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Abstract

The wireless communications channel is innately insecure due to the broadcast nature of
the electromagnetic medium. Many techniques have been developed and implemented in order
to combat insecurities and ensure the privacy of transmitted messages. Traditional methods
include encrypting the data via cryptographic methods, hiding the data in the noise floor as in
wideband communications, or nulling the signal in the spatial direction of the adversary using
array processing techniques.

This work analyzes the design of signaling constellations, i.e. modulation formats, to
combat eavesdroppers from correctly decoding transmitted messages. It has been shown that
in certain channel models the ability of an adversary to decode the transmitted messages can
be degraded by a clever signaling constellation based on lattice theory. This work attempts to
optimize certain lattice parameters in order to maximize the security of the data transmission.
These techniques are of interest because they are orthogonal to, and can be used in conjunction
with, traditional security techniques to create a more secure communication channel.

This work was funded by the Laboratory Directed Research and Development (LDRD)
office at Sandia National Laboratories. Sandia is a multi-program laboratory operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.
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1 Introduction

The fundamental question addressed by this Early Career Laboratory Directed Research and
Development (EC-LDRD) is how to design a signaling constellation to make it as difficult as
possible for an adversary to intercept and successfully decode a transmitted message. It has been
recently shown that using lattices to design the signaling constellation can help attain this goal.
Before describing how lattices hinder eavesdroppers, the most fundamental channel model will be
described as well as how decoding errors occur with traditional modulation methods.

1.1 Fundamental Channel Model and Decoding Errors

The Additive White Gaussian Noise Eavesdropper Channel

The channel model that will be considered throughout this LDRD is the additive white Gaussian
noise (AWGN) channel with an eavesdropper. Figure 1 graphically illustrates this channel.

Figure 1. AWGN Eavesdropper Channel

Using the traditional nomenclature from the secure communication community, the transmitter is
called Alice, the intended receiver is named Bob and the unwanted eavesdropper is named Eve.
In this channel model, Alice sends a message M which is encoded as X and transmitted over the
wireless channel. X is then corrupted by AWGN N1 as the it makes its way to Bob and is corrupted
by AWGN N2 on its way to Eve. Here N1 and N2 are independent Gaussian random variables,
i.e. N1 ∼ N

(
0,σ2

Bob

)
and N2 ∼ N

(
0,σ2

Eve
)

where N1 has variance σ2
Bob and N2 has variance σ2

Eve.
Bob thus receives a message Y = X+N1 which is decoded as M̂ and Eve receives a message
Z = X+N2 which is decoded as M̃. The goal is to have M̂ = M and M̃ 6= M. When the goal
is accomplished, Bob has successfully decoded the message M while Eve decodes to an incorrect
message. Because the channel is probabilistic due to the AWGN, the events M̂ = M and M̃ 6= M
have probabilities associated with them. Thus, the objective of this research takes on the following
more concrete formulation:
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Objective: Minimize the probability that Eve correctly decodes the transmitted message M while
maintaining a probability α that Bob correctly decodes the transmitted message M.

The objective is formally equivalent to: minPr
[
M̃ = M

]
such that Pr

[
M̂ = M

]
= α . The

constraint on the probability of correct decoding at Bob is required otherwise the optimization
problem is trivial. This constraint is also essential as we want to be able to maintain a certain
probability of correct decoding as this is the whole point of communication. If the message M is
viewed as a symbol, then α can be selected at a reasonable level, e.g. α = 0.9, with the knowledge
that error correcting codes will be used to make the ultimate decoding error much less. Under the
constraint that Bob’s decoding probability is fixed, the objective is to minimize the probability that
Eve correctly decodes the message M.

Now that the objective has been given a mathematical formulation, some conditions on the
noise random variables are implicitly enforced. Under the AWGN eavesdropper channel model, it
is required that the noise variance σ2

Bob < σ2
Eve, i.e. the eavesdropper channel is noisier than the

intended channel. If this is not the case, then Eve will decode with a higher success probability
than Bob. This condition is not too serious however in that it seems very likely that the Eve’s
channel is noisier than Bob’s because Bob’s channel should be optimized.

Decoding Errors

With the condition that σ2
Bob < σ2

Eve, it will always be the case that Pr
[
M̃ = M

]
≤ Pr

[
M̂ = M

]
in the AWGN channel. The goal is to try to minimize the left hand side of this inequality. To
gain insight into decoding behavior, consider the 4-QAM (quadrature amplitude modulation) case
as illustrated in Figure 2. Suppose that the symbol 00 is transmitted but the point indicated by

Figure 2. 4-QAM Signaling Constellation

the blue x is received. Under the AWGN channel, the decisions boundaries correspond with the
coordinate axes (and are color coded in the image for convenience), so in this case the symbol 10
is decoded, which is an error. Still assuming that 00 was transmitted, the only way an error is made
is if the noise makes the received symbol cross the decision boundary to the left or the decision

10



boundary below. Thus the noise vector must be in the directions of the red arrows in the figure. If
the noise vector takes the received symbol in the directions of the blue arrows, no matter how far, no
error is made since the decision region is unbounded. Under the AWGN model, all directions are
equally likely and correspond to the circular equal probability contours of the Gaussian probability
density function (pdf), as seen in Figure 3. As the noise variance of the Gaussian noise random
variables is increased, the probability that the received symbol will cross a decision boundary is
increased and corresponds to a flattening of the Gaussian pdf. Increasing the variance however
does not change the fact that there are only certain directions that induce an error. The idea of
using a lattice is that a (countably) infinite number of symbols are used so that every decision
region is bounded and thus all directions can viably lead to an error. While trying to induce more
errors may seem counterintuitive, this is important because in the eavesdropper channel, Eve has
more noise variance, and thus it is easier for Eve to make a decoding error if there are more ways
in which to make such an error. This reasoning will now be made more rigorous.

Figure 3. Two Dimensional Gaussian PDF

1.2 Lattices as Signaling Constellations

Before discussing the use of lattices in communications, a lattice needs to be defined. Formally,
a lattice is a discrete additive group, i.e. the sum or difference of any two lattice points yields
another lattice point, and in any given region of space, there are only finitely many lattice points.
This description is vague, so two concrete examples are shown in Figure 4. Figure 4(a) is an
example of an integer lattice where each coordinate of a lattice point x ∈ R2 is an integer, e.g.
x =

[
1 2

]T , where the superscript T denotes transpose. The lines in the lattices in Figure 4
partition the two-dimensional plane into Voronoi cells, or the points in the plane that are closest to
each lattice point. A very important property of lattices is that the Voronoi cells are identical for
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each lattice point. This is a very nice property because in the AWGN channel, the Voronoi cells
are the optimal decision regions if a lattice point were transmitted, i.e. if the lattice were used as a
signaling constellation. The lattice in Figure 4(b) is a hexagonal lattice whose Voronoi regions are
hexagons.

(a) Integer Lattice (b) Hexagonal Lattice

Figure 4. Examples of Two-Dimensional Lattices

One way to mathematically represent a lattices is via its generator matrix M. Given a full rank
matrix M ∈ Rn×n a lattice is defined by the set {y = Mx|x ∈ Zn} where n is the dimension and
x ∈ Zn are all n-dimensional vectors with integer components. For the integer lattice in Figure

4(a) M = I the identity matrix and for the hexagonal lattice in Figure 4(b) M =

[
1 0
1
2

1
2

√
3

]
. The

generator matrix M is not unique for a given lattice, and in fact there are infinitely many generator
matrices that produce the same lattice. Define the Gram matrix of a lattice as A = MT M. The
absolute value of the determinant of A, |detA| gives the volume of the Voronoi cells of the lattice.
This value does not depend on which generator matrix M is used to describe the matrix.

Having briefly described some properties and given a couple examples of lattices, a connection
will now be made to the communications. Looking at the 4-QAM constellation of Figure 2, it
looks similar to the integer lattice from Figure 4(a). If the 4-QAM constellation is replicated and
infinite number of times to generate the signaling constellation in Figure 5, then the signaling
constellation is a translation of the integer lattice. We will now describe a technique known as
coset coding ([18, 19, 20, 52]) using Figure 5 as an example. When the 4-QAM constellation was
replicated, we also copy the bit-label given to each point. Thus, looking at the figure, all light-blue
regions correspond to the bit label ‘00’, all light green regions correspond to the bit label ‘11’,
etc. Thus, although there are an infinite number of code points, only 2 bits are being transmitted.
Using coset coding, if ‘00’ is to be transmitted, the transmitter is free to selected any of the lattice
points corresponding to a light blue region. At first, this situation looks ridiculous as there is now
a potential to select a code point with arbitrarily large energy. We will discuss how to by pass this
problem in Section 3.
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Figure 5. Coset Coding

For the time being, accepting this signaling constellation, what has been gained? As mentioned
in the Section 1.1, only certain directions lead to decoding errors using 4-QAM in the AWGN
channel. While the example was given for 4-QAM, any finite constellation has symbols which
have unbounded decisions regions. When a lattice is used, each decision region, which is a Voronoi
region in the AWGN channel, is bounded and therefore there are more directions or ways to make
a decoding error. Assume that Bob’s noise variance σ2

Bob is very low and Eve’s noise variance σ2
Eve

is large. For Bob, the probability of lying in the decision region of the transmitted code point is
high since the noise variance is small. On the other hand, the probability that Eve’s received point
lies in the correct decision region (referring to Figure 5, this would be any of the regions sharing
the same color as the transmitted code point) is small. This is also true in the QAM case, so how
much is gained by the extra error directions? Figure 6 compares the probability that Eve correctly
decodes the transmitted codeword as a function of Eve’s variance σ2

Eve for a fixed probability of
Bob correctly decoding of α = 0.95 and Bob’s variance is fixed at σ2

Bob = 1. There are a few
things to notice in Figure 6. First is that when Eve has the same noise variance as Bob, predictably
Bob and Eve have the same decoding performance. Secondly, and more importantly, notice that
the probability of Eve correctly decoding decreases faster for the coset coding scheme (Figure 5)
than for 4-QAM. This faster decay is due to the fact that there are more ways to make an error,
as mentioned above. The details of how Figure 6 was generated will be covered in Chapter 4.
Figure 6 motivates the user of lattices because for a given σ2

Eve, Pr[M̃ = M] should be minimized.
Different lattice lead to different curves as found in Figure 6, so the question now becomes how
to optimize the lattice to minimize the Eve’s decoding probability. Lastly, Figure 6 indicates that
there is a limit to how much the decoding probability can be decreased. In this example, the limit
is 0.25, which makes sense: there are four possible codewords, and the worst one could do is to
randomly guess which codeword was transmitted which yields a probability of correct decoding of
1
4 .
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While this example is useful to gain insight into the fundamental aspects of the problem,
there turns out to be nothing special about the two-dimensional case. Two-dimensional signaling
constellations are common as the two axes correspond to the in-phase and quadrature components
of a signal, but by concatenating these components, an arbitrarily large dimension can be attained.
Thus, we can consider signaling constellations and lattices of arbitrary dimension.

Figure 6. Probability of Correct Coding for Eve for QAM and
Coset Decoding

1.3 Difficulties and Scope

The example comparing the decoding performance of an eavesdropper using 4-QAM and a two-
dimension integer lattice with coset coding illustrates the fundamental problem addressed by
this research. Under a given channel model, the probability of of Eve correctly decoding is to
be minimized by optimizing the signal constellation over lattices. While it is easy to state the
objective, it has turned out to be incredibly difficult to do in practice. The originating works in this
area [6, 7, 8, 34] attacks this problem by approximating the Gaussian density with a second order
Taylor series and using the Theta series of a lattice. This approach however is non-constructive
as there is no way to convert an arbitrary Theta series into a lattice (i.e. one can compute a Theta
series of a lattice, but given a Theta series one cannot invert it to produce a lattice). The original
goal of this research was to have a more constructive approach so that theoretically a real system
could be developed.

Under the AWGN channel model, the performance of a lattice in terms of providing secure
communication will be shown to be related to the shape of the Voronoi regions. Specifically,
simulations will show that generally the “more spherical” the Voronoi regions, the faster the rate
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at which Eve’s probability of correct decoding decreases. Making the Voronoi regions “more
spherical” is related to maximizing the minimum distance between lattice points. This turns
out to be a very difficult problem. In general finding the “best” lattice for different types of
problems have puzzled mathematicians for thousands of years. For example, the optimal way
to stack identical spherical oranges (a very practical problem done in every supermarket) in order
to maximize the density of oranges was only solved less than 10 years ago and involved heavy
computational effort ([22]). It is therefore not too surprising to find that explicit lattice optimization
for secure communication is a challenging task. Outside of the AWGN channel, intuition into
the relevant lattice parameters that need to be optimized is lacking. The original scope of the
LDRD was to consider a variety of channel models, such as fading channels and Multiple-Input
Multiple-Output (MIMO) channels. However, the extreme difficulty encountered in the simplest
AWGN channel has precluded the analysis of these other channel models. This report will focus
solely on the AWGN channel. Because of the difficulties in finding strictly optimum lattices,
simulation, computational, and probabilistic arguments will be used to find good lattices for the
use as signaling constellations.

1.4 Outline

A brief outline of this report will now be given. In Section 2, the shapes of a single decision region
will be analyzed in terms of how fast the Gaussian probability escapes the region as a function of
variance. These single decision regions may not correspond to a feasible lattice Voronoi regions,
but insight will be gained into what shapes have good secure communication performance. As
previously mentioned, the shape of a good decision region will be such that as the Gaussian noise
variance increases, the probability inside the decision region decays as fast as possible. It will be
shown that under the AWGN channel model, the more spherical the decision region, the faster the
rate of decay. This leads to the intuition that the Voronoi regions of a good lattice should be as
“spherical” as possible.

In Section 1.2 it is mentioned that naively using a lattice as a signaling constellation is not
feasible because there are a countably infinite number of code points. Section 3 discusses a way
to have a finite signaling constellation yet emulates the lattice. The central concept is to use a
modulo additive noise channel, as used in [16]. The main idea is to use a random dither (common
randomness) in association with the modulo operation to emulate an infinite number of lattice
points.

Section 4 analyzes the only case that yielded analytical results: the integer lattice. Although
this case is perhaps the most trivial, it is also the most realistic in terms of system realizability.
The computations required to determine which Voronoi region a received code point lies in can be
very complex. In the case of the integer lattice this computation is very straight forward since it
can be done on a coordinate-by-coordinate basis. Thus this case is of interest from a practicality
perspective.

One of the main difficulties in the computational analysis of lattice performance is determining
the scaling of the lattice such that the Gaussian probability in a Voronoi region meets the probability
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constraint Pr
[
M̂ = M

]
= α , i.e. that Bob can decode correctly with the desired probability. In

Section 5 Newton’s method will be used to quickly find the correct scaling of the lattice to meet
the probability constraint. Prior to deriving this algorithm, a huge amount of computational time
was required to determine the proper scaling. The use of this algorithm greatly increases the ability
to simulate and test lattice performance.

Because it is difficult to directly optimize lattices, a different approach is taken. Random
lattices will be constructed from an ensemble of lattices which have previously been shown to have
good characteristics for communications applications ([12, 16]). Simulations show the distribution
of the maximum minimum distance of lattice lattice ensemble. Simulations will also show how
these lattice perform in terms of hindering an eavesdropper. Some results on the use of semidefinite
programming to optimize construction A lattices will also be presented. These results are limited
but show the possibility of the use of the technique to optimize a class of lattices.

Section 7 discusses several possible techniques that could be used to find very good lattices
for secure communications. Most of the work in this section has happened very recently and is
thus preliminary, yet interesting. In fact, had there been more time, some of these techniques seem
to have promise in the ability to find very good lattices. Very recently, the statistical mechanics
community has been interested in finding the most dense lattices of a given dimension. Several
algorithms have been proposed that, while not finding the densest lattice, find very dense lattices,
in some cases the densest known lattice for a given dimension ([2, 23, 31, 35, 46, 47]). Due to
time, these algorithms unfortunately have not been implemented to try to find good lattices for our
problem, but it is believed that these algorithms could be successful, and thus a brief description
of them is included. Lastly, Section 8 concludes the document by summarizing the findings and
discussing possible future directions.
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2 Optimal Single Decision Regions

Finding the best lattice for secure communications is a very challenging problem with no known
optimal approach. To try to gain insight into the problem, this section investigates how the
Gaussian probability inside a symmetric convex body (which all Voronoi decision regions are)
changes as a function of the variance or equivalently as a function of scaling the size of the
symmetric convex body (see Section 5.1 for details of this equivalence). To motivate this analysis,
consider the case where σ2

Bob = σ2
Eve. In this case, Eve performs just as well as Bob and is the

worst case scenario (under the assumption σ2
Eve ≥ σ2

Bob) and given that α is near unity, nearly all
of the probability mass lies in the decision region corresponding to the correct code point. For
example, looking ahead at Figure 15, suppose ‘00’ in the dark red region is to be transmitted and
α = 0.99, then nearly all of the Gaussian probability lies in the dark red decision region for ‘00’
and all the coset equivalent regions in light red can be ignored. Now suppose that Eve’s variance
is increased slightly, i.e. σ̃2

Eve = σ2
Eve + ε for some small ε > 0. What decision region shape leads

to the biggest decrease in Eve’s probability of correct decoding? It is this question that motivates
the analysis of symmetric convex bodies and individual decision regions.

There is a substantial literature regarding the Gaussian probability inside convex bodies. See
for example [9, 13, 21, 26, 27]. In this work, computer simulation are written to gain insight into
this question. Figure 7(a) shows four convex bodies that are scaled such that the probability of a
zero mean Gaussian random variable with covariance matrix I lying inside the bodies is equal to
α = 0.99. Figure 7(b) shows the probability of lying inside these four bodies as a function of the
variance increasing. Notice that the probability decays the fastest for the circle and the slowest for

(a) Different Convex Bodies Containing
the Same Gaussian Mass

(b) Gaussian Mass in Convex Body as a
Function of Variance

Figure 7. Convex Bodies and Gaussian Measure Initialized with
α = 0.99

the ellipse. This figure seems to suggest that the more “spherical” the decision region, the faster
the decay for Eve being able to correctly decode. Note that this figure is used to gain insight;
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decision regions of a lattice are always polyhedral so a circular or elliptical decision region is not
possible. It turns out that for a n-dimensional Gaussian a spherical convex body will have the
fastest decay. This is because the equiprobability contours of the Gaussian density function in this
case are spherical. Increasing the variance of the Gaussian density can be viewed as a probability
flux of probability mass leaving the convex body. In this case the probability mass is moving
perpendicular to the equiprobability contours at every point and thus maximizes the rate at which
the probability is exiting the convex body.

Another point of view is that of the concentration of measure phenomenon ([43, 44]). For the
case of i.i.d. n-dimensional Gaussian random variables, the concentration of measure phenomenon
says that the the samples start to look more and more like they lie on the surface of a sphere as the
dimension increases. Figure 8 shows i.i.d. Gaussian samples drawn from N

(
0, 1

nI
)

for low and high
dimension (the high-dimensional image is a two-dimensional cross-section). Some concentration

Figure 8. Concentration of Measure Phenomenon

equalities formalizing the intuition of the figure are now given (see [5] for details). Let X ∼N (0,I)
be an n-dimensional Gaussian variable. Then

Pr
[
‖X‖2 ≥ n

1− ε

]
≤ e−

ε2n
4 (1)

Pr
[
‖X‖2 ≥ n(1− ε)

]
≤ e−

ε2n
4 (2)

Pr
[
‖X‖2 ≥ (1+ ε)E

[
‖X‖2]]≤ e−

ε2n
6 (3)

Pr
[
‖X‖2 ≤ (1− ε)E

[
‖X‖2]]≤ e−

ε2n
4 . (4)

With these results in hand, it is conjectured that the best lattices for large α and σ2
Eve ≈ σ2

Bob
have the most “spherical” decision regions. In Section 6, Figure 27 verifies this conjecture for
a specific case. Based on this intuition, much of the work on this report is based on trying to
find lattices with good parameters related to having “spherical” decision regions, such as having a
large minimum distance between lattice points, which corresponds the being able to fit the largest
possible sphere into the decision region.
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3 Modulo Additive Noise Channel

In the introduction a brief description of lattices as signaling constellations and coset coding was
discussed. It turns out that coset coding by itself is insufficient for the problem of trying to confuse
any eavesdroppers. Before discussing the insufficiency, coset coding and the modulo additive noise
channel will be discussed in more detail.

Consider again the example of a modified 4-QAM constellation. The right hand part of Figure
9 shows the four code points and the left hand side shows the copying and tiling of the code points
and their decision regions to cover the plane. The fundamental region of a lattice point is the set of
points in Euclidean space that are closer to the given lattice point than any other lattice point. For
example, the light blue region represents the set of points in the plane that are closer to the code
point ‘10’ than any other code point. Notice that if we view the area enclosed in the bright red

Figure 9. Modulo Additive Noise Channel

square as a fundamental region, then the tiling of the bright red squares generates another lattice.
This “courser” lattice is a sub-lattice of the original lattice. The sub-lattice is courser in the sense
that there is only a single square enclosed by the bright red square for every four smaller squares
corresponding to the four code points.

The modulo additive noise channel intuitively works as follows. Select the base constellation
of code points from a lattice. In Figure 9, the base constellation is 4-QAM. Replicate the base
constellation and tile it to fill the Euclidean space. This generates a sub-lattice whose fundamental
region is defined by the base constellation, which in the case of Figure 9 is the bright red square.
Now suppose that the code point ‘00’ is to be transmitted, call it X and suppose the noise vector
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N translates X such that the received code point Y = X+N is the light red circle in the left hand
side of the figure. Notice that the received code point lies in light green region corresponding to
the decoding region for ‘11’. Instead of having to keep track of the entire two dimensional plane,
an equivalent decoding procedure it to compute the received code point modulo the fundamental
region of the sub-lattice, i.e. to wrap the received code point around the edges of the fundamental
region of the sub-lattice until the code point lies in the fundamental region. In this example,
wrapping the received code point (the light red circle) around the borders of the fundamental
region (the bright red square) yields the code point designated by the bright red circle. Call the
modulo received code point Ỹ. Notice that the bright red circle Ỹ lies in the same position of
the decision region for ‘11’ as the original received code point, the light red circle Y. It is in this
sense that the modulo decoding procedure is equivalent to keeping track of all the decision regions
in the plane, and thus using the modulo operation only the fundamental region of the sub-lattice
(the bright red square) needs to be stored. As a second example, Figure 9 shows a received code
point that is light yellow circle that is converted to the bright yellow circle and decoded as ‘00’.
As is discussed in more detail in Section 4, the example given above is straight forward because
the decision regions of the fundamental region of the sub-lattice (the bright red square) are parallel
to the axes so that the modulo procedure can be done on each coordinate individually. For an
arbitrary lattice and sub-lattice, this need not be the case and this can complicate the computation
of the modulo operation.

(a) Modulo Decoding (b) QAM Decoding

Figure 10. Decision Regions for Modulo Decoding and QAM
Decoding

If the entire lattice is used as a coding constellation, i.e. selecting any light blue point in the
plane in Figure 9 to transmit ‘10’, then Eve’s performance degrades as a function of SNR faster
than without the use of the lattice (e.g. just using QAM). This is the idea that originated the
technique of coset coding [52]. However, as mentioned before, using the entire lattice requires
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an infinite number of code points, which requires infinite power. It would be preferable to use
the modulo technique described above as it has the same decoding regions but requires only the
code points in the fundamental region of the sub-lattice (in the example above, the original 4-QAM
points) and thus has finite power. Using the modulo constellation and modulo decoding as is does
not work from a secure communications stand point. Just because Bob uses modulo decoding
does not mean Eve does as well. Consider again the example given in Figure 9. The modulo
decoding region, after performing the modulo operation on the received code point Y to yield Ỹ is
given in Figure 10(a). As is typically the case in analyzing eavesdropper performance, the worst
case scenario is assumed. Suppose that Eve knows that Bob is using modulo decoding and has
the constellation and decoding regions indicated in Figure 10(a). Rather than attempt to perform
the same decoding, Eve can choose any decoding scheme she wishes, so assume that Eve uses a
traditional QAM decoding scheme. The decision region for tradition 4-QAM is given in Figure
10(b). Note that the decision regions are unbounded. How does Eve’s performance using QAM
decoding compare to if she had used modulo decoding? Figure 11 gives the answer: Eve performs
far better using just QAM decoding. In fact, for small values of σ2

Eve (the case when σ2
Eve ≈ σ2

Bob),
Eve performs better than Bob. In this example Bob’s probability constraint is α = 0.9 and it can be
seen that for small σ2

Eve, Eve exceeds this probability. This is an extreme example but shows that
just using modulo decoding is not enough to confuse an eavesdropper. What needs to be done in
order to make Eve have the performance of the blue curve in Figure 11 rather than the red curve?

Figure 11. Eve’s Performance Using Modulo Decoding and
Coset Decoding

The key is to use a source of common randomness as is done in [16]. Let U be a random
variable that is uniformly distributed over the volume of the fundamental region of the sub-lattice
(e.g. U is randomly distributed over the bright red square in Figure 9). Assume that both the
transmitter and receiver know U . Such a random variable is called common randomness and can
be generated for example by having a random number generator at the receive and transmitter be
initialized with the same seed. It is also assumed that Eve knows the common random variable
U in order to analyze the worst-case scenario. If Eve does not know U , then Eve’s probability
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of correctly decoding can only be worse. Define the new transmitted code point with common
randomness as X′ = [X+U] mod Λsub where mod Λsub means the modulo operation with respect
to the fundamental region of the sub-lattice. At the receiver, the received code point is

Y = X′+N = [X+U] mod Λsub +N (5)

and the decoded code point is given by subtracting the common randomness and performing the
modulo operation

Ỹ′ = [Y−U] mod Λsub

= [[X+U] mod Λsub +N−U] mod Λsub

= [X+U+N−U] mod Λsub

= [X+N] mod Λsub (6)

where the identity from the second line to the third line is from the distributive property of the
modulo operation. As defined in [16], the channel described by Equation 6 is called a modulo-
Λ additive noise channel. Consider the same example as was discussed for Figures 10 and 11.
Figure 12 compares four cases for Eve’s decoding algorithm. The first two cases are the same
as in Figure 11 and no common randomness is used. The two new cases consider a user of
common randomness and compares Eve’s decoding probability when she subtracts the assumed
known common randomness (worst-case scenario) and performs the modulo operations (the same
decoding procedure as Bob) and when Eve uses the standard QAM decision region on the received
code point. Because of the equivalence of the modulo additive decoding with common randomness

Figure 12. Eve’s Performance Using Modulo Decoding and
Coset Decoding

method in Equation 6 and the coset coding method described in Figure 9, the blue curve and
magenta curve in Figure 12 are the same. If Eve uses only the QAM decision boundaries and
ignores the common randomness (decoding procedure of the red curve), then Eve’s probability of
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successfully decoding the transmitted code word is greatly inhibited, and is in fact equal to random
guessing.

The key take away from these examples is that the performance of coset coding with an infinite
lattice, and thus infinite transmit power, can be reproduced using the equivalent modulo-Λ additive
noise channel and common randomness which has a finite transmit power.

A Note on Analyzing Lattices

It has been shown that using coset coding without common randomness is suboptimal because it
may be possible for Eve to use a different decoding algorithm and achieve a higher probability
of correct decoding. To remedy this, common randomness is used to convert the channel with
coset coding into the modulo-Λ additive noise channel. The analysis in the remainder of this
report however will not use common randomness. System analysis will tend to be easier by not
considering the common randomness, and it is known that equivalent results can be achieved by a
conversion to the modulo-Λ additive noise channel.

23



This page is intentionally left blank.

24



4 Integer Lattices

This section analyzes the performance of integer lattices in terms of hindering the ability of an
eavesdropper to correctly decode a transmitted message. The integer lattice is the easiest lattice to
analyze due to the all the decision boundaries being parallel to a coordinate axis. Let M ∈ Rn×n

be the generator matrix for an n-dimensional lattice Λ, i.e. Λ = Mx for all x ∈ Zn. The generator
matrix for an integer lattice is a scaled identity matrix, i.e. M = β I for some β > 0. All of the
decision regions for the integer lattice are congruent hypercubes as seen in Figure 4(a). This is
important, as will be seen latter, because computing the Gaussian probability of half-spaces is the
only straight forward case, and hypercubes are the intersection of 2n half-spaces.

Typical two dimensional signaling constellations do not have a code point at the origin. For
example, see the 4-QAM and 8-PSK constellations in Figure 13. All lattices contain the origin,

(a) 4-QAM (b) 8-PSK

Figure 13. Two-Dimensional Signal Constellations

so in order to make the integer lattice more like the 4-QAM constellation, the lattice must be
translated. Comparing the integer lattice of Figure 4(a) with the 4-QAM constellation of Figure
13(a), it is clear that the translation vector is β

2 1, where β is the scaling constant and 1 is a vector
of all ones. After translation, the lattice can be partition via coset coding to make, for example,
4-QAM as in Figure 5, or even higher order QAM constellations such as 16-QAM, 64-QAM, etc.

As mentioned earlier, the reason that integer lattices allow for amiable analysis is due to the
error function and complementary error function which will now be described. Suppose X is a one
dimensional Gaussian random variable with zero mean and unit variance. Consider events of the
form X < c and X > c, where c is a real number. What are the probabilities of these events? The
one-dimensional Gaussian pdf is given by

fX(x) =
1√

2πσ2
exp
(
−(x−µ)2

2σ2

)
(7)
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Figure 14. Translated Two Dimensional Integer Lattice

where µ is the mean and σ2 is the variance. Thus, the probability of the event X < c is computed
by

Pr [X < c] =
∫ c

−∞

fX(x)dx =
1√

2πσ2

∫ c

−∞

exp
(
−(x−µ)2

2σ2

)
dx (8)

and likewise X > c can be computed as

Pr [X > c] =
∫

∞

c
fX(x)dx =

1√
2πσ2

∫
∞

c
exp
(
−(x−µ)2

2σ2

)
dx. (9)

These integrals have no closed-form solutions, but are well approximated and can be computed
very accurately with the use of the error function and complementary error function. The error
function is defined as

erf(x) =
2
π

∫ x

0
exp(−t2)dt (10)

and the complementary error function is given by

erfc(x) = 1− erf(x) =
2
π

∫
∞

x
exp(−t2)dt. (11)

In the next section, these equations will be used to perform analysis of a two-dimension integer
lattice.

4.1 Two Dimension Integer Lattice Analysis

The first task to be addressed is how to compute the proper scaling of the integer lattice β such that
the constraint that the probability Bob correctly decodes the transmitted message is α is met. It is
assumed that α is fairly large, i.e. fairly close to 1. In this case, the probability of a transmitted
code point only lying in the originally transmitted decision region, and not all modulo-equivalent
decision regions, needs to be computed. Figure 15 shows this graphically. Assuming the point 00
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is transmitted, the probability of of the received code point lying in the dark red will be computed
while all modulo equivalent regions in light red are ignored. The accuracy of the approximation
by ignoring the light red regions increases as α approaches 1.

Figure 15. 4-QAM Coset Coding

In Figure 15, the transmitted code point is
[1

2
1
2

]T and the decision region is the unit square.
Let us assume the noise random variable N ∼ N

(
0,σ2I

)
. What β should the lattice be scaled by

such that the probability of being in the dark red square (now having sides of length β ) equals
α? The key is to use the error function defined in Equation 10. For this analysis, without loss of
generality, assume that the transmitted code point is the origin and compute the probability that the

received code point lies in the box
[
−β

2 ,
β

2

]2
, i.e.

Pr
[
−β

2
≤ N(1)≤ β

2

]
∧Pr

[
−β

2
≤ N(2)≤ β

2

]
= Pr

[
−β

2
≤ N(1)≤ β

2

]2

=

(
2Pr

[
0≤ N(1)≤ β

2

])2

(12)

where N(1) is the first component of the noise vector and N(2) is the second component. The
probability of being in the red square is equal to Equation 12 because each component of the noise
is independent with equal variance, thus as long as both the first and second component lie in the
interval, it lies in the square. The last equality is true because of the symmetry of the Gaussian
density. The probability of being in the red square can be evaluated by use of the error function
and a change of variables

Pr [N ∈ Red Square] =
[

erf
(

β/2√
2σ2

)]2

(13)

The inverse error function is also well known, so the scaling factor and edge length can be solved
by inverting the above Equation 13 and the approximation that only the red region matters:

Pr [N ∈ Red Square] = α ⇒ β = 2
√

2σ2erfinv
(√

α
)

(14)
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Figure 16 illustrates this function. Notice that as the probability constraint α approaches 1, the
edge length approaches infinity. This makes sense because as α approaches 1, the red square
needs to start covering most of the two dimensional plane in order to capture all of the probability.

Figure 16. Edge Length β as a function of Probability Constraint
α with σ2 = 1

The next question to be addressed is how does Eve perform as a function of σ2
Eve given the

scaled integer lattice given by the solution of Equation 14? As an example, given the scaling β , the
question is what is the probability that Eve’s received codeword lies in any of the red regions (dark
or light) in Figure 15? In theory, very good approximations can be achieved by using the error
function and complementary error function, but accounting for all of the possible combination of
outcomes quickly becomes tedious. Rather than take this approach, simulations will be performed
on the modulo channel. For the time being assume that 2-bits are to be transmitted per symbol
leading to the 4-QAM coset model as in Figure 15. Also assume that the transmitted codeword

is
[

β

2
β

2

]T
. In this case, because all the decision boundaries are parallel to the coordinate axes,

the modulo operation can be take component-by-component. Let Z be Eve’s received codeword.
The modulo equivalent channel takes each component of Z modulo 2β and call this result Z̃, i.e.
Z̃ = Z mod 2β . Eve decodes X correctly if Z̃ lies in the square [0,β ]2. It is fairly easy to generate
several million instances of Z, covert it to Z̃ and test if it lies in the square. The fraction of points
lying in the square is an estimate of the probability of Eve successfully decoding. With several
million samples, this estimate is accurate to a couple of decimal places, and the more samples that
are used, the more accurate the estimate. Figure 17 shows the probability of correct reception as
a function of Eve’s variance (or equivalently SNR with respect to Bob’s variance). In the figure,
Bob’s probability constraint was set to α = 0.9 with σ2

Bob = 1. When Eve’s variance σ2
Eve = σ2

Bob,
corresponding to the left hand side of the plot, Eve performs as well as Bob. In the blue curve,
as Eve’s variance increases, the probability of error decreases until it finally plateaus at a value
of 0.25 corresponding to random guessing. If the coset signaling constellation has 16 points (4
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bits), i.e. a four-by-four grid repeated instead of a 2x2 grid as in 16-QAM, the probability of
correct detection decays to a value of 1

16 for random guessing as seen in the red curve. Figure 17

Figure 17. Probability of Eve Successfully Decoding

seems to suggest that by increasing the data rate, we hinder Eve’s ability to correctly detect the
transmitted signal. This is true, but as the number of bits per symbol is increased, the transmit
energy is increased because of the constraint that Bob’s probability of correct decoding equal α .
In a traditional communications problem, it is usually the transmit power that is constrained and
probability of decoding is maximized. In the system under consideration, increasing the bit rate
eventually leads to an unrealizable transmit power.

Figure 18 shows the probability of Eve correctly decoding as a function of the probability
constraint α and Eve’s variance σ2

Eve. The rate of decay as a function of σ2
Eve is pretty similar in

the range [0.9,0.995], but the smaller α is, the faster the decay. This is true up to a point, however,
as α decreases the approximation by only the central decision region becomes less accurate and
thus the rate of decay may not be accurate. In fact, it does not appear that the probability of
Eve successfully decoding is monotonic in σ2

Eve for certain α . However for large enough α , the
probability of Eve successfully decoding is a monotonically decreasing function of σ2

Eve.

4.2 Higher Dimension Integer Lattices

The computations in higher dimensions follows very closely with those in the two dimension
case of the previous section. Under the same assumptions as the previous section, the probability
of the received code point lying in the n-dimensional hypercube

[
−β

2 ,
β

2

]n
given the origin was

transmitted is

Pr
[
−β

2
≤ N(1)≤ β

2

]n

=

(
2Pr

[
0≤ N(1)≤ β

2

])n

. (15)
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Figure 18. Probability of Eve Successfully Decoding vs. α and
σ2

Eve

This equation formally identical to Equation 12 with the exponent of 2 (corresponding to two
dimensions) replaced by n. Similarly the higher dimension analogies of Equations 13 and 14 are:

Pr [N ∈ Red Square] =
[

erf
(

β/2√
2σ2

)]n

(16)

and
Pr [N ∈ Red Square] = α ⇒ β = 2

√
2σ2erfinv

(
α

1
n

)
. (17)

Figure 19 is analogous to Figure 18 except multiple dimensions are including. Notice that as the
dimension increases, the edge length increasing to maintain a fixed α . This is due to the term α

1
n in

the argument of the inverse error function. On the support of non-negative real numbers, the inverse
error function is a monotonically increasing function of its argument. The probability constraint α

lies in the interval [0,1], so raising α
1
n is an increasing function of dimension n. Therefore, as the

dimension increases the edge length increases.

An extension of the 4-QAM coset coding has two code points,±β

2 , in each dimension for a total
of 2n code points. In theory the coset coding can involve any combination of fundamental regions
such that the region covered by them is a rectangle. The problem with this general configuration is
that the number of code points in the sub-lattice may not be a power of 2, and hence some bits are
wasted. The beauty of generalized QAM configurations (4-QAM,16-QAM,etc.) is that the number
of code points is always a power of 2 and thus no bits are wasted. Because of the independence
of the noise, as was the situation in the the two dimensional case, each component of the n-
dimensional Eve receive vector Z can be handled separately. Thus, the simulation technique used
to generate Figure 17 can easily be generalized to n-dimensions. While in theory these techniques
work for an arbitrary dimension, in practice the accuracy of our probability estimate decreases
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Figure 19. Edge Length β as a function of Probability Constraint
α with σ2 = 1 for several dimensions

because we need to generate more random variables and computer memory issues become a
problem. Figure 20 is the n-dimensional analogy of Figure 17. As before, notice that when
σ2

Eve = σ2
Bob, corresponding to the left hand side of the plot, Eve is able to decode correctly with the

same probability as Bob. As Eve’s variance σ2
Eve is increased, the probability of correct decoding

saturates. The saturation point is equal to the random guessing probability. As was previously
mentioned, there are 2n code points in the modified 4-QAM scheme, so the saturation probability
is 2−n. Figure 20 suggests that increasing the dimension hinders the ability of Eve to correctly
decode. This is correct, but as discussed during the analysis of 4-QAM coset coding versus 16-
QAM coset coding, the additional code points which help confuse Eve come at the cost of transmit
power. This increase in transmit power can also be seen from Figure 19 where the edge length
must increase to maintain a specified α , and the longer the edge width, the more power is required.
To see this connection explicitly, in the n-dimensional 4-QAM extension, each code point is is of
the form

[
±β

2 , . . . ,±
β

2

]
. Thus, each code point has the same power and is equal to

Code Point Power =
n

∑
i=1

(
±β

2

)2

= n
β 2

4
. (18)

Because each code point has the same power, the average transmit power equals the individual
code point power. From this equation, it is easy to see that the transmit power increases linearly
with dimension.

4.3 Realizability

In general, finding the nearest lattice point of an arbitrary point in Euclidean space is a challenging
problem that has generated a large amount of research. It is known as the closest vector problem

31



Figure 20. Probability of Eve Successfully Decoding with
σ2

Bob = 1

and is also related to the shortest vector problem. See [1, 17] as a starting point . While there exist
algorithms that are fast, the ability of the algorithms to be implemented in a real communications
system is currently questionable. The geometry of the decision regions in the integer lattice greatly
simplifies matters. In the AWGN setting, the independence of the noise components means that
each component can be handled independently and very fast algorithms exist for computing the
modulo operation. Thus while the integer lattice is suboptimal, it’s performance can be easily
analyzed and it is a scheme that can probably be realized in hardware. In fact, in the original scope
of this work, certain lattice systems were to be implemented and tested in hardware. The integer
lattice is the only candidate class of lattices that this researcher has come across that seems viable
for implementation. Given more time and resources, implementation of integer lattices in hardware
is definitely a path that would be pursued.

The analysis of this section did not involve the use of a common random dither as described
in Section 3. In practice, the use of this common randomness is required to get the benefit of
the modulo channel, but from the viewpoint of the analysis of integer lattice it can be ignored.
This is because in the worst-case scenario, which must be assumed in these types of eavesdropper
analyzes, Eve also knows the common random dither. The common randomness can thus be
ignored from the standpoint of analysis and focus can be given solely to the probability of Gaussian
noise vectors lying in certain regions.
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5 Newton’s Method for Lattice Scaling

This section addresses the question of how to appropriately scale a lattice in order to meet the
constraint that Bob correctly decodes the symbol with probability α . From a computational
perspective, the performance of a lattice can be determined via Monte Carlo simulation. As was
done in Section 4, a large number of Gaussian noise samples can be generated and the fraction
that lies within the correct decoding region can be counted to estimate Eve’s probability of correct
decoding. Before this step however, the lattice must be appropriately scaled in order to guarantee
Bob’s constraint is met. In Section 4, the scaling factor β could be computed in closed form for the
integer lattice by Equation 13 for two dimensions and more generally by Equation 17 for arbitrary
n-dimensions. As was previously stated, the case where the scaling can be computed in closed
form is rare. The reason it is possible for the integer lattice is due to the fact the decision regions
have boundaries parallel to the coordinate axes and the use of the error function. This section
will develop a Newton-type algorithm in order to compute the scaling of an arbitrary convex
body, i.e. given a convex body A, what is the scaling factor β such that βA contains Gaussian
probability mass equal to α . As in Section 4, an approximation will be made where it is assumed
α is fairly large so that only a single decision region needs to be considered when computing β and
all modulo-equivalent regions are ignored. With this assumption, because the Voronoi regions of
a lattice are always convex, this Newton-type approach will enable the computation of the scaling
factor for a lattice.

5.1 Equivalence of Scaling Integration Region and Variance

In this subsection it will be shown that when computing the Gaussian probability in a convex
region, scaling the convex integration region is equivalent to scaling the variance of the Gauss
measure (or associated random variable). This result will be illustrated via a one-dimensional
example. For a zero mean Gaussian random variable with variance σ2, the probability that the
random variable lies in an interval [a,b] is given by

γ ([a,b]) =
∫ b

a

1√
2πσ2

exp
(
− x2

2σ2

)
dx. (19)

Now suppose that the integration region is scaled by some positive number β ∈ R++. Then the
Gauss measure in the interval [βa,βb] is given by

γ ([aβ ,bβ ]) =
∫ bβ

aβ

1√
2πσ2

exp
(
− x2

2σ2

)
dx. (20)

This is equivalent to scaling the variance and can be seen by a change of variable: let y = x
β
⇒ x =

yβ and thus βdy = dx leading to

γ ([aβ ,bβ ]) =
∫ b

a

β√
2πσ2

exp
(
−β 2y2

2σ2

)
dx. (21)
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Define a new variance σ̃2 = σ2

β 2 and plug this into Equation 21 to get

γ ([a,b]) =
∫ b

a

1√
2πσ̃2

exp
(
− x2

2σ̃2

)
dx. (22)

Equation 22 is identical to Equation 19 except for the new scaled variance, therefore in the one-
dimensional case the equivalence has been established. This also holds in higher dimensions for a
convex integration region using the same change of variable σ̃2 = σ2

β 2 .

5.2 Scaling the One-Dimensional Lattice

As mentioned in the introduction of this section, it is assumed that α is large enough such that
when computed the probability of Bob correctly decoding, focus can be given solely to the decision
region corresponding to the transmitted code point and all modulo equivalent decision regions can
be ignored. Thus for the one dimensional lattice, the single decision region is an interval, and
without loss of generality the interval [−1,1] can be considered. Let the variance of the Gaussian
noise Bob experiences be given by σ2. To meet Bob’s probability constraint, the question is now
what is the scaling factor β such that Pr [N ∈ [−β ,β ]] = α where N ∼ N

(
0,σ2) is the Gaussian

noise random variable? This question is answered by setting the following equation equal to α

f (β ) =
∫ 1

−1

1√
2πσ2/β 2

exp
(
− x2

2σ2/β 2

)
dx (23)

i.e. f (β ) = α . A visualization of f (β ) is given in Figure 21. Note that f (β ) is a monotonically
increasing function and f : R++→ (0,1). In the figure the highlighted point is for β = 1, where
the expected answer is roughly 0.68, the probability of a Gaussian random variable being within
one standard deviation.

Newton’s method is an iterative method to find solutions x of problems of the form g(x) = 0.
For the problem under consideration, set g(β ) = f (β )−α = 0. The iterative update is given by

β
[n+1] = β

[n]−
g
(

β [n]
)

g′
(
β [n]
) (24)

where the superscript [n] denotes the iteration number and g′ denotes the derivative of g with
respect to β . For details of Newton’s method or its derivation, see [33]. To use Newton’s method,
the derivative f ′(β ) has to be evaluated. In this one-dimensional case over the interval [−1,1], the
derivative is given by

d
dβ

f (β ) =
∂

∂β

∫ 1

−1

1√
2πσ2/β 2

exp
(
− x2

2σ2/β 2

)
dx

=

√
2
π

exp
(
− β 2

2σ2

)
β

√
σ2

β 2

. (25)
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Figure 21. Gaussian Probability of Interval [-1,1] as a Function
of β

For the one-dimensional case on the interval, the problem is now effectively solved since
f (β ) and f ′(β ) can be evaluated. Because f is monotonically increasing, Newton’s algorithm
will converge to the solution β such that f (β ) = α . This one dimensional example, while being
illuminating, is too simple. Ultimately f (β ) and f ′(β ) need to be evaluated on the Voronoi regions
of arbitrary lattices and not just on the interval [−1,1]. Some additional insight can be gained by
the one dimensional case before considering the general n-dimensional problem. Consider the
partial derivative of the integrand 1√

2πσ2/β 2
exp
(
− x2

2σ2/β 2

)
:

∂

∂β

(
1√

2πσ2/β 2
exp
(
− x2

2σ2/β 2

))
=

(
σ2−β 2x2)√

2πσ2/β 2βσ2
exp
(
− x2

2σ2/β 2

)
=

1

β
√

2πσ2/β 2
exp
(
− x2

2σ2/β 2

)
− β

σ2
x2√

2πσ2/β 2
exp
(
− x2

2σ2/β 2

)
. (26)

Taking the integral of Equation 26 over the interval [−1,1] yields Equation 25. To gain more
insight, redefine f (β ), call it f̃ (β ), to be the integral over an arbitrary interval A rather than the
interval [−1,1] and consider the integral of Equation 26 over the interval A∫

A

∂

∂β

(
1√

2πσ2/β 2
exp
(
− x2

2σ2/β 2

))
dx =

1
β

∫
A

1√
2πσ2/β 2

exp
(
− x2

2σ2/β 2

)
dx︸ ︷︷ ︸

a1

−

β

σ2

∫
A

x2√
2πσ2/β 2

exp
(
− x2

2σ2/β 2

)
dx︸ ︷︷ ︸

a2

. (27)
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With the redefined f̃ (β ), notice that the first term, a1 in Equation 27 is equal to 1
β

f̃ (β ). Looking at
the second term a2 in Equation 27, notice that if the integration region had been R rather than the
interval A, the integral in term a2 would evaluate to the variance σ2

β 2 . Thus, if the integration region

A were replaced by R in term a2, f̃ ′(β ) would evaluate to

f̃ ′(β ) =
∫

A

∂

∂β

(
1√

2πσ2/β 2
exp
(
− x2

2σ2/β 2

))
dx =

1
β

f̃ (β )− β

σ2 ·
σ2

β 2 =
1
β

f̃ (β )− 1
β
. (28)

The issue with the above formula is that the integration region is in fact A and not R. The question
now becomes how to evaluate the second term on the region A, or how to approximate this term.
This leads to questions regarding the norm squared of truncated random variables.

5.3 N-Dimensional Lattice Scaling

In n-dimensions, the Gaussian probability of being in an n-dimensional set A with a scaling factor
β is

f (β ) =
∫

A

(
1√

2πσ2/β 2

)n

exp
(
− ‖x‖2

2σ2/β 2

)
dx. (29)

This is the n-dimensional generalization of Equation 23 over arbitrary sets A. Attention will be
restricted to symmetric convex sets since A will be the Voronoi region of an n-dimensional lattice.
As in the one-dimensional case, finding the lattice scaling β such that Bob’s probability constraint
is met amounts to finding the value of β such that f (β ) = α . Use of Newton’s method to solve this
problem amounts to computing f (β ) and f ′(β ) as seen by Equation 24. The evaluation of these
function over an arbitrary Voronoi region A cannot be computed in closed form, so a Monte Carlo
approach will be taken.

Recall the equivalence between scaling the integration region or the variance:

f (β ) =
∫

A

(
1√

2πσ2/β 2

)n

exp
(
− ‖x‖2

2σ2/β 2

)
dx =

∫
βA

(
1√

2πσ2

)n

exp
(
−‖x‖

2

2σ2

)
dx. (30)

Generating a large number of Gaussian random variables, the value of f (β ) can be approximated
by finding the proportion of the random sample found in βA or the proportion of the random sample
scaled by 1/β that lies in A. The larger the number of samples, the better the approximation.
For an arbitrary lattice it can be a difficult problem to compute the fraction of points lying in a
Voronoi region A. The derivative f ′(β ) must also be approximated. The derivative is given by the
expression

f ′(β ) =
∂

∂β

∫
A

(
1√

2πσ2/β 2

)n

exp
(
− ‖x‖2

2σ2/β 2

)
dx

=
∫

A

∂

∂β

(
1√

2πσ2/β 2

)n

exp
(
− ‖x‖2

2σ2/β 2

)
dx. (31)
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Evaluating the partial derivative of the integrand yields

∂

∂β

(
1√

2πσ2/β 2

)n

exp
(
− ‖x‖2

2σ2/β 2

)
=

n
β

(
1√

2πσ2/β 2

)n

exp
(
‖x‖2

2σ2/β 2

)
︸ ︷︷ ︸

b1

− β

σ2

(
1√

2πσ2/β 2

)n

‖x‖2 exp
(
‖x‖2

2σ2/β 2

)
︸ ︷︷ ︸

b2

. (32)

Equation 32 is the n-dimensional generalization of Equation 27. The integral of Equation 32 over
the region A equals f ′(β ). The integral of the term b1 equals the original f (β ). The integral over
the second term b2 is equal to the expectation of the random variable Y= ‖X ·1A‖2, where 1A is the
indicator function which is 1 when X ∈ A and 0 otherwise. This is the truncated random variable
alluded to at the end of the previous section. To see this, notice

∫
A

(
1√

2πσ2/β 2

)n

‖x‖2 exp
(
‖x‖2

2σ2/β 2

)
dx =

∫ ( 1√
2πσ2/β 2

)n

‖x‖2 exp
(
‖x‖2

2σ2/β 2

)
·1Adx

= EN′
[
‖X ·1A‖2] (33)

where the expectation is taken with respect to an n-dimensional Gaussian random variable with 0
mean and covariance matrix σ2

β 2 I. Combining the integrals of terms b1 and b2 over the region A
gives the equation

f ′(t) =
n
β

f (β )− β

σ2EN′
[
‖X ·1A‖2] . (34)

As was previously discussed, f (β ) can be approximated via Monte Carlo methods. Equation
34 suggests that f ′(β ) can also be approximated in this manner. The first term in f ′(β ) equals
a scaled version of f (β ) so can clearly be approximated in this way. To approximate the second
term, generate (or re-use) a sample of n-dimensional Gaussian random variables with mean 0 and
covariance σ2

β 2 I. Find the Gaussian samples that lie in the set A, and then sum the norm-squared of
those samples. Finally, divide this sum by the number of total samples (not just those lying in A)
and the result approximates EN′

[
‖X ·1A‖2]. Having approximated all of the necessary terms, the

Newton method can be implemented.

5.4 Notes on Computing Newton’s Method

The ability to quickly compute the lattice scaling parameter β has made the computation analysis
of lattices possible. Prior to adapting Newton’s method to the lattice scaling parameter problem,
a binary search type method was employed to determine β . Even in very simple cases, this
procedure could take tens of minutes in MATLAB on a desktop computer. Newton’s algorithm
computes β with better accuracy in far less time, often less than a second in MATLAB on a
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desktop computer for some problems. Figure 22 shows a lattice Voronoi region from a randomly
generated Construction A lattice (to be discussed in detail in Section 6) and a sample of Gaussian
random variables in blue. Figure 22(a) shows the original sample of Gaussian random variables
drawn from N (0,I) and the unscaled lattice. Figure 22(b) shows the scaled samples (which is
equivalent to scaling the lattice). For this instance, Newton’s algorithm converged in two iterations.
Newton’s method requires a tolerance parameter to know when to stop iterating, i.e. δ such
that | f (β )−α| < δ . In this case δ = 10−4. Note that δ cannot be chosen too small because
estimates of f (β ) and f ′(β ) are used rather than the exact values so it may not be possible to make
| f (β )−α| < δ for δ too small. In higher dimensions even Newton’s algorithm may slow down
to the point that it becomes impractical. As most of the analysis in this work considered relatively
small dimensions this was not an issue.

(a) Original Sample (b) Scaled Sample

Figure 22. Scaling Samples For Probability Constraint α = 0.90
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6 Random Lattices: Construction A

It is a very difficult problem to construct lattices that solve the desired optimization problem:
minimize the probability that Eve decodes a symbol correctly given that Bob decodes correctly
with probability α . Rather than try to optimize over the space of lattices, an alternative approach
can be taken. Generate random lattices from a certain ensemble of lattices and compute some
statistic of the performance over the ensemble. For example, given an ensemble of random lattices,
it may be possible to compute the average performance of the system. The question now becomes
how to find a good lattice ensemble. The lattice ensemble that will be analyzed in this section
is known as “Construction A” and has proven useful in more tradition communication problems.
Erez and Zamir solved a long standing problem in [16] when they showed that the capacity of
the AWGN channel can be achieved using lattices drawn from the construction A ensemble. The
same authors and Litsyn show in [15] that construction A lattices are also useful in solving other
types of problems such as quantization, sphere packing and sphere coverings. It is the hope that
construction A lattices yield good results for the secure communication problem. The analysis
in this section contains partial results but does not fully answer this question. When approaching
the secure communication problem using Construction A lattices, the original goal is to find the
best possible lattice in the ensemble. This, not surprising, turns out to be a difficult problem. The
results in this section will be computational. Several desirable properties of construction A lattices
and their distributions will be shown for a range of low dimensional lattices. Connections will
be made with the “smoothing parameter” of a lattice introduced in the cryptography community.
Lastly initial investigations into the use of semidefinite programming to find the best construction
A lattices will be described.

6.1 Construction A Lattices

This discussion of construction A lattices is from [15]. More details on these lattices can also be
found in [12, 29]. The ensemble of construction A lattice is parameterized by three values: n,p,
and k. The parameter n defines the dimension of the lattice, p has to be a prime number and is
related to the code rate of the lattice and k≤ n is also related to the rate of the lattice. Construction
A lattices are generated as follows:

1. Pick a prime number p.

2. Create a n×k lattice generator matrix G by drawing each element of G i.i.d. uniformly from
the set {0,1, . . . , p−1}, i.e. Gi, j ∼ Unif(0, . . . , p−1) for i = 1, . . . ,n and j = 1, . . . ,k.

3. Define the set of code points as C =
{

x = Gy mod p : y ∈ Zk
p
}

where y ∈ Zk
p is a vector

whose components are integers between 0 and p− 1 and where the modulo operation is
taken component-wise.

4. Define a new set of code points Λ∗ by dividing C by p, i.e. dividing each code point by p
and Λ∗ = 1

pC. Everyone code point in Λ∗ thus lies in the the hypercube [0,1]n.
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5. The construction A lattice is given by Λ=C∗+Zn, i.e. Λ∗ is copied and offset by all possible
integer lattice points and is thus replicated over Rn.

This is fairly abstract, so considering the following example. Let n = 2, p = 7, and k = 1.

Suppose that G is randomly drawn and the realization is G =

[
1
3

]
. y ∈ Z1, so the possible values

of y are {0,1,2,3,4,5,6}. From Step 3 of the procedure, the set of code points is equal to

C =

{[
0
0

]
,

[
1
3

]
,

[
2
6

]
,

[
3
2

]
,

[
4
5

]
,

[
5
1

]
,

[
6
4

]}
. (35)

Step 4 of the procedure normalizes all the code points so that they lie in [0,1]2

Λ
∗ =

{[
0
0

]
,

[1
7
3
7

]
,

[2
7
6
7

]
,

[3
7
2
7

]
,

[4
7
5
7

]
,

[5
7
1
7

]
,

[6
7
4
7

]}
. (36)

Figure 23(a) shows the set of points Λ∗ and the Voronoi region of a single point. Step 5 replicates
Λ∗ and is illustrated in Figure 23(b), where the black box shows the original set Λ∗. It is known

(a) Scaled Code Points Λ∗ (b) Replication of Λ∗

Figure 23. Example of a Construction A Lattice for n = 2, p = 7
and k = 1

that this procedure will generate a lattice [12]. An important property of construction A lattices is
that with high probability |Λ∗| = pk. This property connects p and k to the rate of the lattice. If
a construction A lattice is used for communication then there are M = pk code points that can be
sent (with high probability). A lattice fails to have pk code points when the randomly generated G
is nonsingular, but as long as n and k are chosen careful the probability of this event is small. In
the analysis of this work, as well as other ([16]), it will be assumed k = 1. In this case, M = p and
the probability that G is nonsingular is p−n, the probability that G is the all-zeros vector. A nice
feature of Construction A lattices is that the sub-lattice with which the modulo operation is taken
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with respect to is the integer lattice. For an arbitrary lattice and sub-lattice the modulo operation
can be very difficult to compute. In the case of Construction A lattices the modulo operation is
the same as with the integer lattice, which is very easy to compute, namely each component can
be handled individually. Most of the computational power is required to determine which code
point within the hypercube is closest to the received code point after the modulo operation has
been performed. Therefore among general lattices, construction A lattices are more practical from
the perspective of implementation.

6.2 Properties of Construction A Lattices

The original goal of using construction A lattices was to find the best lattice among the ensemble.
By the results of Section 2, best was determined to mean the lattice with the maximum minimum
distance, or the lattice whose Voronoi regions contain a sphere with the largest radius. This turns
out to be a difficult problem. For a specific triplet of n,k, p, in theory all of the construction A
lattices can be enumerated. Given a complete enumeration, the best lattice (the lattice with the
maximum minimum distance), can be selected. As the parameters increase however, the number
of lattices grows and an complete enumeration may not be possible. It is known [15, 16, 29] that
as the parameters grow, the performance increases. It is this property that is used in theoretical
analysis. From a “practical” perspective however, n,k, p must be fixed (non-asymptotic) with
complexity issues in mind. It is this reason focus is given to trying to find the best lattice for a
fixed set of parameters. In this section, focus will be given to the case n = 2 and k = 1. In this case,
the set y = {0, . . . , p−1} and G is just a randomly generated two-dimensional vector.

Equivalent Lattices

When constructing lattices for n = 2,k = 1 and a fixed p, it becomes apparent that some generators
G, although not identical, lead to the same performance. The first type of equivalence is algebraic
in nature. Consider again the set C in Equation 35 from the example in the previous section.
The generator matrix was G =

[
1 3

]T . Had G been any of the other non-zero vectors in C, i.e.[
2 6

]T ,
[
3 2

]T , etc., the same lattice would be generated. In algebraic terminology, the code
point vectors in the set C belong to an orbit and are a subgroup. In the above example, there are
p2 = 49 possible G vectors, thus the probability of randomly generating the lattice shown in Figure
23(b) is 6

49 . This result is from the fact that if G is any of the six non-zero vectors in C, the lattice
will be generated, so six out of the possible 49 vectors will generate the lattice. Following this
type of analysis, the number of possible lattices is given by p2−1

p−1 since there are a total of p2− 1
possible vectors for G and p−1 of those vectors lead to the same lattice.

The second type of equivalence is geometric in nature. As an extreme case, consider the lattice
generated by G1 =

[
1 0

]T so that the set C1 is given by

C1 =

{[
0
0

]
,

[
1
0

]
,

[
2
0

]
,

[
3
0

]
,

[
4
0

]
,

[
5
0

]
,

[
6
0

]}
(37)
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as shown in Figure 24(a) and consider the lattice generated by G2 =
[
0 1

]T so that

C2 =

{[
0
0

]
,

[
0
1

]
,

[
0
2

]
,

[
0
3

]
,

[
0
4

]
,

[
0
5

]
,

[
0
6

]}
(38)

as shown in Figure 24(a). While these lattices are not formally equivalent, they have equivalent
performance when used in an AWGN channel. The reason for this is that the decision regions
are congruent, differing only by a rotation, e.g. in Figure 24, the decision region in the right hand
figure is the decision region of the left hand figure rotated by 90 degrees. In the AWGN channel, the

(a) Code Points C1 and Decision Region (b) Code Points C2 and Decision Region

Figure 24. Lattices with the same Performance but Different
Generators

Gaussian noise is rotation invariant so the Gaussian probability of lying in the decision region when
centered on a code point is the same in both figures. Two lattices which have congruent decision
lattices will be called geometrically equivalent. After accounting for algebraically equivalent
lattices, the number of unique lattices has a nice closed form solution. This does not seem to
be the case for the number when considering geometrically equivalent lattices. All geometrically
equivalent lattice will be said to belong to an equivalence class. Figure 25 shows the number
of geometric equivalence classes for n = 2,k = 1 and a function of the prime p. The plot looks
roughly linear, but is erratic in the sense that no closed form solution for this plot seems to be
known. The number of geometric equivalence classes is interesting because this number, in this
example, appears to grow linearly in p, where as the number of possible lattices grows as p2 (in
the two dimensional case).

Maximum Minimum Distance

One of the primary lattice parameters of interest is the maximum minimum distance. As indicated
in Section 2, the more “spherical” the decision region, the better the performance. Figure 26
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Figure 25. Number of Equivalence Classes for n = 2, k = 1 as a
Function of prime p

shows an example of a construction A lattice from each of the three geometric equivalence classes
for p = 7. Each lattice is also plotted with the circle of maximum radius that can fit inside the
decision region. Figure 27 shows the ability of Eve to correctly decode for of each geometric

(a) (b) (c)

Figure 26. Unique Construction A Lattices for n = 2, k = 1,
p = 7

equivalence class for this example assuming the Bob’s probability constraint is α = 0.90. As
expected, the lattice in Figure 26(c) performs the best (decays to the probability of random guessing
the fastest) since it has the largest minimum distance of all possible construction A lattices with
these parameters. Conversely, the lattice in Figure 26(a) has the worst performance and also has
the smallest minimum distance. For large values of the parameters n,k and p, it may be impossible
to enumerate all possible lattices and select the best lattice. It would be ideal to be able to compute
the probability of generating specific minimum distances for a given set of parameters. The explicit
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computation of these problems is also a very challenging problem, but it can be simulated to try to
gain some intuition. The behavior of the minimum distance distribution seems to be fairly erratic.

Figure 27. Probability of Eve Correctly Decoding for Each
Geometric Equivalence Class: n = 2,k = 1, p = 7

For example, in Figure 28(a), the parameters are n = 2,k = 1 and p = 7 and there are three unique
minimum distances (corresponding to the red stars) which relate to the three unique geometric
equivalence classes as has been seen. This situation is rather fortuitous since the largest minimum

(a) p = 7 (b) p = 29

Figure 28. Minimum Distance Distributions

distance is also the most probable; there is a 50% chance that a randomly generated construction
A lattice will have the best possible minimum distance. The situation in Figure 28(b) is quite
different. In this case, the parameters are n = 2,k = 1 and p = 29 and notice there there are a total
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of nine geometric equivalence classes and there are four minimum distances which are equally and
maximally probable, but are not the maximum minimum distance. In fact, the maximum minimum
distance is generated with a probability equal to 1

15 . Much computational effort has been expended
in order to characterize these distributions and compute the maximum minimum distances for
a range of parameters. From a computational perspective, much of the code was written in
python, and even C-optimized python called cython, in order to speed up the computations as
much as possible. Given more time and resources, it would be interesting to compute the average
performance of construction A lattices for a fixed set of parameters since explicitly characterizing
the maximum minimum distance or its distribution has proven to be exceptionally difficult.

Smoothing Parameter

Another possible avenue of attack is via the connection between the performance of a lattice
in terms of inhibiting Eve’s ability to decode and the “smoothing parameter” introduced in the
computer science realm [32, 37]. Informally, the smoothing parameter is the smallest variance
such that the modulo-Gaussian measure appears uniform. This is the best case scenario in terms
of trying to confuse eavesdroppers. Thus, from the stand point of secure communications, lattices
with the smallest smoothing parameters have the best performance. Figure 29 shows the effects

(a) (b) (c)

Figure 29. Modulo-Gauss Measure

of the variance on the modulo-Gauss measure. Figure 29(a) shows a two dimensional Gaussian
probability density centered on a code point with no boundary or modulo effects. The upper plot
is a histogram representation of the density and the lower plot is a heat map representation. Figure
29(b) shows a Gaussian distribution with larger variance centered on a QAM code point and with
the modulo effects from wrapping around the edges. Notices that the histogram and heat map look
more uniform as compared with Figure 29(a). In Figure 29(c), the variance is selected to be larger
than the smoothing parameter. In this case, the modulo-Gauss measure looks uniform. In this
case, the probability of correctly decoding the transmitted code point is equal to the probability
of random guessing. Making a connection with Figure 27, the smoothing parameter corresponds
to the point where the probability plateaus, which is the probability of random guessing. From
Figure 27, the lattice with the largest minimum distance plateuas first corresponding to the best
performance and the largest smoothing parameter.
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For completeness the the smoothing parameter will be formally defined, but the intuition of the
smoothing parameter given above should not be lost. First, the concept of a dual lattice must be
defined. Let Λ be a lattice, then the dual lattice Λ∗ is defined as

Λ
∗ = {x : ∀y ∈ Λ〈x,y〉 ∈ Z} (39)

where 〈x,y〉 is the standard inner product. In words, the dual lattice is the set of vectors inRn whose
inner product with every lattice vector y ∈Λ is an integer. The simplest example of a dual lattice is
the integer lattice whose dual lattice is itself. The smoothing parameter can now be defined ([32]):
For an n-dimensional lattice Λ, and a positive real number ε > 0, the lattice’s smoothing parameter
ηε (Λ) is the smallest s such that ρ1/s (Λ

∗\{0}). Here ρ1/s is a Gauss measure with variance 1/s
(see [32] for details), and Λ∗\{0} is the dual lattice without the origin. This definition is pretty
abstract, but luckily [32] proved some easy to interpret bounds on the smoothing parameter. The
first bound is given as follows: for any n-dimensional lattice Λ, ηε (Λ) ≤

√
n/λ1 (Λ

∗), where
λ1 (Λ

∗) denotes the shortest distance between two points in the dual lattice. The second bound is
given as follows: For an n-dimensional lattice Λ and ε > 0,

ηε(Λ)≤
√

log(2n(1+1/ε))

π
·λn(Λ) (40)

where λn(Λ) is the nth successive minima (see [32] for details).

The idea is now to find the best lattice, or specifically construction A lattices, in terms of
smoothing parameter. While the smoothing parameter itself may be difficult to compute, it may be
possible to optimize one of the two bounds just given. In this way the problem is converted from
the problem of computing the maximum minimum distance to computing the maximum minimum
distance of the dual lattice for the first bound, or finding the nth successive minima of the lattice
in the second bound. These problems seem to be as difficult as the original problem, but perhaps
more energy could be spent investigating this connection.

6.3 Semidefinite Programming and Construction A Lattice Optimization

Semidefinite programming (SDP) is a generalization of linear programming and the optimization
variables are real symmetric matrices. Let Sn denote the set of symmetric n× n matrices and
Sn
+is the set of positive semidefinite matrices. For X ,Y ∈ Sn, define the inner product as 〈X ,Y 〉 ,

trace XY . A semidefinite program is then given by the following optimization problem:

minimize
X

〈X ,Y 〉

subject to 〈Ai,X〉= bi

X � 0

where X ∈ Sn is the optimization variable b ∈ Rm and C,Ai ∈ Sn. X � 0 is a common notation for
X ∈ Sn

+. The theory of semidefinite programming will not be discussed at length here. For more
information consult [28, 45, 48].
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For this section, redefine C as a n× p matrix whose columns are code points in a construction
A lattice. From the example given by Equation 35, C will now be a matrix containing those code
points as columns. Now define the matrix P as the matrix C augmented with 2n− 1 vectors in
Rn containing all possible combinations of 0 and p except the all zeros vector which is already
included, e.g. for the example given in Equation 35

C =

[
0 1 2 3 4 5 6 0 7 7
0 3 6 2 5 1 4 7 0 7

]
. (41)

where the last three columns are the augmented vectors. Now define the matrix Y = CTC ∈
R(p+2n−1)×(p+2n−1). Y is an example of a Gram matrix for the points defined in the columns
of C. Define the matrix D as a matrix whose elements represent the pairwise distance between
points. The matrix D can be computed from a list of points C via the Gram matrix Y :

D = diag(Y )1T +1diag(Y )T −2Y (42)

where diag(Y ) is an n-dimensional vector of the diagonal elements of Y and 1 is an n-dimensional
vector of ones. There is also a pseudo-inverse K† that maps a pairwise distance matrix D to a Gram
matrix Y:

K†(D) =−1
2

JoffDiag(D)J (43)

where J , I− 1
n11T and offDiag(D) is a matrix equal to D except the diagonal elements are set

to zero. The pairwise distance matrix D is an element in what is known as the cone of Euclidean
distance matrices (EDM). More information about the EDM cone can be found in [14, 25]. The
relationship with the secure communications problem is that the minimum off-diagonal entry of
D generated from C is (essentially) the minimum distance of the lattice. A few tricks must be
performed to guarantee that it is the minimum distance of the lattice.

The minimum distance of a construction A lattice is related to the minimum off diagonal value
of the pairwise distance matrix D, so an optimal construction A lattice can be constructed by
optimizing the the minimum off-diagonal element of D under the constraint that the result be a valid
construction A lattice. The set of constraints for the smallest parameters n,k, p can be effectively
enumerated. The semidefinite program to maximize the minimum distance of a construction A
lattice takes several tricks in order to function properly even in the simplest cases. Figure 30 shows
the result of a semidefinite program designed to optimize the minimum distance of a construction
A lattice for the parameters n = 2,k = 1, p = 5. The resulting lattice is correct; it belongs to the
geometric equivalence class with the largest minimum distance. The code used to generate Figure
30 can be found in Appendix A. The code is written in MATLAB and uses the sedumi SDP
solver [42] and the YALMIP interpreter [30]. Unfortunately this code does not extend beyond
the simplest cases. It is unclear what the exact issue is, but is most likely due to the constraints.
For larger parameter values, the constraints used in this example are not adequate and lead to
incorrect solutions. Beyond the incorrect solutions, the computation effort grows dramatically
with parameter values and as it stands is not a viable method for even modest problems. Even
so, with more time and effort a more formalized set of constraints could possibly be found that
appropriately captures the construction A lattice constraints and is computationally feasible.
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Figure 30. SDP Lattice Output for n = 2, p = 5
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7 Optimization of Lattices

Towards the very end of this research project, a few branches of research were discovered that
seems to hold promise for generating lattices with favorable properties, at least for dimensions
n < 20. One branch is that of the geometry of positive definite quadratic forms [40, 41]. Utilizing
results from this theory and the theory of random walks, Andreanov and Scardicchio [2] in the
statistical mechanics community were able to generate very dense lattices. In fact, they were able
to recover many of the densest known lattices in certain dimensions with high probability. Marcotte
and Torquato [31] linearized the objective function of lattice density and applied a sequence of
linear programs as in [46] to yield dense lattices. Again, they were able to generate some of the
densest known lattices in certain dimensions with this technique. Other techniques have been
developed in the statistical mechanics literature, e.g. [24], for generating lattices, but currently
[2, 31] seem to represent the cutting edge in terms of performance and accuracy. These results
are also very recent, having been published only in the past few months. In this section some of
these techniques will be briefly described. The analysis of these techniques as applied to the secure
communications problem would be very interesting, and would be the direction pursued had there
been more time.

7.1 Positive Definite Quadratic Forms and Lattices

Basics of Positive Quadratic Forms

This section briefly describes the relationship between lattices and positive definite quadratic forms
(PQF). The results are taken from [40], which should be consulted for more details. As defined
in [40], a quadratic form Q : V → K is a homogeneous polynomial of degree 2 defined for a field
K and a vector space V over K. For the the work related to lattice, the field is generally either R
or Q, i.e. the reals or the rationals. This definition is very abstract, but it can be reformulated in
terms of matrices. All real quadratic forms in n variables can be identified with the space of real
symmetric n×n matrices Sn = {Q ∈ Rn×n|Qt = Q}. A quadratic form is then given by the equation
xtQx, where x ∈ Rn. For example, the homogeneous polynomial of degree two x2

1 + x1x2 + x2
2 is

associated with the matrix Q =

[
1 1

2
1
2 1

]
. A quadratic form is positive definite if xtQx > 0 for all

x ∈Rn\0. The matrices Q associated with positive definite quadratic forms are precisely the set of
positive definite matrices Sn

>.

A fundamental question in the theory of quadratic forms is given a vector x ∈ Zn (i.e. all the
coordinates are integer valued), when does xtQx = α when α ∈N. It turns out that if the quadratic
form is positive definite, not only does a solution exist, but there exists a smallest natural number
α for which xtQx has an integral solution. This minimum is called the arithmetical minimum and
is denotes

λ (Q) = min
x∈Zn\{0}

xtQx

Going back to the previous example, the equation x2
1 + x1x2 + x2

2 is actually a positive definite
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quadratic form because the associated Q matrix is positive definite. The arithmetical minimum of
of this PQF is 1. This can be seen geometrically in Figure 31. Drawing the ellipse x2

1+x1x2+x2
2 ≤

1, the ellipse intersects the integer lattice at six points, and at the six points the function evaluates
to 1. Denote the points of the integer lattice that achieve the arithmetical minimum

MinQ =
{

x ∈ Zd|xtQx = λ (Q)
}
.

Figure 31. Ellipse from the equation x2
1 + x1x2 + x2

2

Relationship with Lattices

Having described the very basics of positive definite quadratic forms, the connection with lattices
will now be given. PQFs are given by positive definite matrices Q, so a Cholesky decomposition
of Q can be performed: Q = AtA, where A is a member of the general linear group

GLn(R) =
{

a ∈ Rn×n|detA 6= 0
}
.

Given the Cholesky decomposition of Q, the PQF can be rewritten as

xtQx = xtAtAx = ‖Ax‖2

which is the squared length of the vector Ax. Therefore, when x is restricted to be an integer vector,
as was considered in the previous section, the matrix A can be viewed as the generator matrix of a
lattice. With this relationship established, many lattice problems can be viewed in the framework
of PQFs.

The lattice sphere packing problem places a sphere of radius R at each lattice point such that
the sphere do not overlap. The largest value of R is the packing radius of the lattice. The packing
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radius of a lattice can be expressed in terms of the arithmetical minimum: let A be a generator
matrix of a lattice Λ and Q = AtA, then the packing radius of Λ is given by

λ (Λ) =

√
λ (Q)

2
.

This makes sense, as λ (Q) represents the shortest distance squared between two points in a lattice
given by A, and thus the largest possible radius such that spheres do not intersect is given by half
the distance. The sphere packing density of a lattice Λ is given by the fraction of space occupied
by the spheres centered on the lattice points with radius λ (Λ) and is given by the equation

δ (Λ) =
vol(λ (Λ)Bn)

detΛ
=

λ (Λ)nvolBn

detΛ
=

(
λ (Q)

(detQ)1/n

)n/2

· volBn

2n

where volBn is the volume of an n-dimensional unit sphere.

A common lattice problem is to try to find a lattice Λ that has the maximum density δ (Λ)
in a given dimension. A key property of δ (Λ) is that it is invariant to lattice isometries (e.g.
rotation) and scaling. Therefore, if the lattice density is to be maximized, a constraint on λ (Q) or
equivalently on λ (Λ) can be enforced and then maximizing δ (Λ) is equivalent to minimize detΛ

or detQ. This constraint optimization problem is a way of rephrasing the maximum lattice density
problem in terms of PQFs, and is just as difficult to solve, but this formulation has led to very
successful algorithms (at least in dimensions n < 20) as will be discussed later. The lattice sphere
covering problem ask the question: if a sphere is placed at every lattice point, how big must the
radius be such that every point in Rn is inside a sphere? The smallest such radius is called the
covering radius of a lattice. Formally, the covering radius µ(Λ) of lattice Λ is defined as:

µ(Λ) = inf{µ > 0|Λ+µBn = Rn}

where the addition Λ+µBn =Rn is a Minkowski sum. Analogous to lattice sphere packing density,
the lattice sphere covering density is given by

Θ(Λ) = µ(Λ)nvolBndensΛ

where densΛ is the density of the lattice. To optimize the sphere covering, the lattice with the
smallest possible covering radius is desired:

Θn = inf{Θ(Λ)|Λ an n-dimensional lattice} .

As with the sphere packing problem, this problem only has known solutions in a few cases. The
last classic lattice problem addressed in this section is the lattice sphere packing-covering problem.
This problem is equivalent to the problem of trying to maximize the minimum distance between
lattice points, which is a very interesting problem from the secure communications perspective as
indicated by the analysis of Section 6. For a lattice Λ, the packing-covering constant is given by
γ(Λ) = µ(Λ)/λ (Λ). Maximizing the minimum distance corresponds to minimizing γ(Λ). The
optimal lattice in n dimensions is given by the solution to

γn = inf{γ(Λ)|Λ an n-dimensional lattice} .
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Algorithm for Lattice Sphere Packings

In this section Voronoi’s algorithm will be described, which in theory can find the lattice Λ with
greatest sphere packing density δ (Λ) for an arbitrary dimension n. In practice, the algorithm only
works when the dimension n is very small because the complexity quickly grows with dimension.
The first step towards developing this algorithm was a fact previously mentioned: the lattice sphere
packing density δ is invariant to scaling and therefore attention can be restricted to lattices (or
PQFs) with a fixed arithmetical minimum λ . With λ fixed, the task is then to minimize the
determinant of Q. More generally, one can consider all PQFs Q with arithmetical minimum greater
than or equal to λ (the constraint matter only in that λ (Q)≮ λ ). Define the set of PQFs that satisfy
this generalized constraint as

Pλ = {Q ∈ Sn
>|λ (Q)≥ λ} .

The task of maximizing the lattice sphere packing density is thus equivalent to minimizing the
determinant of PQFs Q ∈ Pλ for an arbitrary positive λ . The set Pλ is called the Ryshkov
polyhedron. With out going into the details (see [40]), it turns out that the lattice achieving the
greatest sphere packing density has to be a vertex of the Ryshkov polyhedron. The vertices of the
Ryshkov polyhedron are called perfect forms.

The Voronoi algorithm takes as input a dimension n and outputs a list of perfect forms. Once
the list is generated, the sphere packing density of each lattice in the list can be computed and the
lattice with the largest density is guaranteed to be the best lattice. The details of the algorithm will
not be presented here, suffice to say that it can be computed by a computer. The issue is that the
number of vertices (or perfect forms) grows super-exponentially. In 8 dimensions there are 10,916
perfect forms and in dimension 9 there are over 500,000 and the total number is unknown. Thus up
to 8 dimensions, the optimal sphere packing lattice is known, but beyond 9 dimensions the optimal
lattice is not known since not all perfect forms are known. This algorithm can still be useful in that
it can generate dense lattices but there is no guarantee about optimality without enumeration of all
the perfect forms. Using the algorithm in an exploratory mode such as this reaches a limit around
dimension 20 as indicated in [2, 31].

Algorithms for Coverings and Packing-Coverings

The details of the algorithms designed to find good lattice coverings and lattice packing-coverings
will not be covered in detail. The interested reader can consult Chapter 5 in [40]. The algorithms
can be obtained from Schürmann’s website [39] and use as subroutines the MAXDET algorithm
[51] and the lrs package [3]. Using this algorithm, Schürmann is able to generate the best known
lattice coverings up to dimension 15 and packing-coverings in dimension 7. The algorithms
presented in Chapter 5 of [40], as with Voronoi’s algorithm described in previous section, have
computational issues that arise very quickly in even moderate dimensions, hence only results up
to dimension 15. Given more time however, it would be interesting to implement this algorithm to
generate good lattice packing-coverings and test their performance in the secure communications
problem.
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7.2 Statistical Physics Approach

The statistical physics community has recently addressed the problem of developing algorithms
that generate dense sphere packings. The two algorithms that will be focused on in this section are
[2, 31], both published very recently. The algorithm of [2] is based on the Ryshkov polyhedron
described in the previous section. Rather than attempt to enumerate all of the perfect forms as
in the Voronoi algorithm, the vertices are transversed via a random walk. Their algorithm is thus
a randomized version of the Voronoi algorithm. In dimensions n ≤ 7 this algorithm finds all the
densest known lattices (Note: the densest lattice are only known for dimensions 1 through 8 and
dimension 24). This is because the number of vertices in the Ryshkov polyhedron is very small
up to dimension 7, so the probability of hitting the densest lattice with this randomized algorithm
is very high. As the dimension increases, the probability of the random walk hitting the densest
lattice in a reasonable running time decreases. For dimensions n≥ 20 the algorithm is ineffective.

The algorithm used in [31] is a refinement and specialization of an algorithm developed in [46]
for the lattice sphere packing problem. Let A be the generator matrix of an n-dimensional lattice
Λ. At every iteration of the algorithm, the generator matrix is updated by the equation

A→ A+ εA

where ε ∈ Rn×n is an n× n symmetric strain matrix. The question then becomes how to select
the strain matrix ε so that the sequence of generator matrices converges to a dense lattice. The
authors linearize the non-linear objective function of lattice sphere packing density in terms of
the strain matrix, and derive constraints for ε . The choice of ε under the linearized objective and
derived constraints results in a linear program which can readily be solved using a computer. Each
iteration of the results in a generator matrix of a denser lattice and eventually the converges to a
local maximum. For low dimensions, the algorithm was able to converge to the global densest
lattice. As with the previous algorithm as the dimension is increased, the ability of the algorithm to
find the global maximum is decreased. The authors report that for n = 19, the algorithm converged
to the global optimum only 0.009% of the time. Regardless, this algorithm is fast and has yields
the best performance to date.

7.3 Applications to Secure Communications

The ability to generate quality lattices or quantify the quality of random lattices is a challenging
problem. In Section 6, Construction A lattices were considered because they have been used
successfully in the analysis of communication systems and are easy to generate. An interesting
alternative to the use of Construction A lattices is to use the algorithms described in this section to
generate lattices. These algorithms have led to state of the art results in terms of finding some of the
best known lattices for the sphere packing, sphere covering, and packing-covering problems. Had
there been more time, it definitely would be interesting to use the algorithms to generate lattices
for the secure communications problem.
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8 Conclusion

This LDRD has been very challenging. Many lattice problem are notoriously difficult and it has
been difficult to make headway in any particular direction, which is why so many techniques and
procedure have been attempting during the course of this project. With that having been said,
modest result have been obtained in several different directions.

In Section 2, the focus is given to a single decision region. It is then shown that decision regions
that are “more spherical” perform better in terms of confusing a potential eavesdropper. While a
single decision region does not take into account the whole lattice, it is a very good approximation
when the eavesdropper’s noise variance is close to that of the intended user’s noise variance.

Section 3 discusses how common randomness can be used to convert the additive noise channel
into the modulo-Λ additive noise channel. This is important for the potential implementation of a
system. Original coset coding considered the use of an entire lattice for confusing eavesdroppers.
In this case, there are an infinite number of code points and requires an infinite amount of power. A
proposed solution in the literature is to truncate the lattice after a certain point so that the resulting
constellation has finite power, but has a loss of performance. Conversion to the modulo-Λ additive
noise channel has finite power and no loss in performance. This connection seems to not have been
mentioned in the secure communications community.

The integer lattice is the simplest lattice to analyze and also possibly implement. Section 4
provides the analysis of these lattices. The probability constraint that Bob successfully decode
with probability α is approximated by the probability of a Gaussian random variable being in the
decision region of the transmitted code point - no cosets are considered. This approximation is
very accurate for α near unity. With this approximation, the exact scaling of the integer lattice
can be found to meet the probability constraint in any dimension by the use of the error function.
Given the exact scaling factor, the eavesdropper’s performance is computed via simulation. It is
noted that integer lattices are the easiest lattice to implement because the modulo operation can be
taken on each dimension independently.

Bob is required to correctly decode with probability α . Given an arbitrary lattice, computing
the scaling factor to so that this constraint is met is challenging. Section 5 discusses the adaption
of Newton’s method in order to quickly compute this scaling factor. The proposed algorithm is an
approximation as it requires estimates of several quantities which cannot be computed explicitly.
Computer experiments show that the approximate algorithm works very well in practice.

Section 6 discusses the use of construction A lattices. This random ensemble of lattices
has been used in previous communication settings to great theoretical success. In this research,
their application has been limited by the lack of understanding of critical parameters, namely
the maximum minimum distance. Simulations are run to try to gain insight into the maximum
minimum distance, however the behavior is erratic. Semidefinite programs are used to try to find
the optimal construction A lattice for a fixed set of parameters. The result of these optimization
algorithms were only successful for the simplest cases.
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Section 7 describes an approach to lattice optimization from the view point of positive definite
quadratic forms and statistical mechanics. Algorithms have been developed in these communities
that have shown great success in finding lattices with very good parameters. The intuition behind
these ideas is described.

Future Research

Given more time and resources, there are several possible routes that could lead to new results. One
possible route is an attempt to increase simulation accuracy and Monte Carlo parameter estimation.
For example, Newton’s method in Section 5 requires the generation of i.i.d. Gaussian samples to
estimate the probabilities of certain sets and expectations of certain random variables. A new
sampling technique called “herding” has been introduced in [49, 50] that has shown convergence
rates faster than that of i.i.d. sampling. The use of these algorithms could increase accuracy and
speed since fewer samples may be required. These algorithms could also be used to increase the
accuracy of the analysis of lattices, such as the integer lattice analysis of Section 4

Another possible route would be the Monte Carlo simulation of construction A lattices. The
results found in Section 6 were focused on finding optimal lattices from the ensemble. As was
mentioned there, this avenue of attack proved difficult. Rather than attempting to find the best
possible construction A lattice for a fixed set of parameters, a large sample of construction A
lattice could be drawn and statistics on the performance of the ensemble could be estimated, such
as the average performance and variance.

Section 7 gives several algorithms that have been used successful in other scientific domains
for finding good lattices. Some of these results are very new and discovered by this author
very recently. It would be interesting to implement and run these algorithms to attempt to find
lattices that are good for secure communications. The most efficient algorithm in the statistical
physics community ([31]) is based on the iterative use of linear programs. Over the past decade,
semidefinite programming has been used to improve the results given by linear programs in some
programs ([4, 10, 11, 36, 38]). It would be interesting to see if semidefinite programming could be
used to improve the results of the iterative linear programming approach in [31].

This research focused on the AWGN channel model. Originally, additional channel models
were to be considered, but were not due to difficulties that arise even in the simple AWGN
channel model. Another route for future research could involve adapting the procedures described
here to analyze other channel models, such as fading and MIMO models, from a computational
perspective.
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A Semidefinite Program to Optimize Construction A Lattices

1 % Using semidefinite programming to find optimal two-dimensional ...
construction A lattice

2 % The dimension will be fixed to N = 2
3 % The prime seed will be fixed at p = 5
4 % This is the largest case in which the constraints led to a known ...

optimal construction A solution
5 %
6 % Using sedumi and YALPMIP interpreter
7 % Have linear constraints and "addivitity" constraint
8

9 DIM = 2; % Dimension = 2
10 prime = 5; % Prime seed p = 5
11 % For N = 2, number of points = 4*(prime -1) + 1 (origin) + 8 (other ...

anchors)
12 numPOINTS = 4*(prime -1) + 1 + 8;
13 numANCHORS = 9; % number of anchors = 9 for N = 2
14

15 %Constant Constraints
16 %----------------------------------------------
17 %----------------------------------------------
18 % Anchor points
19 A = prime*[0 0;1 0;1 1;0 1;-1 1;-1 0;-1 -1;0 -1;1 -1];
20 % Gram Matrix of Anchor Points
21 Y1 = A*A';
22 Yconstraint = A*A';
23 % Pairwise Distance Matrix D of anchor points
24 Dconstraint = diag(Yconstraint)*ones(numANCHORS ,1)' + ...

ones(numANCHORS ,1)*diag(Yconstraint)' - 2*Yconstraint;
25

26 % Vector of all ones
27 e = ones(numPOINTS ,1);
28 J = eye(numPOINTS) - (1/numPOINTS)*e*e';
29

30 % Optimization Variables
31 Y = sdpvar(numPOINTS ,numPOINTS);
32 X = sdpvar(DIM,numPOINTS);
33

34 % Pairwise Distance Matrix D Optimization Variable
35 D = diag(Y)*e' + e*diag(Y)' - 2*Y;
36 % Pseudo -inverse Optimization Variable
37 Kinv = -0.5*J*(D - diag(diag(D)))*J;
38

39 % Constraint on Gram Matrix , both equality and PSD
40 Dconstraint1 = [Kinv≥0,Y(1:numANCHORS ,1:numANCHORS) == Yconstraint ,Y≥0];
41

42 % New Constraint from Equation (970) of Dattorro
43 Eq970 = [eye(DIM) X;X' Y];
44 Dconstraint1 = Dconstraint1 + set(Eq970 ≥ 0);
45 % Add equality constraints on X a la 970
46 Dconstraint1 = Dconstraint1 + set(X(:,1:numANCHORS) == A');
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47

48 %----------------------------------------------
49 %----------------------------------------------
50

51 % Make Diagonal Constraints
52 %----------------------------------------------
53 %----------------------------------------------
54 % For N = 2, first non-anchor point occurs at index 10
55 ind1 = 10:1:(10+prime -2);
56 ind2 = ind1 + 1*(prime -1)*ones(1,length(ind1));
57 Dconstraint2 = set(D(ind1 ,ind1) == D(ind2 ,ind2));
58 % 4 Regions
59 for i = 2:3
60 ind2 = ind1 + i*(prime -1)*ones(1,length(ind1));
61 Dconstraint2 = Dconstraint2 + set(D(ind1 ,ind1) == D(ind2 ,ind2));
62 end
63

64 % Inter -codeword Distance
65 %----------------------------------------------
66 %----------------------------------------------
67

68 %Make sure inter -codepoint distance isn't too big
69 Dtemp = D(ind1 ,ind1);
70 % Dconstraint2 = Dconstraint2 + set(Dtemp(:) ≤ DIM*primeˆ2);
71 Dconstraint2 = Dconstraint2 + set(D(ind1 ,ind1) ≤ DIM*primeˆ2);
72 %----------------------------------------------
73 %----------------------------------------------
74

75

76 % Distance Constraint
77 %----------------------------------------------
78 %----------------------------------------------
79

80 Dconstraint2 = Dconstraint2 + set(D(1,:) ≤ DIM*primeˆ2);
81

82 % %----------------------------------------------
83 % %----------------------------------------------
84

85 % Make Shifted Points Constraints
86 %----------------------------------------------
87 %----------------------------------------------
88

89 % Generalized for arbitrary prime
90 % Four sets of indices for for regions (since N = 2)
91 ind2 = ind1 + 1*(prime -1)*ones(1,length(ind1));
92 ind3 = ind1 + 2*(prime -1)*ones(1,length(ind1));
93 ind4 = ind1 + 3*(prime -1)*ones(1,length(ind1));
94

95 % Start with Origin
96 %----------------------------------------------
97

98 % Looking up to the right
99 Dconstraint3 = [D(1,ind1) == D(6,ind2)];

100 Dconstraint3 = Dconstraint3 + set(D(1,ind1) == D(7,ind3));
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101 Dconstraint3 = Dconstraint3 + set(D(1,ind1) == D(8,ind4));
102

103 % Looking down to the left
104 Dconstraint3 = Dconstraint3 + set(D(1,ind3) == D(3,ind1));
105 Dconstraint3 = Dconstraint3 + set(D(1,ind3) == D(4,ind2));
106 Dconstraint3 = Dconstraint3 + set(D(1,ind3) == D(2,ind4));
107

108 % Looking up to the left
109 Dconstraint3 = Dconstraint3 + set(D(1,ind2) == D(2,ind1));
110 Dconstraint3 = Dconstraint3 + set(D(1,ind2) == D(8,ind3));
111 Dconstraint3 = Dconstraint3 + set(D(1,ind2) == D(9,ind4));
112

113 % Looking Down to the right
114 Dconstraint3 = Dconstraint3 + set(D(1,ind4) == D(4,ind1));
115 Dconstraint3 = Dconstraint3 + set(D(1,ind4) == D(5,ind2));
116 Dconstraint3 = Dconstraint3 + set(D(1,ind4) == D(6,ind3));
117

118 % %----------------------------------------------
119

120 % Translation of Codepoints
121 %----------------------------------------------
122

123 % Generalize for different prime
124 Dconstraint4 = [diag(D(ind1 ,ind2)) == primeˆ2*ones(prime -1,1)];
125 % Dconstraint4 = [diag(D(ind1 ,ind2)) == primeˆ2*ones(2,1)];
126 Dconstraint4 = Dconstraint4 + set(diag(D(ind1 ,ind4)) == ...

primeˆ2*ones(prime -1,1));
127 % Dconstraint4 = Dconstraint4 + set(diag(D(ind1 ,ind4)) == ...

primeˆ2*ones(2,1));
128 Dconstraint4 = Dconstraint4 + set(diag(D(ind1 ,ind3)) == ...

2*primeˆ2*ones(prime -1,1));
129 % Dconstraint4 = Dconstraint4 + set(diag(D(ind1 ,ind3)) == ...

2*primeˆ2*ones(2,1));
130

131 %----------------------------------------------
132

133 % Symmetry Constraint
134 %----------------------------------------------
135 ind3_reverse = fliplr(ind3);
136 Dconstraint1 = Dconstraint1 + set(X(:,ind1) == -X(:,ind3_reverse));
137

138 % Sum Constraint
139 %----------------------------------------------
140 Dconstraint1 = Dconstraint1 + set(X(:,ind1(1)) + X(:,ind4(1)) == ...

X(:,ind1(2)));
141

142 %----------------------------------------------
143 %----------------------------------------------
144

145 % Create Total Constraints
146 %----------------------------------------------
147 %----------------------------------------------
148
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149 TotalConstraints = Dconstraint1 + Dconstraint2 + Dconstraint3 + ...
Dconstraint4;

150 % Adding minimum distance constraint?
151 Dtemp2 = D + DIM*eye(numPOINTS);
152 TotalConstraints = TotalConstraints + set(Dtemp2(:) ≥ DIM);
153

154 %----------------------------------------------
155 %----------------------------------------------
156

157 % Optimization Algorithm
158 %----------------------------------------------
159 %----------------------------------------------
160 % ops = sdpsettings('solver','sdpt3','verbose ',1);
161 ops = sdpsettings('solver','SEDUMI','verbose',1);
162 iterCOUNTER = 1;
163 epsilon = 1e-10;
164 % maxITER = 5;
165 maxITER = 20;
166

167 %Regularization parameter
168 w = 1;
169

170 %Initial W
171 W = zeros(numPOINTS);
172 % W = zeros(6);
173 %Initial Kinv_rank
174 Kinv_rank = numPOINTS;
175 % Kinv_sol_eig_store = zeros(numPOINTS ,maxITER);
176 Y_eig_store = zeros(numPOINTS ,maxITER);
177 Kinv_rank_store = zeros(1,maxITER);
178 t_store = zeros(1,maxITER);
179 Xstore = zeros(2,numPOINTS ,maxITER);
180 SecondTermStore = zeros(1,maxITER);
181

182 %Optimization Variables
183 %Ideally t would be an integer variable
184 t = sdpvar(1,1);
185 % t = intvar(1,1);
186 Z = D - t*(ones(numPOINTS) - diag(diag(ones(numPOINTS))));
187 TotalConstraints = TotalConstraints + set(Z(:) ≥ 0) + set(t≥0);
188

189 % Objective3 = -t;
190 % sol3 = solvesdp(TotalConstraints ,Objective3 ,ops);
191

192 %Iterative Procedure
193 tic;
194 while(iterCOUNTER ≤ maxITER)
195 % while(iterCOUNTER < maxITER && Kinv_rank > DIM)
196

197 %----------------------------------------------
198 % Objective1 = -t + w*trace(Kinv'*W);
199 Objective1 = -t + w*trace(Y'*W);
200

201 sol = solvesdp(TotalConstraints ,Objective1 ,ops);
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202 % D_sol = double(D(1:8,1:8));
203 % Kinv_sol = double(Kinv);
204 Ysol = double(Y);
205 t2 = double(t);
206 %----------------------------------------------
207

208 %Second Optimization
209 %----------------------------------------------
210 Wopt = sdpvar(numPOINTS ,numPOINTS);
211 Objective2 = -t2 + w*trace(Ysol'*Wopt);
212 Constraints2 = [eye(numPOINTS)≥Wopt ,Wopt≥0,trace(Wopt) == ...

numPOINTS -DIM];
213 sol2 = solvesdp(Constraints2 ,Objective2 ,ops);
214 W = double(Wopt);
215 %----------------------------------------------
216

217 Y_sol_eig = real(eig(Ysol));
218 Y_eig_store(:,iterCOUNTER) = Y_sol_eig;
219 Xstore(:,:,iterCOUNTER) = double(X);
220 SecondTermStore(iterCOUNTER) = w*trace(Ysol'*W);
221 t_store(iterCOUNTER) = double(t);
222

223 %Iterate Counter
224 iterCOUNTER = iterCOUNTER + 1;
225

226 end
227 toc;
228

229 % Conversion into numerical data types
230 Dsol = double(D);
231 Ysol = double(Y);
232 tsol = double(t);
233 Kinv_sol = double(Kinv);
234 Kinv_sol_eig = real(eig(Kinv_sol));
235 Xsol = double(X);
236

237 %----------------------------------------------
238 %----------------------------------------------
239

240

241 % Plot Resulting Lattice
242 %----------------------------------------------
243 figure;
244 scatter(Xsol(1,1:9),Xsol(2,1:9) ,50,'bs');
245 hold on;
246 scatter(Xsol(1,10 :end),Xsol(2,10 :end),50,'ro');
247 hold off;
248 legend('Anchors','Non-Fixed Codepoints');
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