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Abstract

We review the edge element formulation for describing the kinematics of hyperelastic solids.
This approach is used to frame the problem of remapping the inverse deformation gradient for
Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials,
the stress state is completely determined by the deformation gradient, so remapping this quantity
effectively updates the stress state of the material. A method, inspired by the constrained transport
remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse
deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are
identified. An optimization-based approach is implemented to enforce positivity of the determinant
of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.
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Chapter 1

Introduction

The focus of this work is remapping for computational solid mechanics simulations in the Ar-
bitrary Lagrangian-Eulerian (ALE) framework. In the ALE approach, the Lagrangian step updates
the equations of motion in the frame of reference of the moving material. In the Eulerian or remap
step, material properties are mapped to coordinates on another mesh. We restrict our analysis to
ALE methods for which the remap mesh corresponds to the original mesh configuration. Robust
and accurate formulation of the remap step remains a formidable problem. One reason is that any
computational scheme for the kinematics of solid deformation will break down for sufficiently
great material deformation. Another reason is the challenge of satisfying the fundamental con-
straints of solid dynamics in the computational remap procedures. The methods described in this
report intrinsically comply with certain constraints implied by the mathematical modeling of solid
dynamics.

The mathematics that underpin the techniques used here involves the coupling of algebraic
topology with exterior calculus, applied in a discrete setting. This combination of topics has been
discussed by several researchers. Tonti, in [43] and subsequent works (see also Mattiussi [37]),
was among the first to develop a framework for categorizing the governing equations for numerous
physical phenomena in this manner, thereby laying the foundation for this approach. This hybrid
subject, aspects of which are discussed in the volume edited by Arnold et al. [4], the recent review
of Christiansen et al. [23], and, more abstractly, e.g., by Dezin [25] and Hirani [31], is succinctly
summarized by Bochev [6].

The original and most mature development of these ideas is in the field of electromagnetics.
Bossavit [11, 12, 13, 14, 15, 16, 17, 18, 19, 20] laid out the combination of differential geometry,
exterior calculus, and algebraic topology for computational electromagnetics (see also Gross and
Kotiuga [29]). The seminal work of Evans and Hawley [28] introduced the constrained transport
algorithm, a mimetic method for advection of magnetic flux density, B, on structured meshes.
This method preserves a discrete version of the ∇ ·B = 0 property. As originally presented, the
constrained transport algorithm is applicable to a staggered field representation with the magnetic
flux represented on cell faces and the electric fields on cell edges. In the finite element context,
the appropriate generalization of this representation is given by edge and face finite element bases.
Bochev and Robinson [10] and Day et al. [24] developed these concepts further. Bochev et al. [7]
applied these constrained transport ideas to the remapping of magnetic flux in the ALE framework
for unstructured meshes.
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Research has also been conducted on developing a comparable formalism for the dynamics
of elastic solids. A careful derivation of the conservation laws for these dynamics is given by
Wagner [45]; see also [44]. Arnold et al. [5, 3] describe a merging of exterior calculus with the
finite element method for elasticity, leading to the development of the so-called elastic complex.
A related and more general framework is developed by Eastwood [26, 27]. Yavari [46] and An-
goshtari & Yavari [2] propose a different approach to the discretization of elasticity, pursuing a
fundamentally geometric perspective. Bossavit [21], building upon his monumental contributions
to computational electromagnetics, considers magnetoelasticity in the edge element framework,
identifying many interesting analogies between the two subjects.

Robinson et al. [41], motivated by the work of Bochev et al. [10, 7] on computational MHD,
extended that approach to the remap problem in solid dynamics, applying constrained transport to
the Lagrangian positions. One fundamental constraint for elastodynamics is that the deformation
gradient representation remains in a curl-free space. One way to achieve this is the reference map
technique of Kamrin et al. [32], who pursue an Eulerian-frame finite-difference implementation.
Instead, Robinson et al. considered the Lagrangian coordinates to be the “potentials” of the inverse
deformation gradient fields. To achieve this, a space of curl-free edge elements is constructed, and
the deformation gradient is represented in terms of these edge elements.

The structure of this report is as follows. The basic edge element formulation is reviewed
in Chapter 2. In Chapter 3, the representation of the inverse deformation gradient in terms of
edge basis functions is derived. The application of this representation for remapping the inverse
deformation gradient is described in Chapter 4, which also contains a summary of the algorithmic
implementation of this method. Numerical examples are evaluated in Chapter 5. Chapter 6 presents
one possible approach by which to ensure no spurious maxima are introduced to the curl-free
remap result; numerical results of this optimized approach are given in Chapter 7. We summarize
this work in Chapter 8.
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Chapter 2

Element Interpolation

Consider a finite element mesh consisting of a set of convex, nondegenerate hexahedra. Fol-
lowing the notation of Bochev and Robinson [10] and Bochev et al. [10, 7], let N ,

−⇀
E ,

−⇀
F , and K

denote the sets of all nodes, oriented edges, oriented faces, and hexahedra that constitute the mesh.
The union of all hexahedra comprises the entire grid, denoted Ω ⊂ R3.

Consider first the set of edges
−⇀
E in the mesh. Associated with edge

−⇀
Ei ∈

−⇀
E is a vector-valued

interpolation function
−⇀
Wi : Ω → R3 with compact support. Assume that the edge interpolation

functions satisfy the orthogonality propertyZ
⇀
Ei

−⇀
W j · t ds = δi j , (2.1)

where t ∈ R3 is the (unit) tangent vector to the edge and s parameterizes the arc length along the
edge. Bochev et al. [7] give definitions of such edge interpolation functions, used in constructing
solutions of Maxwell’s equations. The primary use of these basis functions is to approximate the
fields within a computational element. As pointed out by Bochev and Robinson [10] and Rieben
et al. [40], across shared faces of adjacent elements quantities expressed as sums of these basis
functions have (i) continuous tangential components and (ii) discontinuous normal components.

Now consider the set N of all nodes in the mesh. Associated with the Ath node is a scalar-
valued interpolation function NA : Ω→R3 with compact support. Additionally, let f : Ω→R be a
scalar function defined by nodal values fA, A = 1, . . . ,dimN . One may extend the definition of f
to all x ∈Ω by interpolation of these node values as:

f (x) =
dimN

∑
A=1

fANA(x) . (2.2)

This scalar-valued function has a vector-valued gradient, computed as

∇ f =
dimN

∑
A=1

fA ∇NA . (2.3)

As shown by Bochev et al. [7], there exists a unique set of scalar parameters ai such that

∇ f =
dim

−⇀
E

∑
i=1

ai
−⇀
Wi . (2.4)
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To evaluate the ai, begin by denoting ∆ fi as the increment of the function f along an edge
−⇀
Ei. For

example, with edge
−⇀
Ei defined as the directed line segment connecting two nodes NA and NB, ∆ fi

is the (tangent-directed) difference of the values of f at the two nodes delimiting this edge. Each
edge has an orientation that determines the sign of this difference. Line integration along this edge
yields

∆ fi =
Z
−⇀
Ei

∇ f · t ds

=
Z
−⇀
Ei

dim
−⇀
E

∑
j=1

a j
−⇀
W j

 · t ds

=
dim

−⇀
E

∑
j=1

a j

[Z
−⇀
Ei

−⇀
W j · t ds

]

=
dim

−⇀
E

∑
j=1

a jδi j

= ai .

(2.5)

Thus the gradient of the scalar function f (x) can be written as

∇ f (x) =
dim

−⇀
E

∑
e=1

∆ fe
−⇀
We(x) . (2.6)
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Chapter 3

Kinematics

This section contains a review of basic kinematics associated with the edge-based remap ap-
proach. Denote by X the material coordinates relative to a fixed Cartesian coordinate system with
basis {EA}, such that X = XA EA. Similarly, denote by x spatial coordinates relative to a fixed
Cartesian coordinate system with basis {ei}, such that x = xi ei

1. Given a vector or tensor T, let [T]
be the matrix representation of T in the appropriate fixed Cartesian basis.

The deformation gradient

The standard kinematics between the material coordinates and the physical coordinates of the
deformed body are depicted notionally in Fig. 3.1. The deformation gradient is defined as

F :=
∂xi

∂XA
ei⊗EA , (3.1)

where ei⊗EA is the tensor product of the basis vectors ei and EA. Consistent with this nomencla-
ture, define the (covariant) spatial basis vectors

gA :=
∂x

∂XA
=

∂xi

∂XA
ei . (3.2)

Thus, the deformation gradient can be written in matrix form, with respect to the ei⊗EA basis, as

[F] =

 [g1] [g2] [g3]

 (3.3)

where [gA] is the Ath column of [F].

The inverse deformation gradient (IDG) is defined similarly as

F−1 :=
∂XA

∂xi
EA⊗ ei . (3.4)

1We often–but not always–use the convention that repeated indices imply that the quantities are to be summed,
such as in this expression. Throughout this report, whether or not this implicit summation applies should be obvious
by the context.
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X1 X2

X3
P

Q
S

dX
X

x1

x2

x3

q
p

s

dx
x

ϕϕϕ

Figure 3.1. Notional depiction of the deformation of material.
The motion ϕϕϕ maps the material coordinates X to the spatial coor-
dinates x, both Cartesian systems. Under the action of the motion
ϕϕϕ, the arc S along a material line between the points Q and P is
mapped to the arc s between the corresponding image points q and
p in physical coordinates. Correspondingly, dX, the local tangent
vector at point P, is mapped to local tangent vector dx. These local
tangent vectors are related to each other through the deformation
gradient: dx = FdX. As this relation holds locally for all material
lines through P and their images through p, the deformation gra-
dient F represents the mapping between the two tangent spaces at
X and x.

Consistent with this representation, define the (contravariant) spatial basis vectors

gA =
∂XA

∂x
=

∂XA

∂xi
ei = ∇XA . (3.5)

By definition, gA ·gB = δA
B. Consistent with (3.3), F−1 can be written in matrix form, with respect

to the EA⊗ ei basis, as

[F−1] =


[g1]T

[g2]T

[g3]T

 , (3.6)

i.e., [gA]T is the Ath row of [F−1]. By this construction

FEA = gA ⇐⇒ F = gA⊗EA

⇐⇒ F−1 = EA⊗gA

⇐⇒ F−T = gA⊗EA

⇐⇒ gA = F−T EA .

(3.7)

Consider now the edges of the mesh and denote by ∆Xe the increment in X along the eth edge.

16



Then, from (3.5) and (2.6),
gA = ∇XA

= ∇(X ·EA)

=
dim

−⇀
E

∑
e=1

(∆Xe ·EA)
−⇀
We

=

dim
−⇀
E

∑
e=1

−⇀
We⊗∆Xe

EA ,

(3.8)

where we have invoked the equality (a⊗b)c = a(b · c). Comparing this result with (3.7) clearly
implies that

F−T =
dim

−⇀
E

∑
e=1

−⇀
We⊗∆Xe . (3.9)

Taking the transpose, one obtains the following expression for the inverse deformation gradient:

F−1 =
dim

−⇀
E

∑
e=1

∆Xe⊗
−⇀
We . (3.10)

This expression can be numerically evaluated at any point x inside a mesh element, using the values
of the edge basis functions

−⇀
We and the increments in material coordinates along the edges ∆Xe.

Constraints

There are several constraints that restrict which material deformations are admissible. The
associated numerical solutions, likewise, must satisfy discrete analogues of these constraints. The
first constraint follows from the equality of second derivatives of the material coordinates relative
to the current configuration:

∂2XA

∂xi ∂x j
=

∂2XA

∂x j ∂xi
. (3.11)

Using the definition of the inverse deformation gradient in (3.4), this equality implies

F−1
A j,i = F−1

Ai, j , (3.12)

where the comma (,) denotes differentiation. The curl of a tensor T := TAi EA⊗ ei is defined [22]
to satisfy the relation

(curlT)v := curl
(

TTv
)

(3.13)

for all vectors v that are independent of x, where the curl on the RHS of the definition above is the
usual vector-curl operator. As shown in Appendix A, this definition implies

curl T :=−εi jk TLi, j ek⊗EL , (3.14)
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where εi jk is the usual permutation symbol. Using this expression, the equality of (3.12) implies
that

curl F−1 = 0 (3.15)

for twice-differentiable material coordinates.

The second constraint follows from the local continuity of the motion. Let the mapping be-
tween spatial coordinates x and the material coordinates X be denoted ϕϕϕ, so that x = ϕϕϕ(X, t).
Consistent with the above assumptions, assume that ϕϕϕ is sufficiently differentiable with respect to
X. The second constraint is summarized by Lubliner ([34], p. 466, emphasis in the original, which
uses the symbol χχχ for ϕϕϕ):

If, in a neighborhood of the material point X, the function ϕϕϕ(X, t) is invertible — in
other words, if the material points in the neighborhood are in one-to-one correspon-
dence with their displaced positions — then, by the implicit function theorem of
advanced calculus, the matrix of components of F(X, t) (the Jacobian matrix) must
be nonsingular, that is, J(X, t) 6= 0, where J(X, t) def= detF(X, t) is the Jacobian de-
terminant. If we consider only displaced configurations that can evolve continuously
from one another, then since J = 1 when the displaced and reference configurations
coincide, we obtain the stronger condition J(X, t) > 0.

We restate this constraint as:
det F > 0 . (3.16)

More specifically, 0 < det F < ∞ , i.e., under a polar decomposition F = VR, the principal stretches
(eigenvalues of V) are all positive and finite, and the rotation tensor R is proper orthogonal (i.e.,
R ∈ SO(3)).

18



Chapter 4

Curl-Preserving Remap

As discussed in Chapter 1, remapping plays a central role in the ALE framework. There are
three primary considerations that affect the fidelity of the ALE remap. The first two are related to
the constraints described above: (1) the zero-curl constraint of (3.15) and (2) the positive-derminant
constraint of (3.16). The third is associated with the inevitable loss of accuracy due to finite-
precision arithmetic for very small or very large strains; this is manifest as very small or very large
eigenvalues in the stretch tensor V. While the second and third remain active research topics, in
this section we provide details of a method that satisfies the first of these constraints.

The edge element formulation ensures the curl-free property of the remapped inverse defor-
mation gradient. The degrees of freedom on each edge are the coordinate differences ∆Xe, which
are initialized with the point-wise, signed difference of the corresponding initial Lagrangian coor-
dinates. The Lagrangian update step guarantees that these values are unchanged. For the remap,
we define a high-order representation of this field by extending the edge element description to
include gradients of the edge-based coordinate differences, in effect providing a higher-order rep-
resentation of the coordinate difference field. With this enhanced representation, an upwind nodal
flux contribution is calculated at each node. The gradient of this flux is used to update the edge-
based coordinate differences. This construction ensures that the curl of the inverse deformation
gradient remains identically zero after the remap. While this approach implies consistency of the
solution with respect to the curl-free condition, it does not guarantee the numerical accuracy of the
computed result. Various aspects of the actual implementation affect the overall accuracy of the
algorithm.

Reconstruction

In this section, we obtain an edge-element based, high-order representation for the inverse de-
formation gradient. This is achieved in two steps: the inverse deformation gradient is first mapped
to the nodes of an element, and then a high-order representation for the material coordinate differ-
ences on edges is developed.
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ξ1−1 +1

ξ2

−1

+1

1 2

34

x1

x2

Kk

Ei

E j

1

2

3

4
F

Figure 4.1. Depiction of the 2D case for the parent cell (left) that
is the pre-image of the mesh element Kk (right) under the map-
ping F between local natural and physical coordinates. The corre-
sponding nodes are identically numbered. In the case depicted, for
the edge Ei the parallel natural coordinate ξ‖ is given by ξ1, while
for edge E j the parallel natural coordinate ξ‖ is given by ξ2.

Nodal values

Equation (3.10) provides a compact expression for F−1. Assume that this representation corre-
sponds to the Lagrangian-updated values, so that this expression furnishes value of F−1 at any point
within a cell. At a given node, however, the edge element representations from the adjacent cells
need not be continuous. To extend the definition of F−1 relative to a given cell, one must first use
this information to assign values at a given node. This process is well known in the finite element
community as patch recovery, according to which nodal values are inferred from the surrounding
patch of elements. Therefore, for the case at hand, a patch recovery operator was used [49, 48, 1].

High-order edge representation

This section contains a procedure to obtain a high-order representation of ∆X at the nodes. Let
ξ‖ denote the natural coordinate (i.e., of the parent cell) that runs tangent to edge Ee. Without loss
of generality, the natural (Cartesian) coordinates of the parent element of a given cell are specified
to run from −1 to +1; see Fig. 4.1. To obtain high-order accurate estimates of F−1 at the nodes,
the definition of the edge element coefficient is extended to include linear variation with ξ‖:

∆Xe(ξ‖) := ∆Xe +Se ξ‖ . (4.1)

where ∆Xe is the value of the material coordinate difference along edge e; this value is unchanged
during the Lagrangian update step. Evaluating this relation at each node on this edge implies:

Se(−1) =−
(
∆Xe(−1)−∆Xe

)
and Se(+1) = ∆Xe(+1)−∆Xe . (4.2)
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Values for the edge-based coordinate differences at each node on this edge, i.e., ∆Xe(−1) and
∆Xe(+1) in (4.2), can be obtained as follows. Application of the chain rule shows that the edge-
based coordinate difference can be expressed as

∆Xe =
Z 1

−1

∂X
∂ξ‖

dξ‖ =
Z 1

−1

∂X
∂x

∂x
∂ξ‖

dξ‖ =
Z 1

−1
F−1 ∂x

∂ξ‖
dξ‖ . (4.3)

Approximate the integral in this expression using the value of its argument at each of the nodes:

∆Xe(±1)≈ F−1(±1)
∂x
∂ξ‖

Z 1

−1
dξ‖ = 2F−1(±1)

∂x
∂ξ‖

, (4.4)

where the argument ±1 refers to the value of ξ‖ at which F−1 is evaluated. The term ∂x/∂ξ‖ is just
the tangent vector along this edge of the mapping F from natural to physical coordinates; denote
this vector as Vξ‖ . Simplifying (4.4) leads to the following values for the coordinate differences at
the two nodes on edge e:

∆Xe(−1) = 2F−1(−1)Vξ‖ and ∆Xe(+1) = 2F−1(+1)Vξ‖ . (4.5)

Substituting these values into (4.2) gives unique values for the two possible slopes in the expres-
sion (4.1). To choose between these values, a slope limiter is used. Perhaps the simplest way to
implement such a limiter is to limit each component separately. With the minmod limiter [33], this
can be written compactly in vector form as:

Se = minmod(Se(−1),Se(+1)) , (4.6)

where the minmod function operates on each component of its vector arguments, i.e.,

minmod(V,W) :=
3

∑
A=1

minmod(V ·EA,W ·EA)EA , (4.7)

with

minmod(a,b) :=


min(a,b) if a,b > 0 ,

max(a,b) if a,b < 0 ,

0 otherwise .

(4.8)

The effect of the slope limiting on the robustness of this approach remains to be investigated. For
example, other, less diffusive limiters (as described, e.g., in [33]) could be used in place of the
minmod limiter. A novel development would be the use of intrinsically vector-based limiters; see
the recent work of Luttwak and Falcovitz [35] or Maire et al. [36] for possible approaches.

Update

In this section, an expression for the value of ∆X on the edge of remapped elements is obtained.
The generalized Stokes’ theorem for tensors [22] is written:I

∂S
T tds =

Z
S
(curlT)T ndA . (4.9)
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ΓBC

ΓAD

Ei

E ′
i

KkK j

AB

C D

Figure 4.2. Depiction of the integration path for the remap
scheme in 2D: the solid lines represent a subset of the Lagrangian-
updated (deformed) mesh and the dotted lines represent part of the
target (remap) mesh. The inverse deformation gradient is to be
remapped from the deformed mesh to the target mesh. The union
of the segments Ei, ΓBC , E ′

i , and ΓAD comprises a closed curve,
associated with nodes A , B , C , D , around which the integral in
(4.10) is to be evaluated.

Applying this relation to a sufficiently smooth inverse deformation gradient, which by (3.15) has
zero curl, this equality implies I

∂S
F−1 tds = 0 . (4.10)

That is, the integral of the F−1 about any closed path vanishes identically. The application of
this relation is the key concept behind the constrained transport algorithm for remap. The path
∂S should be specified so that (i) all quantities are well-defined along each element of the path,
(ii) there is some simplification of the integral along certain elements of the path, so that (iii) an
updated value of the integral is obtained on an element of the path of interest. This closed path ∂S
is chosen to contain the edge Ei in the updated configuration (i.e., after the Lagrangian update), as
well as the image of that edge under the remap, which we denote E ′

i . The nodes of these edges are
naturally associated through the position-offset vectors that connect them. In the terminology of
computational advection, the post-remap nodes are the upwind nodes of the edge under the action
of the remap.

Figure 4.2 gives a notional 2D depiction, with the updated mesh as the solid lines and the target
(remap) mesh as dotted lines. In this figure, the closed curve of interest, ∂S, is comprised of the
edges of the quadrilateral delimited by nodes A , B , C , and D . Write this relation as

∂S :=
−⇀
AB ∪

−⇀
BC ∪

−−⇀
CD ∪

−−⇀
DA , (4.11)

where the
−−⇀
P Q denotes segment directed from node P to node Q . Relative to the previous notation

and modulo a sign,
−⇀
AB is the edge Ei,

−−⇀
CD is the edge E ′

i , and
−⇀
BC and

−−⇀
DA are the “connecting”
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AB

C D

Ei

ΓBC

E ′
i

ΓAD

Figure 4.3. Depiction of the orientation convention used for the
closed loop of the remap scheme. The union of the edges Ei, ΓBC ,
E ′

i , and ΓAD is a closed curve, associated with nodes A , B , C , D .
The integral in (4.13) is to be evaluated along this closed path, in
the sense of the circular arrow. The edges Ei and E ′

i are consis-
tently oriented, e.g., if Ei is directed from A to B , then E ′

i is di-
rected from D to C . The two choices of orientation for these edges
are indicated with the red and blue arrows. The orientation on the
fictitious edges ΓBC and ΓAD is assigned to be in the direction from
the node of the updated edge (i.e., A or B) to the corresponding
upwind node (i.e., D or C ). The “+” and “−” signs, correlated in
color with the indicated orientations, correspond to the sign of the
addends in (4.13).

segments ΓBC and ΓAD , respectively. The orientation of the segments plays a crucial role in the
correct evaluation in this analysis.

From (4.10) and (4.11), it is seen that

0 =
I

∂S
F−1 tds =

Z
−⇀
AB

F−1 tds +
Z
−⇀
BC

F−1 tds +
Z
−−⇀
CD

F−1 tds +
Z
−−⇀
DA

F−1 tds . (4.12)

In this work, the orientation of the edges is chosen as indicated in Fig. 4.3. Depending on the choice
of orientation of the edges Ei and E ′

i , as described in the caption of that figure, the expression in
(4.12) evaluates to:

0 =
I

∂S
F−1 tds =∓∆XEi + ∆XΓBC ± ∆XE ′

i
− ∆XΓAD , (4.13)

where ∆XC :=
Z

C
F−1 tds (4.14)

along segment C.
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ΓAD

Ei
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Km Kn

AA1

A2

D

θ

Figure 4.4. Determination of the upwind element for node A
(c.f. Fig. 4.2): the inner product is positive for the directed vector
along edge ΓAD with the vectors along the two directed edges con-
nected to A in element Kk (e.g., |θ | < π/2). At least one of the
corresponding inner products is negative for the other elements as-
sociated with node A (i.e., Kl , Km, Kn). Therefore, element Kk is
the upwind element for node A .

For a given edge Ei, one determines the corresponding upwind edge E ′
i as follows. The 2D

version of this process is illustrated in Fig. 4.4. Consider node A associated with edge Ei. Sat-
isfaction of the CFL condition guarantees that the point xD is located inside one of the elements
associated with the node A . Consider an element Kk connected to node A ; the goal is to determine
if xD ∈Kk. Define the tangent vectors associated with the edges of Kk connected to node A as

V` := xA` −xA for ` = 1,2 in 2D or ` = 1,2,3 in 3D , (4.15)

where the node A` 6= A shares an edge on element Kk with node A . If, for all edges connected to
node A , it is true that (

xD −xA
)
·V` > 0 , (4.16)

then xD ∈Kk, i.e., element Kk is the upwind element of node A .

In the configuration of Fig. 4.2, the value of ∆X is known along edge Ei and is desired along
edge E ′

i (which may span more than one element). One must approximate the values along paths
ΓBC and ΓAD . By construction, each of the segments ΓBC and ΓAD is completely contained in a
single element of the deformed mesh. For example, in Fig. 4.2, ΓAD ⊂Kk and ΓBC ⊂K j. On each
of these elements, there is a codified representation of F−1, given by (3.10).

Consider the integral along segment ΓAD . Along this path, the integrand can be rewritten in
terms of the natural coordinates of the associated parent element:

Z
ΓAD

F−1 tds =
Z

ΓAD
F−1 ∂x

∂ξα

dξα , (4.17)
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where the summation convention on α applies. Perhaps the simplest approximation of the integrals
is given by a single point integration rule evaluated at the node-centered mid-point of the integra-
tion domain ΓAD . There are two obvious ways to evaluate this mid-point. The first is to identify
ξξξ

A = F −1(xA) and ξξξ
D = F −1(xD) as the natural coordinates of nodes A and D , respectively, in

element Kk, and then to associate the mid-point with the mean value of these natural coordinate
vectors:

ξ̂ξξ :=
1
2

(
ξξξ

A + ξξξ
D

)
. (4.18)

The second is to associate the mid-point with natural coordinate of the physical-space midpoint:

ξ̂ξξ := F −1
(

1
2

(xA +xD)
)

. (4.19)

However one evaluates the mid-point, the associated approximation of the integral in (4.17) is
given by Z

ΓAD
F−1 tds ≈ F−1(ξ̂ξξ)

∂x
∂ξα

(ξ̂ξξ)
Z

ΓAD
dξα = F−1(ξ̂ξξ)

∂x
∂ξα

(ξ̂ξξ)δξα , (4.20)

where δξξξ := ξξξ
D −ξξξ

A . An alternative approximation of the integral in (4.17), with the same order
of accuracy, is Z

ΓAD
F−1 tds ≈ F−1(ξ̂ξξ)

Z
ΓAD

tds = F−1(ξ̂ξξ) (xD −xA) . (4.21)

From (3.10) and (4.1), there is a representation of F−1 on this element. One evaluates that expres-
sion at ξ̂ξξ as

F−1(ξ̂ξξ) =
dim

−⇀
E

∑
e=1

∆Xe(ξ̂ξξ)⊗−⇀We(ξ̂ξξ) (4.22)

and substitutes this result into either (4.20) or (4.21) to obtain a numerical approximation of the
integral of the inverse deformation gradient along segment ΓAD . In (4.22) the sum is over all
edges; recall, however, that most edge basis functions vanish identically outside of the element in
question.

Curl-preserving remap implementation

This section outlines the sequence of steps by which one can implement the constrained-
transport edge-based remap described above. The proposed approach is mindful of improved com-
putational efficiency by reducing the effort associated with searching for nodes in the mesh. Each
of the following steps corresponds to a unique loop over the nodes or edges.

i) Project F−1: The first step is to project the tensor field F−1, given within elements, to the
nodes. For a patch recovery, this requires looping over all the nodes N in the mesh (depending
on the details of the projection, this procedure may involve a loop over elements). For each
node, a projected (i.e., interpolated) value of F−1 is computed using the values of F−1 in
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the set of elements connected to (surrounding) the node. There many different ways to do
this [49, 48, 1]; details are omitted.

ii) Reconstruct slopes: This step involves computing the slopes Se on all the edges E of the
mesh. The details of this procedure are in Chapter 4. This step requires looping over all edges
E of the mesh.

iii) Determine upwind nodes: The upwind position of each node in the mesh must now be
located. This process requires looping over the nodes N of the mesh. For a given node A ∈N ,
the upwind position of the node is calculated using the algorithm outlined in subsection 4.
Denote the upwind location of A by the (fictitious1) node D; this defines a (fictitious) edge
ΓAD. On the edge ΓAD, compute

∆XAD :=
Z

ΓAD

F−1 t ds , (4.23)

and store this value, associating it with node A . The computation of this integral is described
in subsection 4.

iv) Remap ∆Xe: The last step is to compute updated (remapped) values of ∆Xe on each edge.
This is a final loop over all edges E of the mesh. For each edge Ei equation (4.13) is solved
for the value of ∆X on E ′

i ,

∆XE ′
i

:=
Z

E ′
i

F−1 tds . (4.24)

The data needed to solve this equation have been computed and stored in the immediately
preceding step (iii).

1This node and edge are identified as “fictitious” insofar as there are no new data structures associated with them:
information computed in this step is associated with node A .
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Chapter 5

Numerical Examples of Curl-Preserving
Remap

In this section, test problems with exact solutions are evaluated with the curl-preserving remap
method. We consider only 2-D deformations; in particular, we restrict our attention to deformations
associated with velocity fields that depend solely on angle about a central, fixed location. Those
exact solutions are used to compute convergence rates for the implemented algorithm.

Convergence rates for problems with exact solutions

If we assume that the exact deformation is known using the methods of Appendix B, then the
associated convergence rate for the computed solutions can be calculated. In particular, the con-
vergence rates of the eigenvalues of the stretch tensor V and rotation tensor R in the decomposition
of the deformation gradient as F = VR can be evaluated. Convergence rates are computed using
the three standard norms typically used to quantify the error, L1, L2, and L∞, where for the quantity
ui j :=u(xi,y j) given on the set i = 1, . . . ,ni, j = 1, . . . ,n j,

||u||L1 = ∑
i, j

∣∣ui j
∣∣ Vi j , ||u||L2 =

(
∑
i, j

u2
i j Vi j

)1/2
, ||u||L∞

= max
i, j

∣∣ui j
∣∣ , (5.1)

where Vi j = meas(Ki j). These norms are evaluated for the difference between the exact and com-
puted values of a given matrix, i.e., u = Mexact

ab −Mcomp
ab , where, say, Mab is the (a,b) component

of matrix M = V, R. With these values, the convergence rate σ for the results on the the coarse (c)
and fine ( f ) grids, with the respective number of elements initially in each linear direction denoted
as nc and n f , is evaluated as

σ =
log

(
||uc||/||u f ||

)
log(n f /nc)

. (5.2)
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Exponential vortical flow

This problem contains a smoothly varying angular flow field with an exponential radial decay.
The equation for the magnitude of the azimuthal flow velocity is

vθ =
Γ

2π
r exp

(
−br2

2

)
. (5.3)

The deformation gradient associated with this angular velocity field can be calculated explicitly. As
a specific example, let Γ = 2π and b = 1, choose the two-dimensional computational domain to be
the square [−5,5]× [−5,5], and let the time interval for the simulation be [0,5]. The domain is dis-
cretized with a mesh of nel×nel initially square finite elements, where nel = {16,32,64,128,256}.
The problem was run using both pure Lagrangian (i.e., no remap) and zero-curl Eulerian (i.e., La-
grange plus zero-curl remap every timestep) methodologies. Figure 5.1 contains plots of ‖V‖, on
the five different mesh resolutions, at the final time t = 5.

Table 5.1 contains the convergence rates for the stretch tensor for both the Lagrangian and zero-
curl Eulerian methodologies. Table 5.2 documents the corresponding values for the rotation tensor.
Since the velocity field given in (5.3) is smooth, the computed convergence rate should be approx-
imately equal to the designed rate of the algorithm. Here, the underlying hydrocode, ALEGRA,
has second-order algorithms for the fundamental conservation laws, so we expect second-order
convergence under refinement of the spatial mesh.1 The deformation gradient for this problem
is also smooth, so the convergence rate in any error norm is representative of solution behavior.
The results of Tables 5.1 and 5.2 show that the remapped values (i.e., the results of the zero-curl
Eulerian calculations) of both the stretch and rotation matrices converge at almost the same rate as
their counterparts in the Lagrangian (i.e., unremapped) case.

1The timestep is related to the spatial cell size through the CFL condition, so spatial refinement implies temporal
refinement, as well.
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Figure 5.1. Color-coded plots of the magnitude of the stretch
tensor, ‖V‖, at simulation time t = 5 for the fully Lagrangian (no
remap) calculation (left column), and the Eulerian (Lagrangian
plus zero-curl remap every timestep) calculation (right column) of
the exponential vortical flow problem. The rows correspond to the
mesh resolution, from the coarsest (16× 16) on top to the finest
(256× 256) on the bottom. In the top three rows, the Lagrangian
mesh has become highly deformed, while the Eulerian mesh re-
mains unchanged; the mesh is not shown in the bottom two rows.
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Table 5.1. Convergence rates for components of the stretch ma-
trix V (in F = VR) for the exponential vortical flow problem, cal-
culated with the norms indicated in the column headings, at t = 5.
The value nel is the number of elements in each linear direction
of the mesh on [−5,5]× [−5,5]. Convergence rates are evaluated
from calculations at two mesh resolutions together with the exact
solution.

Lagrangian (no remap) Eulerian (zero-curl remap)
nel L1 L2 L∞ L1 L2 L∞

Vxx

16

32

64

128

256

〉
1.80858 1.99496 1.81303〉
1.94630 1.93120 1.95788〉
1.98764 1.98053 1.94142〉
1.99688 1.99496 1.98349

1.36353 1.80395 1.38775

1.41513 1.68420 1.50672

1.78994 1.81272 2.04941

1.96797 1.95608 1.91443

nel L1 L2 L∞ L1 L2 L∞

Vxy

16

32

64

128

256

〉
1.84398 1.76823 1.48767〉
1.94807 1.93106 1.83133〉
1.98085 1.98257 1.94669〉
1.99663 1.99562 1.99574

1.30707 1.42913 1.55579

1.29262 1.14898 0.828250

1.74493 1.62300 1.17611

2.01182 2.00453 1.83988

nel L1 L2 L∞ L1 L2 L∞

Vyy

16

32

64

128

256

〉
1.80858 1.79393 1.81303〉
1.94630 1.93120 1.95788〉
1.98764 1.98053 1.94142〉
1.99688 1.99496 1.98349

1.36353 1.80395 1.38775

1.41513 1.68420 1.50672

1.78994 1.81272 2.04941

1.96797 1.95608 1.91443
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Table 5.2. Convergence rates for components of the rotation ma-
trix R (in F = VR) for the exponential vortex problem, calculated
with the norms indicated in the column headings, at t = 5. The
value nel is the number of elements in each linear direction of the
mesh on [−5,5]× [−5,5]. Convergence rates are evaluated from
calculations at two mesh resolutions together with the exact solu-
tion.

Lagrangian (no remap) Eulerian (zero-curl remap)
nel L1 L2 L∞ L1 L2 L∞

Rxx

16

32

64

128

256

〉
1.57815 1.49295 1.30395〉
1.91540 1.90627 1.92090〉
1.97391 1.97853 1.95426〉
1.99531 1.99478 1.99108

1.12453 1.00177 0.166298

1.73576 1.63239 1.53633

1.73802 1.78743 1.81175

1.89235 1.94623 1.88152

nel L1 L2 L∞ L1 L2 L∞

Rxy

16

32

64

128

256

〉
1.58949 1.64269 1.61464〉
1.88446 1.90225 1.99281〉
1.97583 1.97699 1.93819〉
1.99346 1.99436 1.98688

1.17810 1.23048 1.15778

1.64266 1.64042 1.44367

1.89444 1.93888 1.59076

2.01573 2.11725 1.94449

nel L1 L2 L∞ L1 L2 L∞

Ryx

16

32

64

128

256

〉
1.58949 1.64269 1.61464〉
1.88446 1.90225 1.99281〉
1.97583 1.97699 1.93819〉
1.99346 1.99436 1.98688

1.17810 1.23048 1.15778

1.64266 1.64042 1.44367

1.89444 1.93888 1.59076

2.01573 2.11725 1.94449

nel L1 L2 L∞ L1 L2 L∞

Ryy

16

32

64

128

256

〉
1.57815 1.49295 1.30395〉
1.91540 1.90627 1.92090〉
1.97391 1.97853 1.95426〉
1.99531 1.99478 1.99108

1.12453 1.00177 0.166298

1.73576 1.63239 1.53633

1.73802 1.78743 1.81175

1.89235 1.94623 1.88152

31



ABC vortical flow

This problem contains a cylindrical block that rotates at constant angular velocity, surrounded
by an irrotational circular flow region with constant circulation, which, in turn, is surrounded by
a flow with negative vorticity until the flow decreases to zero velocity at finite radius. The flow
field has discontinuous velocity gradients. The equations for the magnitude of the azimuthal flow
velocity are:

vθ =



ω0 r , 0 < r < a ,

ω0 a2

r
, a < r < b ,

ω0 a2

r

(
c2− r2

c2−b2

)
, b < r < c ,

0 , c < r .

(5.4)

This problem provides a region of pure local rotation in the immediate vicinity of the origin,
followed by, in order of increasing radial distance from the origin, a region of pure local stretch,
a mixed region with both stretch and rotation, and, finally, a quiescent region. The deformation
gradient associated with this angular velocity field can be calculated explicitly.

As a specific numerial example, let ω0 = 2π, a = 0.1, b = 0.3 and c = 0.4. The two-dimensional
computational domain is the square [−0.5,0.5]× [−0.5,0.5], and the time interval for the simula-
tion is [0,0.5]. The domain is discretized with a mesh of nel× nel initially square finite elements,
where nel = {16,32,64,128,256}. The problem was run using both pure Lagrangian (i.e., no
remap) and Eulerian (i.e., Lagrange plus zero-curl remap every timestep) methodologies. Fig-
ure 5.2 shows plots of ‖V‖, on the five different mesh resolutions, at the final time of 0.5.

Table 5.3 contains the convergence rates for the stretch tensor for both the Lagrangian and
Eulerian methodologies. Table 5.4 documents the corresponding values for the rotation tensor.
Unlike the previous example, for this problem the velocity field given in (5.4) is continuous in
space at the boundaries r = a and r = b, but the spatial gradient of this field is discontinuous at these
locations. Due to this discontinuity, one should expect no better than first-order convergence under
refinement of the spatial mesh. As the deformation gradient for this problem is discontinuous, the
L1-norm convergence rates are perhaps the best indicator of solution behavior; that the L∞-norm
convergence rates are indeterminate is not unexpected. The remapped values (i.e., the results of
the Eulerian calculations) of both the stretch and rotation matrices converge at a slightly lower but
almost the same rate as their counterparts in the Lagrangian (i.e., unremapped) case, despite the
intrinsically discontinuous nature of the solution.
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Figure 5.2. Color-coded plots of the magnitude of the stretch
tensor, ‖V‖, at simulation time t = 0.5 for the fully Lagrangian
(no remap) calculation (left column), and the Eulerian (Lagrangian
plus zero-curl remap every timestep) calculation (right column) of
the ABC vortical flow problem. The rows correspond to the mesh
resolution, from the coarsest (16×16) on top to the finest (256×
256) on the bottom. In the top three rows, the Lagrangian mesh
has become highly deformed, while the Eulerian mesh remains
unchanged; the mesh is not shown in the bottom two rows.
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Table 5.3. Convergence rates for components of the stretch ma-
trix V (in F = VR) for the ABC vortical flow problem, calculated
with the norms indicated in the column headings, at t = 0.5. The
value nel is the number of elements in each linear direction of the
mesh on [−0.5,0.5]× [−0.5,0.5]. Convergence rates are evaluated
from calculations at two mesh resolutions together with the exact
solution.

Lagrangian (no remap) Eulerian (zero-curl remap)
nel L1 L2 L∞ L1 L2 L∞

Vxx

16

32

64

128

256

〉
0.973322 0.380938 −1.01659〉
1.10759 0.498407 −0.236361〉
1.34325 1.09365 0.716856〉
1.05335 0.316311 −0.202493

0.438729 −0.212137 −0.784040

0.844746 0.206677 −0.482094

0.888342 0.565860 0.162445

0.819603 0.317199 −0.245929

nel L1 L2 L∞ L1 L2 L∞

Vxy

16

32

64

128

256

〉
1.16954 1.07195 0.494820〉
1.64838 1.26113 0.072437〉
1.14178 0.541668 −0.158398〉
1.12713 0.580422 0.373718

0.686648 0.311300 −0.574327

0.796865 0.278626 −0.268366

0.843857 0.398997 −0.030864

0.846373 0.425611 −0.043437

nel L1 L2 L∞ L1 L2 L∞

Vyy

16

32

64

128

256

〉
0.973322 0.380938 −1.01659〉
1.10759 0.498407 −0.236361〉
1.34325 1.09365 0.716856〉
1.05335 0.316311 −0.202493

0.437219 −0.208572 −0.768804

0.846927 0.206005 −0.492631

0.887325 0.566184 0.169495

0.820160 0.318334 −0.247217
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Table 5.4. Convergence rates for components of the rotation ma-
trix R (in F = VR) for the ABC vortical flow problem, calculated
with the norms indicated in the column headings, at t = 0.5. The
value nel is the number of elements in each linear direction of the
mesh on [−0.5,0.5]× [−0.5,0.5]. Convergence rates are evaluated
from calculations at two mesh resolutions together with the exact
solution.

Lagrangian (no remap) Eulerian (zero-curl remap)
nel L1 L2 L∞ L1 L2 L∞

Rxx

16

32

64

128

256

〉
0.762453 0.405455 −0.132523〉
1.46352 1.07856 0.344426〉
1.61844 1.37612 0.433381〉
1.32802 0.741797 0.455116

1.88348 2.11960 1.36358

0.994624 0.541066 −0.229564

0.641104 0.177724 0.273254

0.757371 0.418651 0.129717

nel L1 L2 L∞ L1 L2 L∞

Rxy

16

32

64

128

256

〉
0.914064 0.360033 −0.0082190〉
1.10252 0.518365 −0.0083896〉
1.15691 0.707084 0.0446646〉
1.09510 0.604335 0.118121

1.37845 1.11204 0.328109

1.01082 0.613452 −0.0834461

0.729294 0.219628 0.100007

0.882198 0.562229 0.0789963

nel L1 L2 L∞ L1 L2 L∞

Ryx

16

32

64

128

256

〉
0.914064 0.360033 −0.0082190〉
1.10252 0.518365 −0.0083896〉
1.15691 0.707084 0.0446646〉
1.09510 0.604335 0.118121

1.37845 1.11204 0.328109

1.01082 0.613452 −0.0834461

0.729294 0.219628 0.100007

0.882198 0.562229 0.0789963

nel L1 L2 L∞ L1 L2 L∞

Ryy

16

32

64

128

256

〉
0.762453 0.405455 −0.132523〉
1.46352 1.07856 0.344426〉
1.61844 1.37612 0.433381〉
1.32802 0.741797 0.455116

1.88348 2.11960 1.36358

0.994624 0.541066−0.229564

0.641104 0.177724 0.273254

0.757371 0.418651 0.129717
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Chapter 6

Enforcing Extrema-Preservation on the
Remap

The results of the previous chapter demonstrate that the zero-curl constraint-preserving remap
method is convergent on the given test problems at the chosen times. Running these test problems
to later times revealed an unanticipated aspect of the computed results: comparison of the new
remap results to the exact solution and to a pure Lagrangian simulation showed that the new al-
gorithm eventually provided inaccurate results, with the computed stretches becoming unbounded.
We hypothesize that the absence of any explicit limiting in the calculation of the remapped solution
allows spurious extrema, as evinced in the determinant of the deformation gradient.

New and expected extremal stretches1 in the Lagrangian step are a manifestation of the ma-
terial deformation and lead to variations in the determinant of the IDG. For accurate ALE sim-
ulations, it is imperative that the remap step not artificially amplify the legitimate deformation,
so that the remap is an extremum-preserving operation. To achieve this goal, we have developed
an optimization-based approach that enforces the zero-curl constraint and bounds the value of the
determinant of the Jacobian in each remapped element. This chapter contains a description of that
augmented method.

Constrained optimization overview

The remap method previously described provides a solution that obeys the zero-curl condition,
but does not enforce any constraints on the determinant of the IDG. Using the remapped solution as
the initial guess, a black-box optimization approach is used that that retains the zero-curl condition
and imposes the restriction that the determinant of the IDG not decrease. These two requirements
are formulated as constraints in a numerical optimization scheme.

The general formulation of optimization techniques used is described in detail in the work of
Ridzal, Young, Aguiló, and Heinkenschloss [39, 47]. Stated abstractly, the overarching goal of this
optimization problem is to calculate a minimum of an objective function f of the state u that is

1Recall, the material stretches are the eigenvalues of the symmetric, positive definite tensor in the polar decompo-
sition of the deformation gradient.
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subject to both linear equality constraints g and nonlinear inequality constraints h:

min
u

f (u) subject to g(u) = 0 and h(u) > 0 . (6.1)

In the current application:

• the state is the array consisting of the increments of directed material coordinates on all edges
of the mesh;

• the linear equality constraint represents the vanishing curl condition calculated on the faces of
each element in the mesh; and

• the nonlinear inequality constraint limits the value of the determinant in each element of the
mesh to be greater than the minimum determinant value, over the entire mesh, associated with
the Lagrangian step but before the remap.

Notionally, the jth element of the inequality constraint array can be written:

h j(u) := det j(u)− ε > 0 with ε := min
k∈K

{detk(uL)} , (6.2)

where det j(u) is the determinant of the IDG on element j, the minimum is taken over all elements
in the mesh, and uL represents u after the Lagrangian step.

The objective function to be minimized is the square of the L2 norm of the difference between
the state u and the zero-curl remap state û (i.e., the solution obtained with the zero-curl remap of
the previous chapters):

f (u) :=
1
2 ∑

i
(ui− ûi)2 . (6.3)

The methods used require that the inequality constraints be affine; however, the determinant con-
straint does not satisfy this requirement. Therefore, the optimization problem in (6.1) is rewritten
in the following form, which introduces an artificial (“slack”) variable s:

min
u

f (u) subject to g(u) = 0 , h(u)− s = 0 and s− ε > 0 . (6.4)

Thus, the equality constraint is expanded to include the definition of the slack variable, and the
inequality constraint becomes the trivially affine relation, s > 0. We rewrite this system as:

min
z

F (z) subject to G(z) = 0 and H (z) > 0 , where (6.5a)

z := [u,s]T , F (z) := f (u) , G(z) := [g(u),h(u)− s]T , H (z) := s− ε . (6.5b)
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Constrained optimization implementation

We now consider the dimensionality of the terms in these equations. First, define the parame-
ters:

nel = the number of elements in the mesh, (6.6a)
ned = the number of edges in the mesh, (6.6b)
nfa = the number of faces in the mesh, (6.6c)

where, in two dimensions, nfa = ned. The fundamental unknown, u, represents the components of
the increment in displacement along each edge; in two dimensions, there are two such components
per edge, while in three dimensions, there are three. Thus:

dim{u}= Dned , (6.7)

where D is the dimensionality of the physical geometry. The dimensionality of the slack variable,
s, equals the dimensionality of the original inequality constraints, h; there is one such constraint
per element of the mesh, so that

dim{s}= dim{h}= nel . (6.8)

Thus, the dimensionality of the argument, z, of the extended objective function, F , is given by:

dim{z}= Dned +nel . (6.9)

The dimensionality of g equals the number of the linear constraints, which consist of the number
of elements in the curl constraint on each face times the number of faces of all mesh elements:

dim{g}= Dnfa . (6.10)

The dimensionality of the terms in the effective system of equations in (6.5a,6.5b) follows imme-
diately:

dim{F }= dim{ f}= 1 , (6.11a)
dim{G}= dim{g}+dim{h}= Dnfa +nel , (6.11b)
dim{H }= nel . (6.11c)

In terms of the dimensionality of their domains and codomains, these functions map between the
following spaces:

F : RDned+nel → R , (6.12a)

G : RDned+nel → RDnfa+nel , (6.12b)

H : RDned+nel → Rnel . (6.12c)

39



In the numerical optimization routines, expressions for these terms and their derivatives are
required. The first derivatives of the functions in the extended system (and their dimensionality)
are evaluated as:

F ′ =

Dned︷︸︸︷ nel︷︸︸︷
1
{ [

∂ f
∂u

0

] (6.13a)

G ′ =

Dned︷︸︸︷ nel︷︸︸︷
Dned

{
nel

{


∂g
∂u

0

∂h
∂u

−I

 (6.13b)

H ′ =

Dned︷︸︸︷ nel︷︸︸︷
nel

{ [
0 I

] (6.13c)

The first derivatives in these terms can be directly evaluated. For F ′, from the definition of f
in (6.3) it is seen that

∂ f
∂ui

= ui− ûi . (6.14)

For G ′, we focus on ∂g/∂u and ∂h/∂u. For the former, we recall that g(u) = 0 represents the curl
constraint, which is linear in the increments in material coordinates, ∆X, as in (4.13). Thus, the
majority of elements ∂gi/∂u j are zero, with the few non-zero elements (depending on the ordering
of the array u) having the value ±1, according to the orientation chosen (as represented in (4.13)).
Recalling that h(u) represents the determinant of the IDG on the elements, for ∂h/∂u we require
an expression for the derivative of a determinant with respect to its entries. To obtain such a
representation, we use Jacobi’s formula: for an invertible matrix A(ζ) that is differentiable in the
argument ζ, the derivative of the determinant of the matrix with respect to ζ is given by

d (detA)
dζ

= tr
(

AA dA
dζ

)
=

(
AA

)T
:

dA
dζ

, (6.15)

where A : B := Ai jBi j for 2×2 matrices, and AA is the adjugate of A (see Appendix C for a brief
review of the matrix adjugate). For the case at hand, the matrix is the IDG and the independent
variable is the increment in material coordinates along the eth edge:

d
(
detF−1)

d(∆Xe)
=

(
F−T

)A
:

d F−1

d(∆Xe)
. (6.16)
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We evaluate the second term on the RHS using (3.10):

F−1 =
dim

−⇀
E

∑
e=1

∆Xe⊗
−⇀
We ⇒ d F−1

d(∆Xe)
=
−⇀
We . (6.17)

Thus, the expression in (6.16) becomes:

d
(
detF−1)

d(∆Xe)
=

(
F−T

)A −⇀
We . (6.18)

The expressions for the adjugate of F−1 are evaluated directly; with these values, explicit expres-
sions for the matrix-vector product of (6.18) were obtained using Mathematica.

The second derivatives of these terms are not explicitly employed in the optimization routines;
however, the contraction of the Hessian with other factors is needed. For F , one requires the
contraction of the Hessian with an element from the domain, i.e., F ′′z. From (6.13a), there is only
one non-zero block in F ′′, and this term involves

∂2 f
∂u2 where

(
∂2 f
∂u2

)
i j

=
∂2 f

∂ui ∂u j
, i, j = 1, . . . ,Dned . (6.19)

From the definition of f in (6.3), it is seen that

∂2 f
∂ui ∂u j

= δi j , (6.20)

so the elements of F ′′z can be evaluated directly. For G and H , the required term is slightly more
complicated. Specifically, one requires an expression for the operator

(Φ′′ x)† y . (6.21)

where Φ represents G or H , with Φ : X →Y , where X and Y are the appropriate (finite-dimensional)
spaces. Here, the superscript † denotes the adjoint of the operator: if L : X →Y , then L† : Y →X
such that

〈L x,y〉= 〈x,L† y〉 , (6.22)

where x∈ X , y∈ Y , and 〈·, ·〉 is the inner product on the appropriate space. For the operators under
consideration, the kth term in (6.21) can be expressed, in indicial notation, as[

(Φ′′ x)† y
]

k
=

∂2Φi

∂x j ∂xk
x j yi , k = 1, . . . ,dimX , (6.23)

with sums over repeated indices. For Φ = H , the expression for H ′ in (6.13c) implies that all
higher-than-first derivatives of H vanish, so the expression in (6.21) is simply the null operator.
For G , the equality constraint g(u) = 0 is linear in its sole argument u, so the second derivative of
g with respect to u vanishes; obviously, the second derivative of g with respect to s vanishes, as
well. The second element of G , i.e., h(u)− s, only has non-zero second derivative terms arising
from h′′(u): thus, one requires an expression for the second derivative of the determinant of the
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IDG with respect to the increments in material coordinates along the edges (i.e., the elements of
u). There are general forms for the second derivative of a determinant of a matrix with respect to
its arguments [38]; however, these representations (i) involve the inverse of the matrix (which we
prefer not to evaluate explicitly) and (ii) may become unreliable as the matrix becomes singular
(which is precisely the neighborhood of interest). Therefore, we resort yet again to expressions
based on the matrix adjugate. See Appendix C for additional details.
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Chapter 7

Numerical Examples of Extrema-Preserving
Remap

In this section, the test problems considered in Chapter 5 are computed with the extremum-
preserving remap of the previous section. In this section, we run the problems out to later times, in
order to evaluate the effect of the optimization procedure on the solution.

Neither the pure Lagrangian calculations nor the zero-curl remapped calculations could run to
these later times: the former led to inverted elements, and the later failed due to negative deter-
minants. Therefore, in this section we compare the optimized zero-curl remap results with those
obtained by remapping the VR-decomposition of the IDG directly. In that approach, the indi-
vidual components of the stretch tensor V and rotation tensor R are remapped directly using a
cell-centered finite-volume approach. The rotation tensor is represented as a unit quaternion; the
quaternion is re-normalized after the remap is complete. For the stretch tensor, clipping is used;
excessively large or small remapped stretches are clipped so that 10−6 < λmin, λmax < 106. See
Robinson et al. [41] for a discussion of this method.

The optimized zero-curl remap approach proved to be computationally intensive, with calcu-
lations taking two to three orders of magnitude longer than the standard approach. The initial
computations with this method took even longer than the results cited, which were completed after
preliminary efforts to tune certain optimization parameters.

Previous experience with optimizations method suggests that careful restatement of the overall
optimization problem could lead to notable speed-up. It is unlikely, however, that the present
approach could achieve run-times that would be competitive with existing methods.

Exponential vortical flow

This problem is the same as that described in Chapter 5: smoothly varying angular flow with
an exponential radial decay. The final time has been increased to t = 20, significantly greater than
the time (t = 5) evaluated previously.

For this analysis, the domain is discretized with a mesh of nel × nel initially square finite el-
ements, where nel = {16,32,64}. Figure 7.1 contains plots of the absolute magnitude of the the
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stretch tensor, ‖V‖, on the three different mesh resolutions, at the final time t = 20. There is
significant difference between the maximum stretch magnitude computed with the two methods.
Because of this difference, these plots are displayed on different scales for the different methods;
if the plot had been over the same range, then either one or the other result would exhibit little dis-
cernible structure. The gross features of the results of the two methods differ, as well. In particular,
the apparent radius of the appreciably stretched material appears greater for the optimized remap
case, which suggests that this method may have greater effective radial diffusion.

Table 7.1 contains the convergence rates for the stretch tensor for both the QR+clipped remap
and optimized remap methodologies. Table 7.2 provides the corresponding values for the rotation
tensor. Since the all fields associated with this problem are smooth, the computed convergence
rate should be approximately equal to the designed rate of the underlying algorithm, which is
two. For the matrix elements of both the stretch and rotation matrices, the QR+clipping method
is much closer to the design convergence rate for the finest mesh. The optimized remap results
are not converging near the theoretical rate, indicating problems with this approach. While it
would be possible to ascertain if the QR+clipping method more closely approaches the theoretical
characteristics of the algorithm on finer meshes, such an investigation for the optimized, zero-curl
approach would be prohibitively expensive at this time.
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QR+clipped remap “Optimized” remap
n e

l
=

16
n e

l
=

32
n e

l
=

64

Figure 7.1. Color-coded plots of the magnitude of the stretch
tensor,‖V‖, at simulation time t = 20 for the QR+clipped remap
every timestep calculation (left column), and the optimized zero-
curl remap every timestep calculation (right column) of the ex-
ponential vortical flow problem. The rows correspond to the mesh
resolution, from the coarsest (16×16) on top to the finest (64×64)
on the bottom.
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Table 7.1. Convergence rates for components of the stretch ma-
trix V (in F = VR) for the exponential vortical flow problem, cal-
culated with the norms indicated in the column headings, at t = 20.
The value nel is the number of elements in each linear direction of
the mesh on [−5,5]× [−5,5]. Convergence rates are evaluated
from calculations at two mesh resolutions together with the exact
solution.

QR+clipped remap “Optimized” remap
nel L1 L2 L∞ L1 L2 L∞

Vxx

16

32

64

〉
1.08913 0.796569 0.458533〉
1.85106 1.62649 1.313899

0.314500 0.308998 0.216502

0.318817 0.378219 0.256597

nel L1 L2 L∞ L1 L2 L∞

Vxy

16

32

64

〉
1.45983 1.02780 0.340759〉
1.492420 1.35599 1.30612

0.439205 0.378651 0.316431

0.552993 0.427437 0.251303

nel L1 L2 L∞ L1 L2 L∞

Vyy

16

32

64

〉
1.09782 0.797821 0.429801〉
1.84142 1.61439 1.31608

0.314500 0.308998 0.216502

0.318817 0.378219 0.256597
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Table 7.2. Convergence rates for components of the rotation ma-
trix R (in F = VR) for the exponential vortical flow problem, cal-
culated with the norms indicated in the column headings, at t = 20.
The value nel is the number of elements in each linear direction of
the mesh on [−5,5]× [−5,5]. Convergence rates are evaluated
from calculations at two mesh resolutions together with the exact
solution.

QR+clipped remap “Optimized” remap
nel L1 L2 L∞ L1 L2 L∞

Rxx

16

32

64

〉
0.276700 −0.296226 −1.17314〉
1.90630 1.71410 1.43162

−0.208696 −0.240090 0.0341907

0.324884 0.294501 −0.154859

nel L1 L2 L∞ L1 L2 L∞

Rxy

16

32

64

〉
1.27824 0.754522 0.871904〉
1.87959 1.69104 0.151615

0.119933 0.119933 −0.0306952

0.433539 0.261929 −0.0334930

nel L1 L2 L∞ L1 L2 L∞

Ryx

16

32

64

〉
1.27824 0.754522 0.871904〉
1.87959 1.69104 0.151615

0.119933 0.119933 −0.0306952

0.433539 0.261929 −0.0334930

nel L1 L2 L∞ L1 L2 L∞

Ryy

16

32

64

〉
0.276700 −0.296226 −1.17314〉
1.90630 1.71410 1.43162

−0.208696 −0.240090 −0.0341907

0.324884 0.294501 −0.154859
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ABC vortical flow

This problem is the same as that described in Chapter 5 and consists of four separate cylindrical
regions, with continuous velocity and discontinuous velocity gradients at the interfaces between
the regions. The final time has been increased to t = 2, significantly greater than the time (t = 0.5)
evaluated previously.

Figure 7.2 contains plots of the absolute magnitude of the the stretch tensor, ‖V‖, on the three
different mesh resolutions, at the final time t = 2. As for the previous test problem, there is signifi-
cant difference between the maximum stretch magnitude for the different methods. Again, because
of these differences, these plots for the different methods are displayed on different scales. The
detailed structure between the two methods again differs. The radius of material with maximum
stretch is greater for the optimized remap case once again; moreover, the area of increased stretch
(which is of lower absolute magnitude) appears more broadly distributed. These results suggest
again that the optimized remap method has greater effective radial diffusion.

Table 7.3 contains the convergence rates for the stretch tensor elements for both the QR+clipped
remap and “optimized” zero-curl remap methodologies. Table 7.4 documents the corresponding
values for the rotation tensor. Given the discontinuities in this problem, one should anticipate
first-order convergence in the L1 norm for a properly implemented (and convergent) algorithm.
The QR+clipping method is reasonably close to the design convergence rate for the finest mesh
for both the stretch and rotation matrices. Consistent with results on the previous problem, the
optimized remap results are not converging at near the theoretical rate.
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QR+clipped remap “Optimized” remap
n e
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=
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l
=

32
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l
=

64

Figure 7.2. Color-coded plots of the magnitude of the stretch
tensor, ‖V‖, at simulation time t = 2 for the QR+clipped remap
every timestep calculation (left column), and the optimized zero-
curl remap every timestep calculation (right column) of the ABC
vortical flow problem. The rows correspond to the mesh resolu-
tion, from the coarsest (16× 16) on top to the finest (64× 64) on
the bottom.
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Table 7.3. Convergence rates for components of the stretch ma-
trix V (in F = VR) for the ABC vortex problem, calculated with
the norms indicated in the column headings, at t = 2. The value
nel is the number of elements in each linear direction of the mesh
on [−0.5,0.5]× [−0.5,0.5]. Convergence rates are evaluated from
calculations at two mesh resolutions together with the exact solu-
tion.

QR+clipped remap “Optimized” remap
nel L1 L2 L∞ L1 L2 L∞

Vxx

16

32

64

〉
0.592650 0.187786 −0.261072〉
0.828541 0.295102 −0.323836

0.0790837 −0.343008 −1.14195

0.0949081 0.111745 −0.229274

nel L1 L2 L∞ L1 L2 L∞

Vxy

16

32

64

〉
0.699602 0.250081 −0.537244〉
0.722544 0.296614 −0.203017

0.288347 0.0279148 −0.512174

0.274777 0.129916 −0.0653125

nel L1 L2 L∞ L1 L2 L∞

Vyy

16

32

64

〉
0.595586 0.197359 −0.253367〉
0.826687 0.290225 −0.326258

0.0790837 −0.343008 −1.14195

0.0949081 0.111745 −0.229274
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Table 7.4. Convergence rates for components of the rotation ma-
trix R (in F = VR) for the ABC vortical flow problem, calculated
with the norms indicated in the column headings, at t = 2. The
value nel is the number of elements in each linear direction of the
mesh on [−0.5,0.5]× [−0.5,0.5]. Convergence rates are evaluated
from calculations at two mesh resolutions together with the exact
solution.

QR+clipped remap “Optimized” remap
nel L1 L2 L∞ L1 L2 L∞

Rxx

16

32

64

〉
0.130699 −0.331789 −0.359335〉
1.36229 0.945824 −0.0196008

0.509182 0.857022 0.575082

−0.0452588 −0.406977 −0.640735

nel L1 L2 L∞ L1 L2 L∞

Rxy

16

32

64

〉
0.840856 0.454478 −0.166108〉
0.681295 0.172749 −0.0314592

0.404932 0.0787619 −0.762331

0.319195 0.264502 0.351374

nel L1 L2 L∞ L1 L2 L∞

Ryx

16

32

64

〉
0.840856 0.454478 −0.166108〉
0.681295 0.172749 −0.0314592

0.404932 0.0787619 −0.762331

0.319195 0.264502 0.351374

nel L1 L2 L∞ L1 L2 L∞

Ryy

16

32

64

〉
1.36229 −0.331789 −0.359335〉
0.130699 0.945824 −0.0196008

0.509182 0.857022 0.575082

−0.0452588 −0.406977 −0.640735
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Chapter 8

Summary

This work presents a constraint-preserving approach to the problem of remapping solutions
for computational solid mechanics simulations in the Arbitrary Lagrangian-Eulerian (ALE) frame-
work using the edge element formulation. We restrict consideration to ALE methods on hexa-
hedral meshes for which the remap mesh corresponds to the original mesh configuration. Two
conditions—(1) zero-curl of the inverse deformation gradient and (2) positivity of the determi-
nant of the deformation gradient—constrain allowable deformations. We describe a constraint-
preserving remap method that is inspired by the constrained transport approach for numerical
MHD. This approach intrinsically satisfies the zero-curl constraint on the inverse deformation gra-
dient. Computed results on two kinematics-only test problems indicate that this basic method
is convergent for small-but-finite deformations. Running these problems to later simulation times,
however, reveals a shortcoming of this approach, namely, that non-physical extrema in the material
stretches can be introduced.

In an attempt to ameliorate this issue, we formulated an associated constrained optimization
problem that maintains the zero-curl property of the solution while providing solutions that do not
introduce new extrema in the product of the stretches. Computed results, using a black-box opti-
mization routine to simultaneously enforce the zero-curl and positive-determinant constraints, are
both of different magnitude and more diffusive than the results calculated with a non-constraint
preserving, element-by-element remap with clipped extremal stretches. In addition to this discrep-
ancy, an additional drawback of the current optimization approach is that it is computationally
intensive, being two to three orders of magnitude slower than the standard, element-by-element
remap approach. Previous experience with optimization methods (see, e.g., [8, 9]), shows that
careful restatement of the optimization problem can lead to appreciable speed-up. It is unclear,
however, whether the present approach could achieve run-times competitive with existing meth-
ods. It is possible that further refinements of the underlying curl-preserving remap algorithm might
increase accuracy slightly, e.g., by using more sophisticated quadrature schemes or higher-order
elements.

Although the approaches discussed in this report appear, in theory, to be superior to the ad
hoc methods in common use, it remains to be seen if this theoretical promise can be realized in
practice.
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Appendix A

Curl of a Tensor

Let T be a tensor and v be a vector. From the definition in (3.13),

(curlT)v := curl
(

TT v
)

(A.1)

for all constant vectors v. The ith component of the LHS of (A.1) is evaluated as

((curlT)v)i = (curlT)il vl . (A.2)

Also, by definition,
(Tv)i = Til vl , (A.3)

so that (
TT v

)
i
= Tli vl , (A.4)

which is the ith component of the RHS of (A.1).

The curl operator is defined on the vector w such that the ith component of curlw is given by

(curlw)i := εi jk wk, j . (A.5)

Therefore, the ith component of the curl of the vector TT v (see (A.4)) can be written as:(
curl

(
TT v

))
i
= εi jk

(
TT v

)
k, j

= εi jk (Tlk vl), j

= εi jk Tlk, j vl

(A.6)

where we assume that v is independent of x. From the definition in (A.1), this expression equals
the ith component of (curlT)v, which is given in (A.2). Since the equality in (A.1) is true for all
a, it follows that

(curlT)il = εi jk Tlk, j . (A.7)

Renaming the dummy indices in this expression,

(curlT)kl = εk ji Tli, j . (A.8)

Using properties of the permutation symbol,

(curlT)kl =−εi jk Tli, j , (A.9)

which is the result of (3.14).
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Appendix B

Angular Flow Exact Solutions

In this appendix, expressions are derived for the tangent vectors and deformation gradient for
rotational flow. Let (r,θ) denote the plane polar coordinates in the spatial (deformed) frame, and
let (R,Θ) represent the plane polar coordinates in the material (undeformed) frame.

We consider deformations related to velocity fields in which the flow depends only on angle.
Thus, the mapping between the material and spatial frames is given by:

r = R ,

θ = f (R)+Θ .
(B.1)

The material position X is given in terms of the material-frame polar coordinates (R,Θ) as:

X := (RcosΘ)E1 +(RsinΘ)E2 , (B.2)

where E1 and E2 are the Cartesian unit vectors in the material frame. The material covariant
basis vectors are defined as the local derivatives of the material positions with respect to the polar
coordinates:

G1 :=
∂X
∂R

= (cosΘ)E1 +(sinΘ)E2 ,

G2 :=
∂X
∂Θ

= (−RsinΘ)E1 +(RcosΘ)E2 .

(B.3)

Requiring that the contravariant basis vectors be dual to the covariant basis vectors, i.e., Gi ·G j =
δ

j
i , it is seen by inspection that the contravariant basis vectors are

G1 = (cosΘ)E1 +(sinΘ)E2 ,

G2 =
(
− 1

R
sinΘ

)
E1 +

(
1
R

cosΘ

)
E2 .

(B.4)

Similarly, in the spatial frame, the position vector is, in terms of plane polar coordinates,

x = (r cosθ)e1 +(r sinθ)e2 , (B.5)

where e1 and e2 are the Cartesian unit vectors in the spatial frame. The relation between the plane
Cartesian and plane polar unit vectors in the spatial frame is given by:

er := (cosθ)e1 +(sinθ)e2 ,

eθ := (−sinθ)e1 +(cosθ)e2 .
(B.6)
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The spatial covariant basis vectors are defined as:

g1 :=
∂x
∂R

= (cosθ− r sinθ f ′(R))e1 +(sinθ+ r cosθ f ′(R))e2 ,

g2 :=
∂x
∂Θ

= (−r sinθ)e1 +(r cosθ)e2 .

(B.7)

In terms of the polar unit vectors of (B.6), the spatial covariant basis vectors can be expressed as:

g1 = er +R f ′(R)eθ ,

g2 = Reθ .
(B.8)

To obtain convenient expressions for material contravariant basis vectors, introduce the follow-
ing notation. Let the angular difference, ∆θ, be the difference between the spatial polar coordinate
angle θ and the material polar coordinate angle, Θ. From (B.1), this term can be written as:

∆θ := θ−Θ = f (R) . (B.9)

From trigonometric formulas for the difference of two angles,

cosΘ = cos(θ−∆θ) = (cosθ)(cos∆θ)+(sinθ)(sin∆θ) ,

sinΘ = sin(θ−∆θ) = (sinθ)(cos∆θ)− (cosθ)(sin∆θ) .
(B.10)

Without loss of generality, assume e1 = E1 and e2 = E2. Then, from (B.4), (B.6), and (B.10) it can
be shown that

G1 = (cos∆θ)er− (sin∆θ)eθ ,

G2 =
1
R

(sin∆θ)er +
1
R

(cos∆θ)eθ .
(B.11)

Using these results, we seek to represent the deformation gradient, which is the unique linear
mapping F such that

FGA = gA , A = 1,2 . (B.12)

The solution for F in this equation is given by

F =
2

∑
A=1

gA⊗GA . (B.13)

Therefore, from (B.8) and (B.11) one obtains closed-form expressions for the deformation gradi-
ent. In practice, these expressions are evaluated numerically.
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Appendix C

The Matrix Adjugate

As indicated in Chapter 6, implementation of the optimization routines requires expressions
for the first and second derivatives of the determinant of a matrix. The standard expressions for
these quantities (see, e.g., [38]) contain the inverse of the matrix. Such representations are undesir-
able for the present purposes from the perspective of both computational efficiency and numerical
accuracy as the matrix becomes singular, which is the neighborhood in which the optimization
algorithm operates.

For an invertible matrix A(ζ) that is differentiable in the argument ζ, Jacobi’s formula provides
an expression for the derivative of the determinant of the matrix with respect to ζ:

d
dζ

(detA) = tr
(

AA dA
dζ

)
=

(
AA

)T
:

dA
dζ

, (C.1)

where AA is the adjugate of A. The adjugate [30, 42] of the n×n matrix A is the n×n matrix AA

defined as the transpose of the matrix of the cofactors of the elements of A, so that the (i, j)-element
of AA is given by:

(AA)i j := (−1)i+ j detA(i| j) , (C.2)

where A(i| j) represents the (n−1)× (n−1) sub-matrix of A obtained by deleting the ith row and
jth column. Any square matrix satisfies the relation

AAA = AA A = (detA)I , (C.3)

where I is the unit matrix. From (C.3), when A is invertible, the adjugate can be expressed as:

AA = (detA)A−1 . (C.4)

As stated by Stewart [42], “. . . although A−1 and AA differ only by a scalar factor, the matrix A−1

has singularities while AA is analytic—in fact, it is a multinomial in the elements of A.” Thus, the
adjugate of a matrix remains smooth even as the matrix itself becomes singular, which is important
for the present application.

We seek to evaluate (C.1) in the case where matrix is the IDG and the independent variable is
the increment in material coordinates along the eth edge:

d
(

detF−T
)

d(∆Xe)
=

(
F−1)A

:
d F−1

d(∆Xe)
. (C.5)
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We evaluate the second term on the RHS using (3.10):

F−1 =
dim

−⇀
E

∑
e=1

∆Xe⊗
−⇀
We ⇒ d F−1

d(∆Xe)
=
−⇀
We . (C.6)

Thus, the expression in (C.5) becomes:

d
(
detF−1)

d(∆Xe)
=

(
F−T

)A −⇀
We . (C.7)

Using the definitions above, expressions for the adjugate of F−1 are evaluated directly. Using
Mathematica, explicit expressions for the matrix-vector product of (C.7) were obtained, as well as
expressions for the second derivative of this quantity.

Evaluating the derivative(s) of (C.7) requires evaluation of the derivatives of
(
F−1)A. To be

more specific, let G be a matrix with components

[G] =

 G11 G12 G13
G21 G22 G23
G31 G32 G33

 . (C.8)

The adjugate of G is

[GA] =

 −G23G32 +G22G33 G13G32−G12G33 −G13G22 +G12G23
G23G31−G21G33 −G13G31 +G11G33 G13G21−G11G23

−G22G31 +G21G32 G12G31−G11G32 −G12G21 +G11G22

 . (C.9)

This example illustrates that the components of the adjugate are polynomial functions of the com-
ponents of the matrix. Thus, computing derivatives is tedious but straightforward. For example,

d[GA]
dG11

=

 0 0 0
0 −G33 −G23
0 −G32 G22

 . (C.10)

Expressions for the two-dimensional case are developed analogously. Now let G := F−1. Then the
(pseudo-time/directional) derivative of (C.7) can now be computed as

d
dt

(
GA−⇀We

)
=

(
dGA

dGi j
Ġi j

)
−⇀
We

=
dGA

dGi j

(
ei · Ġe j

)−⇀
We

=
dGA

dGi j

[
ei · (∆Ẋ f ⊗

−⇀
W f )e j

]−⇀
We

=
dGA

dGi j

[
(ei · Ẋ f )(

−⇀
W f · e j)

]−⇀
We

=
[

dGA

dGi j
(
−⇀
W f · e j)(

−⇀
We⊗ ei)

]
∆Ẋ f .

(C.11)
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