of 
utility outside this parameter space, although some obvious problems exist. 

• Most models tend to assume (this one included) horizontally stratified layers (or 
at least parallel to the earth’s surface), and neglects inversion situations and 
horizontal gradients. Usually this seems to work pretty well. Places where this 
does tend to be a little off is near water/land boundaries, especially where dry 
desert air meets humid ocean air, like the coastal regions of the Persian Gulf. 

• In this simplified model, and consistent with truth data, what makes things worse 
are 1) lower altitudes, and 2) more humidity. 

In any case, combining some equations lets us write 

radar
avg

true r
c

c
r 










0

, (43) 

where we estimate an approximate average velocity of propagation as 

1

0 1
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
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h
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A
cc s
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avg , (44) 

which is reasonably good over Robertshaw’s report’s parameter space.  This is plotted in 
Figure 7.  One problem is that at some parameter combinations, this allows a velocity of 
propagation that exceeds that of free space.  Consequently, a reasonable modification 
might be 


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00 1,min
h

N
B

r

A
ccc s

true
avg , (45) 

Note that the average velocity of propagation seems to behave undesirably at the shorter 
ranges, where a number of short and medium range radar systems often are employed.  
Using this model gives a range correction as indicated in Figure 8.   
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Another question is “How well does the Robertshaw model compare with the true range 
estimate from the previous section using our numerical integration of the Bean & Thayer 
model?”  To answer this, we offer the range error plots in Figure 9.  We observe that at 
altitudes above 15 kft, and ranges beyond 40 km, the difference tends to be less than a 
couple of meters or so for nominal surface refractivity, comparing favorably with the 
errors displayed in Figure 6.  The differences may be somewhat more for some extreme 
surface refractivity as also illustrated in Figure 9.  We observe, however, that for all cases 
below 15 kft, the differences grow rather large, even at relatively short ranges. 

Joint STARS notwithstanding, many ISR radar sensors do in fact operate at lower 
altitudes, and at the ranges precisely where this particular empirical model exhibits some 
difficulties. 

While the Robertshaw model is relatively easy to calculate, nevertheless a reasonable 
question is “Is there a better model for the larger parameter space?”  The answer is 
“Better models exist at the price of a little more complexity.” 
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Figure 7.  Velocity of propagation vs. range from the Robertshaw empirical model with Ns = 330, and 
altitude labels in kft.  Solid lines denote valid parameter space for the model. 
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Figure 8.  Calculated range correction vs. range and altitude from the Robertshaw empirical model 
with Ns = 330, and altitude labels in kft.  Solid lines denote valid parameter space for the model. 
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Figure 9.  True range estimation error of the Robertshaw model compared to numerical integration 
of the segmented Bean and Thayer model.  Target height for these plots is assumed to be 0. 
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4 Model Approximations and Simplifications 

We now examine some simplifications to the numerical techniques of the first section. 

4.1 Using Single Exponential Model for Refractivity 

We now use essentially the technique outlined in Section 2.5 except that we will use a 
single exponential model for the refractivity as a function of altitude, instead of using the 
segmented Bean and Thayer model.  Specifically, we will assume 

 
 

b
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hh

s eNhN
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  , (46) 

where 
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We will presume that our interest is principally over an altitude range of 0 to 50 kft, so 
we might choose 

m 12192 kft 40 bh , and 

65.66bN  N-units. (48) 

This lets us calculate the instantaneous depression angle as a function of altitude as the 
closed form expression 
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Otherwise we are still using iterative techniques to find the grazing angle, and numerical 
integration to find ground distance d.   

Figure 10 details the error of this model compared to the Bean and Thayer segmented 
mode.  We observe that even for worst case humid air, the error is less than 1 m out to 
100 km ground range, and less than 2 m out to 200 km ground range, over the entire 0 to 
65 kft altitude range. 

The point of all this is to show that the single exponential model for refractivity works 
reasonably well, contributing no more than 10 ppm error even for worst case conditions. 
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Figure 10.  True range estimation error of the single exponential model compared to numerical 
integration of the segmented Bean and Thayer model.  Target height for these plots is assumed to be 
0. 
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4.2 Mean Index of Refraction 

Our desire now is to find a representative average value of propagation such that 
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c

r 
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 ,  (50) 

where 

avgc  = the average propagation velocity over the round-trip path. (51) 

This implies that 
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We recall that 
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We note that the instantaneous angle  typically doesn’t vary very much.  If we assume 
that the angle is constant, and that we can arguably approximate using a flat earth model 
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then the integration simplifies to merely over the refraction index itself, that is 
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This may be manipulated to the expression for the average velocity of propagation as 
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Note that the denominator is simply the mean index of refraction over height.  We can 
calculate this using the single exponential model of refractivity over height as  
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Figure 11.  True range estimation error of the mean index of refraction model compared to 
numerical integration of the segmented Bean and Thayer model.  Target height for these plots is 
assumed to be 0. 
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Carrying out this integration yields the closed-form solution 
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Rearranging this yields the following expression for average velocity of propagation as 
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This allows us to write the calculation for true range as 
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Note that since the denominator is so close to one, this may also be approximated as 
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Figure 11 details the error of this model compared to the Bean and Thayer segmented 
model.  We observe that even for worst case dry air, the error is less than 1 m out to 120 
km ground range, and not much more than 2 m out to 200 km ground range, over the 
entire 0 to 65 kft altitude range. 
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Comparison to Robertshaw Model 

It is interesting to compare this model to the Robertshaw empirical model.  Although this 
mean index of refraction model is a little more complicated than the Robertshaw 
empirical model, it is more of an analytical approximation and does not fall apart at 
nearer ranges and lower altitudes. 

This model, along with ‘truth’ points from the Robertshaw model, is shown in Figure 12.  
This model matches the truth points with an RMS error of 1.06 m.   

Consequently, we observe that even over the data set that Robertshaw provided with his 
empirical model, the mean index of refraction model provides a somewhat better fit. 

Interestingly, by making the refractivity versus height model more accurate at lower 
altitudes by selecting for the single exponential model the parameters 

m 9144 kft 30 bh , and 

9.102bN  N-units, (62) 

we can improve the match to Robertshaw’s truth points to an RMS error of 0.85 m. 

An optimization of these parameters for Robertshaw’s truth points is beyond the scope of 
this report. 
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Figure 12.  Solid lines represent the mean index of refraction model, whereas asterisks represent 
‘truth’ data from the Robertshaw model.  Each color quartet represents Ns values of 250, 300, 350, 
and 400 N-units. 
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5 Range Correction Strategies 

Once we have estimated the range correction applicable to our radar data, for example a 
SAR image, the question becomes “When do we actually apply the correction?”  We 
examine two principal strategies below. 

5.1 Real-Time Correction 

Employing an average velocity of propagation calculated using for example the mean 
index of refraction lends itself to real-time correction of the raw radar data itself, as an 
integral part of timing and control equations. 

Pros: 

The prospect that the radar products emanating from the radar itself are already 
compensated for the atmosphere is very enticing. 

Cons: 

The velocity of propagation used for, say, different SAR images will itself likely be 
different for each image.  Consequently, a SAR image’s pedigree (header or other 
auxiliary meta-data) really needs to contain the specific velocity of propagation employed 
during its real-time data collection and processing.  This would be required to facilitate 
any post-processing to enhance range accuracy even further should newer or better 
environmental data be secured. 

5.2 Post-Processing Correction 

Employing a constant reference velocity of propagation (say, for free space) is the 
conventional technique for real-time processing.  Any range accuracy improvement 
would need to be a post-processing correction. 

Pros: 

The advantage of this strategy is that the real-time data collection and processing are 
simple, conventional, and with predictable characteristics.  Since free-space velocity of 
propagation is well-known, it need not be incorporated in the radar product’s header or 
meta-data.  Any post processing does not have to ‘guess’ at what corrections might, or 
might not, have been employed during real-time processing. 

Cons: 

This strategy guarantees that real-time data products coming out of the radar have no 
compensation at all.  These products  would definitely require a post-processing stage to 
do any kind of range accuracy enhancement.   
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5.3 Which is Best Strategy? 

To first order, there is no ‘best’ strategy. 

However, there is one strategy that definitely is ‘worst’.  This would be the case of using 
a non-standard reference velocity of propagation during real-time data collection and 
processing, however it might be calculated, and not reporting its value in the radar 
product’s (e.g. SAR image’s) header or meta-data.  This tactic actually ‘adds’ uncertainty 
to the radar product instead of reducing it. 

This author’s advice is “Don’t do this.” 
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6 Conclusions 

We summarize herein the following. 

 Radar systems essentially make timing measurements between transmitted and 
received echo signals.  Range is calculated with some assumption of the velocity 
of propagation of the radar waveform energy. 

 The atmosphere’s dielectric properties, principally owing to its temperature, 
humidity, and pressure, will affect the propagation velocity.  Furthermore, the 
atmospheric properties vary with altitude, effecting refraction to yield non-
straight-line propagation as well as non-uniform propagation velocity. 

 Actual propagation velocity deviations from the simplest free-space model impart 
an error in the calculated range.  These errors can easily exceed 300 ppm in some 
circumstances. 

 Various models for atmospheric characteristics and their effects on radar signal 
propagation have been developed.  These models can often be further simplified 
and approximated to yield corrections to range measurements.  This has been 
done in this report. 
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“We find no sense in talking about something unless we specify how we measure it; a 
definition by the method of measuring a quantity is the one sure way of avoiding talking 
nonsense...”  — Sir Hermann Bondi 
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Appendix A – Estimating Surface Refractivity 

The principal cause of range error in the atmosphere is its refractivity function along the 
propagation path, mainly due to water content.  Short of measuring this directly, which is 
decidedly impractical, we are limited to using reasonable models.  We have in fact 
modeled this as a dependent principally on the surface refractivity, and referenced maps 
of mean values for these for the continental US.  Of course, if we have better information 
of surface refractivity at the place and time of our radar data collection mission, rather 
than simple regional averages, then we may be able to improve our range error estimates.  
Towards this end, it is useful to be able to estimate surface refractivity based on more 
commonly available atmospheric metrics, such as temperature, relative humidity, and 
barometric pressure.  We relate these here. 

Smith and Weintraub6 present the following model for calculating refractivity 











s

s
s

s
s T

e
p

T
N 4810

6.77
, (A1) 

where 

sp  = total atmospheric pressure in millibars (mb), or hectoPascals (hPa), 

se  = partial pressure of water vapor in millibars (mb), or hectoPascals (hPa), 

sT  = absolute temperature in Kelvin (K). (A2) 

We have added the subscript “s” to these parameters to denote their being target surface 
parameters.  We also note that 

1 mb = 1 hPa. (A3) 

Smith and Weintraub indicate that this model is accurate “to within 0.5% over a 
parameter space limited to temperature ranges of 50 to +40°C, total pressures of 200 to 
1,100 mb, water vapor partial pressures of 0 to 30 mb and a frequency range of 0 to 
30,000 mc [MHz]”. 

We now examine these individual terms. 

Absolute Temperature 

Absolute temperature is pretty straightforward.  We note that 

0 C = 273.15 K, (A4) 

with equal numerical increments. 
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Partial Pressure of Water Vapor 

More commonly, this is expressed in terms of Relative Humidity.  Accordingly, we 
identify the partial pressure of water vapor as 

ssatss ee , , (A5) 

where 

s  = surface relative humidity, with 10  s , and 

ssate ,  = surface saturation water vapor pressure. (A6) 

The saturation water vapor pressure has been modeled with several different equations, 
some quite elaborate.  We will use an approximation known as the Antoine equation, 
namely 












 7240.39

63.1730
1962.8

, 10 sT
ssate  mb. (A7) 

This approximation is designed for the range   9915.2730  T . 

Another approximation might be 

    787662.015.273030964.015.273000098.0
,

2

10  ss TT
ssate  mb. (A8) 

This approximation is designed for the range   5015.2730  T .  It matches the 
Antoine equation pretty closely over this range. 

It is useful to note that the temperature at which the relative humidity is unity is the “dew 
point”. 

Total Atmospheric Pressure 

The total atmospheric pressure value that we need is that at the target surface, regardless 
of target surface’s altitude above sea level.  However, when atmospheric pressure is 
reported by a station, it is customary to report the atmospheric pressure as some 
equivalent pressure at sea level.  This equivalent Mean Sea Level Pressure (MSLP) is the 
atmospheric pressure normally given in weather reports in the media (radio, television, 
newspapers, internet, etc.). 

We begin with an equation known as the Barometric formula, stated as 
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RL

gM

s
s T

Lh
pp 










0
0 1 , (A9) 

where 

0p  = sea-level reference atmospheric pressure in millibars (mb), 

L  = 0.0065 K/m = temperature lapse rate, 

sh  = target surface height above mean sea level in meters (m), 

0T  = sea-level reference atmospheric temperature in Kelvin (K), 

g  = 9.80665 m/s2 = gravitational acceleration at earth’s surface, 
M  = 0.0289644 kg/mol = molar mass of dry air, 
R  = 8.31447 J/(mol K) = universal gas constant. (A10) 

In addition, the temperature at the target surface is modeled as 

ss LhTT  0 . (A11) 

These can be manipulated to the equation 

RL

gM

ss

s
s LhT

T
pp 










 0 . (A12) 

This lets us use surface height, surface temperature, and sea-level pressure to calculate 
surface atmospheric pressure. 

We note that we may calculate the exponent as 


RL

gM
 5.2558. (A13) 

An average sea-level atmospheric pressure is commonly given as 1013.25 mb.  Extreme 
atmospheric pressures (adjusted to sea level) might vary from 870 mb measured during 
Typhoon Tip in the western Pacific Ocean (1979) to 1092 mb measured in 
Tonsontsengel, Mongolia (2004).  Extremes recorded for the United States range from 
892 mb in Long Key, FL (1935), to 1064 mb in Miles City, MT (1983). 
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Putting it All Together 

Given the following parameters 

sh  = target surface height above mean sea level in meters (m), 

celsiussT ,  = surface temperature in Celsius (C), 

s  = surface relative humidity, with 10  s , and 

0p  = sea-level reference atmospheric pressure in millibars (mb), (A14) 

we may calculate the surface refractivity with the following sequence of equations. 

First we convert the surface temperature to absolute, in Kelvin, as 

15.273,  celsiusss TT  = surface temperature in Kelvin (K). (A15) 

Then we calculate the surface water partial pressure in millibars (mb) as 












 7240.39

63.1730
1962.8

10 sT
sse  = water partial pressure in millibars (mb). (A16) 

Then we calculate the surface atmospheric pressure in millibars (mb) as 

RL

gM

ss

s
s LhT

T
pp 










 0 = total surface atmospheric pressure in millibars (mb).  

  (A17) 

Finally, we calculate the surface refractivity in N-units as 


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s
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. (A18) 
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Exploring Some Numbers 

An average value for Ns for the continental US is given by Bean7 as 313 N-units, whereas  
Altshuler8 reports that his data shows that “the average global surface refractivity is 324.8 
N-units and that the standard deviation of [his] sample is 30.1 N-units.” 

We now offer some specific examples. 

 

Example 1. 

Consider the example of a spring early morning on a high plateau, with 

sh  = 2438 m (8000 ft), 

celsiussT ,  = 4.44 C (40 F), 

  = 1, and 

0p  = 1013.25 mb. (A19) 

Note that the specified temperature is the dew point.  Under these conditions, we 
calculate the surface refractivity as 

sN  = 252. (A20) 

 

Example 2. 

Consider the example of a warm humid day on the sea coast. 

sh  = 0 m (0 ft) = sea-level, 

celsiussT ,  = 29.44 C (85 F), 

  = 0.85, and 

0p  = 1013.25 mb. (A21) 

Under these conditions, we calculate the surface refractivity as 

sN  = 402. (A22) 
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Some Plots 

As an exploration of the sensitivity of surface refractivity to some of these input 
parameters, we offer some plots of surface refractivity contours for two parameters at a 
time. 

Figure 13 shows surface refractivity as a function of atmospheric pressures (adjusted to 
sea level) and relative humidity, at 23 C and at sea level.  This plot shows a much 
stronger dependence on relative humidity than on the atmospheric pressure itself.  Figure 
14 shows the same function, but at a surface temperature of 4 C.  Note that cooler air with 
the same relative humidity has a lower water partial pressure, and thus yields a lower 
surface refractivity.  Nevertheless, there is still a somewhat greater dependence on 
relative humidity than on the atmospheric pressure itself. 

Figure 15 shows surface refractivity as a function of atmospheric pressures (adjusted to 
sea level) and target surface height, at 23 C and 50% relative humidity.  This plot shows a 
much stronger dependence on target surface height than on the atmospheric pressure 
itself.  Figure 16 shows the same function, but at a surface temperature of 4 C.  As with 
earlier plots, the cooler air with the same relative humidity has a lower water partial 
pressure, and thus yields a lower surface refractivity. 

Figure 17 shows surface refractivity as a function of atmospheric pressures (adjusted to 
sea level) and target surface temperature, at sea level and 50% relative humidity.  This 
plot shows a much stronger dependence on target surface temperature than on the 
atmospheric pressure itself, at least for the higher temperatures.  Figure 18 shows the 
same function, but at a surface relative humidity of just 25%.  The dryer air clearly offers 
a lower surface refractivity, and also reduces somewhat the surface refractivity sensitivity 
to temperature. 
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Figure 13.  Surface refractivity as a function of surface relative humidity and MSLP. 
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Figure 14.  Surface refractivity as a function of surface relative humidity and MSLP. 
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Figure 15.  Surface refractivity as a function of surface height and MSLP. 
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Figure 16.  Surface refractivity as a function of surface height and MSLP. 
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Figure 17.  Surface refractivity as a function of surface temperature and MSLP. 
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Figure 18.  Surface refractivity as a function of surface temperature and MSLP. 
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“If it can't be expressed in figures, it is not science; it is opinion.” 
— Robert Heinlein 
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