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Abstract 

 

Capabilities are developed, verified and validated to generate constitutive responses 

using material and geometric measurements with representative volume elements 

(RVE).  The geometrically accurate RVEs are used for determining elastic properties 

and damage initiation and propagation analysis.  Finite element modeling of the 

meso-structure over the distribution of characterizing measurements is automated and 

various boundary conditions are applied.  Plain and harness weave composites are 

investigated.  Continuum yarn damage, softening behavior and an elastic-plastic 

matrix are combined with known materials and geometries in order to estimate the 

macroscopic response as characterized by a set of orthotropic material parameters.  

Damage mechanics and coupling effects are investigated and macroscopic material 

models are demonstrated and discussed.  Prediction of the elastic, damage, and failure 

behavior of woven composites will aid in macroscopic constitutive characterization 

for modeling and optimizing advanced composite systems.  
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1.  INTRODUCTION 
 

While proper material characterization requires a great deal of experiments, often preliminary 

scoping and design requires only broad statistical bounds of the material parameters.  Thus, the 

presented micro/mesomechanical material characterization procedures are not intended to 

replace experiments, but rather supplement the often expensive and difficult to obtain data 

required for even the most basic material scoping and initial design processes. 

 

A distribution of constitutive responses is obtained for polymer matrix composites (PCM) using 

material and geometric measurements with representative volume elements (RVE).  The 

geometrically accurate RVEs are used for detailed stress concentration and damage initiation and 

propagation analysis.  Finite element modeling of the meso-structure over the distribution of 

characterizing measurements is automated and various boundary conditions are applied.  Plain 

and eight-harness satin (8HS) weave glass fiber reinforced (GFRP) and carbon fiber reinforced 

(CFRP) polymer composites are implemented.  Continuum yarn damage, inter-yarn debonding 

and an elastic-plastic matrix are combined with known materials and geometries in order to 

estimate the macroscopic response as characterized by a set of orthotropic material parameters.  

Damage mechanics and coupling effects are investigated and a macroscopic material model is 

demonstrated and discussed.  Prediction of the elastic, damage, and failure behavior of woven 

composites will aid in macroscopic constitutive characterization for modeling and optimizing 

advanced composite systems. 

 

Macroscopic constitutive relations for composite damage evolution analysis are abundant in the 

literature [1-6].  Fully characterizing even the most common damage evolution and failure 

models requires difficult to implement experiments.  In addition to elastic characterization, an 

approach is presented to obtain estimates of the damage/plastic initiation/evolution parameters. 

 

The constituent (fiber, matrix) properties are often given in literature, manufacturing 

specifications or can be determined by a few simple tests.  Validating/calibrating experiments are 

then used in conjunction with geometrically accurate micro/mesomechanical simulations.  

Additional loading conditions are then applied to the numerical model in order to further 

characterize the macroscopic response of the material. 

 

This document is laid out as follows: First, the constitutive models and material modeling 

techniques developed for or in conjunction with this project are described in detail.  Second, the 

experimental results obtained through Sandia resources and those acquired from literature are 

listed.  In addition, the minimum and ideal characterization requirements for micro to macro 

modeling are discussed.  Third, the geometry and model development and implementation are 

described.  Lastly, verification of mesh and modeling techniques as well as validation using 

simple experiments are presented.  
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2.  MATERIALS 
 

In general, the constituents of the PCM are simply the fibers and matrix.  Therefore, given 

micro-geometric details, an RVE of a PCM can be modeled with only two material responses.  

This over simplification is not valid, however, when dealing with non-linear responses because 

material interfaces and multiple scales (woven composites) are involved.   

 

Three specific material models will be discussed in this report.  The first is a general orthotropic 

elastic damage model that is fully documented in [7].  The basic theoretical background and 

extension to coupled plasticity will be discussed.  The second is a micro to macro continuum 

damage model described in [8].  The implementation and theoretical background are given in 

detail to demonstrate techniques and potential uses for this research.  The third is a transversely 

isotropic continuum damage model based on [4, 5, 9].  This model is specifically implemented to 

simulate yarn damage in fabric reinforced geometries.  For simple load cases, damage only 

occurs in the orthotropic lamina planes. However, a general transversely isotropic model can 

provide higher accuracy under more complex loadings where the crack plane is unknown. 

 

2.1. Continuum damage mechanics 
 

The following outlines the basic thermodynamic formulation of a continuum damage mechanics 

(CDM) material model.  This write-up was also presented in more detail in [7] and in the 

references [1-3]. 

 

The material response is modeled by relating the Green-Lagrange strain (E) to the second Piola-

Kirchhoff stress (S).  This is called a Saint-Venant-Kirchhoff (Kirchhoff) material and is valid 

for small strains and large rotations [10]. 

 

 

The local Clausius-Duhem inequality ensuring a positive internal entropy production is written in 

terms of the Helmholtz free energy ( ) 

 

 

where   is density,   is entropy, and   is the heat flux.  The Helmholtz free energy is a function 

of elastic strain, temperature, damage and internal state variables ( (       )).  Applying the 

chain rule, the above equation becomes 

 

 

where the tensor D and the scalar   are internal state variables associated with damage.  The 

Helmholtz free energy density ψ is assumed to be the sum of the strain energy density φ and a 

dissipation term π 
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The following thermodynamic forces are defined  

 

      
  

    
           

 

    
  

  
  

 

     
  

    
  

 

 
   
      

    
     

   

where Yij is the thermodynamic force conjugate to damage, and damage is defined as crack area 

over total area. 

 

2.2. General orthotropic damage and plasticity 
 

A useful addition to the elastic CDM approach is the evolution of plastic strains.  While 

composites under normal loading typically exhibit quasi-brittle fracture, shear deformation can 

produce the appearance of plastic strains.  Similar to the above formulation, the Helmholtz free 

energy density ψ is assumed to be the sum of the strain energy φ density and a dissipation term π 

 

 (       
         )   (       

     )   (   ) 

 

where εp and Dij  are plastic strain and damage tensors respectively and p and δ are the plastic and 

damage evolution terms.  In this and the following cases, the strain will be assumed small and 

generalized as         .  The dissipation term is separable into plastic strain energy and damage 

energy dissipation portions. 

 

 (   )    ( )    ( ) 
 

A Prony series is postulated to represent these terms 
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where αi and βi are material parameters determined by curve fits of experimental data. 

 

The following stresses and thermodynamic forces are defined 
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The hardening functions are given by 
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2.2.1. Damage 
 

For many composite materials, damage occurs only on principal material planes.  Therefore, the 

damage parameters can be limited to those effecting the normal and transverse principal material 

directions.  The second order damage tensor Dij and the associated integrity tensor Ωij and 

damage effects tensor Mijkl are defined as: 
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(             ) 

 

For unidirectional composites, coupling of shear and normal damage is a result of micro-cracks, 

fiber breaks and fiber-matrix deboning as in the above formulation.  However, some materials 

may not experience a linear coupling between normal and shear damage.  For example, plane 

weave composites under shear experience stiffness reduction due to matrix cracking and fiber-

matrix deboning with little to no fiber breakage resulting in only a minor reduction of stiffness in 

the fiber directions.  For fully normal and shear uncoupled analysis Dij, Ωij and Mijkl can be is 

defined as 
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The integrity tensor is written in matrix form as  
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The coupling of shear and normal damage is likely to be in between these two formulations.  

Therefore, further investigation into strength penalties for the coupled analysis is needed.  See 

Barbero’s formulation for the damage activation function [1]. 

 

Assuming energy equivalence between the damaged and effective spaces, the damaged stiffness 

tensor Cijkl is defined as a function of the undamaged stiffness as 
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The damaged (actual or far field) stresses and elastic strains are 

 

            
  

   
       

      

 

and the effective (local) stresses and elastic strains are 
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Thus, the damaged and effective configurations are related by 
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The explicit form of nominal thermodynamic force Yij is given in terms of effective strain in 

contracted form as 
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for the uncoupled formulation and 
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for Barbero’s coupled formulation. 

 

The damage surface can be any homogeneous function of the thermodynamic force conjugate to 

damage.  Similarly, the plastic surface and potential functions are given in terms of stress.  The 

classical orthotropic yield criterion of Hill is used [11]. 

  

2.2.2. Damage and Plastic Evolution 
 

An associative model where the damage surface and damage potential are identical (gd = fd) is 

used to simplify computation.  Likewise, the plastic strain surface and potential are made to be 

identical (gp = fp).  Therefore, the evolution of the internal variables can be described by the 

following flow rules 
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2.3. Transversely isotropic damage 
 

The following provides the theoretical framework and numerical implementation of a 

transversely isotropic damage model for use in epoxy impregnated yarns.  The formulation is 

based on [4, 5, 9]; however, the bulk of the theory and implementation is taken from [9].  

Damage is tracked transversely and axially with the fibers.  Under one dimensional monotonic 

loading, the principal strain direction corresponds to the primary material direction and the 

transversely isotropic model is identical to the general orthotropic material in [7].  Refer to [7] 

for the thermodynamic formulation of the continuous damage model and material parameter 

identification. 

 

2.3.1. Transversely Isotropic Elastic Damage 
 

In order for this model to be considered for yarn analysis, radius of curvature for a woven yarn 

must be much less than the fiber diameter. 

 

Micro-cracking in an isotropic or transversely isotropic material occurs in planes determined by 

the principal strain state [9].  A yarn and some unidirectional lamina can often be considered 

transversely isotopic.  In these cases, the principal axis are assumed in the anisotropic direction 

and in the isotopic directions where shear strain ε23 = 0.  The strain in material coordinates is 

given as {ϵ} = { ϵ11, ϵ22, ϵ33, 2ϵ12, 2ϵ13, 2ϵ23}
T
.  Rotation about the anisotropic axis (1), usually 

associated with the fiber direction, is accomplished by the strain transformation matrix  

 

{ε}= [T]{ϵ} 

 

where 
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and c = cos(θ) and s = sin(θ).  The rotation angle θ can be solved by setting Ti6ϵi = 0. 

 

Ti6ϵi = 2cs(ϵ33 - ϵ22)+2(c
2
-s

2
) ϵ23 = 0 

 

θ = tan
-1

(2ϵ23 /(ϵ22 - ϵ33))/2 

 

The resultant strain state is given as {ε} = { ε11, ε22, ε33, ε12, ε13, 0}
T
. 

 

The material maintains transverse isotropy when in-plane stresses are either both tensile or both 

compressive.  However, since damage effects are different in tension and compression, if the 

damaging in-plane principal stresses are opposite sign, the material becomes orthotropic.  The 
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axis of in-plane anisotropy will always correspond to the principal axis.  Thus, tensile and 

compressive damage are isotropic in the transverse plane.  This relationship is expressed in the 

damage variables defined as 
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where cL and cT are the longitudinal and transverse crack closure coefficients. 

 

Where longitudinal and transverse integrity are written as 

 

         
 

         
 

         
 

Since shear integrity is a function of both in and out-of-plane damage, and assuming shear 

damaged is isotropic, the resulting integrities are given as. 
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where cS is the shear crack closure coefficient. 

 

The undamaged compliance tensor in the material/principal direction is given as 
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The undamaged stiffness tensor is given as 

 
1

 SC  

 

2.3.2. Thermodynamic Formulation 
 

The following stresses and thermodynamic forces are defined as functions of the Helmholtz free 

energy density ψ 

     
  

    
          

 

     
  

    
  

 

 
   
      

    
    

 

Depending on the loading condition the thermodynamic forces takes on different forms.  The 

explicit form of the thermodynamic force Yij is given in terms of effective strain in contracted 

form as 
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and compressive loading 
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A thermodynamically consistent model is implemented by defining the transverse damage 

activation function as 
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The longitudinal damage activation is defined for both tension and compression as 
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and the damage evolution term is forced to evolve separately for tension and compression.  For 

associated damage evolution the term evolves as 

 

For tensile loads:   ̇    ̇
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For compressive loads:   ̇    ̇
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and the longitudinal damage as 
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Thus, the tensile damage surface evolves for both compression and tension loads while the 

compressive term only evolves for compression loads. 
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2.4. Micro-macro damage 
 

Micromechanics can be used to isolate the damage evolution in the constituents (fiber and 

matrix).  Given statistically accurate stress and strain concentration tensors, constituent damage 

can be predicted using the methodology in [8].  The following section outlines the proposed 

material model.  While this approach was originally favored instead of a phenomenological 

approach, it is not entirely clear how the interphase damage portion used in calibration influences 

the constituent damage evolution.  The interphase is a finite chemically different transition 

region between the fiber and matrix.   Since a complete verification and validation of this model 

is not provided, the approach was not used in multiscale analysis.  However, the theory and 

implementation is useful and various future works are garnered. 

 

2.4.1. Outline of constitutive equation 
 

1. The stress/strain concentration tensors live in the effective configuration.  First, calculate 

effective volume fractions. 
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where equivalent damage is 
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and the superscripts f, m and later L correspond to fiber, matrix and interphase 

respectively. 

 

2. Using Appendix B of [1], calculate the strain concentration tensors in the effective 

configuration 
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 where  ̅ are the undamaged stiffness tensor of the constituents and       account for the 

microstructural geometry.  The effective homogenized stiffness tensor is then 

 



21 

  ̅     ̅
  ̅    

 
 ̅    
 

  ̅   ̅   
  ̅    

  

 

3. Using the current damage effects tensor, calculate the strain concentration tensor in the 

partially damaged configuration 
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4. Since interphase damage is said not to affect the volume fraction, the stiffness in the 

partially damaged configuration is 
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5. Similarly, the fully damaged stiffness tensor is then 
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6. Calculate initial partially damaged strain using the current interphase damage effects 

tensor 
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7. Using the strain concentration tensors, calculate the strain in the in the partially damaged 

configuration 

 

  ̃ 
 
  ̃    

 
  ̃  

 ̃  
   ̃    

  ̃   

 

8. Using the constituent damage tensors, calculate the strain in the in the effective 

configuration 
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9. For each of the constituents, continuum damage mechanics is used to calculate stiffness 

loss. 

 

2.4.2. Constitutive Decomposition 
 

The stress and strain concentration tensors Bijkl and Aijkl are calculated using micromechanics 

such that the constituent stress terms are related to stress in the homogenized material as 
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where r = f, m, L for fiber, matrix and interphase respectively. 

Assuming the yarn is composed of long circular cylindrical fibers; the strain concentration factor 

is given by 
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where the components of the symmetric geometry tensor Pijkl is given in [1]. 

 

For fiber, matrix and interphase there exists an independent damage effects tensor (M
f
, M

m
, M

L
).  

The total damage effects tensor is given by 
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where V
f
 and V

m
 are the fiber and matrix volume fractions respectively and  

 

The strain concentration tensors are given in the partially damaged configuration as 
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The effective volume fraction in the effective configuration is given as 
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where equivalent damage is given as the sum of the squares of the damage components or 
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2.4.3. Integration Scheme 
 

Update current strain value 
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Initialize state variables with values from previous step (9 total) 
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Calculate the effective strain with updated damage effects tensor 
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Calculate the partially damaged strain concentration factors using updated effective volume 

fraction and strain concentration factors 
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Then calculate the effective strain and strain in the constituents 
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Use the effective stress to determine compression or tension.  If compression; recalculate the 

damaged effects tensor with crack closure coefficients and then repeat steps to calculated 

effective strain in the constituents and total partially damaged strain. 

 

Calculate the partially damage stiffness tensors as 
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where Vo is the initial volume fraction. 

 

Calculate the thermodynamic forces and damage hardening function in terms of effective strain 

and stiffness for the fiber and matrix and total partially damaged strain and stiffness for the 

interphase. 
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Check for damage: if g
r
 > 0 damage occurs; iterate until Δλ

m 
≈ 0 (g

m
 ≈ 0).  If damage occurs in 

one of the constituents, update its state variables using the following scheme. 

 

Using a first order linearized scheme for the k
th

 iteration; the damage multiplier is found from 

 

(  )  ( 
 )    (

   

   
   

   
   

   
 
   

   
)
   

   
    

 

where the non-associated damage potential is given as 
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Update damage state variable for next iteration 
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Calculate the fully damaged stiffness tensor and stress components and update state variables 
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2.5. Crack Band Theory 
 

A useful addition to the above mentioned material models is the use of crack band theory to 

model the post failure softening behavior [12].  This method can be implemented in order to 

simulate the fracture process in a yarn.  The general orthotropic formulation uses softening 

parameters to modify the integrity values post failure.  Continuum damage mechanics can be 

assumed up to first failure.  Then the remaining fracture energy is dissipated through softening.  
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For many unidirectional materials (yarns), linear elastic to failure is a good approximation.  For 

this study, only the elastic crack band model is implemented. 

 

Bazant and Oh [12] proposed damage based relationship for a failed material undergoing linear 

strain softening.  Using the damaged stiffness tensor from section 2.2.1, the integrity components 

are evolved post fracture (strain-localization) as a function of the normal (crack-opening) strain 

component. 
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Where Et it the negative tangent modulus of the linear softening portion,    is the total strain at 

the end of strain-softening and     is the modulus at the end of continuum damage evolution 

(distributed cracks).  Et  can be determined by the required strain energy density absorbed 

through the fracture process, which is directly related to the surface energy generated due to 

fracture.  Therefore, the characteristic length of the element (l* = element size) [4, 5] and 

fracture toughness (Gf) of the material are used to determine the total energy density at failure as 

 

  
  

  
 

 

with the constraint that 

 

    ∫        

 

for unidirectional loading.  Et 
 
is calculated based on a linear stress verses strain decay.  A more 

complete description of these parameters is given in the aforementioned references. 

 

Strain localization using implicit analysis, requires special controls on the element failure 

selection.  Sierra’s control failure methodology described in [13] is invoked with one 

modification.  This methodology assumes that exceeding one failure mechanism results in a 

decay of all the stress components.  This implementation only decays the stresses related to the 

orthotropic plane in which failure occurred.  This means full “element death” only occurs when 

all three planes have failed.  This allows for fiber connectivity with transverse failure.  

Unfortunately, this means the control failure methodology only works for the first failure mode.  

This is an appropriate approximation when simple loadings only result in one failure mode, but 

may induce unrealistic failure clouds in secondary modes. 

 

The following provides a mesh convergence verification example.  An elliptically notched plate 

(a/b = 4) is loaded to failure.   The material is a glass fiber composite with a transverse stiffness 

of E22 = 16.8 GPa, a peak stress of f2 = 41 MPa and a critical energy release rate of GI = 0.50 

MPa-mm.  Four mesh sizes are implemented in implicit analysis.  These require four transverse 

material responses shown in Figure 1.  The peak load from each simulation is shown in Figure 2.  

Mesh convergence is assured however is achieved slowly. 
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Figure 1.  Tensile stress-strain relationships for various characteristic lengths. 

 

 
Figure 2.  Mesh convergence results: peak load versus mesh size for an elliptically notched plate 

under tension. 

 

2.6. Polymer Matrix 
 

It is assumed that the matrix material can be modeled as homogeneous and any void content is 

not modeled explicitly rather is included in the constitutive response.  Thus the matrix is 

approximated as Isotropic J2 plastic. 
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The multi-linear elastic plastic failure model is used to simulate crack initiation and growth in 

both micro and meso-mechanical simulations.  The parameters for post failure softening are 

estimated from [14].  Figure 3 shows the stress strain relationship assumed for the UF3362-100 

resin material based on manufacturer’s specifications for a mesh size. 

 

 
Figure 3.  Estimated stress-strain relationship for UF3362-100 cured resin. 
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3.  EXPERIMENTAL RESULTS 
 

In order to validate finite element simulations, a series of quasi-static tensile experiments have 

been performed.  In addition, edge and surface microscopy images have been investigated in 

order to accurately depict fiber bundle morphology and damage nucleation and growth behavior. 

 

3.1. Materials 
 

The glass fiber reinforced polymer (GFRP) material used for this investigation is a thermosetting 

polymer prepreg system with a total fiber volume fraction of approximately 48%.  The fiber 

architecture is an eight-harness satin weave composed of E-glass fibers of 6 µm in diameter.  A 

representative unit cell of a post-mortem fractured surface for this architecture is shown in Figure 

4. 

 

 
 

Figure 4.  GFRP 8-harness satin weave fiber surface with a unit cell illustrated. Warp face is 

shown with the warp direction vertically oriented. 

 

3.2. Specimen Processing 
 

Prepreg laminates have been hand laid from individual plies cut using a 4-axis CNC flatbed 

cutter.  Panels (250 mm x 300 mm) composed of 6 plies have been laid up in a symmetric stack 

sequence with the warp face of each ply facing out away from the mid-thickness plane, and the 

warp direction oriented along the tensile loading direction.  Panels were vacuumed bagged and 

autoclave cured according to the manufacturer’s recommendations.  Beveled end tabs were then 

secondarily bonded to consolidated panels and specimens were cut using a wet saw equipped 

with a diamond embedded blade.  Resulting specimen geometry can be seen in Figure 5, with the 

warp fiber direction being collinear with the specimen length. 
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Figure 5.  Tensile testing specimen geometry 

 

3.3. Testing Procedure 
 

Edge and surface optical microscopy has been performed in order to describe the geometric 

quantities and spatial distribution necessary to have accuracy in simulation efforts.  Monotonic 

tensile testing in displacement control has then been performed at a displacement rate of 3 

mm/min.  Strain gage-based extensometers have been utilized to directly measure the axial and 

transverse strains.  The gage lengths for the axial and transverse strain determination were 25.4 

mm and 18.5 mm, respectively.  Specimens were loaded to failure with load and strain data 

continually recorded at 10 Hz. Post mortem microscopy was then performed on specimen edges 

as well as the surfaces in order to correlate with model predictions. 

 

3.4. Experimental Results 
 

Edge and surface microscopy images have allowed the direct measurements of tow width, 

height, spacing and undulation frequency. The resulting morphology has been directly used for 

modeling input to reconstruct the geometry.  A typical front edge micrograph can be seen in 

Figure 6. 

 

 



31 

 
 

Figure 6.  Front edge micrograph detailing warp fiber tow ends 

 

The in-plane unit cell geometry, as shown in Figure 6 for a subsurface post-mortem ply, as well 

as from the top surface of a cured part in Figure 7, give an idea of the fiber tow packing density.  

From these images, the average warp and weft yarn count is 23/cm and 22/cm, respectively. 

 

 
 

Figure 7.  Unit cell from the top surface of an as-cured laminate 

 

When a laminate with various fiber direction angles is loaded in tension, the respective failure of 

the constituent plies occurs successively in the increasing order of strength [15].  For this 

particular 8-harness satin weave loaded in tension along the warp fibers, the weft fibers are 

oriented at 90 degrees to the loading direction.  This loading will give rise to transverse cracking 

within the weft tows.  Modulus decreases by approximately 46% at a strain of 0.36%.  The 

modulus then increases by approximately 18% before decaying further as damage progresses.  

The knee behavior in the stress-strain relationship is shown in Figure 8. 
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Figure 8.  Tensile stress-strain curves for the warp and weft directions of a GFRP 

 

3.5. Experimental Requirements 
 

Sufficiently accurate, micro and meso-scale geometries can be generated with minimal insight 

into the actual structure.  However, with more measurements comes higher fidelity and greater 

statistical representation of the structure.  For instance, the geometry for a micromechanical 

simulation can be generated from no more than the fiber volume fraction.  Similarly, a meso-

scale geometry needs only total fiber volume, yarn counts and lamina thickness. 

 

Depending on the curing technique, a fiber volume fraction for a woven PMC may be estimated 

from the manufacturing specification of the prepreg.  However, this may not be accurate if 

substantial polymer is drawn from the prepreg during curing from variations in vacuum pressure 

and layup.  For example, Figure 9 shows two uniaxial tensile experiments for nearly identical 

8HS GFRP laminates.  The lower curve is more representative of the original prepreg fiber 

volume fraction (Figure 10), while the upper curve indicates substantial polymer bleeding.  The 

latter would require calibration or direct measurement to determine the actual volume fraction. 
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Figure 9.  Tensile warp stress-strain curves two GFRP with different manufacturing techniques 

(data from Wei-Yang Lu) 

 

 
Figure 10.  Fiber volume fraction versus resin mass fraction for GFRP and CFRP 
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4.  MESH GENERATION 
 

4.1. Micromechanical 
 

A representative volume element of the yarn microstructure consists of matrix material and a 

random arrangement of fibers.  Much work has been done by characterizing material response 

using a structured (hexagonal, square …) fiber packing resulting in a simple unit cell [8, 16-19].  

While this structure produces reasonable results under elastic loading, the results produce 

significant over predictions of strength and damage resistance.  Therefore, a random distribution 

is necessary to accurately predict crack initiation and propagation [20-24].  

 

When placing random disks in a 2D space, a simple random “dart throw” technique can only 

produce volume fractions on the order of 50%.  This packing does not represent the physical 

process of packing fibers and therefore the volume fractions seen in yarns (60-70%).  Another 

complication in unit-cell generation is the necessity for periodicity.  This means the parallel faces 

of the unit-cell must have identical topology allowing for repeats only through translation.  

Through collaboration with Dr. Ebeida of Sandia, a periodic maximal Poisson sampling with 

adaptive disk insertion with a dial-in volume fraction is used to generate the unit cells for this 

analysis. 

 

Figure 11 shows a representative element loaded transverse to the fibers.  The boundary 

conditions of this simulation are calculated using a multi-scale RVE region.  Figure 12 provides 

examples of the first order homogenized responses of various distributions for a fiber volume 

fraction of 67%.  While the crack path and failure are of qualitative interest; after peak load the 

model begins to bifurcate and the RVE assumptions become invalid [25].  Therefore, the random 

fiber-matrix micromechanical simulations will provide estimates of peak stress and not softening 

behavior.  Crack band theory is discussed in section 2.5. 

a.   b.  

Figure 11.  RVE von Mises stress distribution under uniaxial transverse tension, a) peak load and 

b) post fracture 
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Figure 12.  Homogenized tensile response for multiple samplings with a coarse mesh at vf = 67% 

 

For the micromechanical simulation, the size of the RVE (number of fibers) affects the response.  

Three randomly generated RVEs with sequentially increasing RVE edge length to fiber radius 

ratios of 10.9 (least fibers), 21.7 and 43.4 (most fibers) are used to address size sensitivities.  

Figure 13 shows excellent convergence of the transverse elastic modulus.  Near peak load, the 

RVE method proved problematic for the very large mesh sizes. Therefore, peak load estimates 

are taken from a plane strain simulation.  The peak stresses for the low, medium and high fiber 

count models are 40.7, 41.1 and 37.8 MPa respectively.  These values are similar to those in the 

mesh convergence study, but without a numerically intensive study into the variation between 

different realizations, the values cannot be fully verified.  However, one would expect the scatter 

between realizations of each size to reduce with increasing number of fibers.  This is 

demonstrated in [26].  Given the limitations in the time and access to the code, this reference is 

the only verification given here. 
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Figure 13.  RVE size convergence of transverse modulus for random fiber composites 

 

Bazant shows that localization/softening RVE models are not valid for multi-scale modeling of 

macro-scale structures without an association of material characteristic length and fracture 

energy [25].  It should be noted however, that the simulations presented in this study are not 

associated with a macro-scale structure.  Alternatively, the multi-scale RVE approach is simply 

leveraged to apply realistic boundary conditions.  Nevertheless, since the boundary conditions 

used for a periodic structure with strain localization are questionable, these models are said to 

produce quantitatively accurate results up to peak load and qualitative insight into the fracture 

processes during macroscopic softening.  Calibration is completed by first simulating the effects 

distributed cracks and yielding up to peak load, then using the macro/mesoscopic fracture energy 

to simulate softening.  Figure 14 demonstrates the proposed technique.  Size effects, or the 

dependency of the RVE on physical dimensions [16], are not included in this study.  
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Figure 14.  Illustration of the stages of crack development in the constitutive model 

 

These models justify that elastic to failure methodology with crack band type softening is a good 

approximation for the unidirectional yarn material.  The interphase around the fiber is assumed 

to be made up of matrix material.  It is also shown that the peak homogenized stress is 

insensitive to toughness (energy dissipated with crack band theory) of the interphase [22]. 

 

4.2. Mesomechanical 
 

The three dimensional geometry of a woven composite on the meso-scale for numerical analysis 

must be representative of the average true structure and contain certain 

approximations/assumptions that ease the meshing process.  The mesh for simulation is 

contiguous.  Overlapping yarn surfaces are self-similar and do not have a polymer layer of 

separation.  These are instead modeled with cohesive surface elements.  Due to the conservation 

of fibers, the yarn cross-sectional area is more or less constant over the sweep path.  Since the 

sweep cross-section naturally changes along the path, the latter criterion is not strictly achieved 

when yarns layup in a contiguous manner.  Thus the first approximation is that minor changes in 

cross-sectional area will be tolerated along the sweep path.  Additionally, priority is given to 

experimentally determined dimensions.  Unknown dimensions and geometry are determined 

from mesh-ability and geometric constraints.  Randomness in the yarns and laminate are not 

considered in this study. 

 

4.2.1. Yarn Orientations 
 

A simple algorithm is used to calculate the material orientation of an integration point bounded 

in an arbitrary yarn.  Included in the mesh are the integration point locations, available using an 

in-house script.  Each block is bounded by the three curves defining the yarn path.  These can be 

defined analytically or piecewise using node sets and interpolation.  Because the yarn orientation 

only varies by a rotation about the in-plane direction normal to the yarn symmetry, the problem 

is simplified into two dimensions.  An optimization algorithm selects an angle of rotation 

defining a plane (line in 2D).  The normal directions at the intersections of each bounding curve 

are obtained.  Then a minimization is completed based on the weighted sum of the differences 
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between these normal angles and the input angle.  The weight function is simply the inverse of 

the length of the line segment between the point of interest and the intersection point.  

 

            √∑[  (       (
   
   
))]

  

   

  

 

 

The material model utilizes the Initial Condition command which accesses the Exodus 

orientation data stored in the mesh to initialize internal state variables.  An example is given in 

Figure 15 with the results shown in Figure 16. 

 

The result is a piecewise angle distribution defined at each integration point.  For fully integrated 

elements (8 integration points), orientation is uniquely defined at each point resulting in elements 

with multiple material orientations.  Note that this in one method of many to assign material 

orientation to a woven yarn.  For example, a weighted average of the curve tangents can be used 

at a given point location with acceptable results. 

 

                             
 

Figure 15.  Illustration of the orientation optimization 

 

 

where      
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√|  |   |  |   |  |  
  



40 

 
Figure 16.  Output orientations for a yarn segment at symmetry plane written to each integration 

point 

 

4.2.2. Plain Weave Geometries 
 

The following equations and methodology describe the geometry of a plain weave representative 

volume element [27].  The equations are mapped in three dimensions as vertices, the vertices are 

joined with curves through spline interpolation and curves bound surfaces that enclose individual 

volumes.  The yarn section contains four unique volumes that can be reflected, rotated and 

translated to generate a single RVE.  

 

The following dimensions describe the plain weave yarn geometry, see [27] for a complete 

description:  

 

aw Warp peak to trough length 

af Fill peak to trough length 

ww Warp yarn cross-sectional width 

wf Fill yarn cross-sectional width 

hw Warp yarn cross-sectional height 

hf Fill yarn cross-sectional height 

bw Warp sweep path amplitude 

bf Fill sweep path amplitude 

 

All dimensions are measured as if corners are sharp.  Geometry modifications, such as fillets or 

chamfers, can be completed in the final stage.  For this write-up, warp yarns and fill yarns are 

oriented in the x and z directions respectively. See Appendix A for a depiction of these curves. 

 

4.2.2.1. Inner Cross-Sections/Paths 

 

“Inner” refers to a shared curve.  The inner warp path corresponds to the inner fill cross-section 

and the inner fill path corresponds to the inner warp cross-section for the overlapping volumes.  

The inner fill cross-section/warp path curve is given as: 

 

  ( )    (   
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)  

  
 

  

 

The inner warp cross-section/fill path curve is given as: 
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4.2.2.2. Outer Paths 

 

The outer paths in the overlap section are simply a normal projection from the inner paths where 

the thickness along the normal is h.  In order to preserve continuity, the mid paths vary linearly 

between the outer paths and the adjacent cross-section. 

 

4.2.2.3. Outer Cross-Sections 

 

The outer cross-sections at the yarn symmetry planes (peak or trough of the wave) are given as: 

 

Warp yarn:  ( )         (    )         
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4.2.2.4. Warp and Fill Edges 

 

Multiple techniques are available to generate a curve that ensures mesh continuity and qualitative 

accuracy.  For this study, 5
th

 order polynomials are chosen to represent the edges of the fill and 

warp yarns. 

 

Warp yarn:  ( )        
      

      
      

            

  

Fill yarn:  ( )        
      

      
      

            

 

The coefficients of the above equations are solved using the following boundary conditions: 

 

1. The start and end points of the curves must be located at the opposite cross-section’s 

edge. (4 BCs) 

2. Both curves intersect at point (x, y, z) = (wf, 0, ww) and (x, y, z) = (aw - wf, 0, af - ww). (4 

BCs) 

3. The start and end points of the curves have zero slope. (4 BCs) 
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4.2.2.5. Outer mid cross-sections 

 

The inner warp and fill mid cross-sections for the four volume element are determined by the fill 

and warp edges as described in the previous section.  The outer warp and fill mid cross-sections 

follow the constant mid thickness paths and are described by a similar formulation.  A cross-

section is generated by solving the periodic equations in the following form: 

 

Warp cross:  ( )          
  

  
      

  

Fill cross:  ( )          
  

  
      

 

Boundary conditions of intersection at (x, y, z) = (wf, ww,0) and values corresponding to the 

constant thickness projection of warp and fill paths at (x, y, z)  = (wf, 0,0) and (x, y, z) = (0, 0, ww) 

respectively are applied.  The resultant curve is mapped by interpolating from the intersection 

point to the projection point resulting in skewed mid cross-sections. 

 

4.2.3. Satin Weave Geometries 
 

The individual curves that make up the undulated portion of the harness weave meso-structure 

are similar to those in the plain weave with a few exceptions.  First, the yarns in the 0/90 region 

can overlap, resulting in the appearance of a uniform cross-section.  Therefore, a fill yarn 

approaching the undulation must originate from an overlapping solid and must undercut the 

corresponding warp yarn at undulation and vice versa.  This can explain the differences in warp 

and weft yarn counts for a balanced structure, where the cross-sectional areas of both yarns are 

equal.  Second, for a first approximation, we generate a reduced RVE, with a single undulation 

and a proportional amount of non-undulating yarns compared to the complete RVE [17].  Figure 

17 shows the 8HS RVE without matrix. 

 

If zero overlap is assumed or determined from experiments, the balance of yarns can be ensured 

for a differing yarn count by adjusting the unknowns.  Depending on the level of unknowns 

various parameters can be optimized.  In a case where only the average lamina thickness is 

known, the warp to weft yarn thickness ratio is calculated based on the tow count.  For a 

balanced composite this is translated as equal cross-sectional areas.  Similarly, the cross-

sectional shapes along the undulating yarn paths are adjusted to maintain equal areas.  For elastic 

loading the two approaches provide similar results. 
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Figure 17.  Yarns of an 8-harness satin weave 

 

4.2.4. Voxelization of 8HS RVE 
 

The 8HS weave lamina unit cell is voxelized using a simple Python script that interacts with 

Cubit.  Figure 18 show the voxel elements for the geometry shown in Figure 17.  A voxel mesh 

is valuable because given a set of outer boundaries; the interior can be approximated without 

restrictions on complexity.  For example an arbitrary laminate contains lamina that does not 

necessarily maintain planar contact, which has been assumed for other simulations in this study.  

Since a thorough investigation of the robustness of the voxel method is beyond the scope of this 

project, only issues such as elastic loading and mesh dependencies will be addressed.  However, 

given the tools developed here and the broad implications of this method, a further study is 

recommended. 
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Figure 18.  Voxelized mesh of an 8-harness satin weave shown without matrix 
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5.  BOUNDARY CONDITIONS AND MODEL IMPLEMENTATION 
 

5.1. Boundary Conditions for RVEs 
 

Two related boundary condition methodologies are investigated for this analysis: the RVE 

boundary conditions described by Wang et al. [28] and those automatically calculated with a 

RVE capability implemented in our in-house implicit solid mechanics code Sierra/Adagio.  In 

general, the following describes the boundary condition formulation for both methods.  First, the 

displacements on each parallel surface pair of the RVE rectangular prism as a function of 

Cartesian coordinates are given by 

 

   (        )    ̅      
 (        )  

 

where  ̅   are the average strains in the RVE.  The second term on the right hand side   
  is a 

periodic function between RVEs ensuring continuity and is generally unknown.  For linear 

elastic analysis, material constants can be determined by simply applying displacement fields 

and ensuring periodicity, which relies only on satisfying displacement differences on each pair of 

parallel faces.  Thus, Wang et al. [28] shows that this equation reduces to  
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These boundary conditions are applied as periodic if  ̅   = 0 or as displacements for the know 

(applied) quantities of  ̅  .  Boundary conditions applied in a damaging medium are more 

complicated however.  The above described methodology allows for multiaxial stress states, then 

solves for the stiffness tensor directly.  However, damage parameter estimation is typically done 

with uniaxial loading.  Therefore, the above equation must be solved in order to ensure zero net 

traction in the unloaded directions.  Since the in-house RVE method uses the strain rate ( ̇), the 

above equation is written as 

 

  ̇ 
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   ̇ (  

  
   

  
)  

 

where  ̇   is the average strain rate over the RVE. 

 

Methodology implemented in our in-house code simply applies the above boundary conditions in 

a multi-scale Finite Element Method.  A reference element undergoing some prescribed 

kinematics passes the velocity gradient to the periodic RVE mesh that then returns volume 

average stresses.  In a sense, the RVE serves as the constitutive equation for the reference model.  

The finite element method is used to apply appropriate BCs, ensuring convergence. 

 

The strain rates are passed to the RVE model and applied as relative velocities to periodic 

surfaces.  In the current implementation, the periodic boundary conditions require identical 

topology.  Given an arbitrary RVE, this criterion is met using membrane elements and multi-

point constraints. 
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If the RVE mesh is large, it may require multiple processors to run.  Since Sierra models require 

all meshes to be decomposed on to each of the specified processes, both the reference mesh and 

the RVE mesh must contain at least as many elements as processors.  Therefore, the reference 

region of a single element single RVE model must contain dummy elements.  These elements 

can be given any material properties and boundary conditions and should remain detached from 

the element with the RVE material definition. 

 

Cohesive surface elements are used to simulate intralaminar debonding between the yarns and 

matrix.  At present, the RVE region does not allow for manually defined periodic surfaces, 

making coincident nodes incompatible.  Shear loading and manual boundary conditions are 

provided to demonstrate this capability.  An in-plane shear loading simulation of a plain weave 

RVE, shown in Figure 19, is provided as an example.  Given the scope of this study, extensive 

use of this technology was not permitted.  However, this capability serves as yet another vital 

advancement towards including all pertinent physics in the model.  

 

 
Figure 19.  In-plane shear loading of a plain weave RVE with cohesive zone interface failure and 

material shear stress contours (matrix and cohesive elements not shown) 

 

5.2. Verification 
 

5.2.1. Boundary Conditions 
 

Two identical RVE meshes with elastic material parameters are implemented using both the 

periodic and RVE methodologies.  First, Wang’s six periodic boundary conditions are applied as 

follows.  Six average strain tensors are applied to the faces of the RVE mesh.  When   ̅   , the 

condition that   
  
   

  
   is ensured by periodic boundary conditions.  The following 

provides the applied strain tensor and the output volume average stresses. 
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These loads are implemented sequentially.  The homogenized stress strain relationship of the 

elastic system can be defined as 

 

 ̅          ̅  
 

Solving each term from the populated data directly, the following stiffness tensor is given in 

contracted form 

 

[ ]  

[
 
 
 
 
 
               
               
               
         
         
         ]

 
 
 
 
 

 (GPa) 

 

For simplicity only the symmetric part is used. 

 

 ̅     
 

 
(           

 ) 

The compliance tensor is then 
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The orthotropic homogenized elastic constants are easily solved. 
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Applying the RVE region to the same geometry, the elastic parameters are solved directly from 

the stresses and strains in the reference model.  For uniaxial loading in the 11 direction for 

example,  

 

    
 ̅  
  ̅ 

 

 

     
  ̅ 
  ̅ 

 

 

     
  ̅ 
  ̅ 

 

 

The remaining parameters are found and a symmetric stiffness tensor is formulated.  The 

resulting homogenized elastic constants are 

 

         GPa 

         GPa 

         GPa 
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         GPa 

         GPa 

         GPa 

          

          

          

The in-plane elastic results from both methods compare well.  For elastic properties, Wang’s 

method is preferable due to the extremely high computational time required for multi-scale 

modeling.  Thus, the RVE region will primarily be implemented for damage property estimation. 

 

5.2.2. Micro RVE Mesh Convergence 
 

A mesh convergence study is undertaken for a single sampling of fibers.  The stress-strain curves 

and related peak stress measurements are shown in Figures 20 and 21 respectively.  The ratios on 

the abscissa should be read as one over the minimum number of elements between fibers.  The 

models show excellent mesh convergence/insensitivity for the elastic modulus.  However, the 

rate of convergence for the peak stress is very low.   Nevertheless, the medium mesh density 

with a minimum of two elements between fibers produces results with identical crack paths and 

similar strength values compared to the finer versions.  Therefore, for this study the medium 

mesh is used to estimate unidirectional material properties.  

 

 
Figure 20.  Homogenized tensile response for single coarse sample with different mesh sizes 
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Figure 21.  Mesh convergence of uniaxial transverse peak load for random fiber composites 

 

 
Figure 22.  Transverse modulus verse mesh size ratio for a random glass fiber model  

 

5.2.3. Meso RVE Mesh Convergence 
 

The meso-scale RVE simulations suffered from poor convergence in the implicit solid-

mechanics code Sierra.  This is magnified with finer meshes.  Nevertheless, mesh convergence 

studies are completed on the 8HS GFRP overlapping reduced meso-geometry for elastic 

properties and a plain weave RVE for shear cracking.  Shear loading of the plain weave RVE is 
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done up to 2.16 % strain.  This value ensures small strains and convergence in the fine mesh 

implicit run. 

 

The poorest convergence in the elastic runs is shown for shear loading.  The in-plane shear 

moduli for three mesh sizes in the 8HS meso geometry are shown in Table 1.  The values are 

shown to be insensitive to mesh size within the range tested. 

 

Figure 23 shows the volume average in-plane shear stress values for plain-weave RVE.  The 

material properties for both the elastic to failure and plasticity models are adjusted for mesh size.  

While the mesh shows convergence, the rate is low. 

 

Table 1.  In-plane shear moduli 8HS GFRP 

Mesh Size (  ) G12 (GPa) 

100 3.827 

50 3.828 

25 3.826 

12.5 3.824 

  

 
Figure 23.  Mesh convergence of the volume average shear stress at γ12 = 2.16 % for a plain 

weave geometry 

 

When possible the mean-quadrature hexahedral element is implemented.  In some cases, 

tetrahedral elements are used to ease meshing.  The tetrahedral elements produced similar results 
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to hexahedral under elastic loading, but are questionable with damage and failure.  Tetrahedral 

elements are used only in elastic analysis of the overlapping satin weave mesh. 

 

5.2.4. Voxel Mesh Convergence 
 

The first mesh convergence studies are conducted for the geometry described in section 4.2.4.  

Voxel meshes are not suited for stress concentration analysis.  However, the homogenized stress 

strain relationship may be convergent or insensitive to mesh refinement.  Therefore, estimating 

elastic properties with a voxel mesh should be convergent or insensitive.  First, a mesh 

dependent solution is illustrated by simulating a single (not reduced) RVE for thermal stress 

concentration analysis given orthotropic coefficients of thermal expansion (CTE) in the yarns.  

An unconstrained RVE is used to find flexure and peak residual stress respectively.  The non-

convergent results are as follows: 

 

Table 2.  Max out-of-plane displacement of a GFRP 8HS for ∆T = 50 C 

Mesh Size (  ) Max out-of-plane 

displacement (  ) 

100 69.74 

50 68.75 

25 67.91 

 

Table 3.  Max stress of a unloaded GFRP 8HS for ∆T = 50 C 

Mesh Size (  ) Peak Stress (MPa) 

100 106.7 

50 122.5 

25 156.1 

 

While stress concentrations in a voxel mesh will likely prevent mesh convergence with 

computational reasonable mesh densities for peak stresses, the homogenized elastic properties 

may be convergent or insensitive to mesh.  Figure 24 shows the absolute difference of all the 

orthotropic elastic properties from the finest mesh implemented.  While the trend is not 

convergent in this region, the values do show moderate insensitivity.  Therefore, this method 

along with boundary conditions discussed earlier may be valuable for arbitrary meso/micro 

structures.   
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Figure 24.  8HS GFRP elastic properties voxel mesh convergence plot 

 

5.2.5. Elements 
 

Tetrahedral elements produced similar results to hexahedral under elastic loading.  Similarly, 

tetrahedral elements matched well at the initiation of cracking.  However, these elements did not 

consistently converge to a solution and while meshing is trivial, a solution was rarely guaranteed.  

The overlapping satin weave mesh uses tetrahedral elements.  The mesh can be generated using 

hexahedral elements, but automation was not achieved.  Other elements, such as nodal based 

tetrahedral, 10 node tetrahedral and fully integrated hexahedral, where tested.  For this report 

only tetrahedral elements for elastic analysis and mean-quadrature for elastic and damage 

analysis are presented.  
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6.  RESULTS AND DISCUSSION 
 

Responses not easily obtained using experimental methods are of primary interest. These include 

biaxial tension, compression, in and out-of-plane shear, residual stress distributions in curing, 

damage and plastic initiation and evolution, and off axis coupling effects.  In the presence of 

limited data, simple experiments are used in addition to constituent properties to calibrate the 

meso-mechanical response.   

 

6.1. Elastic Properties 
 

6.1.1. Plain-Weave Graphite-Epoxy 
 

The macroscopic plain weave response is modeled and mechanically averaged for one set of 

statistical responses and compared to the plain-weave graphite-epoxy data presented in [27].  The 

results are shown in Table 4 with data from a similar modeling study found in [29].  The easily 

measured in-plane yarn dimensions are sampled while the thicknesses and yarn shapes are 

determined by the balance of cross-sectional areas.  This approach assumes constant fiber 

volume fraction in the yarn based on nominal dimensions and an iso-phase layup. 

 

Table 4.  Carbon-epoxy plain weave elastic properties 

Property Ito and Chou [27] 

(Std. Dev.) 

Barbero [29] Simulated 

E
11

 43.5 (2.12) 44.6 45.0 

E
22

 N/A 43.7 41.6 

E
33

 N/A 10.0 7.70 

ν
12

 N/A 0.062 0.141 

ν
13

 N/A 0.404 0.432 

ν
23

 N/A 0.411 0.445 

G
12

 N/A 3.61 2.97 

G
13

 N/A 2.90 2.30 

G
23

 N/A 2.91 2.33 

 

A Latin Hypercube Sampling (LHS) of the characteristic parameters is used for model 

generation.  Then a single layer structured mesh is used for macroscopic mechanical averaging, 

where each element is assigned one homogenized set of parameters from a single meso-scale 

representative volume.  The warp elastic modulus (E11) is given for one sampling of geometric 

parameters as 45.0 GPa, which matches well with the experimental responses.  The individual 
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homogenized RVE elastic moduli have a mean of 45.1 and a standard deviation of 3.88.  The 

distribution of 100 samplings is shown in Figure 25. 

 

 

Figure 25.  Distribution of the axial modulus 

In general, a distribution of in-plane elastic responses is best obtained through experiments.  

However, the methodology presented here provides out-of-plane properties and insight into 

stress concentration for damage initiation and failure analysis. 

 

6.1.2. 8HS Glass-Epoxy 
 

The homogenized elastic response of the 8 harness satin weave E-glass reduced unit cell predicts 

a range of warp modulus between 23.4 - 26.4 GPa for the manufacturer’s low and high fiber 

volume fractions respectively.  This matches well with the experiments, where E11 = 24.82 GPa 

with a standard deviation of 0.56 GPa.  The two sets of elastic parameters are shown in Table 5. 
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Table 5.  E-glass 8HS elastic properties 

Property Measured 

(Std. Dev.) 

Simulated 

E11 24.8 (0.56) 23.4 - 26.4 

E22 23.1 (0.39) 21.1 - 25.0 

E33 N/A 8.78 - 10.4 

ν12 0.13 (0.01) 0.117 - 0.124 

ν13 N/A 0.371 - 0.345 

ν23 N/A 0.376 - 0.349 

G12 3.45 3.40 - 4.47 

G13 N/A 2.67 - 3.13 

G23 N/A 2.61 - 3.04 

 

6.1.3. 8HS Carbon-Epoxy 
 

Similar simulations are completed for 8-harness carbon-epoxy.  Carbon fibers are highly 

anisotropic; therefore, the transverse micro-scale elastic properties are calibrated (inverse 

micromechanics) from manufacturers specification [30].  The transverse modulus of a single 

AS4 carbon fiber is calculated as 14.2 GPa and transverse shear modulus of 13.7 GPa.  The 

micro-scale elastic parameters of a UF3362 polymer resin reinforced with 77% - 87% AS4 3K 

carbon fibers are shown in Table 6.  This is the fiber volume fraction in a yarn given 71.3 % 

yarns and 55% - 62% total fiber volume fraction (see Figure 10). 

 

Table 6.  Unidirectional CFRP (yarn) properties 

Property Vf = 0.77 Vf = 0.87 

E11 178.6 201.4 

E22 9.59 11.4 

ν12 0.302 0.296 

ν23 0.366 0.336 

G12 3.54 4.32 

G23 3.49 4.23 
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Table 7.  8HS CFRP elastic properties 

Property Measured (*Estimated) Simulated 

E11 61.0 – 73.0 68.1 – 76.9 

E22 55.0* 65.5 – 74.0 

E33 9.78* 8.19 – 8.98 

ν12 0.048 0.0460 – 0.0464 

ν13 0.30* 0.416 – 0.399 

ν23 0.30* 0.417 – 0.399 

G12 3.71 – 4.60* 4.15 – 5.89 

G13 4.60* 3.00 – 3.53 

G23 4.60* 2.99 – 3.51 

 

6.2. Tensile loading of 8HS GFRP 
 

Transverse cracking of the weft yarns under warp direction tensile loading is marked by a knee 

in the stress-strain relationship (see Section 3.4).  Micromechanical simulations are used to 

estimate the distribution of transverse failure strengths in the yarns based on geometrical 

variations.  Matrix plasticity and failure are based on J2 and maximum equivalent plastic strain 

criterion.  The resulting random distribution of strengths are used to calibrate a continuum 

damage constitutive model based on the crack band theory [1, 2, 12].  The random and structured 

meso-mechanical simulations produce peak uniaxial transverse stresses between 41 – 71 MPa for 

GFRP and fracture energy of 0.050 MPa-mm [22].  An example of the elastic properties for a 

fiber volume fraction of 68% estimated by a random fiber simulation is given in Table 8.  Figure 

26 gives an example of the finite element representation of the transverse cracking.  Similarly, 

Figure 27 shows the generation of these cracks in experiments.  Qualitatively similar results are 

shown in [31]. 

 

Table 8.  Unidirectional GFRP (yarn) elastic properties 

Property Value 

E11 51.6 GPa 

E22 15.3 GPa 

ν12 0.238 

ν23 0.361 

G12 5.58 GPa 

G23 5.63 GPa 
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Figure 26.  Transverse (fill) yarn cracks shown as failed elements in red 

 

 

Figure 27.  Crack cloud experimental example for GFRP under uniaxial tension 

 

 

Figure 28.  Stress versus strain for axial (warp) tension in GFRP 8HS 

Figure 28 provides a sampling of the homogenized mesomechanical stress strain responses and 

the experimental data.  A linear elastic stress strain curve is shown in order to provide reference 
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to the loss of stiffness due to transverse cracking.  Four results from zero gap non-overlapping 

meso hexahedral mesh with RVE solved boundary conditions are given. 

1) Softening prediction from a uniform distribution of failure mechanisms on the effective 

stress based on hexagonal packed micromechanical estimates and CDM damage 

evolution.  The failure stresses are distributed uniformly from 60 to 69 MPa, based on a 

normal distribution of volume fractions with hexagonal packing.  Figure 29 shows the 

approximate uniform distribution.  The stress-strain relationship assumes damage is the 

cumulative probability of the failure distribution function from unloaded to a given stress.  

The damage evolution parameters are found using an optimization script.  Therefore, for 

a transverse uniaxial load up to an effective stress of 69 MPa, the actual stress has 

decayed to zero.  It should be noted, however, that given an energy equivalence CDM 

formulation the actual strain goes to infinity as stress goes to zero. 

2) The maximum randomly distributed micromechanical estimate of peak stress with elastic 

to failure and crack band theory.  The minimum and maximum peak uniaxial stresses are 

fT = 41 and 54 MPa respectively.  A failure stress of 41 MPa is not included, because it 

under predicts crack initiation. 

3) Hexagonal packed micromechanical estimate of peak stress of fT = 71 MPa with elastic to 

failure and crack band theory. 

4) Finally, it should be reiterated that the GFRP results are derived from micromechanical 

simulations with constituent properties and the geometry is taken from direct 

measurements.  However, based on the insight gained from previous simulations, a “best 

guess” curve is given (fT = 62.5 MPa, G = 0.040 MPa-mm). 

 

Both damage/failure methods predict elastic stiffness, crack initiation point and post cracking 

tangent stiffness fairly well.  The elastic to failure method incorporating crack band theory and 

control failure better predicts the gradual crack growth over a strain range.  CDM predations 

under represent the energy dissipation resulting in an artificially small fracture toughness and 

sudden crack growth.  When using an implicit solver for strain localization, a control failure 

algorithm is necessary in order to prevent failure clouds, or large areas of failed elements without 

localization.  In future cases, all softening material models will include an orthotropic crack-flag 

technique. 

 

Similar results are obtained when implementing the plain weave geometries given in [27].  

Statistical distributions of geometries and constituent properties are easily included to obtain a 

range of meso-structural responses. 
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Figure 29.  Approximate uniformly distributed transverse strengths for unidirectional GFRP 

 

6.3. Shear loading of 8HS GFRP 
 

The yarns in the reduced 8HS GFRP RVE are assigned the orthotropic elastic to fail material.  

Given the known mode I and mode II interlaminar fracture toughnesses, the yarn toughness 

values will assume the same ratio.  Therefore, the yarn material is modeled with an upper limit 

peak stress calculated from micromechanics of 40 MPa and a toughness GII = 0.16 MPa-mm.  

The simulation is done with a RVE region with an orientation associated with the +45⁰ axis.  

This means that tensile loading of the reference region applies a 45⁰ transformed strain-rate to 

the RVE region.  Figure 30 shows the experimental net stress versus axial strain results with 

volume average tensile stress versus strain for the 45⁰ RVE simulation.   

 

The strain in the experimental data is slightly offset to better represent linear elasticity.   While, 

the elastic response matches well, the micromechanical analyses seem to under predict the shear 

strength.  Calibration is not necessary for this simulation, because better results are expected with 

an interactive failure criterion with plasticity and damage prior to failure and cohesive zone 

elements. 
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Figure 30.  Stress versus strain for the in-plane shear of GFRP 8HS 

 

6.4. Damage/Plastic Properties from Shear 
 

Figures 31 and 32 show the load controlled cyclic in-plane shear response of a plain weave RVE.  

Plastic strains and damage evolution can be obtained from this homogenized response. 

 

 

Figure 31.  Transverse damage distribution of a plain weave RVE under pure in-plane shear 

(shown without matrix) 

For continuum damage evolution of the macroscopic homogenized material [1, 2]; coefficients 

describing Hill plasticity [11], crack closure and damage evolution are easily obtained using a 

series of RVE simulations.  Similar to the methodology presented in [1], the data is reduced to 

elastic damage and plastic strain evolution shown in Figures 33 and 34 respectively.  The 
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calibrated coupled orthotropic elastic-plastic damage material model response is shown in Figure 

32.  A statistical distribution of the parameters characterizing the variability of the responses can 

also be obtained.   

 
Figure 32.  Cyclic shear response of a plain weave RVE 
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Figure 33.  Damage accumulation under shear 

 
Figure 34.  Plastic strain accumulation under shear 
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6.5. Archives and Products 
 

The following list is meant to aid a potential user in accessing material models and scripts.  

While all tools are available for use, only a select few are refined enough for general access.  For 

the material models, many exist only on a local version of the Sierra software because release of 

these models requires additional verification and documentation.  Additionally, while every 

effort is taken to produce user-friendly scripts for post and pre-processing and mesh generation, 

most require a unique skillset and user support.  The following is a list of available products and 

their recommended usage.  

 

6.5.1. Material Models 
 

Micro-macro CDM material model 

 This model was deemed too complicated and potentially inaccurate for the purposes of 

this study, thus a working version only exists as a Matlab script. 

 For simple loading conditions, a strain tensor can be input and the constituent damage 

can be determined. 

 

Orthotropic CDM Model 

 This model is fully documented in SAND2013-7257 [7] and is ready for user applications 

 

Orthotropic Failure Model 

 This material model is implemented in Sierra, but only exists on a local machine.  Under 

a separately funded research project, this model will be modified and finalized for 

production in FY2014. 

 

Transversely Isotropic CDM Model 

 This material model is implemented in Sierra, but only exists on a local machine 

 If a user is interested in this model, an independent executable can be provided. 

 
6.5.2. Meshing 

 
The following scripts are available: 

 

 Plane Weave Mesh Generator 

 Satin Weave Volume Generator 

 General Voxel Generator 

 Hexagonal Microstructure Mesh Generator 

 General Random Microstructure Mesh Generator 

 Periodic Random Microstructure Mesh Generator 

 Yarn Orient Scripts 
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6.5.3. Simulation and Post-Processing 

 
Dakota Drive Scripts: for generating and running sample distributions  

 

Input Decks: many different input decks were generated for this study.  For much of the analyses 

presented in this document, the inputs are sorted, but often the mesh and output files were 

purged.  
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7.  CONCLUSIONS AND FUTURE WORK 
 

A brief summary of the conclusions is provided below. 

 

1) Whether implemented for general use or coded to provide a framework for future 

developments, the material models implemented for this project cover a range 

of composites damage, plasticity and failure techniques.  The generalization of 

these models is intended to facilitate future use and development.  The 

materials, specifically the orthotropic CDM and elastic fail models, have proven 

accurate for the intended use outlined in this report. 

2) Geometry and mesh generation for plain and harness weave fabric composite RVEs 

are sufficiently arbitrary for broad use.  While, for this project, RVEs are used 

only with an iso-phase embedded assumption, the generalized form of these 

scripts should provide usability in an arbitrary layup for large-scale simulations. 

3) The micro and mesomechanical approach to elastic property estimation produces 

excellent results and can be implemented for material selection and design 

scoping exercises.  Furthermore, with proper calibration and model 

enhancement, these models supplement experimental data and can be used in 

the design process. 

4) Damage and failure assessment using micro and mesomechanical simulations 

provides insight into processes and adequate properties for preliminary design 

assessment.  However, a fully validated multi-scale modeling approach is an 

active research field with substantial gaps in understanding.  Further research is 

necessary for implementation as predictive tool. 
 

Numerous future works can be gleaned from this study.  In this author’s opinion, the most 

pertinent and attainable are list below:  

 

1) A more generalized RVE approach is needed within Sierra framework.  This tool 

should leave the definition of periodic surfaces completely user defined.  

Surface combinations, active surfaces and tolerances should be user inputs.  

Finally, all modeling techniques, such as element death, should be available in 

the RVE region. 

2) A proper understanding of the micromechanisms of failure is crucial for 

macroscopic characterization.  Since micromechanical characterization is 

available for arbitrary stress/strain states, this technique can be used to 

determine the complex failure surface.  For example: the combined shear and 

compressive failure is known to have a strong coupling effect.  Iterating through 

various combinations can produce the damage surface. 

3) A link from experimental scans to voxel generation and meshing is a valuable 

endeavor.  Potentially, this means that a scan of the meso/micro-structure can 

indirectly, through modeling, yield elastic parameters.  This technique is 

demonstrated in this project using a 8HS geometry. 

4) Sierra’s RVE capabilities allows for a user defined coordinate system in the 

reference mesh.  The region internally transforms the strain rate tensor into local 

coordinates before applying them to the RVE model.  Proposed is a laminate 
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like multi-layer mesh that uses a series of blocks each defined with an 

orientation and RVE model.  The result is laminate like behavior in the 

reference model, with the individual constitutive response of the layers obtained 

from the transformed volume average response of the RVEs. 
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APPENDIX A:  FOUR VOLUME EDGE GENERATION 
 

 
1. Inner fill coss-section/warp path 

 

 
3. Outer warp path 

 

 
5. Mid inner warp path 

 

 

 
2. Outer fill cross section 

 

 
4. Mid outer warp path 

 

 
6. Inner warp coss-section/fill path 
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7. Outer warp cross section 

 

 
9. Mid outer fill path 

 

 
11. Warp edge path/fill cross-section 

 

 
13. Mid warp edge path 

 

 

 
8. Outer fill path 

 

 
10. Mid inner fill path 

 

 
12. Fill cross-section/warp edge path 

 

 
14. Fill edge path/warp cross-section 
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15. Warp cross-section/fill edge path 

 

 
17. Outer fill cross-section 

 

 
19. Outer warp cross-section 

 

 

 

 

 

 
16. Mid fill edge path 

 

 
18. Outer fill cross-section 

 

 
20. Outer warp cross-section 
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