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Abstract 

The “location” of the radar is the reference location to which the radar measures range.  
This is typically the antenna’s “phase center.”  However, the antenna’s phase center is not 
generally obvious, and may not correspond to any seemingly obvious physical location, 
such as the focal point of a dish reflector.  This report calculates the phase center of an 
offset-fed dish reflector antenna. 
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Foreword 
This report details the results of an academic study.  It does not presently exemplify any 
modes, methodologies, or techniques employed by any operational system known to the 
author. 

 

 

 

 

 

 

 

 

Classification 

The specific mathematics and algorithms presented herein do not bear any release 
restrictions or distribution limitations. 

This distribution limitations of this report are in accordance with the classification 
guidance detailed in the memorandum “Classification Guidance Recommendations for 
Sandia Radar Testbed Research and Development”, DRAFT memorandum from Brett 
Remund (Deputy Director, RF Remote Sensing Systems, Electronic Systems Center) to 
Randy Bell (US Department of Energy, NA-22), February 23, 2004.  Sandia has adopted 
this guidance where otherwise none has been given. 

This report formalizes preexisting informal notes and other documentation on the subject 
matter herein. 
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1 Introduction 
The most fundamental task of a radar is to measure range from itself to a target of 
interest.  It does so by measuring the echo delay time against its internal time base, and 
making assumptions about the velocity of propagation. 

Nevertheless, for accurate and precise range measurements, a reasonable question (albeit 
often overlooked question) is “Just exactly from where is the range measurement being 
made?”  In other words “Just where is the reference location on the radar to which range 
is measured?” 

The knee-jerk response to this question is typically “The reference location is the 
‘antenna phase center’ of the radar’s antenna.”  This naturally leads to the follow-up 
question “So exactly where is the ‘antenna phase center’ of the radar’s antenna?”  the 
response to which is often a blank stare. 

We desire knowledge of the location of the antenna phase center for the following 
reasons. 

1. This is, or should be, the reference location of the radar for range measurements. 

2. This is, or should be, the location to which system delays need to be calibrated 
and compensated. 

3. This is, or should be, the location for which we desire motion information from 
the radar’s motion measurement subsystem, including position, velocity, and 
angular orientation. 

Unfortunately, for all too many radar systems, none of these locations actually coincide. 

The IEEE1 defines the antenna phase center as  

“The location of a point associated with an antenna such that, if it is taken as the 
center of a sphere whose radius extends into the far-field, the phase of a given 
field component over the surface of the radiation sphere is essentially constant, at 
least over that portion of the surface where the radiation is significant.” 

Essentially, the “phase center” for an antenna is the apparent point source of a constant-
phase wavefront emanating from the antenna.  This is a common viewpoint in the 
literature.2   

The problem is that for most practical radar antennas, there is some difficulty with 
locating, or even defining such a ‘point.’  This location may 

1. be frequency-dependent, 

2. be polarization-dependent, 
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3. be different for different parts of the antenna, 

4. depend on the environment of the antenna (e.g. radome characteristics), or 

5. be quite different from other antenna characteristics (e.g. focal point, gimbal axis, 
etc.). 

Finding such a reference location can be a decidedly non-trivial task.  For example, 
Fridén and Kristensson3 seek to calculate the radiation center of an antenna, using the 
Spherical Wave Expansion (SWE) of the far field, based on angular momentum. 

We will seek in this report a somewhat simpler approach, even if less rigorous, but 
nevertheless adequate for our purposes.  We will answer a slightly different question, 
namely “What is the location about which we may rotate the radar antenna to minimize 
the variation in average echo delay time?”  If necessary, we will confine ourselves to 
rotation angles that are on the order of a beamwidth for antennas that have dimensions 
large with respect to wavelength.  Furthermore, we will also attempt to answer “For what 
additional system delays do we need to account?” 

We confine our analysis herein to the parabolic dish reflector antenna.  Such antennas, 
although seemingly ancient by comparison to modern sexy phased-array antennas, 
nevertheless still offer some performance attributes (e.g. efficiency, bandwidth, etc.) that 
are hard to beat. 
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2 Dish Reflector – Simple One-Dimensional Analysis 
Consider a simple parabolic dish reflector.  We will consider a one-dimensional analysis. 

Let the feed for the reflector be located at some point 

( ),f fx z  = antenna feed location. (1) 

We now define the location of the reflector with the curve 

( )21
4f fz z f x x

f
− = − + − , (2) 

where 

f  = the focal length of the reflector,  (3) 

and the reflector is constrained to the interval 

1 2x x x≤ ≤ , (4) 

where 

1x  = left edge of the reflector, and 

2x  = right edge of the reflector. (5) 

The boresight of the beam is in the direction of the positive z-axis.  We now also define a 
reference position in the vicinity of the antenna with an offset from the feed as 

( ),r rx z  = offset position from the feed for the antenna reference location. (6) 

We furthermore define some constant target range much larger than the antenna 
dimension as 

cr  = target range from the reference position. (7) 

This lets us sweep a circular arc of target positions where the coordinates of the target 
location are 

( ) ( ) sinc f r cx x x rθ θ= + + , and 

( ) ( ) cosc f r cz z z rθ θ= + + , (8) 
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Figure 1.  Geometry definitions for parabolic dish reflector. 

where 

θ  = the direction of a particular target position. (9) 

In general, we will be interested in a fairly small arc of angles.  These parameters are 
illustrated in Figure 1.   

The range from the target position to the feed, by way of reflection at the parabolic dish 
reflector, is calculated as 

( ) ( ) ( ) ( )( ) ( )( )2 2 2 2, ,t f f c cr x z x x z z x x z zθ θ θ= − + − + − + − . (10) 

What we desire is that this range is constant over all relevant angles θ .  More explicitly, 
we define a range error as 
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( ) ( ), , , ,t cr x z r x z r rε θ θ ∆= − − , (11) 

where 

r∆  = a range calibration constant. (12) 

Consequently, we desire that the range error is zero for an appropriate r∆ , over all angles 
θ .  We will settle for minimized in some fashion. 

We can combine these equations and expand the range error to 

( ) ( ) ( ) ( )( ) ( )( )2 2 2 2, , f f c c cr x z x x z z x x z z r rε θ θ θ ∆= − + − + − + − − − . (13) 

We note that for a parabola, we may equate 

( ) ( )2 2
2f f fx x z z f z z− + − = − − . (14) 

Consequently, we may expand the range error further to 

( )
( )( ) ( )( )2 2

2
, ,

f
c

c c

f z z
r x z r r

x x z z
ε θ

θ θ
∆

 − −
 = − − 
 + − + − 

, (15) 

and further yet to 

( )

( )

( )( )
( )

( )

2

2

22

12
4

sin
, ,

1
4

cos

f

f r c
c

f f

f r c

f f x x
f

x x x r
r x z r r

z f x x
f

z z r

ε
θ

θ

θ

∆

 
− − + − 

 
 
 − + −
 = − −
 

 + − + −  +  
 − + −   

, (16) 

and, given the geometry of typical reflector antenna, further yet to 
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( )

( )

( ) ( )

2

22
2

1
4

, , 1
4sin

cos

f

c
f

f r c

r c

f x x
f

r x z r r
f x x

fx x x r
z r

ε θ

θ
θ

∆

 + − 
 
 = − −  − + −  + − − − +     − −  

. (17) 

We can simplify our model by assuming that the focal point is at (0,0).  After all, we are 
looking for relative coordinates ( ),r rx z , as well as calibration parameter r∆ .  This 
allows us to write 

( )
( )

2

2
2

2

1
4

, , 1
4sin

cos
r c c

r c

f x r
f

r x z
f x

fx x r r
z r

ε θ

θ
θ

∆
 + − 
 
 =   − +  + − − + −    − −  

. (18) 

In general, at nonzero angles θ  , this error will vary with the ‘reflecting’ position on the 
dish reflector, that is, with parameter x . Consequently, no constant reference position 
( ),r rx z  or calibration parameter r∆ can be found to satisfy our desire for zero range error 
over all θ .  This is an artifact of the focal point moving as off-boresight angle changes.  
This is also what causes nulls and sidelobes in the antenna far-field pattern, i.e. 
summation of phases that add or cancel as off-boresight angle changes. 

Instead, we will calculate the mean error from all positions along the reflector, and 
minimize the error in the mean.  We define the mean range error as 

( ) ( ) ( )
2

1
2 1

1 , ,
x

x
r r x z dx

x xε εθ θ=
− ∫ . (19) 

We then will take the limit as we push range to infinity, namely 

( ) ( ), lim
cr

r rε εθ θ∞
→∞

= . (20) 

Before we proceed, however, we first examine the second line of Eq. (18), specifically 
the remaining square-root term.  If we expand this into a polynomial series in x, about 

0x = , we observe that the nth derivative of the square-root term which make up the 
coefficients of nx  where 3n ≥  have larger powers of cr  in the denominator than in the 
numerator, such that as cr →∞  , in the limit these terms go to zero.  Consequently, we 
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may reasonably expand the series into only a second-order polynomial and ignore higher 
order terms in finding mean range error.  This is equivalent to assuming planar 
wavefronts from target echoes. 

This yields the expression for range error as 

( )

( )
( )

( )

2 2 2
1 1 2 2

2 2 2
1 1 2 2

1 2

,

12 12

12 12 cos

6 2 sin

12

r

r

f fr x x x x

f fz x x x x

f x x x
r

fε

θ

θ
θ

∆

∞

 − + + + 
 
+ + − − − 
 
− + −  
 = . (21) 

Recall that we want this to be zero for all angles.  We can achieve this by setting 

1 2
2r

x xx +
= ,  

2 2 2
1 1 2 2 12

12r
x x x x fz

f
+ + −

= , and 

2 2 2
1 1 2 2 12 2

12 r
x x x x fr z f

f∆
+ + +

= = + . (22) 

We make several observations. 

• We have made the tacit assumption that the reflector is illuminated uniformly 
with position x.  More accurately, we have disregarded any effects of non-uniform 
illumination of the reflector or other feed-based illumination effects. 

• These parameters all depend on the focal length of the reflector, and the locations 
of the edges of the reflector.  Consequently, even if the focal length remains 
constant, merely changing the size of the reflector can change the location of the 
optimum antenna reference position. 

• The optimum antenna reference position is 
1)  not at the feed position, 
2)  not necessarily on the feed axis (horizontal or vertical), and 
3)  not necessarily even on the dish surface.  
It is located in ‘space’ near the antenna. 

• There is an added system delay that must be accounted for to make a proper range 
measurement. 
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Example 1. 

Consider an offset-fed parabolic dish reflector with the following parameters 

f  = 0.3048 m, 

1x  = 0.0635 m, and 

2x  = 0.3810 m. (23) 

where the feed point is at the origin.  We shall also assume a 0.036 m wavelength, 
indicating that the antenna dimensions are large with respect to wavelength.  From these 
parameters we calculate 

rx  = 0.2223 m,  

rz  = −0.2574 m, and 
r∆  = 0.3522 m. (24) 

This is illustrated in Figure 2. 
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Figure 2.  Results of Example 1.  The reference phase center is at the ‘+’ location. 
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3 Dish Reflector – Simple Two-Dimensional Analysis 
Advancing from the analysis of the previous section, we now consider a two-dimensional 
parabolic dish reflector fed from a point source.  Consequently, the dish would be a 
section of a circular paraboloid described by 

( ) ( )2 21 1
4 4f f fz z f x x y y

f f
− = − + − + − , (25) 

where, as before 

( ), ,f f fx y z  = antenna feed location, and 

f  = the focal length of the reflector,  (26) 

but now the reflector is constrained to the two-dimensional rectangular aperture with 

1 2x x x≤ ≤ , and 

1 2y y y≤ ≤ , (27) 

where 

1x  = left edge of the reflector, 

2x  = right edge of the reflector, 

1y  = bottom edge of the reflector, 

2y  = top edge of the reflector. (28) 

The boresight of the beam is in the direction of the positive z-axis.  Now we define a 
reference position in the vicinity of the antenna with an offset from the feed in three 
dimensions as 

( ), ,r r rx y z  = offset position from the feed for the antenna reference location. (29) 

As before, we define a constant target range much larger than the antenna dimension as 

cr  = target range from the reference position. (30) 

This lets us sweep a spherical shell of target positions where the coordinates of the target 
location are 
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( ) ( ), sin cosc f r cx x x rθ φ θ φ= + + , 

( ) ( ), sinc f r cy y y rθ φ φ= + + , and 

( ) ( ), cos cosc f r cz z z rθ φ θ φ= + + , (31) 

where 

θ  = the azimuth direction of a particular target position, and 
φ  = the elevation direction of a particular target position. (32) 

As before, in general, we will generally be interested in a fairly small arc of angles.     

The range from the target position to the feed, by way of reflection at the parabolic dish 
reflector, is calculated as 

( )
( ) ( ) ( )

( )( ) ( )( ) ( )( )

2 2 2

2 2 2
, y, , ,

, , ,

f f f
t

c c c

x x y y z z
r x z

x x y y z z
θ φ

θ φ θ φ θ φ

 
− + − + − 

=  
  + − + − + − 

. (33) 

More explicitly, we define a range error as 

( ) ( ), y, , , , y, , ,t cr x z r x z r rε θ φ θ φ ∆= − − , (34) 

where, as before 

r∆  = a range calibration constant. (35) 

Consequently, we desire that the range error is zero for an appropriate r∆ , over all angles 
θ  and φ  .  We will again settle for minimized in some fashion. 

As before, we may place the origin at the feed, and then the error can be expanded and 
simplified to 

( ) ( ) ( )

2 2

2 2

2
2 2

1 1
4 4

sin cos sin, , , ,

1 1 cos cos
4 4

c

r c r c

r c

f x y r r
f f

x x r y y rr x y z

f x y z r
f f

ε θ φ φθ φ

θ φ

∆
 + + − − 
 
 

− − + − −=  
 +   + − + + − −    

. (36) 



- 17 - 

 

In general, at nonzero angles θ  or φ , this error will vary with the position on the dish 
reflector, that is, with parameters x  and y . Consequently, as with the one-dimensional 
case, no constant reference position ( ), ,r r rx y z  or calibration parameter r∆ can be found 
to satisfy our desire for zero range error over all angles θ  and φ .  This is again an artifact 
of the focal point moving as off-boresight angle changes in any direction.   

Instead, as before, we will calculate the mean error from all positions along the reflector, 
in both dimensions, and minimize the error in the mean.  We now define the mean error 
for this particular rectangular aperture as 

( ) ( )( ) ( )
2 2

1 1
2 1 2 1

1, , y, , ,
y x

y x
r r x z dxdy

x x y yε εθ φ θ φ=
− − ∫ ∫ . (37) 

More generally, for other aperture shapes, the integral may be written as 

( ) ( )1, , y, , ,
A

r r x z dA
Aε εθ φ θ φ= ∫∫ , (38) 

where 

A  = the area of the aperture projected in the xy plane. (39) 

We then will take the limit as we push range to infinity, namely 

( ) ( ), , lim ,
cr

r rε εθ φ θ φ∞
→∞

= . (40) 

Before we proceed, however, we first examine the second line of Eq. (36), specifically 
the remaining square-root term.  If we expand this into a polynomial series in x, about 

0x = , we observe that the nth derivative of the square-root term which make up the 
coefficients of nx  where 3n ≥  have larger powers of cr  in the denominator than in the 
numerator, such that as cr →∞  , in the limit these terms go to zero.  The same is true if 
we expand this into a polynomial series in y, about 0y = , where we also observe that the 

nth derivative of the square-root term which make up the coefficients of ny  where 3n ≥  
have larger powers of cr  in the denominator than in the numerator, such that as cr →∞  , 
in the limit these terms go to zero.  Consequently, we may reasonably expand the series 
into only a second-order polynomial in x and y, and ignore higher order terms in finding 
mean range error.  This is again equivalent to assuming planar wavefronts from target 
echoes. 

This yields the expression for range error as 
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( )

( )
( )

( )
( )

2 2 2 2 2
1 1 2 2 1 1 2 2

2 2 2 2 2
1 2 2 1 1 2 2

1 2

1 2
,

12 12

12 12 cos

6 2 sin cos

6 2 sin
12

r

r

r

f fr x x x x y y y y

f fz x xx x y y y y

f x x x

f y y y
r

fε

θ

θ φ

φ
θ

∆

∞

 − + + + + + + 
 
+ + − − − − − − 
 
− + − 
  − + − = . (41) 

Recall that we want this to be zero for all angles.  We can achieve this by setting 

1 2
2r

x xx +
= , 

1 2
2r

y yy +
= , 

2 2 2 2 2
1 1 2 2 1 1 2 2 12

12r
x x x x y y y y fz

f
+ + + + + −

= , and 

2 2 2 2 2
1 1 2 2 1 1 2 2 12 2

12 r
x x x x y y y y fr z f

f∆
+ + + + + +

= = + . (42) 

We elaborate on several earlier observations. 

• We have again made the tacit assumption that the reflector is illuminated 
uniformly with position x and y.  More accurately, we have disregarded any 
effects of non-uniform illumination of the reflector, or other feed-based 
illumination effects. 

• These parameters all depend on the focal length of the reflector, and the locations 
of the edges of the reflector in both dimensions.  Consequently, even if the focal 
length remains constant, merely changing the size of the reflector in either 
dimension can change the location of the optimum antenna reference position. 

• The optimum antenna reference position is 
1)  not at the feed position, 
2)  not necessarily in any cardinal direction from the feed, and 
3)  not necessarily even on the dish surface.  
It is located in ‘space’ near the antenna. 

• There is an added system delay that must be accounted for to make a proper range 
measurement. 
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Example 2. 

Consider an offset-fed parabolic dish reflector with the following parameters 

f  = 0.3048 m, 

1x  = 0.0635 m, and 

2x  = 0.3810 m. 

1y  = −0.4191 m, and 

2y  = 0.4191 m, (43) 

where the feed point is at the origin.  We shall also assume a 0.036 m wavelength, 
indicating that the antenna dimensions are large with respect to wavelength.  From these 
parameters we calculate 

rx  = 0.2223 m,  

ry  = 0 m,  

rz  = −0.2094 m, and 
r∆  = 0.4002 m. (44) 

This is illustrated in Figure 3. 
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Figure 3.  Results of Example 2.  The reference phase center is at the small red dot position. 
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“Risk comes from not knowing what you're doing.”  
-- Warren Buffett 
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4 Comments & Conclusions 
For a well-designed radar system, we desire that the following points all coincide. 

1. The reference location for the antenna as calculated in previous sections, i.e. the 
antenna phase center. 

2. The point to which system delays are calculated and compensated. 

3. The point to which the radar system calculates its motion, i.e. its navigation point. 

When we don’t achieve coincidence, we degrade system performance. 

For example, 

• If the range calibration is in error with respect to the navigation point, then the 
radar echo data will exhibit a range error. 

• If the antenna reference location doesn’t coincide with the navigation point, then 
an antenna rotation about the reference will modulate the range measurement. 

• If the range calibration is in error with respect to the antenna reference location, 
then at least one of the above, and perhaps both, errors will manifest. 

A byproduct of this is that if the radar uses a constant waveform without any motion 
compensation, and the antenna rotates about a point other than the antenna reference 
point, then simply mechanically scanning the antenna will result in an apparent range 
modulation, i.e. phase modulation of the echo signal.  Its significance depends on the 
requirements of the radar mode implemented as well as the specific offset. 

A Note About the Feed 

We have also assumed a point feed for the reflector, which might seem somewhat 
optimistic.  A practical feed has its own issues with its phase center in addition to its non-
isotropic nature.  As the feed’s own focal point moves, so too will the pattern of the 
complete antenna be affected.  We note that this can sometimes be compensated by 
adjusting the curvature of the reflector.  Such a system would necessitate a more 
complete and complex analysis. 
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“Doing what's right isn't the problem. It is knowing what's right.”  
-- Lyndon B. Johnson 
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