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Abstract

Material response to dynamic loading is often dominated by microstructure (grain struc-
ture, porosity, inclusions, defects). An example critically important to Sandia’s mission is
dynamic strength of polycrystalline metals where heterogeneities lead to localization of de-
formation and loss of shear strength. Microstructural effects are of broad importance to the
scientific community and several institutions within DoD and DOE; however, current models
rely on inaccurate assumptions about mechanisms at the sub-continuum or mesoscale. Conse-
quently, there is a critical need for accurate and robust methods for modeling heterogeneous
material response at this lower length scale. This report summarizes work performed as part
of an LDRD effort (FY11 to FY13; project number 151364) to meet these needs.
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1 Introduction

A mesoscale modeling capability would serve two essential roles. The first is to simulate in full
detail the response of polycrystalline material to dynamic loading. In this case, the microstruc-
tural details appear explicitly in the simulation. This approach is computationally expensive (days
on a supercomputer), but provides direct insight into the microstructural origins of material re-
sponse. The second role, with potentially broader impact, is to inform lightweight (minutes on
a desktop computer) continuum models with information from mesoscale simulations. At longer
length scales, where Direct Numerical Simulation (DNS) of microstructural effects is not compu-
tationally feasible, ”upscaling” techniques are a proven approach. Unfortunately, these methods
typically assume static equilibrium, making them inappropriate for our applications. Further, cur-
rent upscaling methods do not leverage statistical information about material response made avail-
able through mesoscale calculations. This project addressed these problems using Sandia’s unique
computational capabilities and codes to perform DNS of a number of microstructure realizations.
Results were then used to inform dynamic upscaling models.

This report is organized as follows. Chapter one presents the dynamic upscaling approach in
the context of metal matrix composites. Chapter two is a mathematical treatment of the dispersion
and stability behavior of the micromorphic continuum method described in chapter one. Finally,
chapter three discusses experimental work that was done for purposes of model validation.
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2 Multi-resolution modeling of the dynamic loading of metal
matrix composites

Metal matrix composites (MMCs) are produced by combining a base metal (such as Al or Ti) or
a metallic alloy (such as Ni alloys) with another phase (often non-metallic) in order to create a
novel material with improved mechanical performance compared to conventional materials and
to reduce life-cycle costs through enhanced thermomechanical stability and weight reduction [32,
85, 86]. MMCs are generally categorized by the characteristics of their reinforcement: particle-
reinforced MMCs (e.g. SiC or B4C), short fiber- or whisker-reinforced MMCs (e.g. Al2O3),
and fiber or layered MMCs (e.g. C or W). Motivated by technical challenges in processing such
composites and tailorability of their properties, and due to the wide range of applications of these
materials in advanced military systems (e.g. light-weight armor materials) and in the automotive
and aerospace industries (e.g. impact shields, crash-tolerant structures) for example, MMCs and
their thermomechanical performance have been the subject of much research in the late 1980s and
early 1990s[20, 19, 70, 100, 73, 74, 24].

This class of materials is often subjected to high strain rate deformation, such as in the case
of penetration of a projectile in an armor or the impact of an object on aerospace structures, and
while showing good performance under such conditions, the mechanical behavior of MMCs varies
significantly under rapid straining as compared to quasi-static loading. This behavior is often
dominated by underlying microstructural features (grain structure, porosity, shape and spatial dis-
tribution of reinforcements, volume fraction of reinforcements) [58, 110, 57, 121, 71]. However,
despite the great interest in MMCs, and considerable research into the effects of reinforcement
type and volume fraction on macroscopic properties such as stiffness, ductility, wear resistance,
or thermal conductivity, fewer studies have been conducted to examine the effects of those mi-
crostructural details on their dynamic loading behavior [49, 71, 103, 107]. The most common and
versatile experimental techniques for materials research and characterization under high strain rate
conditions are uniaxial in character, e.g., high velocity plate impact and magnetic pulse loading.
The assumption of a uniaxial strain condition is valid at the macroscale, but at the length scale of
the microstructure the deformation state is fully three dimensional [5]. Further, the effects of mi-
crostructural heterogeneities on the dynamic response of MMCs are particularly pronounced when
the scale of the deformation is of the order of the material heterogeneities which is often the case
in dynamic uniaxial experiments. Consequently, there is a critical need for accurate and robust
methods for modeling heterogeneous material response at this lower length scale that can account
for microstructural effects. Inspired by the work done by Liu and coworkers [111, 79], the present
manuscript introduces a multi-resolution modeling framework to investigate the dynamic behavior
of uniaxially loaded heterogeneous materials, MMCs in particular, by explicitly accounting for
the microstructural features (both in the matrix and reinforcements) that influence the dynamic
response.

A number of theoretical and numerical investigations have been performed mostly with the
intent of predicting the stiffness and strength of a given composite given the properties of the ma-
trix and reinforcement phase [21, 90, 71]. Analytical studies of the high strain rate deformation
of particle reinforced MMCs are based on classical micromechanics schemes and homogenization
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models (such as mixture models, Mori Tanaka or Hashin-Strickman schemes, etc.). For example,
Bao and coworkers [7] carried out a micromechanics study to look at the effect of the volume
fraction of inclusions on the strain rate dependence of the plastic flow behavior of Al/Al2O3 com-
posites. More recently, Grujicic and coworkers [48] used a dynamic mixture model in order to
investigate the propagation of structured waves within Al/SiC MMCs. Conventional numerical
modeling of MMCs is typically conducted at the continuum scale by considering a unit cell model
containing a single or multiple idealized reinforcement particle(s) such as a fiber (in the shape of
an ellipsoid), a whisker (in the shape of a cylinder) or a particle (idealized as a sphere) embedded
in a homogeneous host matrix via computational micromechanics [71, 10, 99, 124, 103, 107]. Li
and Ramesh [71] for example performed a parametric study of the influence of particle volume,
shape and aspect ratio on the behavior of particle-reinforced MMCs at high strain by using an
axisymmetric unit cell model with particles treated as elastic ellipsoids or cylinders embedded in
an homogeneous visco-plastic matrix. While the simplifications of the microstructural features
in these unit cell models may help in reducing the simulation complexity, these models fail to
capture the microstructural complexities associated with MMCs’ constitutive components such as
the inhomogeneous spatial distributions of particles, their irregular morphology, but also the crys-
tallographic texture and inhomogeneous microstructure (grain size and morphology) of the host
matrix itself. Accurate predictions and further understanding of the dynamic behavior for this type
of material require an approach which explicitly accounts for realistic microstructures of these
composites. For example, Chawla and co-workers [15, 16, 118] took a step in that direction by
developing microstructure-based finite element techniques and importing experimentally charac-
terized reinforcements (by serial sectioning, X-ray tomography or holotomography for example)
within a numerical unit-cell framework to study failure mechanisms of MMCs.

Predicting microstructure-property relationships for the dynamic behavior of MMC materials
via direct simulation of its underlying microstructure remains a difficult goal to reach due to the
massive disparities in length and time scales. In this paper, we present a multi-resolution modeling
capability for studying the nonlinear planar wave propagation in heterogeneous materials such as
MMCs. This framework is based on (i) mesoscale direct numerical simulations (DNS) and (ii)
an upscaled microcontinuum model. In this paper, the term direct numerical simulation, or DNS,
refers to simulations in which the microstructural topology is explicitly resolved in the spatial
discretization. This does not imply that the simulations are considered to be exact solutions to
the physical problem, only that an approximation of the microstructure is modeled directly. The
mesoscale DNS paradigm used in this work explicitly accounts for microstructural features (grain
morphology and crystallographic texture of the matrix, morphology and spatial distribution of the
reinforcements) and is based on a combination of a crystal plasticity formulation and Johnson–
Holmquist model. Non-uniformity of the wave propagating through MMCs is resolved spatially
and temporally through these simulations. Results from the mesoscale DNS are then used to
inform a microcontinuum model which introduces richer kinematics to implicitly account for the
above mentioned microstructural features without explicitly modeling them and with far fewer
total degrees of freedom than the DNS. The motivation of such an approach is to develop novel
multi-resolution continuum models of MMCs and relate their microstructure to their structural
dynamic performance in a single framework. A quantitative comparison of the reduced degrees
of freedom model against DNS is performed and enables us to draw conclusions on the predictive
capability of the microcontinuum model compared to fully resolved models to study the dynamic
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response of heterogeneous materials.

The manuscript is organized as follows. Section 2 introduces the details of the DNS model
used presently. Section 3 describes the details of the microcontinuum model and briefly details
the upscaling method between the results obtained from the mesoscale DNS and the microcon-
tinuum model. As an illustration, this work focuses on a prototypical MMC system consisting of
an aluminum polycrystalline matrix reinforced with SiC particulates. Section 4 provides a dis-
cussion on the main findings of the work for various MMCs (layered and particle reinforced) and
recommendations for future investigations.

2.1 Direct Numerical Simulation of MMCs

In order to understand and study the dynamic behavior of MMCs, the construction of the multi-
resolution continuum model starts at the microstructural level, by treating the material deformation
of the MMC matrix with a standard crystal plasticity rate-dependent formulation [98], while the
particle reinforcements are modeled through a Johnson–Holmquist (JH-1) model [60].

The foundations of the constitutive model for the MMC matrix assume that the elasto-visco-
plastic response of single crystals is dominated by slip deformation mechanisms. Others mecha-
nisms such as twinning, grain boundary sliding or diffusion are not considered. The total defor-
mation of a single crystal consists of a plastic deformation, elastic lattice rotations and rigid body
rotations. The single crystal kinematics is described by a multiplicative decomposition of the total
deformation gradient F into a plastic component, Fplast, representative of the intervening motion of
dislocations on active slip systems leaving the crystal lattice unchanged, and an elastic component,
Felast, depicting the rotation and elastic stretching of the matrix lattice. For isothermal conditions
we have,

F = Fplast ·Felast . (1)

Since the dynamic behavior of the polycrystalline matrix is of importance, a rate-form expression
of the deformation is used to express the kinematics of the crystalline solid from the kinematic
decomposition. The velocity gradient L in the current configuration can be written as,

L = Ḟ ·F−1 , (2)

where Ḟ is the rate of total deformation gradient. Subsequently, the velocity gradient L can be
additively decomposed into its elastic Lelast and plastic Lplast counterparts. The plastic velocity
gradient Lplast is assumed to be solely the result of crystallographic slip over S potentially active
slip systems such that it corresponds to the sum of the plastic shearing rate γ̇α on S number of
activated slip systems α [54, 4],

Lplast =
S

∑
α=1

γ̇
αm̄α ⊗ s̄α , (3)

where plastic velocity gradient is resulting from the dyadic product of the crystallographic slip
direction unit vector m̄α and the slip plane normal unit vector s̄α in the intermediate configuration.
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The rate of plastic deformation gradient Ḟplast resulting from crystal slip is governed by,

Ḟplast = Lplast ·Fplast . (4)

A classical Hookean law gives the constitutive stress-strain relation under isothermal conditions
such as,

σσσ
PK2 = C : Eelast , (5)

with Eelast =
1
2

(
FelastT ·Felast− I

)
, (6)

where σσσPK2 is the second Piola-Kirchoff stress tensor, Eelast is the Green-Lagrange tensorial elastic
strain measure, C is the anisotropic fourth order elastic stiffness tensor, and I the second order
identity tensor. The Cauchy stress tensor σσσ is related to the second Piola-Kirchoff stress tensor
through [98],

σσσ =
[
det
(

Felast
)]−1

Felast ·σσσPK2 ·FelastT . (7)

The resolved shear stress τα on slip system α is defined as,

τ
α = σσσ : (m̄α ⊗ s̄α) . (8)

The flow and evolutionary equations describing the behavior of each individual slip system com-
pletes the formulation. The kinetic equation used for the crystallographic slip rate γ̇α follows a
power law visco-plastic flow rule [56] such that,

γ̇
α = γ̇0

∣∣∣∣ τα

τα
CRSS

∣∣∣∣1/m

sgn(τα) , (9)

where γ̇0 is the reference shearing rate, m is the rate sensitivity, and
(
τα ,τα

CRSS

)
are the resolved

shear stress and total slip resistance (or critical resolved shear stress), respectively, on slip system
α . The sign of the resolved shear stress sgn(τα) accounts for either positive or negative slip on
the system. Hardening of the slip systems assumes that dislocations act as obstacles to dislocation
motion and contribute to the total slip resistance according to the Taylor equation [106]. The
evolution of the overall resistance to slip, τα

CRSS, is given by

τ
α
CRSS = λG[110]b

√
ρα , (10)

where λ is a statistical coefficient accounting for the deviation from regular spatial arrangements
of dislocations, b is the magnitude of the Burgers vector, ρα is the forest dislocation density for a
given slip system α , and G[110] is the shear modulus on the [110] plane. Note that the bulk shear
modulus G is instead commonly used in the literature. However, at the grain level, the directional
shear modulus seems a better choice due to the local anisotropy of the material. The evolution of
the dislocation density is based on the phenomenological approach proposed by Kocks [64] and
Mecking and Kocks[80] where dislocation sources and sinks are considered:

dρα

dγα
= hKM

1
√

ρα −hKM
2 ρ

α , (11)
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where γα is the accumulated slip on the slip system α , and
(
hKM

1 ,hKM
2
)

are material hardening
parameters. The first term reflects that dislocation storage is inversely proportional to the dis-
location mean free path, while the second hardening term describes the annihilation and cross-
slip of dislocations. Finally, it should be mentioned that the focus of this work is on developing
multi-resolution schemes to study the dynamic behavior of heterogeneous materials, rather than the
physical models themselves. In other words, the aforementioned flow rule and hardening model
are targeted at providing some simple features associated with the hardening of the matrix mate-
rials. The elastic constants and hardening parameters introduced in the constitutive model of the
section described above are listed in Table 1.

Property Symbol Value
Elastic modulus C11 108.2 GPa
Elastic modulus C12 61.3 GPa
Elastic modulus C44 28.5 GPa
Rate sensitivity m 0.02
Reference shearing rate γ̇0 20 s−1

Magnitude of the Burgers vector b 0.286 nm
Initial CRSS τα

CRSS,0 45.0 MPa
Scaling factor λ 0.5
Taylor hardening parameter hKM

1 1.07×108m−1

Taylor hardening parameter hKM
2 27.97

Table 1. Elastic and viscoplastic parameters for Al matrix.

The Johnson–Holmquist model [60] is used to describe the SiC particulates behavior. This
model incorporates a strength response that possesses both a rate and pressure dependence and,
even though this is not the focus of the present study, this model has features that makes it possible
to examine the effects of fracture and imperfect interface on loading spreading through a damage
parameter D. The rate dependence of the strength model reads,

σ = σ0
(
1+ cJH

1 ln ε̇
∗) , (12)

where ε̇∗= ε̇plast/ε̇0 with ε0 being a reference strain and εplast being the equivalent plastic strain, σ0
is the material strength at ε̇∗= 1 and cJH

1 is a material constant. The pressure dependent strength for
intact (D = 0) or partially damaged (D < 1) material is given by a bilinear relationship in the pres-
sure/strength space from points (P =−PT ,σ = 0) to (P = P1,σ = S1) and from (P = P1,σ = S1)
to (P = P2,σ = S2) followed by a constant strength. The pressure dependence for fully damaged
(D = 1) material is given by a linear relation in the pressure/strength space from σ = 0 to σ = S3
with a slope of cJH

1 followed by a constant strength.

The definition of the damage model describes the fracture behavior of the SiC reinforcements
in which the degree of damage is characterized by a scalar metric D which varies between 0 (no
damage) and 1 (complete damage). D is defined by,

D =
εplast

ε frac , (13)
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where ε frac is the equivalent plastic strain to fracture.

The Mie-Grüneisen equation of state for the volumetric response in the Johnson–Holmquist
model is calculated using,

P = kJH
1 µ + kJH

2 µ
2 + kJH

3 µ
3 , (14)

where
(
kJH

1 ,kJH
2 ,kJH

3
)

are material constants, and µ =V0/V −1 with V0 and V being the initial and
current specific volume respectively. The material parameters used in Johnson–Holmquist model
are taken from Table 3 in Robbins et al. [97].

A set of different realizations of periodic three-dimensional (3D) representative microstructures
containing Al grains and a given volume fraction of SiC particulate reinforcements was used for
the DNS. A typical representative microstructure, illustrated in Figure 1, was obtained by means
of a Voronoi tessalation. Dimensions of the representative volume element (RVE) in physical
space is 2.0mm× 0.5mm× 0.5mm resulting in a average grain size of 65 µm and an average
reinforcement size of 45 µm. RVEs containing 5% and 10% volume fraction of SiC particulates
have been generated and simulated. For each representative microstructure, the crystallographic
orientations assigned to each grain in the host matrix is allocated randomly while perfect bonding
between the SiC particulates and Al grains is assumed. The typical mesh for the representative
MMC microstructure, selected after a mesh convergence study, comprises an average of 32 million
elements which is equivalent to a 2.5µm mesh resolution.

Figure 1. Typical discretization of Al/SiC MMC. Longitudi-
nal and lateral dimensions are 2.0 and 0.5 mm, respectively, and
the microstructure is periodic with mesh resolution of 2.5µm.
Aluminum matrix is semi-transparent, and SiC reinforcement is
opaque.

This DNS model for MMCs was implemented into Sandia’s arbitrary eulerian lagrangian
(ALE) massively parallel ALEGRA code [76, 75] and applied to model the dynamic hardening
in particle-reinforced MMCs. The ALEGRA framework was used in a pure Lagrangian mode and
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employs a finite element spatial discretization and an explicit central-difference stepping method
in time. The simulations use eight node, uniform strain, (hexahedral) 3D isoparametric elements.
Hourglass control is used to manage zero energy modes associated with the uniform strain element.
Further details on the formulation of the ALEGRA framework are provided in the technical report
by Love and Wong [76]. A set of 12 different 3D calculations were conducted using 1e4 processor-
hours each. Velocity boundary conditions were prescribed as a Gaussian rightward compressive
moving pulse of an approximate duration of 200 ns with a half height width of 65 ns at the left end
side of the microstructure and with a magnitude of 200 m/s. The lateral sides of the microstructure
have periodic boundary conditions. Typical results are presented in Figure 2 for a microstructure
containing 5% of SiC particulates. The input pulse results in a compressive stress wave moving
from left to right in the microstructure which reflects off the free surface after approximately 400
ns producing a release wave. Figure 2 shows grain-scale contour plots of longitudinal velocity
at various stages of the wave propagating through the microstructure with sharp contrast between
the Al matrix and SiC inclusions. As further illustrated in Figure 3 which shows the velocity on
sample cross-sections, spatial variation in the velocity field is produced by the heterogeneity of the
material resulting a decidedly multi-axial strain state at this length scale.

(a) Time = 8.0×10−8s (b) Time = 1.8×10−7s

(c) Time = 2.8×10−7s (d) Time = 3.8×10−7s

Figure 2. Comparison of predicted velocity profiles for pulse
loading.
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(a) Time = 8.0×10−8s (b) Time = 1.8×10−7s (c) Time = 2.8×10−7s (d) Time = 3.8×10−7s

Figure 3. Comparison of predicted velocity profiles for pulse
loading. Cut planes are located at the peak of the pulse.

2.2 Microcontinuum model of MMCs

Multiresolution continuum modeling

In an effort to bypass the limitations of computational speed associated with DNS while retain-
ing microstructural effects, the second step of the construction of the multi-resolution contin-
uum model is to pursue the development of an upscaling method informed with details from the
mesoscale simulations. Incorporating some effects of characteristic microstructural features of the
materials into constitutive modeling is possible via the mechanics of generalized continua. The
goal is to endow the continuum with additional degrees of freedom that are supposedly indepen-
dent from the usual translational degrees of freedom and representative of the microstructure [33].
The article by Germain [38] and the book by Eringen[29] provide detailed reviews of the mechan-
ics of higher order continua. In a microcontinuum model, the underlying microstructure at any
material point of the continuum can rotate and deform. In this context, if we consider a contin-
uum D as a deformable continuous distribution of material points, each of them is geometrically
represented by a point M and characterized kinematically by a macroscopic and microscopic dis-
placement field. The macroscopic displacement field u is defined as ui = xi−Xi, i= 1 . . .3, where xi
and Xi are the coordinates of a material point in the deformed and undeformed reference coordinate
system, respectively. The microdisplacement u′ is defined by its components u′i = x′i−X ′i , where x′i
are the coordinates of a point M′ belonging to a microvolume Ω(M) around M and measured from
the center of mass M of this microvolume.

Following the development of Mindlin [83], the balance equations for a microstructured mate-
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rial can be expressed as,

∇ · (σσσ + τττ) = ρü in D , (15)
∇ ·µµµ + τττ = γγγ · Iµ in D , (16)

where σσσ is the Cauchy macrostress tensor, τττ is the relative (interactive) stress tensor and µµµ is
the double (micro)stress tensor, γγγ is the micro-acceleration, ρ is the density and Iµ is the second
moment of micro-density. The macrostress can be viewed in a classical manner as the macroscopic
average of forces per unit area, while the microstress can be interpreted as a spatial average of the
forces arising from the collective non-local behavior of the surrounding microstructure.

Concerning the stress and strain measures, we generalize the conventional concept by replacing
the Cauchy stress tensor by a generalized stress tensor such that, in the Voigt notation (in which a 9
by 9 tensor can be replaced by a 27-dimensional vector), the generalized stress tensor is expressed
as

ΣΣΣ = [σσσ , τττ , µµµ] . (17)

Similarly a generalized strain tensor can be expressed as,

E = [εεε , εεε−χχχ , ∇ ·χχχ] , (18)

where εεε = ∇ ·u is the classical Cauchy strain tensor and χχχ is the microstrain tensor such that the
microdisplacement can be approximated by u′i = x′jχ ji (xi, t).

In the elastic regime the generalized stress and strain are linearly related through a generalized
elastic stiffness tensor C̄ that can be written as a block diagonal matrix,

C̄=

 C0 A0µ 0
A0µ C0µ 0

0 0 Cµ

 , (19)

where C0 is the macroscopic stiffness tensor, Cµ is the microscopic stiffness tensor introducing a
length scale parameter associated with the microstructure, C0µ is a transition stiffness tensor be-
tween the macroscopic and microscopic kinematics and A0µ another coupling term. In this work,
we assume that there is no elastic coupling among the macro- and micro-scales (A0µ = 0). The
tensor C0µ is assumed to be associated with a softening/stiffening microstructure such that the re-
sistance to local deformation in the microstructured solid is less/more than the resistance to macro-
scopic deformation, i.e. C0µ =α1C0. The microstructural stiffness tensor Cµ contains information
about the length scale ¯̀ of heterogeneity in the microstructured solid and is taken for simplicity as
the second moment of stiffness over the microvolume Ω(M), i.e. Cµ = ¯̀2α1C0. Overall, the elas-
tic micro-continuum constitutive model is characterized by two additional constitutive parameters:
α1 and ¯̀.

The constitutive relation in the plastic regime is based on a classical J2 plasticity model at
the macroscopic level while the microscopic level is assumed to stay elastic. Again we point out
that that the focus of this work is on developing multi-resolution schemes to study the dynamic
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behavior of heterogeneous materials, rather than the physical models themselves. Therefore no
specific effort has been dedicated in developing a microscale plasticity model. In this context, the
plastic potential Φ(σσσ ,κ) is assumed to be solely a function of the Cauchy macrostress tensor and
of the equivalent plastic strain κ such that,

εεε
p = λ̇

∂Φ

∂σσσ
, (20)

where εεε p is the plastic deformation, λ̇ is a Lagrange plastic multiplier and ∂Φ/∂σσσ denotes the
direction of the plastic flow. As in conventional plasticity, the stress point must remain on the yield
surface during plastic deformation, which gives the consistency condition for continuing plastic
flow :

∂ΦT

∂σσσ
σ̇σσ +

∂Φ

∂κ
κ̇ = 0 . (21)

If we use the gradient to the yield surface n according to

n =
∂Φ

∂σσσ
, (22)

and the hardening/softening modulus h as defined in conventional plasticity :

h =− 1
λ̇

∂Φ

∂κ
κ̇ , (23)

the consistency equation can be rewritten as,

nT
σ̇σσ −hλ̇ = 0 . (24)

In this paper, we apply the strain-hardening/softening hypothesis as defined by

κ̇ =

√
2
3

εεε p : εεε p , (25)

combined with the Von Mises yield criteria based on the second invariant of the stress tensor.

For the sake of comparison with more classical homogenization methods, the composite macroscale
response is also computed by assuming a uniform normal stress in the direction of propagation
given the mass fractions mi and the constitutive behavior of the individual materials in a classical
rule of mixture manner. When non-linear compressibility is accounted for, a Mie-Grüneisen equa-
tion of state is used. This method is referred to as homogenization in the rest of this manuscript.

Extracting microcontinuum constitutive relationships from DNS

Before analyzing the dynamic response of MMCs and heterogeneous materials through the present
multi-resolution continuum model, we will briefly overview the last step of the construction of this
model which consists of extracting the microcontinuum constitutive relationships from the DNS
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calculations. The goal is achieved here by minimizing the error between the response given by
DNS with the one obtained from the microcontinuum model. Note that many strategies can be
adopted to optimize and calibrate the parameters from the microcontinuum model to give a best fit
to the DNS results, but this discussion is beyond the scope of this article. In this work, in order
to calibrate the microcontinuum parameters, we chose to minimize the error between the average
velocity given by the DNS with the one obtained from the microcontinuum model. Calibration
starts by defining a conventional 3D RVE and loading with a given compressive pulse input. The
average of the velocity over the transverse plane (normal to the propagation direction) is recorded
and used to calibrate the microcontinuum model. This is done through a classical multidimensional
least square method such that, if the microcontinuum constitutive model is described by a set of n
parameters [α1, · · · ,αn], those can be extracted from the DNS simulations through,

[α1, · · · ,αn] = argmin
[α1,··· ,αn]

(∫
t

∫
x

(∫
y

∫
z
vdns (x,y,z, t)− vµ (x, t; [α1, · · · ,αn])

)2

dx dt

)
, (26)

where vdns (x,y,z, t) is the velocity obtained from DNS, while vµ (x, t; [α1, · · · ,αn]) is the velocity
from the microcontinuum calculation. In the case of our elastic microcontinuum model, calibration
is done for the microstructural parameters, α1 and ¯̀.

As an illustration of the data extraction methodology, we use a specific example involving a
linear elastic layered Al/SiC composite as shown by the schematic in Figure 4. Each layer of the
composite has a thickness of ` = 250µm and is assumed to behave elastically. DNS have been
performed on this one-dimensional configuration and used as a basis for extracting the microcon-
tinuum constitutive parameters which reduce to two parameters

(
α1, ¯̀) in the elastic regime based

on equation (26). Figure 5(a) presents the results of the calibration of the microcontinuum model
done for a compressive loading pulse of a given width and height. Based on this calibration, pa-
rameters for the microcontinuum model are given by ¯̀= 165µm and α1 = 0.0618. Note that the
microcontinuum length scale ¯̀ is slightly different than the physical length scale ` associated with
the thickness of the layers of the Al/SiC composite. ¯̀ could be interpreted as a characteristic dis-
persion length. The parameter α1 could be interpreted as a softening microstructure such that the
resistance to local deformation in this microstructured layered composite is less than the resistance
to macroscopic deformation. It is also worthwhile to note the qualitative agreement between DNS
and the microcontinuum model. In contrast with the results from static homogenization, the mi-
crocontinuum model picks up the dispersive character of a loading wave propagating through the
medium. In order to verify that these parameters are indeed a reflection of microstructural effects,
the same microstructure was subjected to different loading inputs and results were computed keep-
ing the calibrated parameters fixed. Figure 5(b) and Figure 5(c) show the effect of halving and
doubling respectively the input pulse width while keeping an excellent quantitative comparison
with the DNS. Figure 5(d) illustrates the same comparison for a symmetric impact loading config-
uration. Again, the agreement between the DNS and the microcontinuum model is preserved. In
other words, only a limited number of RVEs and DNS are required to calibrate the constitutive re-
lationships of the aforementioned microcontinuum model. It is also worth pointing out that certain
qualitative features given by the DNS results are absent from the classical homogenization such as
the attenuation of the peak velocity or the higher frequency ringing after the initial pulse.
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Figure 4. Schematic of a layered medium used for calibration.

2.3 Results and Discussion

The DNS model presented in section 2.1 and the microcontinuum model overviewed in the previ-
ous section 2.2 are first applied to a layered and then to a prototypical particulate-reinforced Al/SiC
MMC. The layered composite can be viewed as a one dimensional (1D) heterogeneous medium
while the particulate-reinforced composite is considered as a fully 3D microstructured medium.

First, we consider the comparison between the results obtained from the microcontinuum
model of a nonlinear elastoplastic 1D layered composite with those obtained by DNS. Follow-
ing the procedure presented in section 2.2, Figure 6 presents the comparisons between DNS and
the microcontinuum model in the elastoplastic regime. Similar to the purely elastic case, a good
agreement is found between DNS and the reduced model. Specifically the pulse widening and
attenuation that is observed in the DNS in the case of a short pulse (see Figure 6(b)) is captured
by the microcontinuum model. This observation is due to the fact that the length scale associated
with the input pulse is of the same order of magnitude as the microstructural features of the 1D
composite. In contrast, Figure 6(c) shows the response to a substantially wider input pulse. In this
case, the dispersion of the wave propagating through the microstructured medium is not as pro-
nounced. More interestingly, in the case of an impact loading (see Figure 6(d)), both the DNS and
microcontinuum model exhibit the continuous broadening of the wave front as it propagates, as
opposed to the classical homogenization method which show two sharp elastic fronts. The results
given by the microcontinuum model of wave propagating through the layered composite are con-
sistent with those calculated through DNS but without the associated computational cost. Note that
the above features evident in the microcontinuum model and DNS simulations are not captured by
the homogenization method because dispersive effects are not present in classical homogenization
models.

Second, we examine the case of a three dimensional particulate-reinforced Al/SiC MMC (see
section 2.1) subjected to a short duration pulse input. Recall that, even though at the continuum
scale this is generally considered a uniaxial strain condition, at the scale of the microstructure
the deformation state is fully three dimensional. Ideally, one would have models that capture the
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Figure 5. Comparison of predicted velocity profiles between
DNS and the microcontinuum model for a 1D layered Al/SiC com-
posite in the elastic regime. (a) For a Gaussian input used for initial
calibration (b) for a short pulse loading (c) for a long pulse loading
(d) for an impact loading.

dispersion effects associated with the three dimensionality of the micro-scale response. Figure 7
illustrates how the present multi-resolution scheme constitutes a step in this direction. The DNS
incorporates the dispersion behavior of the microstructure directly, so the rate at which the com-
pressive wave steepens due non-linear stiffening of the volumetric response will be reduced [42].
In the case of the one dimensional models, the classical homogenization method tends to steepen
more rapidly as the wave propagates due to its non-dispersive nature; however, the microcontin-
uum model encapsulates some of the features from the DNS and strikes a balance between the
nonlinear volumetric response and dispersion due to the microstructural character of the medium.

The overall trend of the influence of microstructural bias emerging from this multi-resolution
paradigm illustrates the predictive capability of the microcontinuum model compared to fully re-
solved models and shows its applicability in the study of dynamic response of heterogeneous mate-
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Figure 6. Comparison of predicted velocity profiles between
DNS and the microcontinuum model for a 1D layered Al/SiC com-
posite in the elasto-plastic regime. (a) For a Gaussian input pulse
(b) for a short pulse loading (c) for a long pulse loading (d) for an
impact loading.

rials. Although this approach has shown promise, there are outstanding issues that warrant further
attention:

• In this work the microscale response was strictly elastic while the comparison with DNS
might benefit from an elasto-plastic model at this scale. In a separate work [23], we have
examined the impact of microscale plasticity on dispersive behavior, and it is currently under
investigation.

• The DNS data that was used in the extraction was an average over the transverse plane. An
improvement would be to develop data extraction techniques that incorporate lateral spatial
variation present in the three dimensional DNS into the resulting microstructural parameters,
thereby accommodating more information from the DNS.
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Figure 7. Comparison of predicted velocity profiles be-
tween DNS and the microcontinuum model for a 3D particulate-
reinforced Al/SiC MMC in the elastoplastic regime. The profiles
shown of the DNS results are the average of three random mi-
crostructural realizations and include an upper and lower envelop
that shows the standard deviation in velocity on the transverse
plane at the given position. (a) For a Gaussian input pulse with
a volume fraction of SiC of 5% (b) for a long pulse loading with a
volume fraction of SiC of 5% (c) for a Gaussian input pulse with a
volume fraction of SiC of 10% (b) for a long pulse loading with a
volume fraction of SiC of 10%

• While our goal is to develop a lower dimensional model for planar wave propagation, the
transition from 3D DNS to 1D microcontinuum may incur too much information loss for
some applications. Future work will use similar data extraction techniques to inform 3D
microcontinuum models which will be used to quantify the information loss through different
levels of abstraction.

• Another issue of considerable interest to the dynamic materials community is the dependence
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of shock formation rate and eventual thickness on material microstructure. Our results in-
dicate these dispersion effects can be represented by the microcontinuum formulation and
can be improved by refining the physical models both for the DNS and the microcontinuum
model.

• In order for the numerical methods in this work to be used with confidence, experimental
validation is required. We are currently developing plate impact experiments in well char-
acterized polycrystalline copper using photon doppler velocimetry for this purpose. Further
experiments in MMCs are warranted.

2.4 Conclusions of Multi-Resolution Analysis

A multi-resolution continuum paradigm has been presented to study the dynamic behavior of het-
erogeneous materials such as MMCs. This framework relies on DNS to spatially resolve the com-
plexity and richness of a wave propagating through microstructured heterogeneous media. The
DNS model is based on a combination of a crystal plasticity formulation for the non-linear be-
havior of the host matrix and the Johnson–Holmquist (JH-1) model for behavior of the particulate
reinforcements. Results from the mesoscale DNS inform a non-linear plastic microcontinuum
model which introduces richer kinematics to account for microstructural features without explic-
itly modeling them and with far fewer total degrees of freedom. The microcontinuum model is
based on the mechanics of generalized continua and introduces characteristic parameters (charac-
teristic microstructural length scale and microstructural materials parameters for example) arising
from the inhomogeneous behavior of the microstructure. These parameters are generally related to
microstructural features such as grains and particulate reinforcements.

The resulting multi-resolution continuum framework can predict the evolution of continuum
fields propagating through a microstructured medium without having to perform the fully resolved
microstructural simulations for each loading configuration. Only the DNS used for the calibration
of these models are required to determine the microstructural parameters used in the definition of
the constitutive behavior of the microcontinuum model.

This multi-resolution paradigm has been applied to model the dynamic behavior of layered
and particulate reinforced Al/SiC MMCs. The results from the calibrated microcontinuum model
are consistent with those calculated through DNS but without the associated computational cost.
Qualitative comparisons of this multi-resolution scheme with classical homogenization methods
suggest that the result obtained are be more realistic for a wide range of compressive loading
inputs. In particular, the dispersive characteristics seem to be better captured when microscale
features are in the same order of magnitude as the microstructure. Again, we note that the classical
homogonization technique we compare to cannot capture these dispersive effects as those physics
are not present in that model.

Such results show great promise for developing accurate and efficient modeling tools and estab-
lish the connection between microstructure and properties. As such, this type of paradigm would
be useful in developing new materials with optimal properties for high strain rate conditions. For
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the same reason, such a paradigm would enable and improve our understanding of deformation
mechanisms in heterogeneous materials at high strain rates.
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3 Dispersion due to microstructural features

The dynamic thermomechanical response of materials (e.g. metals, ceramics, foams, or compos-
ites) is profoundly influenced by an underlying microstructure consisting of heterogeneities of
various shape and spatial arrangements, precipitates, and defects clusters (collections of disloca-
tions, distribution of cracks and/or porosity for example). The effects of these heterogeneities on
the dynamic response are particularly pronounced when the scale of the deformation is of the or-
der of the material microstructural heterogeneities or when its order of magnitude is comparable
to the short wavelength of a signal propagating through the material. For example, it has been
experimentally observed that the dynamic strength of polycrystalline metals is impacted by het-
erogeneities, such as microvoids for instance, leading to localization of deformation and loss of
shear strength [82, 120]. Wave scattering due to the mismatch in mechanical impedance at the in-
terface between different material phases in layered composites [125] is another illustration of the
impact of microstructural features on the dynamic response of materials. The dispersive nature of
wave propagation in microstructured materials plays an important role in localization phenomena
in dynamic problems. In conventional continuum formulations, the governing partial differential
equations may lose hyperbolicity at a certain stage of a nonlinear deformation process. This means
that loading waves can no longer propagate and the deformation is trapped in an infinitely narrow
band in which the strain can grow unboundedly [96, 9, 93].

Despite the conspicuous experimental observations of the dispersive character of microstruc-
tured materials [77, 105, 88, 87, 11, 68, 104, 55, 114, 36] for a wide variety of materials, the
classical continuum mechanics theory predicts that frequency and wave number have a linear re-
lationship (i.e. phase and group velocities of propagating waves are independent of the frequency)
and therefore fails to successfully model the impact of microstructural features and their associ-
ated length scales on wave dispersion. Propagation of elastic waves in a one-dimensional (1D)
domain is analyzed with the well-known d’Alembert or Riemann solutions (see for example [1]).
Extension to nonlinear wave propagation has been studied extensively in the context of classical
continuum mechanics, see [65, 59, 50, 51, 81]. The review article by [91] provides a comprehen-
sive review of nonlinear wave propagation in solids. However, microstructural features are not
represented and considered in these formulations.

Numerous advanced theories and models have been proposed to study wave propagation prob-
lems accounting for heterogeneities and non-locality in materials. Among them, multiscale ho-
mogenization techniques [62, 17, 3] have proved to be successful in capturing dispersion effects.
The idea in this type of approach is to asymptotically compute the solutions to the wave equations
using multiple spatial and temporal scales to capture the homogenized solution as well as its long-
term behavior. Alternatively, models based on the mechanics of generalized continua constitute
another class of paradigms used to incorporate some effects of characteristic lengths of the mate-
rials microstructure. The idea here is to endow the continuum with additional degrees of freedom
that are supposedly independent from the usual translational degrees of freedom and representative
of the microstructure [34]. The article by [39] and the book by [30] provide a detailed review of
the mechanics of higher order continua. Analytical studies of the dispersive character of such high
order continua have been initially conducted in depth by [84], [31] or more recently by [26, 28] or
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[92] for linear elastic solids.

In this section, we study the wave propagation and wave dispersion character in hardening
elasto-plastic microstructured materials on the basis of generalized continua theories. The adopted
model accounts for the microstructural features complemented by a hardening elasto-plastic model
through a deformation theory of plasticity. We limit our considerations to the case where plastic
strains are large compared to the elastic strain. Nonlinearity is introduced in this study only through
the description of the yield surfaces during plastic deformation both at the macroscopic and micro-
scopic level.

The following notation is used:

u,u′: macro- microscopic displacement field.

v: macroscopic velocity.

ε,χ: macro- microdeformation.

εel,χel: elastic macro- microstrain.

ε p,χ p: plastic macro- microstrain.

σ ,µ: macro- microstress.

η : −interactive microforce.

W ,K ,L : potential energy, kinetic energy and Lagrangian.

ρ , Iµ : macroscopic density and micro-inertia.

E0: −Young’s modulus.

A0µ ,B0µ ,Eµ : microstructure elastic parameters.

h0, hµ : macro- microscopic hardening/softening moduli.

ρµ ,β0µ : dimensionless parameters.

ci: macroscopic/microscopic characteristic velocity “i”.

γi: normalized characteristic velocity “i” corresponding to velocity ci.

`, ¯̀,L0,λ0: characteristic lengths.

τ: characteristic time.

ε`,: scale of the microstructure.

ϖ ,κ,λ : dimensionless frequency, wave number and wave length.

γπ : dimensionless phase velocity.
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γg: dimensionless group velocity.

c̄, cs: non normalized/normalized gradient-dependent parameters.

[·]x , [·]t : subscript in x and t denote differentiation with respect to these indices.

˜[·]: tilde superscript indicates non-dimensional variables and operators.

[·]′: denotes the derivative with respect to a given variable.

3.1 Formulation of a nonlinear 1D micromorphic model

One-dimensional wave equation for nonlinear microstructured materials

Following [84], let us consider a continuum as a deformable continuous distribution of material
points, each of them being geometrically represented by a point M and characterized kinematically
by macroscopic and microscopic displacement fields. The macroscopic displacement field u is
defined as ui = xi−Xi, i = 1 . . .3, where xi and Xi are the coordinates of a materials in the deformed
and undeformed reference coordinate system respectively. The microdisplacement u′ is defined by
its components u′i = x′i−X ′i , where x′i are the coordinates of a point M′ belonging to a microvolume
Ω(M) around M and measured from the center of mass M of this microvolume. Given Ω(M)
of small extent and displacement gradients assumed to be small, the microdisplacement can be
approximated by

u′i = x′jχ ji (xi, t) , (27)

where χ ji is the microdeformation defined by,

χ ji =
∂u′j
∂x′i

. (28)

In the 1D case, the indices can be dropped. In the remainder of this manuscript, subscript indices
in x and t denote differentiation with respect to these indices. For example, [·]x = ∂/∂x and [·]tt =
∂ 2/∂ t2.

Following a similar approach to [26], the fundamental balance laws for a microstructured ma-
terial are derived from the system Lagrangian L such that,

L = K −W , (29)

where the kinetic energy K is defined as,

K =
1
2

ρut
2 +

1
2

Iµ χt
2 , (30)

with ρ and Iµ being the macroscopic density and micro-inertia respectively and the potential energy
W is defined as,

W = W (ux,χ,χx) . (31)
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The corresponding Euler-Lagrange equations take the form,(
∂L

∂ut

)
t
+

(
∂L

∂ux

)
x
− ∂L

∂u
= 0 , (32a)

(
∂L

∂ χt

)
t
+

(
∂L

∂ χx

)
x
− ∂L

∂ χ
= 0 . (32b)

The resulting equations of motion are therefore,

ρutt−
(

∂W

∂ux

)
x
= 0 , (33a)

Iµ χtt−
(

∂W

∂ χx

)
x
+

∂W

∂ χ
= 0 . (33b)

Alternatively, the balance equations for a microstructured material in 1D can be expressed by,

ρutt−σx = 0 , (34a)

Iµ χtt−µx +η = 0 , (34b)

with,

σ =
∂W

∂ux
, µ =

∂W

∂ χx
, and η =

∂W

∂ χ
. (35)

σ is the macrostress (Piola stress), µ the microstress and η is the interactive microforce. The
macrostress can be viewed in a classical manner as the macroscopic average of forces per unit
area, while the microstress can be interpreted as a spatial average of the forces arising from the
collective nonlocal behavior of the surrounding microstructure. Note that in the above equations,
no apparent explicit coupling occurs between the thermodynamic quantities associated with macro-
and microdeformations. The effective coupling between the two is accounted for in the potential
energy functional. The first of equation (34) describes the macroscopic balance of momentum
while the second of equation (34) expresses the microscopic balance of momentum. In the case of
elasticity, it is convenient to consider a generic potential energy function describing the constitutive
behavior of microstructured materials as followed,

W (ux,χ,χx) =
1
2
(
E0 +2A0µ +B0µ

)
u2

x +
1
2

Eµ χ
2
x +

1
2

B0µ χ
2−
(
A0µ +B0µ

)
χux , (36)

where E0 is the Young’s modulus, and
(
A0µ ,B0µ ,Eµ

)
are microstructure elastic parameters. Ob-

viously, the choice of such a potential energy function assumes that a certain correlation exists
between the parameters describing the macroscopic behavior and the microscopic behavior. The
coefficients for this generic potential energy function have been chosen is such a way that they
are consistent with both the formulation of [26] and that of [40] and coworkers. Details on the
nonlinear term will be discussed hereafter. Note that the coupling between the macro and microde-
formation is accounted for through the coefficient A0µ +B0µ . Another solution for the coupling

between the macro and microdeformation could have been of the form
(

A′0µ
+B0µ

)
χxux, or a

linear combination of the two.
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The linear elastic Hooke’s law is usually inadequate to describe materials nonlinear, inelastic
behavior. In this work, we therefore consider a plasticity formulation that incorporates a depen-
dence upon the inelastic strain and a coupling between the macro- and microdeformation. As such,
in the context of small strain conditions, the total macro- and microdeformation are partitioned into
a thermoelastic (elastic and thermal dilatation)

(
εel,χel

x
)
, and an inelastic

(
ε p,χ p

x
)

macro- micros-
train respectively such that,

ε
p = ε− ε

el = ux−
σ

E0 +2A0µ +B0µ

−
A0µ +B0µ

E0 +2A0µ +B0µ

χ
el , (37a)

χ
p
x = χx−χ

el
x = χx−

µ

Eµ

, (37b)

where the infinitesimal macrostrain is classically defined as ε = ux and the elastic component of
the macrostrain and microstrain is related to the macro- and microstress via the bijective relation

σ =
∂W

∂ux
=
(
E0 +2A0µ +B0µ

)
ε

el−
(
A0µ +B0µ

)
χ

el , (38a)

µ =
∂W

∂ χx
= Eµ χ

el
x . (38b)

Concerning the macro- and microyield functions, at the macroscopic level, we consider a classi-
cal J2 plasticity model in which the yield strength depends upon the equivalent plastic strain (in
the sense of the von Mises strain invariant). At the microscopic level, we consider that the mi-
crostrength only depends upon the equivalent plastic microstrain strain. The interactive force is
assumed to remain an elastic coupling between the two length scales. As such, we assume that the
constitutive equations (35) in the plastic regime can be written in rate form such that σt = f

(
ε

p
t
)

and µt = g
(
[χ p

x ]t
)

yielding,

σt =
1

h0−1
E0ε

p
t , (39a)

µt =
1

hµ −1
Eµ (χ

p
x )t , (39b)

ηt =−
(
A0µ +B0µ

)
ε

el
t +B0µ χ

el
t . (39c)

where
(
h0,hµ

)
are the hardening/softening macro-modulus and micro-modulus respectively. Due

to physical considerations (tangent plastic modulus),
(
h0,hµ

)
/∈ (−1,1). Note that the continuum

becomes elastic when h0 = 1 and hµ = 1 and becomes perfectly plastic when h0→∞ and hµ →∞.
Macro- or micro- hardening occurs when h0 > 1 or hµ > 1 respectively. Macro- or micro- softening
occurs when h0 <−1 or hµ <−1 respectively.

Combining equations (34), (37) and (39), and defining the velocity v = ut the system of second
order equations (34) can be represented in the form of one fourth-order nonlinear equation. The
resulting wave equation for a one-dimensional hardening microstructured medium is given by,

1
c̄2

c2
0µ

c̄2 vtt =

(
1−

c2
0µ

c̄2

)[
vxx−

h̄
c̄2 vtt

]
+ τ

2hµ

[
vxx−

h̄
c̄2 vtt

]
tt
− c2

µτ
2
[

vxx−
h̄
c̄2 vtt

]
xx

, (40)
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where the characteristic velocities are defined as,

c2
0 =

E0

ρ
, c̄2 =

E0 +2A0µ +B0µ

ρ
, c2

0µ =

(
A0µ +B0µ

)2

ρB0µ

, c2
µ =

Eµ

Iµ

, (41)

the characteristic microstructural time τ is given by,

τ
2 =

Iµ

B0µ

, (42)

and the effective hardening modulus h̄ is given by,

h̄ = h0 +(h0−1)
c̄2− c2

0

c2
0

. (43)

Details of the derivation of equation (40) are provided in the appendix A. Note that we recover the
results from [26, 28] in the case of a linear elastic microcontinuum.

Equation (40) clearly emphasizes the hierarchy and dispersive character of waves propagating
into the material. The coupling between the microstructure and macroscopic scale is reflected in
the correction of the bulk phase velocity c0 as illustrated on the left-hand side of (40). The right-
hand terms of (40) are dominated by both the properties of the microstructure (micro-inertia) and
the materials nonlinearity.

In the following, the microstructural parameter B0µ is assumed to be associated with a soften-
ing/stiffening microstructure such that the resistance to local deformation in the microstructured
solid is less/more than the resistance to macroscopic deformation. As such,

B0µ = β
2
0µE0 , (44)

where β0µ is the softening/stiffening coefficient. Similarly, for simplicity, the coupling between
the macro- and microdeformation A0µ is assumed to be correlated to the macroscopic resistance
and microscopic resistance such that,

A0µ =
(
γ0µ −β0µ

)
β0µE0 . (45)

Note that depending on the value of β0µ and γ0µ , A0µ could very well be a negative quantity (i.e
when β0µ > γ0µ ).

The micro-inertia Iµ introduces into the model one characteristic length scale parameter ` as-
sociated with the microstructure. It is taken as the second moment of stiffness over a given micro-
volume Ω(M) weighted by a scaling factor ρµ such that,

Iµ = ρµρ`2 . (46)

For example in the case of a microstructured material containing microvoids, ρµ would be less than
one, and in the case of a microstructured material containing dense micro-inclusions, ρµ would be
greater than one. Note that due to physical considerations ρµ ≥ 0.
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The microstructural parameter Eµ contains information about the scale of heterogeneity in the
microstructured solids considered. Again for simplicity, Eµ is assumed to be proportional to the
product of the macroscopic elastic constants and the square of the characteristic length scale such
that,

Eµ = γ
2
µE0`

2 . (47)

As such, the characteristic velocities and time parameters introduced in (41) and (42) reduce to

c̄2 =
(

1+2γ0µβ0µ −β
2
0µ

)
c2

0 = γ̄
2c2

0 , c2
0µ = γ

2
0µc2

0 , c2
µ =

γ2
µ

ρµ

c2
0 , τ

2 =
ρµ

β 2
0µ

`2

c2
0
=

¯̀2

c2
0
. (48)

Due to physical considerations, the term γ̄ needs to stay positive or null, leading to restricted com-
binations of γ0µ and β0µ in the

(
γ0µ −β0µ

)
input space as illustrated in Figure 8. This condition is

a necessary but not sufficient condition for the mechanical wave to be physically acceptable. Note
also that the characteristic length ¯̀ is weighted by the effective rigidity of the microstructure

ρµ

β 2
0µ

.

The effective hardening modulus introduced in (43) reduces to,

h̄ = h0 +β0µ (h0−1)
(
2γ0µ −β0µ

)
= h0 +(h0−1)

(
γ̄

2−1
)
. (49)

Through non-dimensionalization, the wave equation (40) for a 1D hardening microstructured medium
becomes

1
γ̄2

γ2
0µ

γ̄2 vt̃ t̃ =

(
1−

γ2
0µ

γ̄2

)[
vx̃x̃−

h̄
γ̄2 vt̃ t̃

]
− 1

ε2
`

hµ

[
vx̃x̃−

h̄
γ̄2 vt̃ t̃

]
t̃ t̃
+

1
ε2
`

γ2
µ

ρµ

[
vx̃x̃−

h̄
γ̄2 vt̃ t̃

]
x̃x̃

, (50)

where x = x̃L0, t = t̃L0/c0, and ε` = L0/ ¯̀ such that when ε` is small, microstructural effects
can be neglected. L0 corresponds to the characteristic length of the wave propagating through the
microstructured medium and L0/c0 its corresponding characteristic time. We use a superimposed
tilde to denote non-dimensional variables and operators.

Wave equation hyperbolicity

At this point it is interesting to discuss when the wave equation (50) will be physically acceptable
and how the transfer of information occurs during propagation. In other words this subsection
discusses when the wave equation remains hyperbolic and the initial value problem is well-posed.
Equation (50) can be analyzed through its characteristics. If we consider the variation of the four
third-order derivative terms of the velocity v, we get,

d (vx̃x̃x̃) = vx̃x̃x̃x̃dx̃+ vx̃x̃x̃t̃dt̃ , (51a)

d (vx̃x̃t̃) = vx̃x̃x̃t̃dx̃+ vx̃x̃t̃t̃dt̃ , (51b)

d (vx̃t̃t̃) = vx̃x̃t̃t̃dx̃+ vx̃t̃t̃t̃dt̃ , (51c)

d (vt̃ t̃ t̃) = vx̃t̃t̃t̃dx̃+ vt̃ t̃ t̃ t̃dt̃ . (51d)
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Figure 8. γ̄ is defined in the
(
γ0µ −β0µ

)
space between the solid

lines.

Combining these equations with the 1D wave propagation equation, we obtain a system of five
fourth order differential equations such that,

hµ h̄
γ̄2 0 −

[
hµ +

γ2
µ

ρµ

h̄
γ̄2

]
0

γ2
µ

ρµ

0 0 0 dt̃ dx̃
0 0 dt̃ dx̃ 0
0 dt̃ dx̃ 0 0
dt̃ dx̃ 0 0 0




vt̃ t̃ t̃ t̃
vt̃ t̃ t̃ x̃
vt̃ t̃ x̃x̃
vt̃ x̃x̃x̃
vx̃x̃x̃x̃

=


f (vt̃ t̃ ,vx̃x̃)
d (vx̃x̃x̃)
d (vx̃x̃t̃)
d (vx̃t̃t̃)
d (vt̃ t̃ t̃)

 , (52)

where the function f (vt̃ t̃ ,vx̃x̃) is defined by,

f (vt̃ t̃ ,vx̃x̃) = ε
2
`

1
γ̄2

γ2
0µ

γ̄2 vt̃ t̃− ε
2
`

(
1−

γ2
0µ

γ̄2

)[
vx̃x̃−

h̄
γ̄2 vt̃ t̃

]
. (53)

Setting the determinant of the coefficient of the matrix of equation (52) yields the characteristic
equation,

h̄hµdx̃4−

[
hµ γ̄

2 + h̄
γ2

µ

ρµ

]
dx̃2dt̃2 + γ̄

2 γ2
µ

ρµ

dt̃4 =

(
γ2

µ

ρµ

dt̃2−hµdx̃2

)(
γ̄

2dt̃2− h̄dx̃2)= 0 . (54)

The characteristics are equal to the high frequency limit for the acoustic macroscopic (±γπ+ (∞))
and optical microscopic (±γπ− (∞)) phase velocities respectively defined later in this manuscript
in equations (70).
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3.2 Dispersion relation, phase and group velocities

Dispersion relation

As it is clearly illustrated by the equation of motion (50), the material’s nonlinear behavior and
its intrinsic microstructure lead to dispersive effects. We now carry out a dispersion analysis. We
consider the general solution to the equation of motion (50) for a single non-dimensional harmonic
wave propagating through a one-dimensional continuum with a velocity field of the form,

v̂(x̃, t̃) = eı(κ x̃−ϖ t̃) , (55)

where ϖ is the dimensionless frequency, and κ is the dimensionless wave number (number of
wave-lengths per 2π). Substituting (55) into (50), yields the dispersion equation,(

1−
γ2

0µ

γ̄2

)[
κ

2− h̄
γ̄2 ϖ

2
]
− 1

γ̄2

γ2
0µ

γ̄2 ϖ
2− 1

ε2
`

[
κ

2− h̄
γ̄2 ϖ

2
][

γ2
µ

ρµ

κ
2−hµϖ

2

]
= 0 . (56)

Equation (56) has four solutions κ =±κ± (ϖ) with,

κ± (ϖ) =

√
ϕ̄ (ϖ)±

√
[ϕ̄ (ϖ)]2− ξ̄ (ϖ) , (57)

or alternatively ϖ =±ϖ± (κ) such that,

ϖ± (κ) =

√
φ̄ (κ)∓

√[
φ̄ (κ)

]2− ζ̄ (κ) . (58)

The functions ϕ̄ (ϖ), ξ̄ (ϖ), φ̄ (κ) and ζ̄ (κ) are defined by

ϕ̄ (ϖ) =
1
2

(
h̄
γ̄2 +

ρµ

γ2
µ

hµ

)
ϖ

2 +
1
2

ρµ

γ2
µ

(
1−

γ2
0µ

γ̄2

)
ε

2
` = fhϖ

2 +
1
2

f`ε2
` , (59)

ξ̄ (ϖ) =
ρµ

γ2
µ

h̄hµ

γ̄2 ϖ
2

(
ϖ

2− 1
h̄hµ

[
h̄

(
γ2

0µ

γ̄2 −1

)
−

γ2
0µ

γ̄2

]
ε

2
`

)
= ghϖ

2 [
ϖ

2−g`ε2
`

]
, (60)

and,

φ̄ (κ) =
1
2

(
h̄
γ̄2 +

ρµ

γ2
µ

hµ

)
γ2

µ

ρµ

γ̄2

h̄hµ

κ
2 +

1
h̄hµ

[
h̄

(
γ2

0µ

γ̄2 −1

)
−

γ2
0µ

γ̄2

]
ε

2
` =

fh

gh
κ

2 +
1
2

g`ε2
` , (61)

ζ̄ (κ) =
γ2

µ

ρµ

γ̄2

h̄hµ

κ
2

[
κ

2−
ρµ

γ2
µ

(
1−

γ2
0µ

γ̄2

)
ε

2
`

]
=

1
gh

κ
2 [

κ
2− f`ε2

`

]
. (62)

The implicit coupling and convolution between microstructure and materials nonlinearity clearly
appears in the above through the functions ϕ̄ (ϖ) and ξ̄ (ϖ) or alternatively through the functions
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φ̄ (κ) and ζ̄ (κ). The dispersion relation (57) contains two distinct branches: the upper branch κ+

(alternatively ϖ+), also called the “acoustic” branch and the lower branch κ− (alternatively ϖ−),
also called the “optical” branch. As we demonstrate later in section 3.3, both optical and acoustic
branches can be expected given an arbitrary set of initial conditions.

Typical results for the dispersion relation (57) are presented in Figure 9 and compared to the
linear elastic case [26]. Note that in the elastic case, the dispersion equation in the frequency
domain takes the same form as in equation (57) with the functions ϕ̄ (ϖ) and ξ̄ (ϖ) being defined
with their elastic counterparts ϕ̄el (ϖ) and ξ̄ el (ϖ) (i.e. when h0 and hµ are both set to 1) such that,

ϕ̄
el (ϖ) =

1
2

(
1
γ̄2 +

ρµ

γ2
µ

)
ϖ

2 +
1
2

ρµ

γ2
µ

(
1−

γ2
0µ

γ̄2

)
ε

2
` and ξ̄

el (ϖ) =
1
γ̄2

ρµ

γ2
µ

ϖ
2 [

ϖ
2 + ε

2
`

]
. (63)

Similarly the dispersion equation in the wave number domain takes the same form as in equa-
tion (58) with the functions φ̄ (κ) and ζ̄ (κ) being defined with their elastic counterparts φ̄ el (ϖ)
and ζ̄ el (κ) such that,

φ̄
el (κ) =

1
2

(
γ̄

2 +
γ2

µ

ρµ

)
κ

2− ε
2
` and ζ̄

el (κ) = γ̄
2 γ2

µ

ρµ

κ
2

[
κ

2−
ρµ

γ2
µ

(
1−

γ2
0µ

γ̄2

)
ε

2
`

]
. (64)

Phase velocity

The dimensionless phase velocity γπ (ϖ) = ϖ/κ (ϖ) of the harmonic wave reads,

γπ± (ϖ) =
ϖ√

ϕ̄ (ϖ)±
√
[ϕ̄ (ϖ)]2− ξ̄ (ϖ)

, (65)

or alternatively γπ (κ) = ϖ (κ)/κ such that,

γπ± (κ) =
1
κ

√
φ̄ (κ)∓

√[
φ̄ (κ)

]2− ζ̄ (κ) . (66)

Typical results for the dimensionless phase velocity γπ are plotted in Figure 10. The phase velocity
γπ depends on the frequency ϖ (wave number κ) and, consequently, wave propagation is dispersive
for non-linear microstructured materials. As such, due to the fact that different harmonic waves
propagate with different velocities, the shape of a pulse propagating through a microstuctured
medium undergoes a change and a loading wave can potentially be transformed into a stationary
localization wave. Note that from equation (66), the acoustic phase velocity remains real if

κ ≥ ε`

√√√√√√√
γ2

0µ
+∆γ2−2γ0µ

√
∆γ2(

γ̄2−
γ2

µ

ρµ

)2 with ∆γ
2 = γ

2
0µ − γ̄

2 +
γ2

µ

ρµ

. (67)
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Figure 9. Dispersion relation for a hardening microstructured
material following the equation of motion (40) with parameters
γµ = 0.6, γ0µ = 1.6, β0µ = 1.3, ρµ = 0.5, h0 = 1.5, hµ = 3.0 and
ε`= 2.0. Results illustrated in this figure are compared to the linear
elastic case of equation (63) [26] for the same parameters.

Or equivalently,

λ ≤ 2πλ0 , with λ0 =
1
ε`

√√√√√√√
(

γ̄2−
γ2

µ

ρµ

)2

γ2
0µ

+∆γ2−2γ0µ

√
∆γ2

, (68)

where λ is the dimensionless wave length. The parameter λ0 is an internal length scale associated
with the microstructured medium. As such, no wavelength larger than 2πλ0 can fit within the mi-
crostructured medium potentially leading to a stationary harmonic localization wave with a width
equal to 2πλ0. In other words, these waves are unstable and could grow unboundedly or decay.
However, the localization region is limited by that critical wavelength and these waves can’t occur.
These results are consistent with those for the dispersive wave propagation in a gradient-dependent
medium [101].

In the lower frequency range (ϖ → 0), the acoustic phase velocity behaves similarly to the
elastic phase velocity such that,

γπ+ (0)≈ ϖ

λ0
≈ γ

el
π+ (ϖ) , (69)

while the optical branch is undefined. In the higher frequency range (ϖ → ∞), the acoustic and
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Figure 10. (a) Phase velocity−frequency relation and (b) Phase
velocity−wave number relation for a hardening microstructured
material using the parameters provided in Figure 9.

optical phase velocities tend to a macroscopically and microscopically defined limit respectively
such that,

γπ+ (∞)≈


√

γ̄2

h̄
if h̄

γ2
µ

ρµ

≥ hµ γ̄2√
γ2

µ/ρµ

hµ

if h̄
γ2

µ

ρµ

≤ hµ γ̄2
, (70a)

γπ− (∞)≈


√

γ2
µ/ρµ

hµ

if h̄
γ2

µ

ρµ

≥ hµ γ̄2√
γ̄2

h̄
if h̄

γ2
µ

ρµ

≤ hµ γ̄2

, (70b)

for
(
h0,hµ

)
≥ 1. These limits correspond to the characteristics of the wave equation. The

macroscopic hardening dominates the acoustic phase velocity while the microscopic hardening
(for h̄γ2

µ/ρµ ≥ hµ γ̄2) dominates the optical phase velocity. As illustrated in Figure 11, the char-
acteristic microstructural length scale ε` accentuates the dispersive character for both the acoustic
and optical branches.
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Figure 11. (a) Phase velocity−frequency relation and (b) phase
velocity−wave number relation for a hardening microstructured
material using the parameters provided in Figure 9 for various mi-
crostructural length scales ε`. Results are normalized by the phase
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symbols represent the phase velocity for ε` = 3.0, and diamond
symbols represent the phase velocity for ε` = 6.0.

Group velocity

The dimensionless group velocity γg (ϖ) = (dκ (ϖ)/dϖ)−1 is given by,

γg± (ϖ) =
2κ± (ϖ)

γ̄ ′ (ϖ)±
γ̄ ′ (ϖ) γ̄ (ϖ)− 1

2
ξ̄ ′ (ϖ)√

[γ̄ (ϖ)]2− ξ̄ (ϖ)

, (71)

where “ ′ ” denotes the derivative with respect to ϖ . For example γ̄ ′ = dγ̄/dϖ . Alternatively
γg (κ) = dϖ (κ)/dκ is given by,

γg± (κ) =

φ̄ ′ (κ)∓
φ̄ ′ (κ) φ̄ (κ)− 1

2
ζ̄ ′ (κ)√[

φ̄ (κ)
]2− ζ̄ (κ)

2ϖ± (κ)
, (72)
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where in this case “ ′ ” denotes the derivative with respect to κ . Group velocity is the velocity of
the modulation of a packet of waves were there is significant scale separation between the wave-
length of the waves in the “packet” and that of the modulation. In this way, group velocity can
be thought of as the velocity at which energy is propagated. Typical results for the dimensionless
group velocity γg are plotted in Figure 12.
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Figure 12. (a) Group velocity−frequency relation and (b) Group
velocity−wave number relation for a hardening microstructured
material using the parameters provided in Figure 9.

Again, as illustrated in Figure 13, the characteristic microstructural length scale ε` accentuates
the dispersive character for both the acoustic and optical branches.

3.3 Discussion

Influence of microstructural features on the dispersive character

It is clearly seen through the dispersion relation, the phase and group velocity relations that the
values of the material constants (both elastic and plastic) and the microstructural length scale ε`

in the governing differential equation (50) play an important part in dictating the type of wave
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Figure 13. (a) Group velocity−frequency relation and (b) group
velocity−wave number relation for a hardening microstructured
material using the parameters provided in Figure 9 for various mi-
crostructural length scales ε`. Results are normalized by the group
velocity γg,0 when the characteristic microstructural length scale is
infinitely small (i.e. microstructural effect can be neglected). Solid
lines denote the acoustic branch, dotted lines denote the optical
branch. Square symbols represent the phase velocity for ε` = 0.75,
round symbols represent the phase velocity for ε` = 1.5, triangle
symbols represent the phase velocity for ε` = 3.0, and diamond
symbols represent the phase velocity for ε` = 6.0.

propagation in the microstructured medium. Figure 14 illustrates the influence of some of the
input parameters used in the model, namely the micro-elasticity scaling factor β0µ , the coupling
term between the micro- and macrodeformation γ0µ , the macroscopic hardening (h0 > 1)/softening
(h0 <−1) modulus, and the microscopic hardening (hµ > 1)/softening (hµ <−1) modulus on the
dispersion relation, the phase velocity and group velocity. For example, is it illustrated that, when
the coupling between the micro- and macrodeformation is ignored (γ0µ = 0), a drastically different
dispersion relation and phase velocity and group velocity is observed. In this case, the acoustic
and optical wave intersect each other corresponding to discontinuity point in the dispersion curves.
After that point the optical becomes continuous with the lower branch (low values of κ) of the
acoustic branch and similarly the acoustic branch becomes continuous with the lower branch of
the optical branch. Such analysis could be useful to define a viable material constants input space
for with the solutions are physically acceptable. A full discussion on the influence of the materials
parameters and their physical relevance on the wave propagation properties is beyond the scope
of this manuscript. Recent work by the authors [22] provides additional discussion on how these
parameters can be extracted from mesoscale Direct Numerical Simulation (simulations in which
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the microstructural topology is explicitly resolved in the spatial discretization).

Another interesting aspect on the importance of the materials parameters on the type of wave
propagation occurring in the microstructured medium is for the case when [ϕ̄ (ϖ)]2− ξ̄ (ϖ) = 0 or
equivalently for,

ϖ = ϖ±cut-off = ε`

√
Π±

√
Π2−ϒ , (73)

with the function Π and ϒ defined as,

Π =
1

h̄
γµ

ρµ

−hµ γ̄2

 2γ2
µγ2

0µ

h̄
γµ

ρµ

−hµ γ̄2
+ γ̄

2− γ
2
0µ

 , (74a)

ϒ =

 γ̄2− γ2
0µ

h̄
γµ

ρµ

−hµ γ̄2


2

. (74b)

This cut-off frequency ϖ±cut-off [41] corresponds to the frequency after which a potential unsta-
ble mode (for a given set of materials parameters rendering equation (57) imaginary) becomes a
propagating mode and therefore changing the wave behavior.

Comparison with a gradient-dependent model

To illustrate the properties of the model developed in section 3.1, the dispersion curves, phase
velocity curves and group velocity curves obtained in section 3.2 are compared with a continuum
model that incorporates a dependence upon the Laplacian of the inelastic strain [101]. Using
the same convention defined to derive equation (50), the non-dimensionalized wave equation (see
equation (24) in [101]) for a gradient-dependent model reads:

h0vt̃ t̃− vx̃x̃ +
cs (h0−1)

ε2
`

[vx̃x̃x̃x̃− vx̃x̃t̃t̃ ] = 0 , (75)

where the normalized coefficients (h0,cs) are defined based on the coefficients (h, c̄) defined in
equations (10) and (11) in [101] such that,

h =
E0

h0−1
and c̄ = csE0 ¯̀2 , (76)

where E0, h0 and ¯̀2 are defined earlier in this manuscript.

Following the dispersion analysis presented in section 3.2, the dispersion relation for the gradient-
dependent model in equation (75) is given by,

ϖ± (κ) = κ

√√√√√√√√
1− cs (1−h0)

ε2
`

κ2

h0−
cs (1−h0)

ε2
`

κ2
, (77)
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or alternatively,

κ± (ϖ) =

√
ϕs (ϖ)±

√
[ϕs (ϖ)]2−ξs (ϖ) , (78)

with,

ϕs (ϖ) =
1
2

(
ϖ

2 + ε
2
`

1
cs (1−h0)

)
and ξs (ϖ) = ε

2
`

h0

cs (1−h0)
ϖ

2. (79)

Comparison of the dispersion relation (77) with the dispersion relation (58) is shown in Figure 15
(a).

The phase velocity for the gradient dependent model is subsequently given by,

γπ± (κ) =

√√√√√√√√
1− cs (1−h0)

ε2
`

κ2

h0−
cs (1−h0)

ε2
`

κ2
and γπ± (ϖ) =

ϖ√
ϕs (ϖ)±

√
[ϕs (ϖ)]2−ξs (ϖ)

. (80)

Similarly to what was noted in section 3.2, the acoustic phase velocity for the gradient-dependent
model remains real if the dimensionless wave length λ satisfies

λ ≤ 2πλ0 with λ0 =
1
ε`

√
cs (1−h0) . (81)

The group velocity for a gradient-dependent model reads,

γg± (κ) =
κ

ϖ± (κ)

1+
h0 (1−h0)(

h0−
cs (1−h0)

ε2
`

κ2
)2

 , (82)

or alternatively

γg± (ϖ) =
2κ± (ϖ)

ϕ̄ ′s (ϖ)±
ϕ̄ ′s (ϖ) φ̄s (ϖ)− 1

2
ξ̄ ′s (ϖ)√

[ϕ̄s (ϖ)]2− ξ̄s (ϖ)

, (83)

where “ ′ ” denotes the derivative with respect to ϖ . Comparisons of the phase and group veloci-
ties between the gradient-dependent model and the model described in the present manuscript are
shown in Figure 15 (b) and (c) respectively.

As it is illustrated in Figure 15, the present micromorphic model for a hardening microstruc-
tured material is in good agreement with the gradient-dependent macroscopic model. It is inter-
esting to note that various combinations of the micromorphic materials parameters could yield to
a similar fit to the gradient-dependent model. Again, a full discussion on the most appropriate
materials parameters to be used in the micromorphic model for the comparison with the gradient-
dependent model is beyond the scope of this manuscript. Rather it should be noted that, similarly
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to a gradient-dependent continuum model, in our micromorphic model composed of a simple plas-
ticity model both at the macro- and microscale, the phase speed does not necessarily become
imaginary at the onset of softening, as it is the case in classical continuum models. The dispersive
character of such models “forces” strain softening regions to localize [101].

Partitioning amongst optical and acoustic phase-speeds

In the analysis of section 3.2 it is seen that four phase-speeds may be excited in the solution
of equation (50). Specifically, all solutions include forward and backward going acoustic and
optical phase-speeds (ϖa+, ϖa−, ϖo+ and ϖo− respectively). Here we briefly describe how initial
conditions determine the excitation of these components.

Begin by noting that the full (homogeneous) solution to equation (50) may be written as,

v(x̃, t̃) =
∞

∑
κ=0

vκ (x̃, t̃) (84)

with,
vκ (x̃, t̃) = Ca+,κ [exp(ıκ x̃−ϖa+ t̃)]

+ Ca−,κ [exp(ıκ x̃−ϖa− t̃)]
+ Co+,κ [exp(ıκ x̃−ϖo+ t̃)]
+ Co−,κ [exp(ıκ x̃−ϖo− t̃)] .

(85)

For the fourth order wave equations, four initial conditions are needed. Taking the first four tempo-
ral derivatives of eqaution (84), setting them equal to their associated (specified) initial conditions,
multipling them against exp(−ınx̃), and integrating over −π to π yields the system,

Fκ( f0)
Fκ( f1)
Fκ( f2)
Fκ( f3)

=


1 1 1 1

−ıϖa+ ıϖa− −ıϖo+ ıϖo−

−ϖ2
a+ −ϖ2

a− −ϖ2
o+ −ϖ2

o−
ıϖ3

a+ −ıϖ3
a− ıϖ3

o+ −ıϖ3
o−




Ca+,κ
Ca−,κ
Co+,κ
Co−,κ

 (86)

where,

Fκ( fi) =
1

2π

∫
π

−π

fi (x̃)exp(−ıx̃κ)dx̃ (87)

are the Fourier coefficients (for wave-number κ) of the imposed initial condition ith temporal
derivatives. Note that f1 is in general not f0t̃ , etc. Equation (86) is solved for the amplitudes,
C, for each of the four phase-speeds, for each wave-number in all the initial conditions, fi. Ad-
ditionally, recall that as the problem is linear, each κ solution is independent of all others. It is
evident from equation (86) that given arbitrary initial conditions, all phase-speeds will be present
for all active wave-numbers.

3.4 Conclusions of Dispersion Analysis

This paper presents a 1D microcontinuum model that incorporates both a dependence upon the mi-
crostructure and inelastic behavior that is used to study wave dispersion in nonlinear, microstruc-
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tured media. This microcontinuum model is based on the mechanics of generalized continua and
introduces characteristic parameters (characteristic microstructural length scale and microstruc-
tural materials parameters) arising from the inhomogeneous behavior of the microstructure. These
parameters are generally related to microstructural features. Nonlinearity is introduced in this
study only through the description of the yield surfaces during plastic deformation both at the
macroscopic and microscopic level. Several conclusions can be drawn from this work including:

• The introduction of inelastic behavior clearly impacts the phase speed behavior of the micro-
morphic material response. We see that depending on the coupling between the macroscale
and the microscale, the dispersive character of the medium can drastically changes. Careful
attention should be paid to the correlation between the dispersive character of the microstruc-
tured medium and the associated materials properties.

• This model includes as a subset, that of [26] when hardening parameters are set appropri-
ately, i.e. in the case of a linear elastic microcontinuum

(
h0,hµ

)
. Our analysis also includes

as a subset, that of [101] for a gradient-dependent model, and it was shown that an “ex-
clusion” zone can develop in the medium where waves do not propagate but may grow or
decrease in amplitude with time (unstable wave).

• Mathematically speaking, the following approach overcome the ill-posedness of the set of
partial differential equations governing the wave propagation. It has been shown that the
introduction of an internal length scale regularizes the problem and the wave propagation in
the micromorphic medium is well-posed for a careful choice of materials parameters. Choice
of these parameters is beyond the scope of this manuscript but as mentioned in a previous
study [22], Direct Numerical Simulation could be used to spatially resolve the complexity
and richness of a wave propagating through microstructured heterogeneous media and and
calibrate such micromorphic models.

• In general, all phase-speeds, including those of the acoustic and optical branches, are present
in a solution. Other authors note the presence of the optical-branch in their phase speed
analysis but ignore its impact when demonstrating analytical solutions to arbitrary input
waves. To our knowledge we are the first to demonstrate the partitioning between these
branches.
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Figure 14. Impact of the macro-/microscopic materials constants
on (a) dispersion relation, (b) phase velocity−wave number re-
lation and (c) group velocity−wave number relation. Solid lines
denote the acoustic branch, dotted lines the optical branch. Param-
eters common to all cases are γµ = 0.6, ρµ = 0.5 and ε` = 2.0.
The macro-/micro- hardening parameters (h0/hµ ), coupling term
(γ0µ ) and micro-elasticity scaling factor (β0µ ) are annotated for
each case. 46



 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5

ϖ
(

κ)

κ

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  1  2  3  4  5

γ π

κ

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4  5

γ g

κ

(c)

Figure 15. Comparison between a hardening microstructured
material model and a gradient-dependent hardening material [101]
for (a) Dispersion relation, (b) phase velocity−wave number re-
lation, and (c) group velocity−wave number relation. Param-
eters used for the micromorphic hardening model are adapted
from [101] such that γµ = 2, ρµ = 1, γ0µ = 0.086, β0µ = 0.9,
h0 =−1.5 and hµ = 2.0 and ε` = 2.0. Parameters for the gradient
dependent model are h0 =−1.5, ε` = 2.0 and cs = 1.6.
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4 Velocity Dispersion Experiments (DICE shots 242-244)

The goal of these experiments was to measure velocity dispersion due to (fcc) copper material
heterogeneity in a gas gun shot and to establish an upper boundary on such dispersion (Figure 16).
In the following, [m : n] represents the widths of a bell curve with a half-max half-width of m
(m/s) and near-toe half-width of n (m/s). For impact of a thin (0.4 mm) plate of annealed copper
on a copper plate (3 mm thick) at 350 - 400 m/s, predictions show heterogeneity-caused velocity
dispersion of [3:8] during the release (which has a slope of -1 m/s per ns). However, data from

Figure 16. General concept for DICE gas gun shots 242-244.

copper bicrystal shots at lower impact velocities ([100] and [124] orientations) showed velocity
deviations of several times this, together with strong side-running waves (reshocks/releases) ap-
parently caused by the material anisotropy (Figure 17). This suggested the numerical predictions
might be low.

4.1 Configuration

Two shots were performed with annealed copper samples (40µm grains) and one with an aluminum
sample (which should show weaker velocity dispersion due to the nearly isotropic single crystal
response), using four probes on each of the copper shots and two on the aluminum shot. The
copper was supplied by G. T. Gray III (LANL). Preshot calculations indicated that the shots might
or might not show positive evidence of velocity dispersion.
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Figure 17. Velocity field from copper impacting copper bicrystal
windowed by Z-cut quartz (DICE gas gun shot 199).

Tilt

While the impact tilt was expected to be less than one milliradian, portions of the very-thin copper
impactor plates were not flat, with tilts ranging up to 4 milliradians. With a 350 m/s impact and a
300 µm diameter PDV probe spot size, this could cause a 3.4 ns arrival time spread, corresponding
to an 3.4 m/s observed velocity spread during the release, comparable to the expected dispersion.

FFT Window Limits

In most PDV analyses, the peak of the spectral distribution is of most interest. Here it is the width.
As increased time resolution is demanded via narrower timeslices, the width of the spectral am-
plitude peak increases (Figure 18). This proved to be the most important limitation for measuring
velocity dispersion. For the present problem, simulations of the PDV signal (some performed prior
to the shots, others during the execution and afterward) showed that distinguishing the predicted
velocity dispersion from a single-velocity behavior would require a constant-velocity region of the
velocity history at least 102.4 ns long. If the dispersion is doubled, this figure drops to 51.2 ns. On
the chance that larger values of [12,32] are applicable, a window of 25.6 ns would work, which
would be usable on the release. These limits reflect intrinsic broadening of amplitude-versus-
velocity peaks calculated from original PDV data (Figure 18), windowed with Hamming windows
and processed via Fourier transform.
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Figure 18. Padded transforms for simulated copper experiment
with a variety of sliding FFT window widths, taken at the time
noted on the synthetic trace.

4.2 Shot Details

Three shots were conducted on the DICE gas gun. Shots 242 and 243 followed the blueprint of
Figure 16. It was originally planned to soft-recover the copper target plates, re-machine them and
shoot them again to compare the response of annealed copper and cold-worked copper. However,
the soft recovery hardware was not available in time for these shots.

Shot 242

A photo of the shot hardware is shown in Figure 19. An innovative adjustable probe holder was
built to accommodate the required four PDV probes. The copper impactor was found to have too
much localized tilt due to machining of the underlying PMMA, so a new projectile was constructed
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with the copper impactor resting directly on the projectile nosetip. The impactor thickness was
0.3997 mm, while the copper target thickness was 3.1224 mm. Four collimating PDV probes were
used (three with a nominal 0.95 mm diameter collimated beam and one with a nominal 0.22 mm
diameter beam). The beam sizes were verified with a beam profilometer and found to be within
10% of nominal. The 0.22 mm probe returned good quality PDV data while the larger diameter
probes surprisingly did not. Data were acquired on an Agilent Infiniuuum digitizer (25 MHz, 80
GS/s). The shot was conducted with an impact velocity of 0.331 km/s. The overall tilt was slightly
less than 1.2 milliradians.

Figure 19. . Shot 242 hardware. (a) Overall, (b) PDV probe
holder, (c) nosetip with PMMA under copper (not used), (d)
nosetip with aluminum under copper (used).

Shot 243

This was identical to Shot 242 except as follows. The copper impactor thickness was 0.3984 mm
and the target thickness was 3.1231 mm (both were one inch diameter). The impact velocity was
0.332 km/s.
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Shot 244

A 1060 aluminum target 2.007 mm thick and 12.07 mm in diameter was used (very low crystalline
anisotropy). The copper impactor thickness was 0.3984 mm and the target thickness was 3.1231
mm (both were one inch diameter). The impact velocity was 0.333 km/s. Two 22 micron PDV
probes were used.

4.3 Results

The copper shot data showed a minimum peak width of [16:50] for a 51.2 ns window, both for
the beginning and the middle of the steepest release. This may be due primarily to the overall
surface acceleration during that time (Figure 20). The Al shot data showed a [14:27] peak for the

Figure 20. Padded transforms for DICE gas gun shot 243 (probe
1 data). Two different times are analyzed, with various FFT win-
dow widths.
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zero-acceleration plateau (51.2 ns FFT window). Simulations showed the same widths for a non-
dispersive surface and a [19:40] peak for a surface with velocity dispersion of [12:32] (Figure 21).

These analyses and models used zero-padded Hamming windowed portions of the PDV data
(padded to 16,358 points, or 204.8 ns) to smooth the spectral amplitude peaks. Attempts to glean
better constraints by other methods such as windowing a repeated sequence of portions of the data
or randomizing starting phases of the light for the separate reflectors (different velocities) have not
improved the velocity resolution.

4.4 Conclusions of Experimental Work

The velocity dispersion on the release of the copper experiments does not exceed a 1-sigma value
of 12 m/s. Unfortunately, this is a relatively weak constraint in view of the original prediction of a
1-sigma value of 3 m/s. However, it does rule out the much larger deviations that appeared credible
from the earlier copper bicrystal work.

Figure 21. Padded transforms for Al experiment, flat plateau and
plateau with noted velocity dispersion
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Future work

The following are additional ways to characterize the effect of crystalline anisotropy on shock
propagation:

1. Look for impact configurations where crystalline anisotropy would be expected to produce
velocity dispersion on a less-accelerated part of the waveform (e.g. a plateau greater than 103 ns
long).

2. Use fiber optic ribbons imaged onto the surface with spot sizes less than 20 microns (0.5x
the average grain size), providing signal to a large number of VISAR channels. This would result
in a statistical distribution of velocities, and would be usable on accelerating surfaces such as in the
present experiment. It should be sensitive to the 2 m/s level. Other options may arise upon further
investigation. This problem appears to be of increasing importance in the material dynamics field
with progressively more stringent requirements for prediction of dynamic behavior of materials
and the use of more exotic materials.
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A Derivation of the fourth order equation of motion

From the elasticity theory, using equations (35) and (36), the macrostress, microstress and interac-
tive force are defined as,

σ =
∂W

∂ux
= Ēε

el− Ā0µ χ
el , (88a)

µ =
∂W

∂ χx
= Eµ χ

el
x , (88b)

η =
∂W

∂ χ
=−Ā0µε

el +B0µ χ
el , (88c)

where,
Ē = E0 +2A0µ +B0µ and Ā0µ = A0µ +B0µ . (89)

Extracting the elastic deformations from (88) yields the kinematic expressions defined in equa-
tion (37). By substituting the macrostress given by equation (88a) and the microdeformation given
by equation (88b) into the rate form of macroscopic balance equation (34) yields an expression for
the microstress in rate form of the type,

µt =
ĒEµ

Ā0µ

(
vxx−ρ

E0 +(h0−1) Ē
E0Ē

vtt

)
. (90)

Combining equation (39b) with equation (90) gives an expression of the rate of microdeformation
as a function of the velocity such that,

(χx)t = hµ

Ē
Ā0µ

(
vxx−ρ

E0 +(h0−1) Ē
E0Ē

vtt

)
. (91)

Similarly, the rate of interactive force can be expressed as a function of the velocity such that,

(ηx)t =−ρ
Ā0µ

Ē
vtt +

B0µ Ē
Ā0µ

(
1−

Ā2
0µ

B0µ Ē

)(
vxx−ρ

E0 +(h0−1) Ē
E0Ē

vtt

)
. (92)

Taking the spatial derivative of the microscopic balance equation (34) with respect to x and sub-
stituting the microdeformation, microstress and interactive force by equations (91), (90) and (92)
respectively, leads to the one-dimensional wave equation:

ρ

Ē

Ā2
0µ

B0µ Ē
vtt−

(
1−

Ā2
0µ

B0µ Ē

)[
vxx−ρ
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vtt

]
=

Iµ
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hµ

[
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E0Ē

vtt

]
tt
−

Eµ

B0µ
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vxx−ρ
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vtt

]
xx

.

(93)
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