SANDIA REPORT

SAND2013-10789
Unlimited Release
Printed December, 2013

Power/Energy Use Cases for High
Performance Computing

James H. Laros lll, Suzanne M. Kelly, Steven Hammond, Ryan EImore, and Kristin
Munch

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2013-10789
Unlimited Release
Printed December, 2013

Power /Energy Use Cases for High Performance Computing

James H. Laros III #', Suzanne M. Kelly #, Steven Hammond &,
Ryan Elmore ¢, Kristin Munch ¢
Sandia National Laboratories
! jhlaros@sandia.gov
& National Renewable Energy Laboratory

Power and Energy have been identified as a first order challenge for future extreme scale high performance
computing (HPC) systems. In practice the breakthroughs will need to be provided by the hardware vendors.
But to make the best use of the solutions in an HPC environment, it will likely require periodic tuning by
facility operators and software components. This document describes the actions and interactions needed to
maximize power resources. It strives to cover the entire operational space in which an HPC system occupies.
The descriptions are presented as formal use cases, as documented in the Unified Modeling Language Spec-
ification [1]. The document is intended to provide a common understanding to the HPC community of the
necessary management and control capabilities. Assuming a common understanding can be achieved, the
next step will be to develop a set of Application Programing Interfaces (APIs) to which hardware vendors
and software developers could utilize to steer power consumption.

Acknowledgements

The authors thank the reviewers of the first version of this document: David Jackson and Michael Jackson
and Mary Smuin and Gary Brown, Adaptive Computing; Peter Bailey and Wei Huang and Bobbie Manne
and Bill Brantley, AMD Research; Steven Martin, Cray, Inc.; Natalie Bates, Energy Efficient HPC Working
Group; Suda Yalamanchili, Georgia Tech University; Nic Dube, HP; Mike Lang and Josip Lancaric, Los
Alamos National Laboratory; and Mike Sheppy, National Renewable Energy Laboratory.

Contents

1 Introduction 7
2 Use Case DIAGTamst e e 8
2.1 At Or . o 8
2.2 411" 04 8
2.3 AT oW . 8
2.4 USE CaSE -« vt ettt e 8
2.5 Generic Use Case Text 12
2.5.1 ACtOr 12
2.5.2 SYSEeIML . L o 12
2.5.3 USE CaASE . . v vttt e e e e 12
2.5.4 Description e 12
2.5.5 Trigger . . oo 13
2.5.6 Flow of Events 13
2.5.7 Alternative Paths 13
2.5.8 Frequency 13
2.5.9 Input Data e 13
2.5.10 Output Data 13
2.5.11 Pre Condition 13
2512 Post Condition 13
2.5.13 Power APIL. ... 14
3 Power API Use Case Diagrams and Text i i 15
3.1 Top Level Use Case Diagram i 15
3.2 Combined Use Case Diagrams 16
3.3 Actor: Facility Manager
System: Facility Hardware e 18
3.3.1 Use Case: Set Facility Power Parameters 19
3.4 Actor: Facility Manager
System: HPCS Managert e 20
3.4.1 Use Case: Communicate Facility Power Policies 21
3.5 Actor: HPCS Manager
System: HPCS Resource Managert 22
3.5.1 Use Case: Set Power Aware Scheduling Policies 23
3.6 Actor: HPCS Resource Manager
System: HPCS Monitor and Control 24
3.6.1 Use Case: Query Platform Power Settings 25
3.7 Actor: HPCS Resource Manager
System: HPCS Operating System, 26
3.7.1 Use Case: Configure Power Aware Nodes. 27
3.7.2 Use Case: Run Power Aware Job 28
3.7.3 Use Case: Reset Nodes . ..o e 29
3.8 Actor: HPCS Operating System
System: HPCS Hardware e 30
3.8.1 Use Case: Set Power State i 31
3.8.2 Use Case: Query Power/Energy Statisticsco ... 33

3.9 Actor: HPCS Monitor and Control
System: HPCS Hardware e 34
3.9.1 Use Case: Set Power Parameters 35
3.10 Actor: HPC Application
System: HPCS Operating System, 36
3.10.1 Use Case: Set Power State, 37
3.10.2 Use Case: Query Power Statistics 38
3.11 Actor: HPCS Accounting
System: HPCS Monitor and Control 39
3.11.1 Use Case: Get Job(s) Power Report ..., 40
3.12 Actor: HPCS Admin
System: HPCS Monitoring and Control. 41
3.12.1 Use Case: Set Power Parameters 42
3.12.2 Use Case: Respond to Power Related Event 43
3.13 Actor: HPC User
System: HPCS Monitoring and Control. 44
3.13.1 Use Case: Get Job Power Report 45
3.14 Actor: HPCS User
System: HPCS Resource Manager, 47
3.14.1 Use Case: Submit Power Aware Job........ 48
3.14.2 Use Case: Evaluate Power Aware Opportunities 49
Appendices 50
A Brief Power Aware HPC Scenariost e 50
A.1 Dynamic Frequency Scaling 50
A.2 Demand Response Signals from Utility Providers 50
A3 Change Energy Recovery. 50
A4 Micro-grid Demand Management it 50
A5 Shifting Power SOUrce 50
A6 Mission or Time Critical Computing Need i, 51
A7 Computation with an Energy Budget i 51
A.8 Real-Time Node Energy Managementttt 51
A9 User-accessible Power Analysis Tool.......... 51
A.10 Predictable Applications 51
B Extended Power Aware HPC Scenarios i 52
B.1 Campus/Facility Power and Energy Management.c..ooiiieen... 52
B.1.1 SCENATIO .« .« v vttt 52
B.2 Increase Application Efficiency 52
B.2.1 SCENATIO .« ¢ vttt 52
B.2.2 NoOtes . oot 53
B.2.3 Requirements for Increasing Application Efficiency 53
B.3 Power Cappingt 54
B.3.1 SCENATIO . . . v vttt 54
B.3.2 NoOteS . et 54
B.3.3 Requirements for Power Capping, 54

1 Introduction

Addressing anticipated HPC computational needs within reasonable power constraints requires significant
advances in hardware power efficiency. To achieve the greatest efficiency from next-generation hardware at
scale, software at many levels will need to coordinate and optimize the underlying hardware. While com-
modity pressures will drive useful innovations in this area that can be leveraged, our efforts are distinguished
by our requirements at scale. The goal of this document is to identify the critical multi-level measurement
and control requirements necessary to enable power and energy management of next-generation HPC plat-
forms. We strive to cover a wide spectrum of needs, from facility to component. That said, our goal is
also to bound or constrain the problem space, so that the reader obtains a firm grasp of the complete set of
requirements. The ultimate goal, which is not covered in this document, is to evolve these requirements into
a set of power-related Application Programming Interfaces (APIs) that can be implemented throughout an
HPC system’s software stack. While some APIs will likely be foundational and mandatory, not all APIs will
need to be implemented at the same time.

The resulting API is not intended for a specific system. But rather, it is for general adoption within the
HPC community. Community acceptance is always difficult to achieve, with no clear path to follow to ensure
a definitive successful outcome. Our approach was to begin with requirements identification and send them
out for review. The first review was done via email to a small set of reviewers. We incorporated feedback and
produced this formal document. We are presenting the concepts contained herein at HPC workshops hoping
to garner feedback and support. Concurrent with the workshops, we are drafting the API specification and
selecting portions for reference implementations.

This paper documents our work in requirements identification. The authors elected to create use cases to
model the ways power measurement and control capabilities will be used in HPC systems. The requirements
are naturally captured in the use case documentation. Use cases were introduced in the 1990’s as a down-
to-earth technique for specifying the way in which a system would be used. They are considered a superior
approach to identifying what a system will do. They are in contrast to a laundry list of specifications that are
prone to mis- or broad interpretation by the reader. The term use case is no longer specific to its origin [2]
that became part of the Unified Modeling Language (UML) Specification developed by Booch, Jacobson,
and Rumbaugh [1]. UML later became specification ISO/IEC 19501:2005. This document employs Version
1.4 of the use case model within the UML standard. Our primary guidance document was [3].

Section 2 will present an overview of use cases and how we use them to express requirements and interfaces.
Section 3 will specify the use cases for power monitoring and control within an HPC system. The Appendix
provides some scenarios we drafted prior to creating the use cases. The scenarios cover multiple interactions,
and therefore multiple use cases were derived from them. They are not a complete set of scenarios. We
document them here as they were our first exploratory step before creating the use case diagram.

2 Use Case Diagrams

The following is a description of what a Use Case Diagram (UCD) represents in the context of this document.
The term UCD has become quite overloaded. We will continue to overload the term as described below.

In this document a UCD is comprised of a small set of components (Actor, System, Arrows and one or
more use cases). The components contained in a UCD are described in the following subsections. In the
context of this document a UCD is intended to describe a very high level of interaction between a single
Actor and a single System. Taken in mass, all of the Actor/System pairs will describe the high level view
and scope of our system. The purpose of this exercise is ultimately to drive the definition of an Application
Programming Interface (API). Taking this top-down approach will describe all of the things our system will
be required to accomplish at a high-level. Additionally, this approach will capture information flow through
the entire system. We hope to err towards a first pass that is too high-level since further decomposition
of use cases that cover the complete scope will be more natural than omiting functionality altogether that
when added can be disruptive and time consuming to the process.

2.1 Actor

Actors in UCDs can be thought of as users of the Systems depicted in the UCDs. It is very natural to think
of Actors as people, in fact Actors are represented by stick figures in UCDs (see Figure 1). Actors are often
people but Actors can, and frequently are in this document, entities that are also Systems to other Actors.
For example, within the scope of this effort the operating system is a System to a number of Actors but is
also an Actor in the UCD that captures the interaction between the operating system and the hardware.
This becomes evident in the Top Level UCD (Figure 4) where all the UCDs covered in this document are
combined.

2.2 System

Systems in UCDs can be thought of as the entity being used to accomplish something. Common examples
of a System are a camera, or a telephone. A person (Actor) uses a camera (System) to take a picture for
example. In UCDs the System in the Actor/System pair is represented by a box which includes the name
of the System (see Figure 1). The system will contain the use cases that describe the interaction between a
specific Actor and a specific System only. In many cases a System will become the Actor in a separate UCD
covering that Actor/System interaction.

2.3 Arrow

Three different arrow types are used in the UCDs contained in this document. The arrow used to connect
the Actor and each individual use case indicates the Actor/System interaction of that specific use case. The
direction of the arrow is always towards the use case. Some use case models use the direction to indicate
who initiates. That is not the case in our model. Two additional arrows are used within the System box to
indicate subtle features of use cases. The includes arrow is used to show that the functionality of the use
case is including additional information to accomplish its goals. Information necessary for a use case can
simply be included in the use case description but in some cases we have chosen to use the includes arrow to
highlight information flow through the overall system. The extends arrow is used to depict a use case that
is an extension of a previously existing use case. For example, a typical activity on an HPC platform is run
job. We use the extends arrow to recognize not only that this is an existing use case but to also indicate
that we will only be covering the details of the extended use case (run power aware job) in our coverage.

2.4 Use Case

A use case, what appears in a single bubble in a UCD (see Figure 1), should be a goal oriented activity.
That said, finding the correct level to address with a single use case can be difficult. The following example

System

A\
/,\>
A

<extends>

Actor |

Figure 1. Example Use Case Diagram

helped us find what we hope to be the proper level when defining use cases in this document. Suppose we
are describing the interaction between a person (Actor) and a telephone (System). To simplify things lets
assume this is an old fashion land line phone, circa 1980’s. Thinking about Actor/System interaction we
could choose to include a use case for each of these activities: pick up receiver, say hello, have conversation,
say good-bye and replace receiver. A UCD that describes this interaction would look like Figure 2.

The actions described above are all part of a sequence of interacting with a telephone, in this case
answering the phone. The interaction can be more simply represented, from a person’s perspective, by a use
case named answer phone. One of the benefits of describing a use case at this level is that as technology
evolves the use case remains the same. If we assume the person in our UCD is now interacting with an
iPhone®the sequence of steps to answer the phone would be more like: pick up iPhone, press answer box
on screen, say hello, have conversation, say good-bye, press end box on screen. Those of us old enough to
have interacted with a phone in the 1980’s who now use an iPhone likely still think of the interaction with
the phone at the level of - answer phone - regardless of the different sequence we go through.

Another interaction (use case) between a person and a Telephone at the same level as answer phone
is place call. A key distinction is that answer phone and place call have different goals. The sequence of
placing a call is only slightly different than the sequence of answering a phone. One difference is the step of
dialing the number of the person you want to contact. Both answer phone and place call share many of the

|

Person

Telephone

Pick Up
Receiver

Have
Conversation

Say
Good-bye

Replace
Receiver

Figure 2. Person/Telephone UCD - Too Detailed

same activities. This is another indication that we are specifying use cases at the proper level. When the
use case is documented this step will be enumerated in the flow of events (see Section 2.5). When the API
is created only a single pick-up-receiver function will be necessary to implement for both answer phone and
place call. This detail will emerge during the process of documenting the use case. Note that as the API
evolves the pick-up-receiver function might be deprecated or extended to include pressing the phone button.
Regardless, these are details that are best left to the development, and evolution, of the API. The UCD
that we feel describes the correct level of interaction between a person (Actor) and a telephone (System) is
represented in Figure 3. There may be additional use cases for this UCD. Our goal would be to include all
of the interactions between a person and a telephone so that a complete API could then be generated from

the UCD and use case descriptions.

10

Telephone

Answer

</D Phone
Person Place
Call

Figure 3. Person/Telephone UCD - Correct Level

11

2.5 Generic Use Case Text

The Unified Modeling Language allows considerable latitude in the text documentation for each use case.
Numerous templates are available on the Internet suggesting what to include in the text. Most templates
include a description section and a flow of events. What follows is the text format we adapted for our use
case diagram.

[Actor | Enter the Actor name here (from the UCD) (Section 2.5.1) |
| System | Enter the System name here (from the UCD) (Section 2.5.2) |
Use Case Enter the name of the Use Case here (from the UCD)
(Section 2.5.3)
H Description H Enter the description of the Use Case here (Section 2.5.4) H
H Trigger H Enter the trigger of the Use Case here (Section 2.5.5) H
Flow of Events Enter the flow of events, or the happy state, here. This does not

account for failures. (Section 2.5.6)
1. Step 1 text
2. Step 2 text

Alternative Paths Enter the alternative paths here, these extend the Flow of Events
steps

(Section 2.5.7)

la. Alternative Flow of Events step 1

2a. Alternative Flow of Events step 2

2b. Alternative Flow of Events step 2

Frequency Enter one or multiple Frequency descriptions here (Section 2.5.8)

I [|
H Input Data H Enter input power data fields (Section 2.5.9) H
[Output Data | Enter output power data fields (Section 2.5.10) |
[Pre Condition | Add condition here (Section 2.5.11) |
I [|
I [|

Post Condition Add condition here (Section 2.5.12)
Power API Enter yes or no here (Section 2.5.13)

2.5.1 Actor

The Actor name in the Actor/System pair represented in the UCD, e.g. person in the person/telephone
UCD example (Figure 3). See Section 2.1.

2.5.2 System

The System name in the Actor/System pair represented in the UCD, e.g. telephone in the person/telephone
UCD example (Figure 3). See Section 2.2.

2.5.3 Use Case

The name of the specific use case that will be described, directly from the bubble in the UCD, e.g. answer
phone in UCD example (Figure 3). See Section 2.4.

2.5.4 Description

Free form description of what this use case is about. This will be refined over time to be more consistent as
the document evolves.

12

2.5.5 Trigger

An example or examples of what triggers or initiates the use case, i.e. when the phone (System) rings, it
triggers the person (Actor) to answer the phone.

2.5.6 Flow of Events

List of events that comprise the use case. Again, finding the correct level can be challenging. In the use
case answer phone a list of events would include the sequence listed in Figure 2. While this level of detail is
claimed to be too specific for individual use cases it is just about right for sequence of events. Note that the
flow of events is considered the happy path, meaning the flow when everything goes right. The flow of events
will be a numeric list, i.e. 1, 2, 3, through N. Too many steps in the flow of events might possibly indicate
that the use case is too high level.

2.5.7 Alternative Paths

The alternate path is used in conjunction with the flow of events to describe what happens when the flow
deviates from the happy path. For example, if something goes wrong in step 1 in the flow of events the
alternate path la will describe what happens down this path followed by 1b, 1c, 1d through 1x.

2.5.8 Frequency

The frequency is how often the use case might occur, i.e. the actor (person) answers the phone (system) at
the frequency the phone rings. Typically, frequency is largely out of the control of the actor, or the actor
does not initiate the interaction which can be useful information in designing the API. Alternatively, place
call is initiated by the actor (person). This could be in response to a missed call or just because the person
desires to reach another person.

2.5.9 Input Data

A list or description of the input data needed for the use case. This information can be very important in
designing the API. The flow of information through the system can also be seen here. Questions like, where
did this input data come from will help to ensure that other interactions provide the appropriate data flow,
or output data. An important task of the next draft of this document is to flesh out these input and output
data fields for inclusion in the APL

2.5.10 Output Data

A list of possible output data produced by the interaction. Again, this information can be very important
in the design of the API. As with input data it is often important to trace the output data to input data in
associated use cases.

2.5.11 Pre Condition

A condition or conditions that must be true before the use case is initiated, i.e. the receiver must be on the
cradle before someone calls and the phone is answered by the actor (person). This primarily addresses the
happy path.

2.5.12 Post Condition

A condition or conditions that are true after the use case is completed, i.e. the receiver is on the cradle after
the actor (person) answers the phone and completes the conversation. This primarily addresses the happy
path.

13

2.5.13 Power API

Yes or No to indicate if this use case will eventually be implemented as part of the power API. To illustrate
the boundaries of the system we will be covering use cases that will not become part of the API or in
some cases use cases that describe conversations where information or input data originates but will not be
implemented as part of the power API.

14

3 Power API Use Case Diagrams and Text

The following sections cover the individual High Performance Computing System (HPCS) Actor/System
pairs that define the primary interactions that have been identified. These pairs along with their use cases
will subsequently be used as the foundation of the Power API specification.

3.1 Top Level Use Case Diagram

The Top Level Use Case Diagram (UCD) combines all UCDs that appear in this document simplified into
Actor/System pairs. See Figure 4. One of the uses of the Top Level UCD is to understand the flow of high
level scenarios and understand the interactions or interfaces necessary to accomplish the scenario. The Top
Level UCD uses two different icons to represent whether an entity is an Actor or a System. The expanded
UCDs can be found in later sections.

Facility]

\

Hardware

Y

Manager Manager Manager

v

HPCS HPCS
HPCS User Resource
Manager

Resource
Manager

HPCS I HPCS

Facility N HPCS I HPCS

@

HPCS Admin Monitor & Monitor &
L Control Control

v

HPCS HPCS
Acct!:l:(rifin Operating Operating
9 System System

vy

vt

HPCS \ A 4
Application HPCS
Hardware

Figure 4. Top Level Use Case Diagram representing the culmination
of all Use Case Diagrams covered.

15

3.2 Combined Use Case Diagrams

The following sections will be addressing each system and actor pair. While unfortunately an eye chart, we
offer the following combined diagram of the use cases. You may find it a useful reference while reviewing the
subsequent sections.

16

Facility Hardware HPCS Resource Manager
HPCS Manager
Set Facility Set
wer Scheduling
Parameters <7 G Policy e St P
xte et Power
/T\ N~ = Facity Power _— <extends> e
<includes> Feliy Scheduling
| <includes> Rolcies)
Facility Facility —es A\
Power Manager anager Scheduling <includes>
Monitor Parameters 1
Points
Power
Parameters
HPCS Monitor and Control
HPCS Operating System
Configure
Configure _ s
M —> Noies }<< — - <extends>
HPCS HPCS Hardware
Resource
Manager <includes>
Set Power
State
2 P
ower ~.
P rs / <includes>
HPCS Operating System eardes \ P"‘"‘e‘re's
= HPCS Qu
Run Power Operating lery
Set Power] Aware Job St Po;':rﬂlEnstgy
//D Reset
Nodes -
~ <extends>.
\\Q -~ _/Reset Node
HPCS Power
Query Parameters
Application Aot
Statistics
HPCS Monitor and Control HPCS Resource Manager
Get Job - i
<extends> Submit
Get Job B erionde> 28 Report 4 Power
Power <z / Aware Job
pogey A A
A | !
! '
. | ;
<includes> <includes> Slcudecs
H i HPCS i
User
Job Power
Power
Statistics Job
Statistics Raameter)
Evaluate
Opportunities
7~ <extends>
HPCS Monitor and Control HPCS Monitor and Control
HPCS Hardware
Set System
Parameters . Set System
<extends> /" get Power Get Job(s) Parameters
Parameters Report —-—_
] L ~ coxtondss A Zextends>
o /T\ / - Get Job(s) Set Power
<includes> Power ; Parameters
1 1 Report <includes>
<includes> <incldes>
HPCS Royseny !) I 4\ HPCS |
Admin arameters HP 5 System
4 — Monitor <includes>
P Accounting Job(s) qnclnfdes> and Parameters ‘
Retaotats| Statistics ! Control
Respond to Job(s) Power
System Power Parameters
Event ~ <extends>_ Statistics

Figure 5. Combined Low Level Use Case Diagram collecting all Use

Case Diagrams covered.

17

3.3 Actor: Facility Manager
System: Facility Hardware

/

Facility
Manager

Facility Hardware

Set Facility
Power
Parameters

e

A

<includes>
I

Facility
Power
Monitor
Points

Figure 6. Facility Manager = Facility Hardware Use Case Diagram

18

3.3.1 Use Case: Set Facility Power Parameters

H Actor
H System
H Use Case

H Facility Manager H

H Facility Hardware H

H Set Facility Power Parameters H

Description

This use case is intended to represent the interaction of the Facility
Manager with the Facility Hardware at a high level. This inter-
action includes collecting information that will be used as part of
the conversation with the HPCS Manager. Facility changes will be
implemented based on the dialog with the HPCS Manager regard-
ing computational requirements (for example). This interaction
illustrates one of the boundaries of the scope of this project and is
important in understanding the source of many of the parameters
that will drive the use of the underlying resource. This interface
will not be included in the API being developed for the HPCS.
Facility Hardware is the facility mechanical, electrical and power
infrastructure supporting the High Performance Computing Sys-
tem(s) (HPCS), including pumps, fans, and cooling apparatus.

Trigger

Feedback from HPCS Manager or from other external events that
requires modification of Facility Hardware

Flow of Events

Resulting from communications with HPCS Manager

(see Section 3.4) or compilation of data from external sources
including upcoming environmental conditions, commercial power
supply constraints and costs, etc.

1. Facility Manager and HPCS Manager agree upon energy policy
2. Facility Manager implements change to Facility Hardware

3. Successful Facility modifications

Alternative Paths

3a. All or portions of the Facility modifications unsuccessful
3b. Determine specific cause of failure

3c. Correct failure

3d. Re-implement change

Frequency This might be done daily or following standard procedures or per-
haps once or twice a week.
Input Data New power policy parameters derived from environmental data,

facility or commercial power outages (for example).

Output Data

Current power policy parameters

Pre Condition

Post Condition

Power parameters are updated to state B

|
H Power parameters are at state A
|
|

Power API No

3.3.1.1 Notes The primary purpose of this Actor/System interaction and use case is to document the
important role of the facility. As power becomes a more important factor in the ultimate resource manage-
ment of individual platforms and the site in general, information regarding the cost of power, availability
and even permissible range of power fluctuation (not an exhaustive list) will be critical information that will
be taken into account when scheduling job execution priorities. We document this interaction since this is
an important source of information that affects scheduling and other factors related to platform resource
management. Information will also flow from the HPCS Manager to the Facility Manager which will affect
facility settings. We do not intend to completely cover the details of facility management at all sites. We
consider this one of the boundaries in the scope of our coverage.

19

3.4 Actor: Facility Manager
System: HPCS Manager

HPCS Manager

Communicate
(Facility Power
Policy

Facility
Manager

Figure 7. Facility Manager = HPCS Manager Use Case Diagram

20

3.4.1 Use Case: Communicate Facility Power Policies

H Actor H Facility Manager H

H System H HPCS Manager H

H Use Case H Communicate Facility Power Policies H
Description The Facility Manager communicates (conversation or software)

the power policy to the HPCS Manager. This is a two way dis-
cussion. The HPCS Manager also communicates priorities to the
Facility Manager which the facility manager will then use when
interacting with the facility hardware by applying appropriate set-
tings to support future power and environmental needs (for exam-
ple).

Trigger 1. To satisfy site power requirements the Facility Manager com-
municates new power parameters to the HPCS Manager. This is
meant as an example rather than a complete list of the communi-
cations between this Actor and System.

Flow of Events 1. Facility Manager communicates policy change to HPCS Man-
ager

2. HPCS Manager modifies parameters in the HPCS Resource
Manager to reflect new policy (see Section 3.5).

3. Successful communication of policy changes

Alternative Paths 3a. Failure in communicating policy changes

3b. Repeat attempt to communicate policy changes until success-
ful

3c. Successful communication of policy changes

Frequency Possibly once or twice a week. This will be a site specific practice.

Output Data

Pre Condition

Agreed-to Power policy parameters and values

Power policy set at A

Input Data H Power policy parameters and values H
[|
| |

Post Condition Power policy set at B (assume impact on HPCS Resource Man-
ager)
H Power API H No H

3.4.1.1 Notes This Actor/System pair is intended to document the communication that will occur
between the Facility Manager and the HPCS Manager. The Facility Manager is both the source of site facility
information that will ultimately affect platform resource management and the recipient of information from
the HPCS Manager regarding platform requirements. This communication is vital to future platform power
resource management.

21

3.5 Actor: HPCS Manager
System: HPCS Resource Manager

HPCS
Manager

/

Figure 8.

Diagram

HPCS Resource Manager

Set
Scheduling
Policy

A

1
<includes>
1

Scheduling
Parameters

22

~

<extends>

Set Power
Aware
Scheduling
Policies

A

1
<includes>
1

Power
Parameters

HPCS Manager = HPCS Resource Manager Use Case

3.5.1 Use Case: Set Power Aware Scheduling Policies

H Actor H HPCS Manager H

H System H HPCS Resource Manager H

H Use Case H Set Power Aware Scheduling Policies H
Description The HPCS Manager sets the power related scheduler policies in

the HPCS Resource Manager. The policies may be based on a
yet-to-be-defined “fused” metric which would likely include pa-
rameters regarding power, time of day, node hours available, etc.

Trigger 1. Due to a change in the power policy, a change is required in
the scheduling policies (see Section 3.4.1).

Flow of Events 1. HPCS Manager sets scheduling policies via the HPCS Resource
Manager
2. HPCS Resource Manager returns policy settings to the HPCS
Manager

Alternative Paths 2a. Return Failure

3b. Resubmit policy change
3c. Return success or failure

H Frequency H Daily or as needed, likely site dependent. H
H Input Data H Power policy parameters and values H
H Output Data H parameters successfully configured H
I | |

Pre Condition Scheduler parameter set A

Post Condition Scheduler parameter set B
New power policy applied to HPCS Resource Manager
H Power API H Yes H

3.5.1.1 Notes For the purposes of this document we are combining a few functionalities like the batch
scheduler and some traditional functionality of the runtime system into a System (in the Actor/System sense)
called the HPCS Resource Manager. In the use case listed we are recognizing the importance of a batch
scheduler in platform resource scheduling and utilization. The policies may be based on a yet-to-be-defined
“fused” metric which would likely include parameters regarding power, time of day, node hours available, etc.
This is one possible way schedulers might weigh all of the important variables that must be considered when
scheduling a resource. For the purposes of this document power and energy are primary considerations but
the concept of the fused metric is meant to consider many varying and sometimes conflicting considerations.
Scheduling considerations can be prioritized by weighing them more heavily than others. Considerations that
are not at all important could be given a weight of 0 so they do not affect the scheduling calculation. While
not the primary purpose of this effort, the fused metric concept will be fleshed out further in subsequent
versions of this document. It is important to recognize the flow of information in this use case. The Power
Parameters that are supplied by the HPCS Manager are obtained in part from communications with the
Facility Manager.

23

3.6 Actor: HPCS Resource Manager
System: HPCS Monitor and Control

HPCS Monitor and Control

Query
Platform
Power
Settings

HPCS
Resource
Manager

Figure 9. HPCS Resource Manager = HPCS Monitor and Control
Use Case Diagram

24

3.6.1 Use Case: Query Platform Power Settings

H Actor H HPCS Resource Manager H

H System H HPCS Monitor and Control H

H Use Case H Query Platform Power Settings H
Description The HPCS Resource Manager interfaces with the HPCS Monitor

and Control system to determine platform power settings. For
example, only the Monitoring Control system may know about
a constraint on a power maximum for a cabinet or the entire
system. This information will be used in determining which power
aware jobs can be launched on which hardware to maintain the
overall power policies that have been set for the current operating

environment.
Trigger 1. HPCS Resource Manager performs this query on a set interval
or possibly before making a determination of what job to run next
Flow of Events 1. HPCS Resource Manager (scheduler) requests platform power
settings

2. HPCS Monitor and Control system successfully returns current
platform power settings

Alternate Paths la. HPCS Monitor and Control system is unable to return current
platform power settings
H Frequency H On pre-set schedule or before running a job (for example) H
Input Data Query settings such as current system power cap, worst case un-

capped power, target system min/max power

Output Data Current platform power parameters

H Pre Condition H None H
[Post Condition [None |
H Power API H Yes H

3.6.1.1 Notes It is likely that the HPCS Monitor and Control system has the platform power settings
cached and does not need to query the HPCS Hardware upon each individual request. When the platform
power parameters are changed or upon an asynchronous event that changes them the cached copy of current
parameter settings will likely be updated.

A note on runtime systems: More and more intelligence is being integrated into a software component
referred to as a ”"runtime system”. This conceptual component can be implemented in several domains. It
can be a root-level daemon, linked as a library to the application, and/or embedded in the operating system.
The resource manager, application, and operating system sections of this document apply to the pieces that
might be implemented in each domain.

25

3.7 Actor: HPCS Resource Manager
System: HPCS Operating System

HPCS
Resource
Manager

—

N

HPCS Operating System

Configure
Power
Aware
Nodes

A i

<includes>

Configure

Nodes << — <extends> - —

Power
Parameters

<~

" <extends>

Run Power
Aware Job

Reset
Nodes

-

<extends>

-

Reset Node
Power
Parameters

Figure 10. HPCS Resource Manager = HPCS Operating System Use
Case Diagram

26

3.7.1 Use Case: Configure Power Aware Nodes

H Actor H HPCS Resource Manager H

H System H HPCS Operating System H

H Use Case H Configure Power Aware Nodes H
Description The HPCS Resource Manager interfaces with the HPCS Operat-

ing System to set Power configuration parameters on nodes prior
to running a Power Aware job (this could also be done dynam-
ically during job execution). For example, the CPU frequency
could be changed up or down. Or the power of an attached SSD
could be turned on or off. This use case extends the generic use
case of Configure Nodes in Figure 10 by configuring nodes to
run Power Aware jobs. Additional Power Parameters will be com-
municated to the HPCS Operating System to be used during job

launch.

Trigger 1. The scheduler portion of the HPCS Resource Manager identifies
a job to start. (see Section 3.14.1)

Flow of Events 1. HPCS Resource Manager (scheduler) requests configuration of

Power parameters.
2. HPCS Operating System successfully configures nodes in
preparation for job launch

Alternate Paths la. HPCS Operating System returns failure
1b. Depending on Policies job may or may not be launched
H Frequency H For every Power Aware job launched H
H Input Data H Power Parameters H
H Output Data H Power Parameters successfully configured H
Pre Condition Operating System able to receive requests for Power Aware Pa-
rameters
H Post Condition H Power Aware Parameters are set H
H Power API H Yes H

3.7.1.1 Notes The use case Configure Power Aware Nodes is addressing the potential that parameters
that will affect power and energy may be set prior to job launch. A straight forward example is that a specific
application has been analyzed and found to run efficiently at a lower frequency P-state. Prior to job launch
the scheduler would request (of the operating system) that all nodes allocated to this job to be changed to
this P-state. The job will then be launched on these nodes and upon completion the nodes will be returned
back to a default configuration which will be addressed later by the use case Reset Nodes depicted in Figure
10.

It is also possible that the resource manager will dynamically change these parameters during job execu-
tion. The scenario of the utility company requesting an immediate reduction in power consumption is not
completely addressed in this document.

In order to make the use case realistic, we elected to hard-code the term "node” in the title. The final
API may elect to specify a more generic hardware object in the function call. The important message is that
power management must be coordinated across multiple allocatable units, which are typically nodes. While
there will be exceptions, such as for client/server applications within one job, the typical HPC scenario is a
single homogeneous application. All nodes, including GPUs should be coordinated. At this time, the level
of hardware exposure in the API is unclear.

27

3.7.2 Use Case: Run Power Aware Job

H Actor H HPCS Resource Manager H

H System H HPCS Operating System H

H Use Case H Run Power Aware Job H
Description A job is starting to run that specified some type of power config-

uration. The Operating systems on HPCS components assigned
to the job need to ensure the power specifications are satisfied
throughout the life of the job.

Trigger The scheduler portion of the HPCS Resource Manager identifies
a job to start.

Flow of Events 1. An application is ready to execute and provides the OS on each
computing resource with its power specifications.

2. The OS ensures it has the appropriate initial environment
created in 3.7.1.

3. The OS adapts to additional requests for changes in power
settings as long as they are within the specifications provided at
job launch.

4. Job may request power information from the OS.

5. Job completes (success or failure is irrelevent to this use case.

Alternate Paths 2a. The specification is invalid or unachievable.

2b. An error message is written and OS initiates job abort.

3a. Invalid power change request is denied with an error return
but job continues.

4a. Invalid power information request results in an error return,
but job continues.

H Frequency H For every Power Aware job launched H
H Input Data H Job Identifier and power configuration specification H
H Output Data H Any collected power data stored (implementation dependent). H
H Pre Condition H Use case 3.7.1 has completed. H
H Post Condition H Power aware job is complete. H
H Power API H Yes, for passing the power specifications to the OS. H

3.7.2.1 Notes This use case could be considered the center of the Power API. All APIs exist to support
this use case.

28

3.7.3.1 Notes

3.7.3 TUse Case: Reset Nodes

H Actor H HPCS Resource Manager H
H System H HPCS Operating System H
H Use Case H Reset Nodes H
Description Once the power aware job completes, the HPCS Resource Man-
ager directs the operating systems associated with the latest job
to re-configure to default settings.
H Trigger H A job has completed running. H

Flow of Events

1. HPCS Resource Manager requests re-configuration of power
parameters

2. The computing resources may go into a very low power state
since there is no active job.

Alternate Paths

la. The requested re-configuration may fail.
1b. The resources may be marked unusable.

H Frequency

For every Power Aware job launched

H Input Data

Optional Power Parameters, in case there are no system defaults

H Output Data

Power Parameters successfully re-configured

Pre Condition

Operating System able to receive requests for Power Aware Pa-
rameters

H Post Condition

Power Aware Parameters are reset to default

Power API

Yes. It is likely the same API as when resources are initialized
prior to job start.

This use case could be combined with 3.7.1.

29

3.8 Actor: HPCS Operating System
System: HPCS Hardware

/
\

HPCS
Operating
System

HPCS Hardware

Set Power
State

S

<includes>

Power
Parameters

Query
Power/Energy
Statistics

Figure 11. HPCS Operating System = HPCS Hardware Use Case

Diagram

30

3.8.1 Use Case: Set Power State

H Actor H HPCS Operating System H

H System H HPCS Hardware H

H Use Case H Set Power State H
Description The HPCS Operating System interfaces with the HPCS Hardware

to set a power related state. A generic example of this would be
setting the processor P-state which defines both frequency and
input voltage parameters under which the processor will operate.

Trigger 1. HPCS Operating System is setting power state on behalf of
HPCS Resource Manager.

2. HPCS Operating System is setting power state on behalf of
HPCS Application (or library).

3. HPCS Operating System is setting power state independently
based on some other criteria.

Flow of Events 1. HPCS Operating System requests power related state change
2. HPCS Hardware changes current power related state
3. HPCS Operating System returns success

Alternate Paths la. HPCS Operating System unable or unwilling to request power
related state change

1b. HPCS Operating System returns failure

2a. HPCS Hardware fails (or is unable) to change power related
state

2b. HPCS Operating System returns failure

Frequency Prior to job launch

Following job completion

Throughout job execution

Between job allocations (on idle nodes, for example)

Input Data Hardware parameters that will likely be component-dependent.
For processors, these might be frequency, voltage and/or operating
system (P, C, S, etc state)

Output Data
Pre Condition

H H Current /updated hardware settting
I [
H Post Condition H Requested Power State is achieved
I |

Power State prior to request

Power API Yes

3.8.1.1 Notes It is important to note that the available power related parameters will be hardware
specific. This use case uses CPU P-state as an example but it is anticipated that a range of power related
parameters will be available on future platforms. It is also recognized that the CPU will likely not be the
only hardware component that has power related settings exposed to operating system control. The HPCS
Operating system will likely play the role of mapping generic requests to more specific hardware parameters.
For example, the HPCS Application should not have to know about CPU P-states. The HPCS Application
may just request a High, Medium or Low Frequency. Alternatively, the HPCS Application could request
a change based on a percentage of the default or current setting. Again, these are CPU specific examples,
other components might require drastically different interfaces. These details will be sorted out and tested
by implementing reference implementations of the specification.

A note on runtime systems: More and more intelligence is being integrated into a software component
referred to as a "runtime system”. This conceptual component can be implemented in several domains. It
can be a root-level daemon, linked as a library to the application, and/or embedded in the operating system.

31

The resource manager, application, and operating system sections of this document apply to the pieces that
might be implemented in each domain.

32

3.8.2 Use Case: Query Power/Energy Statistics

H Actor H HPCS Operating System H
[System [HPCS Hardware |
H Use Case H Query Power /Energy Statistics H

Description The HPCS Operating System interfaces with the HPCS Hard-
ware to query the current power/energy related statistics. This
could include the current power/energy state, instantaneous cur-
rent and or voltage, instantaneous power or accumulated energy
(for example).

Trigger HPCS Operating System is acting on behalf of a query from the
HPCS Application

HPCS Operating System is acting on behalf of a query from the
HPCS Resource Manager

HPCS Operating System is acting on behalf of itself if it is ab-
stracting or storing any of the power/energy related statistics.

Flow of Events 1. HPCS Operating system requests a range of hardware specific
power /energy statistics from the HPCS hardware
2. HPCS Hardware returns requested statistics

Alternate Paths 2a. HPCS Hardware does not return request statistics
2b. HPCS Operating may repeat request of statistics, return fail-
ure or some defined condition

Frequency The frequency of this interaction could vary greatly depending on
where the request is initiated from.

In the case of the application (3.10.2) or a user (3.13.1), it may
request multiple data points at a sampling rate.

H Input Data H List of Power/energy statistics requested H
H Output Data H Power/Energy statistics requested. H
Pre Condition Components have generated and reported the power/energy re-

lated data
Post Condition HPCS Operating system has current HPCS Hardware
power /energy statistics requested.
H Power API H Yes H

3.8.2.1 Notes We assume that a number of different components could make power/energy statistics
available to the operating system. As an example case, the HPCS Operating system interfaces with the CPU
to obtain whatever power/energy related statistics are available. The HPCS Operating system may abstract
these statistics to return them to higher layers of the software stack to provide them in a more standard and
portable way. For example, an energy counter is made available as part of the HPCS Operating System API.
If the HPCS Hardware provides this capability the HPCS Operating system may simply query this statistic
and return it to the requestor. Alternatively, if the HPCS Hardware only exposes a power or separate current
and voltage statistic, the HPCS Operating system might calculate and store this counter in a register, and
return it upon request.

A note on runtime systems: More and more intelligence is being integrated into a software component
referred to as a "runtime system”. This conceptual component can be implemented in several domains. It
can be a root-level daemon, linked as a library to the application, and/or embedded in the operating system.
The resource manager, application, and operating system sections of this document apply to the pieces that
might be implemented in each domain.

33

3.9 Actor: HPCS Monitor and Control
System: HPCS Hardware

/

HPCS
Monitor
and
Control

HPCS

Set System
Parameters

--

A

|
<includes>

System
Parameters

Hardware

<extends>

Set Power
Parameters

A

|
<inc|qdes>
I

Power
Parameters

Figure 12. HPCS Monitor and Control = HPCS Hardware Use Case

Diagram

34

3.9.1 Use Case: Set Power Parameters

H Actor H HPCS Monitor and Control H

H System H HPCS Hardware H

H Use Case H Set Power Parameters H
Description The HPCS Monitor and Control System is responsible for setting

power parameters on the HPCS Hardware. This could take the
form of strict power limits on system (power caps), racks, cages,

or nodes.

Trigger The HPCS Admin requests a power parameter change. (see Sec-
tion 3.12.1)

Flow of Events 1. HPCS Monitor and Control requests certain power parameters

be set on the HPCS Hardware.

2. The parameters are successfully set on the HPCS Hardware.
3. Return success as well as current power parameter settings.
Alternative Paths 3a. Return Failure

3b. Resubmit parameter change request

3c. Return success or failure

Frequency This could happen as frequently as necessary to manage system
power and energy consumption.
Input Data Power and energy parameters and values necessary to meet re-
source management targets.
Output Data A hierarchical view of power parameters by system, racks, cages,
or nodes.
H Pre Condition H Power parameters are at state A. H
H Post Condition H Power parameters are updated to state B. H
H Power API H Yes H

3.9.1.1 Notes A common example of what this Actor/System interface would be used for is to set
platform hardware power caps. These power caps would likely be requested by the HPCS Administrator but
could alternatively, or additionally, be requested by the HPCS Manager. Depending on system architectures
the HPCS Monitor and Control system may or may not directly access platform components such as the
CPU.

Platform-level power capping could be implemented via software, such as by the resource manager per-
forming job-level capping. That use case is described in Section 3.7. Alternatively, or additionally, some set
of components could be configured separately via this use case. With this use case, it would be possible to
have power capping without suppport from the resource manager. This use case also applies when there are
environmental or power feed issues for some set of components.

Setting a hard power threshold may not be practical. Power may only be measured at some frequency.
Usage exceeding the threshold may happen between sampling periods. The API may require a duration or
other concept to allow for variability in the system.

35

3.10 Actor: HPC Application
System: HPCS Operating System

HPCS
Application

/
\

HPCS Operating System

Set Power
State

Query

Power
Statistics

Figure 13. HPCS Application = HPCS Operating System Use Case
Diagram

36

3.10.1 Use Case: Set Power State

H Actor H HPCS Application H

H System H HPCS Operating System H

H Use Case H Set Power State H
Description While an application is running, one, some, or all of the processes

may choose to actively manage its power or energy consumption
on its node. For example, it may request to lower power state on
the CPU while writing a checkpoint to disk or going into an I/O
intensive phase.

Trigger The application reaches a point in the code where it knows that
the power state is either particularly important or not important.

Flow of Events 1. As a precursor to setting a new power state, the application
requests information on available power states and the current
power state of its components (see Query Power Statistics use
case 3.10.2).

2. The operating system returns requested power/energy state
and statistics.

3. If the current power state is not optimum, the application
decides how much to raise or lower the power/energy state of one
or more components.

4. The application requests that the power state be changed on
one or more components.

5. The operating system returns success along with state infor-
mation.

Alternative Paths H5a. The operating system returns failure along with state infor-
mation.

5b. The Application can decide to resubmit request immediately
or wait until a later point in execution.

H Frequency H Could be measured in seconds, more likely in minutes H
H Input Data H In step 4, the application requests a power state change. H
Output Data In response to step 2, the available power states are provided in

some generic, system portable fashion.
H Pre Condition H Application is executing at power/energy configuration A H
H Post Condition H Application is executing at power/energy configuration B H
H Power API H yes H

3.10.1.1 Notes The application will likely not have detailed knowledge of hardware specific power and
energy settings. It is more likely that the application will be requesting an abstract notion of the power or
energy statistics and act based on this information. The HPCS Application might request changes based on
a percentage of the current state or in a stepwise fashion, for example high, medium or low. The application
will also have limited information on the latency of this operation. The API could provide the latency in
the response.

A note on runtime systems: More and more intelligence is being integrated into a software component
referred to as a ”"runtime system”. This conceptual component can be implemented in several domains. It
can be a root-level daemon, linked as a library to the application, and/or embedded in the operating system.
The resource manager, application, and operating system sections of this document apply to the pieces that
might be implemented in each domain.

37

3.10.2 Use Case: Query Power Statistics

H Actor H HPCS Application H

H System H HPCS OS H

H Use Case H Query Power Statistics H
Description While probably not necessary to use on every run, the application

may have a "debug” flag that enables collection of power infor-
mation. The HPCS Application queries power statistics to aid
in making decisions about changing power states (see Set Power
State 3.10.1)

Trigger "Debug” flag or other notification tells the application to collect
power consumption data.

The application hits a pre-defined phase and requests power statis-
tics before possibly setting a new power state.

Flow of Events 1. Application requests power statistics. The request could be
for a single set of data points or the application could specify a
collection interval and statistics that are requested.

2. Operating system returns statistics requested (single instance
or on requested interval).

3. If interval query Application might direct collection to stop
(alternatively might list number of samples up front)

Alternative Paths 2a. Operating system unable to satisfy single or one or more
interval requests. It then exits.
At discretion of the HPCS Application H

Input Data Statistics desired, collection interval (if not single request), num-
ber of samples etc.

H Frequency \

Output Data
Pre Condition

| Statistics including time stamp, source (which component) etc. ||
[|
Post Condition H Job is running, has updated Power/Energy statistics requested. H
| |

Job is running

Power API Yes

3.10.2.1 Notes It is typically very desirable that to take advantage of architecture specific features
the application is not required to be modified. This interface along with Set Power State 3.10.1) might be
implemented in a Library that is made available as a standard. This use case might be employed by the
HPCS Application to simply keep power and energy statistics for some reason. This use case might also be
leveraged to make decisions on a very dynamic basis in which the HPCS Application actively manages its
power/energy use. We do not envision this operation to be coordinated across nodes.

A note on runtime systems: More and more intelligence is being integrated into a software component
referred to as a "runtime system”. This conceptual component can be implemented in several domains. It
can be a root-level daemon, linked as a library to the application, and/or embedded in the operating system.
The resource manager, application, and operating system sections of this document apply to the pieces that
might be implemented in each domain.

38

3.11 Actor: HPCS Accounting
System: HPCS Monitor and Control

HPCS Monitor and Control

Get Job(s)
Report
Power

Q //7 4\ - <extends>_
Report
<includes>
| A

Get Job(s)

HPCS
Accounting

1
<includes>
1
I

Job(s)
Statistics

Job(s)
Power
Statistics

Figure 14. HPCS Accounting = HPCS Monitor and Control

39

3.11.1 Use Case: Get Job(s) Power Report

[Actor [HPCS Accounting |
[System [HPCS Monitor and Control |
[Use Case [Get Job(s) Power Report |
Description The HPCS Accounting software interacts with HPCS Monitor and
Control system in order to produce reports. This use case extends
the existing Get Job Report use case to include power metrics.
| Trigger [HPSS Accounting requests Job(s) Power Report. |

Flow of Events

1. The HPCS Accounting software sends Job Report request to
the HPCS Monitor and Control system.

2. The results of the successful query are returned to HPCS Ac-
counting.

Alternate Paths

2a. Query is re-issued if it failed in step 2.
2b. Results of query are sent to HPCS Accounting.

Frequency On scheduled basis, once per week for example, or impromptu
request (likely not more than a few times a day)
Input Data All (full report)

LIst of specific job id’s
Time range
Likely other useful report specifications.

Output Data

Full Power related job report

Power related job report for specific job id’s

Power related job report for specified time range.

Power related job report based on requested parameters.

H

Pre Condition

H Jobs have run.

H

Post Condition

H Report generated

I

Power API

[Yes (possibly extends existing API)

3.11.1.1

Notes

A differentiating factor of this use case is that the HPCS Accounting system will have

access to information about any job that has been executed on the system, whereas a specific HPCS User will
only have access to a job that was executed under their user id. The report generated might contain a range
of data but will certainly include metrics like energy used over the duration of the application execution,
min, max and average power and power/energy parameters used during application execution.

40

3.12 Actor: HPCS Admin

System: HPCS Monitoring and Control

HPCS
Admin

Set System
Parameters

<includes>

System

Parameters

System
Event

Respond to

HPCS Monitor and Control

< ~ <extends>

Set Power
Parameters

A

<includes>
|

Power
Parameters

§

Respond to
Power
Related
Event

~ <extends>_

Figure 15. HPCS Admin = HPCS Monitoring and Control Use Case

Diagram

41

3.12.1 Use Case: Set Power Parameters

H Actor H HPCS Admin H
H System H HPCS Monitoring and Control H
H Use Case H Set Power Parameters H
Description Based on a new policy, set hardware controls to enforce maximum
or minimum (power capping for example). Note that the new
maximum can be either an increase or decrease from the prior
maximum.
Trigger A new power policy is to be implemented. The request is typically

originated by the HPCS Manager.

Flow of Events

1. HPCS Admin invokes command to set new power maximum
(or minimum).

2. Use case Set Power Parameters is invoked. See Section 3.9.1
3. HPCS Monitor and Control system returns success (along with
the new parameter settings).

Alternative Paths

3a. HPCS Monitor and Control returns failure (along with the
current parameter settings) and possibly a reason why the request
could not be honored

Frequency Likely not more than once or twice a day, might be intrusive or
require the system to be quiesced
Input Data Maximum system usage in Megawatts (if applied to platform)

Specific maximums or minimums if applied to other platform gran-
ularities.

Output Data

Current parameter settings in maximum Megawatts (if applied to
platform)

Other parameter settings as appropriate based on granularity of
request in appropriate units

Pre Condition

H None

Post Condition

Platform (rack, cage or node) is operating under new power pa-
rameters.

Power API

[yes

3.12.1.1

Notes

platform, rack, cage or node level.

42

When a new power policy is requested to be implemented (Trigger) this direction and
information likely comes from the HPCS Manager. The HPCS Manager and the HPCS Admin might be
one in the same person operating under different roles. Changing power parameters might cause jobs to be
killed and others started depending on other system wide settings and policies. The common need for this
use case at this time is setting power caps (and or minimums) for the platform at the granularity of the

3.12.2 Use Case: Respond to Power Related Event

H Actor H HPCS Admin H
H System H HPCS Monitoring and Control H
H Use Case H Respond to Power Related Event H
Description Based on an asynchronous event like an out of bounds condition.
Will usually result in querying the monitoring and control systems
for additional detail.
Trigger An environmental, out of bounds or hardware alarm has been

raised.

Flow of Events

1. The admin receives and reviews the notice of a out of range
power condition.

2. The admin queries the HPCS Monitoring and Control system
for warnings or errors in the log data.

3. The admin queries the HPCS Monitoring and Control system
for current power metrics.

4. The admin collects and synthesizes the important information.

Alternative Paths

[TBD

|

Frequency Daily, Weekly, Monthly depending on conditions and platform
usage and stability.
H Input Data H Email alert, page, or audible alarm, system logs. H

Output Data

Power-related errors messages and metrics, possibly response sug-
gestions

H

Pre Condition

H An alaram has been raised.

H

Post Condition

H Sufficient data is collected upon which to take action.

I

Power API

H yes

43

3.13 Actor: HPC User
System: HPCS Monitoring and Control

HPCS Monitor and Control

Get Job
By e < <extends> _ Get Job
Power
/ 4\ Report
' A
<incILfdes> I
HPCS <includes>
User |

Job
Statistics

Job Power
Statistics

Figure 16. HPCS User = HPCS Monitoring and Control Use Case
Diagram

44

3.13.1 Use Case: Get Job Power Report

H Actor H HPCS User H

[System [HPCS Monitoring and Control (M&C) |

H Use Case H Get Job Power Report H
Description Whether it is an active or completed job, the user can query the

monitoring system for job power-related statistics. The returned
data could be in tabular/text (e.g. csv) or graphical form.

Trigger The end user is interested in the power or energy statistics of their
job. The concern could stem from various sources. Each user may
have a maximum energy allotment for example. The user may
be a library developer and is attempting to provide algorithmic
solutions to application developers that minimize energy. The
HPC center may require that jobs declare an upper bound on
their peak power usage and this run is to identify a safe upper
bound for future runs.

Flow of Events 1. User either invokes a GUI or enters a command to interact
with the HPCS M&C.

2. User specifies job ID of interest, which is determined to be
either running, completed, or invalid. An invalid result displays
an error message and this step is repeated.

3. With actionable input, the HPCS M&C determines 1) when
the job started, 2) ended (in the case of a completed job) and 3)
the hardware components used exclusively by the job.

4. User provides more detail on desired information:

a. time range

b. sampling interval and/or bins of time

c. whether aggregated consumption information is desired or for
specific components, such as memory, CPU, NIC is requested

5. HPCS M&C processes the request and for active jobs, deter-
mines if data collectors need to be started.

6. Data is returned to user in requested format.

Alternative Paths 2a The input may also indicate use case termination, and if it does,
the M&C stops any dynamic collection that had been started.

H Frequency \ Hundreds of times per day H

Input Data Job Identifier

Output format desired

time range of interest

sampling interval or bins of time

Aggregated consumption or identification of components to study

Output Data energy in what units?
The data may be arrays of components with minimum, maximum,
average values.

H Pre Condition H None H
H Post Condition H User has requested information H
H Power API H yes H

3.13.1.1 Notes In this use case in contrast with the use case for the HPCS Accounting system, the
User only has access to their job information. Shared hardware component usage is not accounted for in this

45

use case. The volume and longevity of the power data is an important implementation consideration. We
do not foresee a common API to set these values.

46

3.14 Actor: HPCS User
System: HPCS Resource Manager

e

e

HPCS
User

Evaluate
Opportunities

-

HPCS Resource Manager

~ <extends>

" <extends>

Submit
Power
Aware Job

A

|
<includes>
I

Power
Parameters

Evaluate
Power

Figure 17. HPCS User = HPCS Resource Manager Use Case Diagram

47

3.14.1 Use Case: Submit Power Aware Job

H Actor H HPCS User H
H System H HPCS Resource Manager H
H Use Case H Submit Power Aware Job H
Description The HPCS User submits a power aware job to the HPCS Resource
Manager. For example, user wants to submit their job in a more
energy efficient way to improve performance or get a better turn-
around time through the system which could depend heavily on
how quickly the job is scheduled (based on the fused metric).
H Trigger H HPCS User decides to submit power aware job H

Flow of Events

1. HPCS User submits a power aware job to the Resource Manager
(job which includes power parameter information)

2. HPCS Resource Manager returns success of the submission to
HPCS User

Alternative Paths

3a. Return Failure
3b. HPCS User may resubmit the job

Frequency Many times a day depending on the use of the platform, capacity
vs. capability for example
H Input Data H Power aware job parameters and constraints H

Output Data

Submission success code possibly with estimate of when job will
execute based on submission parameters

I

Pre Condition

H HPCS User has a power aware job ready to submit.

H Post Condition
H Power API

H HPCS User job successfully submitted H
| Yes |

3.14.1.1 Notes The HPCS Resource Manager will start the job based on the policies set through the
interaction with the HPCS Manager. This use case only accounts for job submission.

48

3.14.2 Use Case: Evaluate Power Aware Opportunities

H Actor H HPCS User H

H System H HPCS Resource Manager H

H Use Case H Evaluate Power Aware Opportunities H
Description Obtain a high level, possibly followed by a semi-detailed level of

information regarding the power usage of the system. With power
evolving into a managed resource (in addition to nodes) it may be
possible to exploit available cycles.

Trigger User desires to submit a job and is flexible about adapting to
available power resources.

Flow of Events 1. User interacts with the HPCS to request power resource infor-
mation.

2. System responds with summary information.
3. User may desire to probe for additional information that would
allow a job to run sooner rather than later.

Alternative Paths None
Frequency Perhaps a dozen times per day.
Input Data User request, perhaps with options for lower level detail

Pre Condition None
Post Condition

Power API

Increased understanding of power status of the HPCS.
Yes

I [
e
H Output Data H Summary and job-level detail of power consumption
I |
I [
I |

3.14.2.1 Notes We see this use case as equivalent to the ”show backfill” capability currently available
on some resource management systems. The ”user” is quite generic in this case. In addition to the end-user,
it could be an administrator simply assessing the available power capacity.

49

A Brief Power Aware HPC Scenarios

A.1 Dynamic Frequency Scaling

The local forecast shows that a facility’s large-scale photovoltaic (PV) array’s ability to produce power is
compromised due to an approaching weather system set to arrive within the next hour. The facility manager
would like to scale back power being used by the HPC system so that the overall campus or facility does not
reach its peak power level. We explain this scenario in more detail in Section B.1

The Facility Manager communicates the facility demands or requirements using specific power parameters
to the HPCS Manager. The HPCS Manager will set power-related scheduling policy using the HPCS
Scheduler.

A.2 Demand Response Signals from Utility Providers

Many large-scale utility companies offer incentives for businesses, institutions, and even households to reduce
their power demand for a short time period in order to help reduce the overall demand on the grid. Given
the extremely large amount of power supporting an HPCS facility, the HPCS manager may be asked to scale
back the power demand on the system during these time periods, e.g. using ideas similar to A.1, powering
down idle nodes, etc.

As an example, Xcel Energy (via their contractor EnerNOC) pays NREL to reduce its campus load for
approximately one hour per year. This process is currently initiated by Xcel via a phone call to NREL’s Xcel
point-of-contact. In the future, this signal will be sent automatically through software such as OpenADR
(developed by LBNL) and Voltron (developed by PNNL). The details of the conversation between a facility
and its utility provider are communicated to the Facility Manager. The Facility Manager communicates
the facility demands or requirements using specific power parameters to the HPCS Manager. The HPCS
Manager will set power-related scheduling policy using the HPCS Scheduler.

A.3 Change Energy Recovery

An HPC data center generates useable heat that may offset heating loads in other parts of the facility or
campus. If the Facility Manager is told (e.g. using a predictive model) that the weather is going to be colder
than expected, the HPCS facility can be operated at its maximum capacity to produce extra waste heat.
This may involve a reduction in water flow rates through a liquid-cooled system.

At a facility such as NREL’s new Energy Systems Integration Facility (ESIF) waste heat is being used
on the NREL campus to preheat outside air for ventilation, heat return/mixed air, and melt snow on certain
walkways.

A.4 Micro-grid Demand Management

Micro-grid environments are becoming increasingly common. There would be no choice but to control the
load of the HPCS system in order to meet the demand of other systems within a micro-gridded ecosystem.
In particular, a sophisticated software layer would likely act as the Facility and HPCS Managers in order
to regulate the generation, distribution, and storage of the micro-grid’s energy in concert with the HPCS
demands.

A.5 Shifting Power Source

In the case of a power grid failure, a facility may switch (if available) to on-side diesel generators in order to
satisfy their power demands. As a result, the Facility and HPCS Managers will need to communicate and
implement their power requirements as they manage toward the generator’s power cap.

50

A.6 Mission or Time Critical Computing Need

There is a mission or time critical computing need which requires a large workload increase. The scheduling
of this type of job should involve the Facility Manager because the facility may be required to provide colder
water for some period of time.

A.7 Computation with an Energy Budget

Complete a calculation with an a priori determination of acceptable runtime performance versus power con-
sumption. The HPCS user only interacts with the runtime system after the user’s job has been allocated
resources by the scheduler. The HPCS user depends on the runtime system to initialize the energy con-
sumption environment based on the user’s parameters specified at job submission. This initialization is done
before or as part of application launch. Once begun, the runtime system can receive commands that direct
the runtime system to reduce job energy consumption due to a system-wide power reduction or threshold
reached. At a later time, the runtime may be directed to resume to the original job parameter specifications.
At job termination, the user reviews the energy consumption provided in the final job output.

A.8 Real-Time Node Energy Management

Once an application is executing, it may choose to obtain information on energy consumption at various
points in the code. This would come from the operating system on each node. The application would do the
aggregation and analysis based on its pre-determined areas of interest. Additionally, the application may
choose, for example, to request a lower power state while writing a checkpoint to disk. When the I/0O is
complete, the application would request that the previous power state be restored.

A.9 User-accessible Power Analysis Tool

As an alternative to instrumenting individual codes (or libraries), the user may wish to employ a power
monitoring tool. This tool would likely be very similar to existing performance analysis utilities. Rather
than analyzing cache misses or MPI waits, it would provide information on the power usage of a running
application. As suggested by one reviewer of this document, the tool could provide a ”frequency sensitivity”
metric. This metric would indicate if this code, or section of code, could take advantage of a higher or lower
processor frequency setting.

A.10 Predictable Applications

Some HPC facilities may have a relatively small set of applications that run frequently (e.g. prediction of
tomorrow’s weather). As applications are run, the resource manager could collect the power consumption
information. If there is a unique application identifier, the consumption information could be accumulated
in a data base. When the same application is submitted again, the resource manager could query the data
base for power requirements. This scenario is in contrast to requiring the user to determine the power
requirements for a job.

51

B Extended Power Aware HPC Scenarios

B.1 Campus/Facility Power and Energy Management
B.1.1 Scenario

A typical utility company will charge commercial or industrial customers for their energy usage in addition
to a demand charge. As an example, Xcel Energy’s demand charge is based on the maximum average power
used during any 15-minute interval in the billing cycle. This demand charge is calculated at a significantly
higher rate than the usual energy rate. Therefore, a simple strategy for reducing a facility’s utility bill is
to reduce their peak power usage. HPCS facilities such as a national lab, academic institution, commercial
data center, etc., are in a unique position in that they might be able to mitigate the cost associated with
the peak charges by managing the power in their HPC data centers using demand-response models. In this
section, we will describe a demand-response scenario and discuss how it fits in to the proposed Power API.

Suppose that an HPC facility’s power monitoring software determines that the peak power is likely to
be unusually high in the next hour. At a campus similar to the National Renewable Energy Lab in Golden,
CO, this could be due to a facility’s large-scale photovoltaic array being compromised by cloud cover. The
following set of actor/system pairs are impacted in this scenario.

A The HPCS Admin (actor) and HPCS Monitor and Control (system) pair (see 3.12) is used to provide
input into the predictive model of peak power usage. An HPCS system is traditionally one of the
largest energy consumers/systems on a campus and, thus, necessitates consistent monitoring. Results
of this monitoring and analysis are used as inputs into any predictive model involving campus power
consumption. In is worth noting that the HPCS Admin in this scenario would likely be software and
not an actual person.

B The Facility Manager will initiate a conversation with the HPCS Manager (3.4) in order to discuss if
adjustments to the HPC system are possible. Adjustments in this case may include lowering p-states,
suspending the submission of new jobs, etc. Although this interaction is not technically a part of this
Power API, we feel that this conversation is sufficiently important to be included in this document.

C If it is determined that an action on the HPC system is appropriate to reduce power, the HPCS
Manager will interact with the HPCS Resource Manager in order to initiate this change (3.5).

D The implementation details of this change (e.g., reducing p-states across processors) are communicated
through the system via the HPCS Resource Manager to the HPCS Operating System (3.7) followed
by the HPCS Operating System translating the instructions to the HPCS Hardware (3.8).

E The HPCS Admin will follow up with the HPCS Monitor and Control System (3.12) in order to verify
that the system is working as expected. In this case, the HPCS Admin will likely be a person.

B.2 Increase Application Efficiency
B.2.1 Scenario

Application Efficiency will be determined by an as yet undefined metric (fused metric) that will likely include
performance, energy, priority of job, amortized node expense and time-of-day (to list a few) as variable
and/or weighted parts of eventual fused metric (goodness value). In concept, this is similar to Energy Delay
Product (EDP) but more inclusive and targeted to a particular sites needs. This scenario, for the purposes
of simplification, will focus on performance (wall clock execution time) and energy (combined total energy
used by a single application on all nodes used by the application for the duration of application execution).

A Execute a large-scale production scientific computing application (application) using the default system
environment and parameters. This first run is a productive run that produces productive results. This

52

run also establishes the baseline energy and performance characteristics of this application (Require-
ment 1) (Note: other factors might affect the application such as scale and input problem requiring
separate or additional analysis).

B Analyze the energy and performance data to determine what available tuning parameters might be
applied to follow on executions (Requirement 2).

C Execute SAME application (keep as many factors, number of nodes, problem type etc. the same
as possible) with tuning parameters applied (Requirement 3). The energy and performance results
from this run will be judged relative to the baseline execution (Requirement 1,2). Note, this is also a
productive run producing useful production results.

D Analyze (Reference B), (Requirement 2).

E Additional component level analysis to determine if additional tuning can be productively applied
(Requirement 4).

F Additional executions of the SAME application until range of productive tuning parameters are estab-
lished (Requirement 1,2,3,4).

B.2.2 Notes

This scenario focuses on applying tuning parameters to hardware power management capabilities, e.g. af-
fecting the frequency and subsequent energy use of the CPU. This could be accomplished in a number of
ways including setting P, C or S states, or any other architectural mechanism exposed for this purpose. We
value any opportunity to affect energy used by ANY component if it can be leveraged to increase the en-
ergy efficiency of our applications, and/or to operate the system within its externally allocated and variable
power budget. The cycle outlined is a general high-level scenario. The process is repeated using production
applications so all time consumed for analysis is the result of productive runs. The output of the analysis is
an understanding of the effect on performance and energy of tuning parameters that can be applied to this
application at this scale for this problem. The knowledge gained by this analysis can be used to simply run
the application more efficiently (using the proposed fused metric for example) or to implement intelligent
power capping of the overall platform (described in a separate scenario).

B.2.3 Requirements for Increasing Application Efficiency

1. To obtain an energy profile, the amount of energy used by a single application on all nodes used by the
application, the minimum requirement is a node level measurement capability. Since an application
will be executed on a large number of nodes and there is no expectation that these nodes will coincide
perfectly with a set of cabinets a node level measurement capability, rather than cabinet level, is
required. The frequency of data sampling per node should be greater than or equal to, one sample per
second to obtain enough fidelity for analysis and comparison with subsequent runs. It is expected that
at the node level the data samples will be DC measurements, discrete current and voltage values.

2. This analysis step implies that the measurement data be made available for analysis, at a minimum,
after application execution. Also implied is a transport mechanism to coalesce the data to a single
location. The transfer of data from the points of measurement must scalable and efficient to be of
utility. Further, this also implies tools are available for analysis such as generating a energy total for all
nodes involved in the application and possibly visualization capabilities to analyze characteristics of the
energy profile of the application over the duration of the run. These tools will help determine the most
productive tuning parameters to apply to subsequent executions. An out-of-band tightly integrated
Reliability Availability and Serviceability (RAS) subsystem could be leveraged to accommodate many
of these capabilities.

53

3. To affect the energy used, tuning parameters must be exposed, for example, to the OS, run-time, launch
mechanism, scheduler or application library. For example, before application execution all cores of all
nodes that will host the application are set to a lower frequency state. After execution, the nodes are
reset to default values. This implies an ability to control CPU frequency, for example. This is more of
a static approach to CPU frequency tuning.

4. Initial tuning parameters may be applied statically. Multiple static tuning configurations may be
applied and analyzed based solely on composite or node level analysis. It may be determined that to
achieve additional application energy efficiency, or to achieve any relative to baseline, dynamic tuning
methods must be applied. Component level measurement is required to determine where energy is
being used within a node. For example, intense compute, communication or IO phases can be observed
with component level measurement. Dynamic tuning can be applied to allow the CPU to run at very
high frequency during computationally intensive phases. During heavy communication or IO phases
the CPU can be set at lower energy saving frequencies. Other components can be tuned if the capability
is available and exposed.

B.3 Power Capping
B.3.1 Scenario

Power Capping, minimally defined as the ability to prescribe the instantaneous ! power draw, energy use
(over time) or power/energy fluctuation (including rate of change and magnitude). This scenario will suggest
that two methods of Power Capping should be applied in conjunction to maximize the use of the underlying
resource while protecting against accidental violations of Power Cap parameters. This scenario will assume
that the facility manager has defined, for example, the sites power, energy and cooling parameters for the
period of time covered in this scenario and the Platform manager has defined any other parameters that will
be used to define Power Capping levels such as other local policy considerations used in the fused metric
defined in Scenario B.2. The two approaches are: 1) hardware Power Cap — defined by setting a physical
limit to the amount of instantaneous power that the platform, cabinet, node or component is limited to, or
rate of change limitation, 2) Power aware scheduling — defined as intelligently scheduling jobs to maintain a
mix of power consumption (or energy use) that complies with site policies.

A System Administrators set platform Power Caps as directed by Facility and Platform management
(Requirement 1).

B Users schedule applications (over a period of time) that have been previously analyzed (as in Scenario
B.2)(Requirement 2).

C Scheduler launches applications with tuning parameters necessary to keep overall platform within Power
Cap parameters (Requirement 3).

D Scheduler does not adequately launch application mix to maintain power/energy use within Power Cap
parameters (Requirement 4).
B.3.2 Notes
This does not account for a dynamically changing Power Cap, jobs launched based on what caps were at the
time of launch.
B.3.3 Requirements for Power Capping

1. This activity requires an integrated ability to configure the platform as a whole, at the cabinet, node
and or component level to gate the power and or energy consumption at a hardware level. Efficiently

1The term instantaneous is being used loosely here. The implementation may be over some number of samples, for example.

54

configuring the platform to accomplish this implies that this is an activity that can be accomplished
while the platform is operational (it will not be practical to only have the option of accomplishing this
configuration at boot time for example). As described in Requirement 2 - Scenario B.2, a RAS system
could be leveraged to efficiently accomplish this activity.

. Implies there is a way for either the user to specify the range of power/energy tuning parameters and
associated profile information or this information is available by some other means to the scheduler.

. In addition to the requirements described in Scenario B.2, which enable individual applications to be
analyzed from a power and performance perspective, this activity requires an ability for a scheduler
to use the specific power and energy characteristics and tuning parameters as part of the fused metric
calculation mentioned in Scenario B.2 to determine how (what tuning parameters) and when (when
this application given the known power/energy profile) each application can be scheduled to run to
most efficiently use the resource while remaining within the prescribed Power Cap parameters.

. This implies that the power parameters configured in step A act as a fail-safe preventing the platform,
cabinet, node or component from violating the Power Cap parameters.

55

56

References

[1] Grady Booch, Ivar Jacobson, and James Rumbaugh. The Unified Modeling Language Reference Manual.
Addison-Wesley, 1999.

[2] Ivar Jacobson. Object Oriented Software Engineering: A Use Case Driven Approach. Addison-Wesley,
1992.

[3] Geri Schneider and Jason Winters. Apply Use Cases: A Practical Guide, Second Edition. Addison-Wesley,
2001.

57

DISTRIBUTION:

1 MS 1319 James A. Ang, 1422

1 MS 1319 Ron B. Brightwell, 1423

1 MS 0899 Reports Management sanddocs@sandia.gov, 5936
1 MS 0899 Technical Library, 9536 (electronic copy)

58

v1.37

@ Sandia National Laboratories

	Introduction
	Use Case Diagrams
	Actor
	System
	Arrow
	Use Case
	Generic Use Case Text
	Actor
	System
	Use Case
	Description
	Trigger
	Flow of Events
	Alternative Paths
	Frequency
	Input Data
	Output Data
	Pre Condition
	Post Condition
	Power API

	Power API Use Case Diagrams and Text
	Top Level Use Case Diagram
	Combined Use Case Diagrams
	Actor: Facility ManagerSystem: Facility Hardware
	Use Case: Set Facility Power Parameters
	Notes

	Actor: Facility ManagerSystem: HPCS Manager
	Use Case: Communicate Facility Power Policies
	Notes

	Actor: HPCS ManagerSystem: HPCS Resource Manager
	Use Case: Set Power Aware Scheduling Policies
	Notes

	Actor: HPCS Resource ManagerSystem: HPCS Monitor and Control
	Use Case: Query Platform Power Settings
	Notes

	Actor: HPCS Resource ManagerSystem: HPCS Operating System
	Use Case: Configure Power Aware Nodes
	Notes

	Use Case: Run Power Aware Job
	Notes

	Use Case: Reset Nodes
	Notes

	Actor: HPCS Operating SystemSystem: HPCS Hardware
	Use Case: Set Power State
	Notes

	Use Case: Query Power/Energy Statistics
	Notes

	Actor: HPCS Monitor and ControlSystem: HPCS Hardware
	Use Case: Set Power Parameters
	Notes

	Actor: HPC ApplicationSystem: HPCS Operating System
	Use Case: Set Power State
	Notes

	Use Case: Query Power Statistics
	Notes

	Actor: HPCS AccountingSystem: HPCS Monitor and Control
	Use Case: Get Job(s) Power Report
	Notes

	Actor: HPCS AdminSystem: HPCS Monitoring and Control
	Use Case: Set Power Parameters
	Notes

	Use Case: Respond to Power Related Event

	Actor: HPC UserSystem: HPCS Monitoring and Control
	Use Case: Get Job Power Report
	Notes

	Actor: HPCS UserSystem: HPCS Resource Manager
	Use Case: Submit Power Aware Job
	Notes

	Use Case: Evaluate Power Aware Opportunities
	Notes

	Appendices
	Brief Power Aware HPC Scenarios
	Dynamic Frequency Scaling
	Demand Response Signals from Utility Providers
	Change Energy Recovery
	Micro-grid Demand Management
	Shifting Power Source
	 Mission or Time Critical Computing Need
	Computation with an Energy Budget
	Real-Time Node Energy Management
	User-accessible Power Analysis Tool
	Predictable Applications

	Extended Power Aware HPC Scenarios
	Campus/Facility Power and Energy Management
	Scenario

	Increase Application Efficiency
	Scenario
	Notes
	Requirements for Increasing Application Efficiency

	Power Capping
	Scenario
	Notes
	Requirements for Power Capping

