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Abstract

The subject of this work is the development of models for the numerical simulation of matter,
momentum, and energy balance in heterogeneous materials. These are materials that consist
of multiple phases or species or that are structured on some (perhaps many) scale(s). By
computational mechanics we mean to refer generally to the standard type of modeling that
is done at the level of macroscopic balance laws (mass, momentum, energy). We will refer to
the flow or flux of these quantities in a generalized sense as transport. At issue here are the
forms of the governing equations in these complex materials which are potentially strongly
inhomogeneous below some correlation length scale and are yet homogeneous on larger length
scales. The question then becomes one of how to model this behavior and what are the proper
multi-scale equations to capture the transport mechanisms across scales. To address this we
look to the area of generalized stochastic process that underlie the transport processes in
homogeneous materials. The archetypal example being the relationship between a random
walk or Brownian motion stochastic processes and the associated Fokker-Planck or diffusion
equation. Here we are interested in how this classical setting changes when inhomogeneities
or correlations in structure are introduced into the problem. Aspects of non-classical behav-
ior need to be addressed, such as non-Fickian behavior of the mean-squared-displacement
(MSD) and non-Gaussian behavior of the underlying probability distribution of jumps. We
present an experimental technique and apparatus built to investigate some of these issues.
We also discuss diffusive processes in inhomogeneous systems, and the role of the chemi-
cal potential in diffusion of hard spheres is considered. Also, the relevance to liquid metal
solutions is considered. Finally we present an example of how inhomogeneities in material
microstructure introduce fluctuations at the meso-scale for a thermal conduction problem.
These fluctuations due to random microstructures also provide a means of characterizing the
aleatory uncertainty in material properties at the mesoscale.
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Chapter 1

Introduction

A homogeneous system is uniform in composition and kind (genus) which, in the case
of the distribution of matter, implies a constant density ρ(x, t) = ρ; there is no spatial or
temporal variation in the density. Under appropriate boundary and initial conditions for
momentum and energy balance we can have no flow or heat flux (on average, u(x, t) = 0,
T (x, t) = T ) into (or within) the system along with the constant density profile, in which
case the system can be described in terms of equilibrium thermodynamics. Yet, even in
this case, a constant density is achieved only in the thermodynamic limit, V → ∞. Below
this limit, the density can be seen to fluctuate consistent with the macroscopic boundary
conditions. The Law of Large Numbers (ignoring any correlations within the system) would
give an approximate size of the density fluctuations as V −1/2, where V is the volume. When
the system is large the fluctuations can be ignored. However, when V is small, or Vel is small,
where Vel is the volume of a typical element in a discretization of the governing equations,
fluctuations can be significant. In fact, it is these fluctuations that can be expected to lead
to fluxes which drive diffusive mixing of matter in simple fluids even in the case of no average
(macroscopic) flow or composition gradient.

These thermodynamic fluctuations [1, 115] point to a role for mathematical models based
on stochastic processes in the description of transport in materials [3, ?]. Diffusion is the
archetypal example. These classical models have been hugely successful in simple materials
and in well defined limits where complexities in the material structure (e.g., correlations)
can be ignored, since classical models are based on assumptions of statistical independence
and Gaussian probability distributions. In fact, diffusion-like models have, in turn, been
proposed as models of how fluctuations in macroscopic thermodynamic variables in simple
systems converge to the homogeneous thermodynamic limit. For complex (inhomogeneous,
heterogeneous) systems the question of homogenization is an open challenge.

One source of difficulty in complex-structured materials is what effect correlations in the
material have on the approach to an asymptotic homogeneous limit. Conversely, it can be
asked what effect inhomogeneities have on the local value of the field of interest relative to
the macroscopic, homogeneous response. If correlations are long-range and inhomogeneities
associated with them are significant then assumptions of “smoothly” varying fields and scale
separation can breakdown on the scale of the discretization of the governing equations, or the
form of the equations to be solved may not be appropriate to the size of the system simulated.
In other words, we want to explore fluctuations inherent in the so-called stochastic volume
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element (finite-sized volume element) to discern a theoretical structure that is amenable to
mathematical models and experimental measurements to inform the models. In addition,
for multi-scale models, it is expected that propagation of the correlations across scales is
critical to physical fidelity. Finally, we note that stability of fluctuations is also relevant to
emergent phenomena [4].

The subject of this work is the development of models for the numerical simulation of
matter, momentum, and energy balance in heterogeneous materials. These are materials that
consist of multiple phases or species or that are structured on some (perhaps many) scale(s).
By computational mechanics we mean to refer generally to the standard type of modeling
that is done at the level of macroscopic balance laws (mass, momentum, energy). We will
refer to the flow or flux of these quantities in a generalized sense as transport. At issue here
are the forms of the governing equations in these complex materials which are potentially
strongly inhomogeneous below some correlation length scale and are yet homogeneous on
larger length scales. The question then becomes one of how to model this behavior and what
are the proper multi-scale equations to capture the transport mechanisms across scales. To
address this we look to the area of generalized stochastic process that underlie the transport
processes in homogeneous materials. The archetypal example being the relationship between
and random walk or Brownian motion stochastic processes and the associated Fokker-Planck
or diffusion equation. Here we are interested in how this classical setting changes when
inhomogeneities or correlations in structure are introduced into the problem. At first sight
we need to address non-classical behavior such as non-Fickian behavior of the mean-squared-
displacement (MSD) and non-Gaussian behavior of the underlying probability distribution
of jumps. In general, it appears we would like a theory of fluctuations in nonequilibrium
systems that takes into account correlations on across various scales as well as instabilities.

Further background and discussion of related issues is found in the following sections.

Background on Diffusion and Stochastic Processes

Here we summarize a number of issues related to models for diffusion and anomalous
diffusion. The concept of diffusion is based upon the observation that “stuff” spreads from
higher to lower concentrations even when no average flow is present; examples include mass
and energy. The hallmark of a classical diffusive process X(t) is the linear scaling of the
mean squared displacement with time, or so-called Fickian diffusion. Anomalous diffusion
occurs when the scaling is not linear with time. More precisely, X(t) is asymptotically

subdiffusive
diffusive

superdiffusive

 if lim
t→∞

E
(
X2(t)

)
t

=


0
D
∞


where D defines the diffusion coefficient and E

(
·
)

denotes the expectation, or mean. The
statistical physics literature denotes expectation and variance by using the notation 〈X(t)〉
and 〈X2(t)〉, respectively. Here we emphasize that many discussions in the literature (e.g.,
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??) focus on the asymptotic behavior to assess the potentially anomalous nature of the
process and spend relatively little effort characterizing the approach to the asymptotic limit.
The approach to the asymptotic limit turns out to be relevant to our work.

Somewhat less formally, X(t) is
subdiffusive

diffusive
superdiffusive

 when E
(
X2(t)

)
∝ tσ where σ


<
=
>

 1.

The remainder of this Chapter reviews classical diffusion and its departure to anomalous
diffusion. Our presentation is pedagogical, attempting an informal unification, via random
walks and its generalizations. An excellent textbook, from an applied probabilistic perspec-
tive is due to Gardiner [5]. An excellent introduction to random walks, from a statistical
physics perspective is due to Klafter and Sokolov [6]. A concise, well-written book serving as
an introduction to a modern mathematical approach to random walks is due to Lawler [7].
An excellent bridge between the statistical physics and classical probabilistic approaches to
random walks is given by Meerschaert and Sikorskii [8]. Both books [6] and [8] also introduce
and develop the notion of fractional derivatives, at the heart of many anomalous diffusion
approaches. The book by Applebaum [9] is a well-regarded introduction to a modern ap-
proach for Lévy process. These five books cover nearly every topic, except on Markov chains,
considered in this short overview. An excellent book on Markov chains is that by Norris [10].

Diffusion

The canonical diffusive process (σ = 1) is Brownian motion, an example of a Wiener
process. A physical perspective associates Brownian motion with two fundamental models,
the first supposes randomness whereas the second is deterministic. A bit more precisely, we
have

• microscopic: Brownian motion

Xt =
√

2D Wt, X0 ∈ Rn

where Wt is a Wiener stochastic process, and the

• macroscopic: Expectation of the process Xt conditioned upon X0 = x ∈ Rn evolves
according to 

∂

∂t
Ex
(
u0(Xt)

)
= ∇ · 2D∇Ex

(
u0(Xt)

)
Ex
(
u0(X0)

)
= u0(x),

where u0 is a probability density, representing the initial condition, and Ex
(
u0(Xt)

)
=

E
(
u0(Xt)|X0 = x

)
.
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The distinction between the two models is crucial. The former model represents what occurs,
or data, assumed to fluctuate in a random fashion. The latter model explains that the mean
of the process satisfies a partial differential equation—the diffusion equation, i.e.,

∂

∂t
u(x, t) = ∇ · 2D∇u(x, t),

where

u(x, t) =
1√

2Dπt

∫
Rn

e−
(x−y)·(x−y)

2Dt u0(y) dy = Ex
(
u0(Xt)

)
.

In words, the function u is the probability density for the evolution of the initial condition
u0. This evolution represents the expectation for the process u0(Xt) when starting at the
point x. The special choice of u0(x) = δ(x), the Dirac measure or delta function, grants that

u(x, t) =
1√

2Dπt
e−

x·x
2Dt = Ex

(
δ(Xt)

)
so that the probability that Xt ∈ Ω is given by

P
(
Xt ∈ Ω

)
=

1√
2Dπt

∫
Ω

e−
x·x
2Dt dx

or a normal random variable with mean 0 and variance 2Dt. Again, it is emphasized that this
canonical model is “scale-free” in that sense that the Brownian motion applies for arbitrary
temporal resolution. In complex, heterogeneous materials there are potentially many length
and time scales over which the stochastic processes related to transport may have anomalous
forms. This issue will present itself in following Chapters.

Random walk

A Wiener process W (t) satisfies the following three technical conditions:

1. W (0) = 0, the sample-path (the trajectory as a function of time t) is continuous

2. W (t) is of mean and variance 0 and t, respectively.

3. independent increments, i.e., W (t2)−W (t1) is independent of W (t4)−W (t3) for t4 ≥ t3,
t2 ≥ t1.

Intuitively, we can think of a Wiener process as the limit of a simple random walk on a
lattice. For instance, in one-dimension, a walker jumps from a point on the lattice to either
its leftmost or rightmost neighbor with probability 1

2
. More formally, denote the discrete

random process specifying the distance of the walk by X such that

X(n) = X(n− 1) + S ∈ {−n∆x, (−n + 1)∆x, . . . , n∆x} (1.0.1)
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where S is a discrete random variable that assumes the values ±∆x with probability

P(S = ∆x) = P(S = −∆x) = 1/2

with mean and variance

E(S) = 0 and E(S2)−
(
E(S)

)2
= E(S2) = (∆x)2.

The mean and variance of X(n) are then

E
(
X(n)

)
= nE(S) = 0

E
(
X2(n)

)
= (∆x)2n =

(∆x)2

∆t
t

where we assume that n∆t = t.

If the (fixed) distance ∆x between lattice points and (fixed) time ∆t between steps
satisfies the scaling relationship (

∆x
)2

= D ∆t, (1.0.2)

then the central limit theorem implies that the probability at time t = n ∆t for the location
of the walker is approximately given by a normally distributed random variable with zero
mean and variance

√
n/2. In particular, since a simple random walk represents a binomial

distribution, application of the Laplace–De Moivre theorem grants that

P (a ≤ X(n) ≤ b) → 1√
2πDt

∫ b

a

e−
x2

2Dt dx n →∞,

where the scaling relationship (1.0.2) is assumed. A Wiener process is then this limiting
random walk, e.g., when n →∞, or equivalently, ∆t → 0 so that discrete time is replaced by
time over an interval. This limiting walk is continuous but not differentiable, an important
analytical distinction. Loosely, if the trajectory X(0), X(∆x), · · · , X(n∆x) consisting of
jumps of size ±∆x is connected by linear segments, then as ∆x → 0 there are an increasing
number of points of continuity where the derivative is not defined.

The random walk model provides a powerful way to understand the transition from
a discretely defined process (fixed step-lengths at fixed times) to a process where the step-
length can take on a continuum of values. The central limit theorem then provides a rigorous
basis for the transition from a discrete time to a continuum process.

In the above simple random walk, the fixed step-length of ±∆x represents a discrete
random variable given by S. A more general random walk is realized by replacing S with
a random variable taking on a continuum of values with the restriction that its variance is
finite, e.g., a uniform or normal random variable. Because the variance is assumed finite, we
may still invoke the central limit theorem for the limiting walk, a Wiener process. However,
the sequence of random walks can differ substantially among all random variables replacing
S with finite variance.
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Stochastic differential equation

The random walk model is powerful but a continuous time process is only obtained in
the limit. An alternate model, continuous in time is given by the Itô stochastic differential
equation (SDE)

dX(t) = f(X(t)) dt + g(X(t)) dW (t),

where this is notation for

X(t) = X(0) +

∫ t

0

f(X(s)) ds +

∫ t

0

g(X(t)) dW (t),

where W (t) is a Wiener process. The subtlety is understanding the stochastic differential
dW . Let 0 = t0 < t1 < · · · < tm+1 = t; then∫ t

0

g
(
X(t)

)
dW := lim

m→∞

m∑
i=0

g
(
X(ti)

)(
W (ti+1)−W (ti)

)
defines a stochastic integral so that we may think of dW as the increments W (ti+1)−W (ti).
The link with a random walk is obtained when the SDE is discretized, f = 0, g = 1 and
(1.0.1) is rewritten as

X(n) = X(0) +
n∑

i=1

(
X(i)−X(i− 1)

)
.

Markov jump process

In contrast to the random walk X(n), a discrete-time process, consider the continuous-
time process governed by the integro-differential equation

ut(x, t) =

∫
Rn

γ(y, x) u(y, t) dy −
∫

Rn

γ(x, y) u(x, t) dy, (1.0.3)

a nonlocal analogue of the diffusion equation, also known as a chemical or Markov master
equation. The first integral gives the jump rate γ(y, x) dx into dx from y given probability
u(y, t) dy, the second integral gives the jump rate γ(x, y) dy into dy from x given the proba-
bility u(x, t) dx. The difference in these two rates gives the rate of change for the probability
u(x, t) dx. If the jump-rate is asymmetric, i.e., γ(x, y) 6= γ(y, x), then the probability of the
process jumping to x from y is distinct from the probability of the process jumping to y from
x. If γ is symmetric, then we may rewrite (1.0.3) as

ut(x, t) =

∫
Rn

(
u(y, t)− u(x, t)

)
γ(y, x) dy.

The continuous-time process corresponding to (1.0.3) is a Markov jump process, a gen-
eralization of a continuous-time Markov chain over an uncountable (continuum) state-space.
Loosely, replacing the integrals above with summations leads to a continuous-time Markov
chain. This generalization explains the origin of the “jump” designation since a continuous-
time Markov chain transitions from state to state by jumping.
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CTRW

A continuous-time random walk (CTRW) generalizes the discrete time random walk.
A CTRW can also be understood as continuous-time Markov chain where the wait-times
between jumps, or steps, are no longer restricted to be exponentially distributed. Of par-
ticular relevance to transport in heterogeneous materials are CTRW models of diffusion in
disordered materials [11, 12] and their relationship to generalized master equations [13] and
so-called effective medium theories [14, 15].

Superdiffusion

A superdiffusive process can now be understood in one of three ways. The first is as the
limit of a random walk where the random variable specifying the step-length is not of finite
variance or even of finite mean. For example, consider when the random variable S is given
by the Cauchy distribution.

The second way is to replace the Wiener increment for the SDE with one where the
variance is not finite. This leads to a jump diffusion stochastic differential equation.

The third way in which to understand a superdiffusive process occurs when the jump
measure behaves in an asymptotic fashion as

γ(x, y) ∝ 1

|x− y|n+α
, 0 < α < 2.

The jump measure is not integrable so that (1.0.3) is replaced by

ut(x, t) =

∫
Rn

(
γ(y, x) u(y, t)− γ(x, y) u(x, t)

)
dy (1.0.4)

where, loosely, the density u must be sufficiently well-behaved to offset the non-integrability
of γ.

Subdiffusion

A superdiffusive process can be understood as a CTRW where the wait-times between
jumps are not of finite mean. The associated master equation generalizes (1.0.3) to∫ ∞

0

u(x, τ)φ(τ − t) dτ =

∫
Rn

γ(y, x) u(y, t) dy −
∫

Rn

γ(x, y) u(x, t) dy (1.0.5)

and when the mean of the wait-time density φ is undefined, the corresponding stochastic
process is not Markovian. In words, the future of the process depends upon the current state
and the history of the process. A Markov process is defined to have no dependence upon the
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past. A stochastic differential equation approach is based upon fractional Brownian motion,
however this approach is distinct from a CTRW perspective.

Our first attempt at this concerns introducing a time scale into the equations of motion
for the stochastic process (the so-called Langevin equation) and revisiting what has been
shown regarding the form of the diffusion equation for this case.

Overview of Chapters

In the following Chapters we will have opportunity to refer back to some of these standard
notions in order to highlight areas in need to generalization.

In Chapter 2 we introduce equilibrium colloidal dynamics as the model system for con-
sidering generalizations (non-Fickian, non-Gaussian – anomalous) to standard macroscale
models of transport in complex systems and the connections to underlying stochastic pro-
cesses. We consider thermodynamic equilibrium and in a macroscopically homogeneous
systems. However, the role of transient inhomogeneities in the structure is highlighted as
relevant to the nonstationary (non-Fickian) and and correlated (non-Gaussian) nature of
the processes. In Chapter 4 we examine an experimental technique built and tested to gain
physical insight into these systems. Specifically, diffusing-wave spectroscopy is discussed.

In Chapter 3 we consider diffusive processes in inhomogeneous systems and the role of
the chemical potential in diffusion of hard spheres is considered. Also, the relevance of this
line of thought to liquid metal solutions is considered.

In Chapter 5 we show how inhomogeneities in material microstructure introduce fluctu-
ations at the meso-scale that in some limits are reminiscent of thermodynamic fluctuations
within otherwise macroscopically homogeneous thermodynamic systems. These fluctuations
due to random microstructures also provide a means of characterizing the aleatory uncer-
tainty in material properties at the mesoscale. Finally, Chapter 6 contains a summary and
outlook for future work.

22



Chapter 2

Diffusion of Colloids

In this chapter we introduce equilibrium colloidal dynamics as the model system for con-
sidering generalizations of standard macroscale models of transport in complex systems and
the connections to underlying stochastic processes. To begin, we discuss some aspects on
non-interacting colloids (infinitely dilute limit) where the inertia of the colloids is not ne-
glected. This introduces a time scale into the stochastic process – the momentum relaxation
time. We will see that time scales can be bridged in the macroscopic equations of colloidal
self-diffusion by recognizing the non-stationary nature of the microscopic stochastic process.
In the dilute limit the “microscopic” equations of motion are uncoupled; the colloids un-
correlated. Going beyond self-diffusion in this limit we consider finite volume fractions of
mono-disperse hard-spheres with a view toward the role correlations and transient inhomo-
geneities in structure play in an otherwise macroscopically homogeneous system. Of interest
is the effect of correlations on the form of the macroscopic diffusion equation.

Dilute Limit and the Langevin Equation

As a model of the dynamics of dilute colloids, consider a system of N identical, interac-
tionless particles of mass, m, following classical Langevin dynamics according to

dri

dt
= vi

dvi

dt
= −γvi +

1

m
Ei(t), (2.0.1)

where γ = τ−1
B with τB the momentum relaxation time, and E(t) is a random force with

〈E(t)〉 = 0 and 〈E(t)E(t′)〉 = 2kTmγδ(t − t′). A formal solution to this equation is well
know (see, e.g., Risken [20] or Zwanzig [21]) to be given by

23



v(t) = v0e
−t/τB +

1

m

∫ t

0

e−(t−t′)/τBE(t′)dt′. (2.0.2)

Using this an analytic expression the velocity autocorrelation function can be obtained
and integrated twice to get an expression for the mean-squared displacement (MSD) [20]

〈∆r2〉(∆t) = 6
kT

m
τB(∆t− τB(1− e−∆t/τB)). (2.0.3)

It should be noted that we have averaged over the initial distribution of velocities assuming a
Maxwell-Boltzmann distribution to obtain Equation 2.0.3. This is because we want to focus
on the non-stationarity of the process while considering the case of stationary increments,
that is, ∆r is a function of ∆t = t− t0 but not t. Hence, in the discussion to follow we will
always consider the system to be well equilibrated or in the asymptotic stationary regime of
the velocity distribution; that is, we consider the process to have run long enough to reach
stationary velocity distribution – the Maxwell-Boltzmann distribution (also assumed to be
the initial velocity distribution).

Although this result has been well known, it is worth pausing and reflecting on it at this
point to see what it may have to tell us about developing multi-scale models of transport.
Note, for short times we get MSD ∼ ∆t2, or ballistic motion, while in the long-time limit
MSD ∼ ∆t, as expected. It is convenient to characterize this behavior through the so-called
Hurst parameter, H. Typically considered a constant, H has been used to characterize
generalized stochastic process (e.g., fractional Brownian motion) [22, 23]. In contrast to
previous uses, here H is a function of time (i.e., MSD ∼ t2H(∆t)), and H = 1/2, classical
Brownian motion, only in the limit ∆t → ∞ (i.e., ∆t >> τB). This is an indication of
nonstationarity of the process. We will return to this below. At this point we note that
the Fokker-Planck equation in position space [24] corresponding to equations 2.0.1 admits
scaling solutions through a change of time variable that allow one to obtain the standard
H = 1/2 of classical diffusion in terms of the new time, τD (i.e., 〈∆r2〉(∆t) ∼ τ 2H

D for τD ≥ 0
with H = 1/2). Note, the suggestion of a change of variables has also arisen in other contexts
[25, 26].

To make the last point clear, we make specific the change of time variable. Define the
new time variable τD as

τD(∆t) =
〈∆r2〉(∆t)

6τBLT/m
= τB(∆t/τB − (1− e−∆t/τB)), (2.0.4)
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Figure 2.1. Plot of MSD as a function of time for sys-
tem following Equations 2.0.3 (red line) and 2.0.39(blue line).
Dashed line ∼ t2, dotted ∼ t.

where, again, we have made explicit the dependence on ∆t = t− t0; t0 is an arbitrary time
origin assumed to be much larger than the time at which the process began, t0 >> t−∞. We
can take t−∞ = −∞. Then, we are free to choose t0 = 0. As noted above, this is so since
the jump process (∆r) is non-stationary with stationary increments, i.e., r(t + ∆t) − r(t)
depends only on ∆t and not t [26] after it has forgotten it’s initial velocity, or if we began
and remain the the stationary velocity distribution. That is, the moments of the distribution
that characterize this process, in the well equilibrated limit, depend on elapsed time, or the
time increment of an observation of the process, ∆t and not the “absolute” time. This is the
first indication of the role that “resolution” (i.e., ∆t) plays in the transport of multi-scale
systems (cf. [27]). The new time acts like a “metric” which tells us how to measure time. In
real time, t, the MSD or average kinematics of the system, goes as the complicated function
given in Equation 2.0.3. However, in “diffusive time” as measured by τD the MSD follows

〈∆r2〉(t) = 6

(
kT

m
τB

)
τD. (2.0.5)

Hence, we can rewrite the complicated real-time dependence of the MSD as a function
which is linear in our new time variable τD. This means that even ballistic motion, whose
MSD is ∼ t2, or superdiffusive, can be thought of as ∼ τ if time, τ , is measured as τ =
t2. We also point out that the velocity autocorrelation function (VACF) can be found by

〈v(t)v(t′)〉 = kT
m

d2τD(t−t′)
dt2

, and D(t) = kT
m

τB
dτD(t)

dt
.
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The convenience of this line of thought can be seen in a natural question to ask. What
kind of distribution gives rise to the MSD of Equation 2.0.5? The simplest is the standard
Gaussian propagator, which in one-dimensional form is

ρ(x, τD) =
1√

4π kT
m

τBτD

exp

(
− x2

4kT
m

τBτD

)
. (2.0.6)

This “Gaussian” assumption has been discussed previously in other contexts [28] and will be
the assessed in a later section. More generally, scaling forms of the probability density and
their relation to nonstationary process with stationary or nonstationary increments have been
discussed [26]. In [26] it was found that anomalous values of the Hurst parameter, H 6= 1/2,
could be associated with uncorrelated processes with nonstationary increments; however, a
change of time variable allows one to formally transform the process from nonstationary
increments to stationary increments. Here there are no correlations (interactions) between
walkers, but there is a correlation in the velocity of a given walker due the time it takes for a
particle to “forget” its earlier velocity (inertia). This leads to a Hurst parameter, H = f(∆t).

Now, ρ(x, τD) is the Green’s function of

∂ρ(x, τD)

∂τD

=
kT

m
τB∇2ρ(x, τD), (2.0.7)

for ρ(x, 0) = δ(x) in an infinite domain. Using the chain rule we can re-write this as

∂ρ(x, t)

∂t
=

kT

m
τB(1− e−t/τB)∇2ρ(x, t), (2.0.8)

We claim that this is an example of a type of “multi-scale” equation. This is the equation
to solve, if one wants to account for the self-diffusion of dilute colloids containing the full
effects of the microscopic dynamics. We note that this equation has been arrived at from more
rigorous routes (see below and [24]). The preceding discussion has been merely heuristic and
is illustrative of a broader set of issues. Indeed, most often the ballistic motion of colloids is
at such a small time scale that it can be safely ignored and the classical diffusion equation can
be used as a model of colloidal self-diffusion for times well above the momentum relaxation
time scale. However, not all systems have a single time scale that is so conveniently ignored.
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The question then arises as to when the classical diffusion equation is a good model for these
multiple, competing or overlapping time/length scale systems.

To see how the previous considerations can be helpful one can consider what happens
when one attempts to solve the diffusion equation on ever smaller length and time scales.
This can be illustrated by referring to Figure 2.1. The dashed line of slope 1 on the log-log
scale represents the MSD of classical Fickian diffusion. As ∆t is decreased it can be seen to
deviate from the actual MSD of the colloids whose dynamics follow the Langevin equation
(red line). Again, this is well known, but what is not often recognized is that one can capture
the full behavior of the colloids at the macroscopic level of description by writing Equation
2.0.6. Writing this equation allows one to “bridge” from the classical, ballistic motion scale
below the momentum relaxation timescale to the macroscopic diffusive motion scale in one
equation. We will discuss this further in the following. But first we show the relationship
between Equation 2.0.6 and the telegrapher equation, which has been proposed as a model
to capture small scale ballistic motion.

Connection to Telegrapher’s Equation

An interesting connection arises between the above and the Telegrapher’s or Cattaneo
Equation and a diffusion equation with memory, which to our knowledge hasn’t been pointed
out explicitly in the literature. We start by integrating Equation 2.0.8 to obtain

ρ(x, t) = ρ(x, 0) + 2
kT

m
τB

∫ t

0

(1− e−t′/τB)∇2ρ(x, t′)dt′. (2.0.9)

Now we make a subtle change to the first term in the integrand on the right-hand-side.
We make the integral a convolution integral by making the change e−t′/τB → e−(t−t′)/τB . And
we write

ρ(x, t) = ρ(x, 0) + 2
kT

m
τB

∫ t

0

(1− e−(t−t′)/τB)∇2ρ(x, t′)dt′. (2.0.10)

Taking the time derivative of 2.0.10, we have

∂ρ(x, t)

∂t
=

∂ρ(x, 0)

∂t
+ 2

kT

m

∫ t

0

(e−(t−t′)/τB)∇2ρ(x, t′)dt′. (2.0.11)
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If we take ∂ρ(x,0)
∂t

= 0 we obtain a diffusion equation with memory. In this case the memory
kernel is a simple exponential decay. Equation 2.0.14 is well known [29] to be equivalent to

τB
∂2ρ(x, t)

∂t2
+

∂ρ(x, t)

∂t
= 2

kT

m
τB∇2ρ(x, t′). (2.0.12)

So, the telegrapher equation can be seen to be a special case of Equation 2.0.10 with
initial condition ∂ρ(x,0)

∂t
= 0, which we emphasize is to be distinguished from Equation 2.0.9.

One area of application where this has relevance is in nano-scale thermal transport [30] (see
also [31]). Again, the issue in these systems is that the nature of thermal transport changes
on “small enough” scales where both Equations 2.0.9 and 2.0.10 have been proposed [30]
and [25]. Also, the telegrapher equation has been proposed as a model of diffusion which
satisfies special relativity and the constancy of the speed of light [32].

In general, considering a general time convolution kernel K(t− t′), we can also write

ρ(x, t) = ρ(x, 0) + D

∫ t

0

K(t− t′)∇2ρ(x, t′)dt′, (2.0.13)

which might be considered a diffusion relaxation equation, or the diffusion equation with
memory

∂ρ(x, t)

∂t
= D

∫ t

0

dK(t− t′)

dt
∇2ρ(x, t′)dt′. (2.0.14)

Again we have assumed ∂ρ(x,0)
∂t

= 0 and K(0) = 0. Finally, we note that if K(t − t′) ∼
(t − t′)α−1, where 0 < α ≤ 1, Equation 2.0.13 reduces to a Liouville-Riemann fractional
integral equation. Care needs to be taken with Equation 2.0.14; however applying a fractional
differential operator to both sides of the fractional relaxation equation will yield a fractional
differential equation (cf. the fractional Fokker-Planck equation, e.g., [33]).

General Multi-scale Diffusion Equations

In previous sections we focused on a particular form of the history function, τD, and
introduced a time or resolution (∆t) dependent Hurst parameter to characterize the ∆t
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dependence of the MSD ∼ ∆t2H(∆t). Specifically, the history function, derived from the
(well equilibrated) Langevin dynamics of the colloids, lead to the analytic form given in
Equation 2.0.4. In this section we consider more generic forms of the history function. In
general we have

∂ρ(x, t)

∂t
=

kT

m
τB

dτD(t)

dt
∇2ρ(x, t), (2.0.15)

Again, the key constitutive relation being τD(t), which must have well defined dτD

dt
.

Let’s consider a few forms for τD to make explicit the general time dependence (recall time
translation invariance allows us to choose t0 = 0 so that ∆t = t, but this should not ob-
scure the fact that we are actually talking about an elapsed time from an arbitrary initial
time) of the Hurst parameter, H(t) = d ln(τD)

d ln(t)
. For the system defined by Equations 2.0.1,

H(t) = t
2τD

dτD

dt
= (1− e−t/τB)t/2(t− τB(1− e−t/τB)). Obviously, H → 1/2 for t � τB as seen

in Figure 2.2.

Figure 2.2. Plot of Hurst parameter as a function of time
for system following Equations 2.0.1.

If τD = t, Equation 2.0.18 reduces to the standard diffusion equation and we have clas-
sical, Fickian diffusion on all time scales; H = 1/2. There is however, another possibility.
Note, if dτD

dt
= κ = const. with κ a constant for all t, then we could have an (apparently)

nonlinear Fokker-Planck Equation (nFPE) [34, 35]
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∂

∂t
[ρ(x, t)]µ =

kT

m
τB∇2 [ρ(x, t)]ν , (2.0.16)

where MSD ∼ τ
2µ/(µ+ν)
D . In general, we could have [?]

1

κ
=


1
2

[(
1−q
2π

)1/2 Γ((5−3q)/2(1−q))
Γ((2−q)/(1−q))

]2(q−1)/(3−q)

if q < 1,

1
2

if q = 1,

1
2

[(
q−1
2π

)1/2 Γ(1/(1−q))
Γ((3−q)/2(1−q))

]2(q−1)/(3−q)

if 1 < q ≤ 3,

(2.0.17)

where, q = 1 + µ− ν, in previous sections q = 1 since µ = ν. This allows us to make contact
with nonlinear Fokker-Plank equations [?].

Lastly, if dτD

dt
= Ht2H−1 we have the equation

∂ρ(x, t)

∂t
=

kT

m
τB(Ht2H−1)∇2ρ(x, t), (2.0.18)

In this case connection can be made to Fokker-Planck equations derived from fractional
Brownian motion (fBm) [36]. But also note in [26] an explanation of a number of these mod-
els (particularly Equation 2.0.16) with scaling solutions is given in terms of non-stationary
stochastic process with stationary or non-stationary increments [26]. The relationship be-
tween the analysis of [26] and [36] is unclear at this point.

In all the above cases, τD(t) is interpreted as the history function of the system, which
describes the temporal structure of events/interactions in a random system in terms of the
average kinematics or MSD. It describes the Fickian or non-Fickian (anomalous) nature of
the system

Routes to the Dilute Multi-scale Diffusion Equation

Our first approach follows [37] and is related to the derivation of dynamic density func-
tional theory relevant to inhomogeneous systems (see Chapter 3). Most approaches to this
derivation now start with the Kramers-Klein equation [?] to account for colloid inertia, but
a modified approach using a contracted description in configuration space (see below) is also
possible within the context of the earlier derivation. We start with the continuity equation
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∂

∂t
P (rN , t) = −

N∑
i=1

∇i ·
[
viP (rN , t)

]
. (2.0.19)

Recall, for a colloid under a time dependent force Fi(t) the velocity of the colloid is

vi(t) = v0,ie
−t/τB +

1

m

∫ t

0

e−(t−t′)/τBFi(t
′)dt′. (2.0.20)

Following [?] we take the force to be the equilibrium force driving the colloids Fi = −kT∇i ln
[
P (rN)

]
−

∇iV (rN), where V (rN) is the potential energy due to particle interactions and external po-
tentials. Plugging this into Equation 2.0.20 and taking v0 = 0 we obtain

vi(t) =
τB

m
(1− e−t/τB)Fi. (2.0.21)

We now insert this into Equation 2.0.19 make replacing the equilibrium probability density
P (rN) with the nonequilibrium one P (rN , t) and V (rN) by V (rN , t) [?] to give

∂

∂t
P (rN , t) =

τB

m
(1− e−t/τB)

N∑
i=1

∇i ·
[
kT∇i ln

[
P (rN)

]
+∇iV (rN)P (rN , t)

]
. (2.0.22)

Averaging over rN−1 degrees of freedom gives the one-body probability density

∂ρ(r, t)

∂t
=

τB

m
(1− e−t/τB)∇ · [ρ(r, t)∇µ(r, t)] (2.0.23)

=
τB

m
(1− e−t/τB)

[
kT∇2ρ(r, t) +∇ · (ρ(r, t)∇µex(r, t))

]
, (2.0.24)

where the chemical potential µ = µid + µex is separated into ideal and excess parts (cf.
Equation 2.0.8 where interactions are absent µex = 0). This result is relevant particularly in
inhomogeneous systems (see Chapter 3).
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Following [24] it is also possible to show more rigorously in the limit of dilute, non-
interacting or independent colloids that the diffusion equation we arrived at in Equation ??
is correct. First, we “contract” the description of the dynamics from phase space (position
and velocity) to configuration space (position only) by writing the first of Equation 2.0.1 in
terms of the formal solution of the second Equation in 2.0.1 (i.e., plug Equation 2.0.2 into
the first of 2.0.1). In doing so we arrive at another linear Langevin equation for position.

dr

dt
= v0e

−t/τB +
1

m

∫ t

0

e−(t−t′)/τBE(t′)dt′. (2.0.25)

It can be shown [24] that this equation has the corresponding Fokker-Planck equation

∂ρ(x, t)

∂t
= (1− e−t/τB)

kT

m
τB∇2ρ(x, t), (2.0.26)

where we have averaged over the Maxwell-Boltzmann distribution of initial velocities with
〈v0〉 = 0. This can be rewritten as in Equation 2.0.7 by defining τD as in Equation 2.0.4.
In the non-interacting limit the same approach can be taken for general τD(t) (e.g., see
discussion of Generalized Langevin Equation below). And in that general case we have

∂ρ(x, t)

∂t
= D(t)∇2ρ(x, t), (2.0.27)

where,

D(t) =

∫ t

0

Γ(t, t′)dt′, (2.0.28)

and Γ(t, t′) is the modified force-force autocorrelation function with the initial velocity de-
pendence incorporated into the regular force-force autocorrelation function [24]. Equation
?? is averaged over the distribution in initial Maxwell-Boltzmann velocities with zero aver-
age. Comparing Equations 2.0.7 with 2.0.27 and 2.0.28 suggests two ways of interpreting the
complicated nonstationarity of the underlying processes. One is through a nonlinear time
transformation as in 2.0.6 and the other by defining a time dependent diffusion coefficient
as in Equation 2.0.28. The discussion to this point has relied implicitly on the Gaussian
assumption of Equation 2.0.6. Before addressing this issue at the end of the next section we
first relate the discuss how the preceding discussion relates to non-Markovian processes, in
particle the so-called Generalized Langevin Equation.

32



Generalized Langevin Equation: Non-Markovian Pro-

cesses

We can extend the discussion of the previous sections to encompass the broader class
of non-Markovian or so-called Generalized Langevin Equations (GLE). A main contribution
of this project is the addition of a package in the LAMMPS code that simulates these
processes. Details on this have been reported elsewhere [38] and are contained in Appendix
A for reference. For now, consider the case of a colloid in a solvent with a frequency or time-
dependent viscosity. For example, the equation of motion of a sphere in an incompressible,
Newtonian fluid has been shown by Basset and Boussinesq to be

(mp +
1

2
mf )

dU

dt
+ 6πηa

∫ t

−∞

(t− t′)−1/2

Γ(1/2)

dU

dt′
dt′ + 6πηaU = E(t), (2.0.29)

where E(t) is a time dependent force (e.g., fluctuating force due to thermal fluctuations
of the fluid).

Equation 2.0.29 may also be written as

m∗dU

dt
+ 6πηa

∫ t

−∞

(t− t′)−3/2

2Γ(1/2)
Udt′ + 6πηaU = E(t), (2.0.30)

where m∗ = (mp + 1
2
mf ). Equation 2.0.2 can be derived by inverse Laplace transform of the

impulsive response of the sphere in a viscous fluid to find the memory kernel (see Felderhof
[39] and Kupferman [40], also [41, 42]. Equation 2.0.2 can also be written as

m∗dU

dt
+ 6πηa

∫ t

−∞

(
(t− t′)−3/2

2Γ(1/2)
+ δ(t− t′)

)
U(t′)dt′ = E(t), (2.0.31)

where the memory kernel, M(t), in the convolution integral of eqn. 2.0.31 is

M(t− t′) = 6πηa

(
(t− t′)−3/2

2Γ(1/2)
− δ(t− t′)

)
(2.0.32)
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If E(t) is to be a model for random force due to thermal fluctuations in the fluid we
will need to define it. Ignoring the steady-state drag (second term in the memory kernel in
Equation 2.0.32), assuming the random force to be (i) Gaussian; (ii) stationary; and (iii)
self-similar, then we have a fractional Brownian motion (fBm) process, dBH(t), with Hurst
parameter H = 1/4 (see Mandelbrot and van Ness [22], Kou [43], etc.). In this case, the
force takes the form

“E(t) =
√

2ηkBTdBH/dt”, (2.0.33)

< E(t) > = 0, (2.0.34)

< E(t)E(t′) > = 2ηkBTM(t− t′), (2.0.35)

where the double quotes imply an informal physics notation. Note in the model given in
Equation 2.0.31 there is also the Dirac delta term in the memory kernel. From fluctuation
dissipation this requires two random forces - one for the Stokes drag term (6πηaU acquired
after integrating the second term of the memory kernel over the delta function) leading to a
standard Wiener process or Brownian motion and one for the first term in the convolution
integral giving an fBm.

The solution to Equation. 2.0.31 for E(t) = Sδ(t), where S is the total momentum
transferred to the fluid, is [39]

U(t) =
S

m∗
1

2(q1 − q2)

[
q1E1/2 (−t/τ1)− q2E1/2 (−t/τ2)

]
, (2.0.36)

where q1,2 = 1
2Za

(1±
√

1− 4Z), Z =
2mp+mf

9mf
, τ1,2 = q1,2ν, and

Eα,β(y) =
∞∑

k=0

yk

Γ(β + αk)
(2.0.37)

is the Mittag-Leffler function. We use the common, simplified notation E1,β(y) = Eβ(y). In
general we have for U0 = 0

U(t) =

∫ t

0

E(t)
1

2(q1 − q2)

[
q1E1/2 (−(t− t′)/τ1)− q2E1/2 (−(t− t′)/τ2)

]
dt′. (2.0.38)
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From Equation 2.0.36 we can form the velocity autocorrelation function and integrate
twice to get the MSD. Which is

〈∆r2〉(t) = 6
kT

m
τ 2
B

(
1

2(q1 − q2)

[
q1E

(2)
1/2 (−t/τ1)− q2E

(2)
1/2 (−t/τ2)

])
, (2.0.39)

where E
(k)
α,β(y) = dk

dyk Eα,β(y). Which gives a history function

τDtBd
= τB

(
1

2(q1 − q2)

[
q1E

(2)
1/2 (−t/τ1)− q2E

(2)
1/2 (−t/τ2)

])
, (2.0.40)

Equations 2.0.3 and 2.0.39 are compared in Figure 2.1. Note, again, at long times Equa-
tion 2.0.40 gives τDtBd

∼ t and at short times τDtBd
∼ t2 but the relaxation occurs over a

longer time range.

Finally, we write

dτDtBd

dt
= D(t)/(kT/m) = τB

(
1

2(q1 − q2)

[
q1E

(3)
1/2 (−t/τ1)− q2E

(3)
1/2 (−t/τ2)

])
, (2.0.41)

In addition to the incompressible Newtonian solvent an analytical form for a compressible
Newtonian solvent can be found in the literature [44]. This is plotted with the previous
two in Figure 2.3. While the previous two cases were examples of a single time scale but
differing forms of relaxation, the addition of compressibility introduces a second (finite)
time scale for sound propagation. Note for the parameters chosen in this plot the effect of
the compressibility occurs at several orders of magnitude above the momentum relaxation
time. A number of other memory kernels can be found in the literature for various kinds of
visco-elastic solvents and even for high Reynolds and Mach number flow [?].

Simulation Hard-sphere Colloids at Finite Volume Frac-

tion: Interactions and Correlations

In this section we report on the simulation of hard-sphere-like colloids. We use the
colloid package in LAMMPS with the integrated Lennard-Jones potential for colloid-colloid
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Figure 2.3. Hurst parameter for steady-state and tran-
sient incompressible Newtonian fluid as well as transient,
compressible Newtonian fluid (red, blue, and green lines, re-
spectively).

interactions and a volume fraction dependent, mean-field correction to Stokes drag to model
the hydrodynamic forces on the colloids (note, we ignore lubrication forces here). The details
of the model a reported elsewhere [46, 47, 48]. We compare results with inertia both included
(as in previous section) and excluded (as in traditional Brownian Dynamics). The equations
of motion solved (for the inertial case) are

dri

dt
= vi

dvi

dt
= −γ(1 + 2.16φ)vi +

∑
i6=j

Fij(rij) +
1

m
Ei(t), (2.0.42)

where, again, 〈Ei(t)〉 = 0 and 〈Ei(t)Ej(t
′)〉 = 2kTmγ(1+2.16φ)δ(t− t′). In Equation 2.0.42,

φ is the volume fraction and the factor (1 + 2.16φ) is the volume fraction dependent, mean-
field correction to Stokes drag on particle i due to the many-body, long-range hydrodynamic
forces on i from all the other colloids. Also, Fij(rij) is the relative position dependent
force on colloid i due to all other particles. This is modeled as an integrated Lennard-Jones
potential cut off as the minimum [47] leading to effective hard-sphere interactions. This term
is responsible for the interactions, transient inhomogeneity and associated correlations that
develop and decay during the equilibrium simulation. We initialize the particle positions
randomly at a low volume fraction and initial velocities drawn from a Maxwell-Boltzmann
distribution; subsequently, shrink the simulation domain until the desired volume fraction is
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obtained while advancing the dynamics according to Equations 2.0.42, etc.. Once the desired
volume fraction is obtained, we then equilibrated further until the asymptotic, stationary
increment limit is reached (we relax any effects or memory of the box shrinking), and then
we collect data.

Figure 2.4. MSD as a function of time for various volume
fractions of colloids following Equations 2.0.42. Left panel
for simulation including inertia; right panel ignoring inertia.

Examples of the MSD data for various volume fractions are presented in Figure 2.4. Both
inertial and inertialess simulation data are presented. In the inertial case, which will be the
focus of the remainder, two timescales can be seen in the data. The first is the momentum
relaxation time scale discussed in preceding section. The second is a correlation time scale
related to the colloid-colloid interactions. At a given volume fraction there is a characteristic
average spacing between particles roughly uniformly distributed in the simulation domain.
Depending on the physical parameters (viscosity of solvent, mass of colloid, temperature)
the colloids explore their local environment independent of one another. However, after some
time they begin to interact and become correlated (in fact, anticorrelated as they bounce way
from each other) during that time. After a longer time they move away from and become
decorrelated again. This transient inhomogeneity and relaxation is sometimes referred to as
the “caging” effect of the local structure.

From the MSD data, an effective, time-dependent diffusion coefficient can be obtained
by taking the time derivative of the MSD data at various times. This is plotted in Figure 2.5.
Again, in this Figure, both the inertial and inertialess data are shown; the main difference
being at early time where the inertial data falls off as t−1.

From Figure 2.7 the early-time and late-time diffusion coefficients can be found. Due to
the relatively low viscosity of this fluid, we do not see a very pronounced early-time plateau in
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Figure 2.5. Diffusion coefficient as a function of time for
hard sphere colloids at various volume fractions.

(a) (b)

Figure 2.6. Early (left) and late (right) time diffusion
coefficients as a function of volume fraction from Figure 2.5
also compared to other simulation and experimental results.

the diffusion as a function of time. Hence, we define the maximum of D(t) as the early-time
diffusion coefficient and the value of D(t) at the late-time plateau as the late-time diffusion
coefficient. These are plotted in Figure 2.8. Also, shown in Figure 2.8 are results from
other simulation, theory, and experimental work on hard-sphere colloids that demonstrate
verification and validation of these simulations in terms of the relevant diffusion coefficients.
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Figure 2.7. Hurst parameter as a function of time for
colloids at 40% volume fraction.

Figure 2.8. Simulated light scattering of a colloid trajec-
tory at 40% volume fraction (averaged over several trajecto-
ries).

In addition to D(t), one can also find the Hurst parameter H(t) from these systems by
taking the logarithmic derivative with respect to logarithm of time. This is plotted in Figure
2.9. In this instance, MSD t2H(t) so we can write τD(t) = t2H(t). Here, we see the ballistic
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early time (H = 1) and diffusive late time (H = 1/2). In between, a subdiffusive (H < 1/2)
regime can be seen where correlations are relevant.

It is interesting to note that there is a relationship between the Hurst parameter and
the fractal dimension of a trajectory df = 1/H [23]. Again, in this case, we see a Hurst
parameter and fractal dimension which are resolution or scale dependent. Figure 2.8 shows
the results of numerical “light scattering” on colloidal trajectories. To make this plot a
cluster of points was created based on the location of a colloid at various times (particle
positions are taken every 1, 10, or 1000 time steps to create the cloud/cluster of points),
then a scattering simulation is performed. This is analogous to a light scattering experiment
where the static structure factor, S(q), is determined. This is the quantity plotted in Figure
2.8 which gives an indication the spatial structure of the cluster of points created from the
position of a colloid as a function of time (averaged over several colloids to improve the
statistics). Several time ranges of the trajectory are plotted separately. On log-scale, the
slope of S(q) is the exponent of a power law or fractal dimension associated with the spatial
structure of the trajectory on a given time range. At short times (data taken every 1 time
steps) S(q) has a power law shape with exponent 1 while at long times (data taken every
1000 time steps, near the late time plateau in the diffusion coefficient – see Figure 2.5) the
slope of S(q) is 2 (known to be the fractal dimension of a random walk). This corresponds
to 1/H = 1 and 1/H = 2 at short and long times, respectively, in Figure 2.7.

Figure 2.9. Schematic of structure of trajectory.

This behavior underscores the multi-scale aspect of the dynamics given by Equations
2.0.42. In fact, extending to the quantum-like case discussed in a previous section a schematic
picture of the trajectory or flux in a multi-scale transport processes arises. This is depicted
in Figure 2.9. At large resolution on observes the classical random walk type behavior
with fractal dimension of the data (time trace of the trajectory or flux) df = 2. Also, the
trajectory is continuous, but nowhere differentiable, almost surely. At a finer resolution the
trajectory looks classical with linear fractal dimension and a well defined derivative in a
finite difference sense. At still finer resolution one again recovers a fractal trajectory with
df = 2, but this time due not to macroscopic thermodynamic effects, but due to quantum
mechanical processes.

In addition to the multiscale aspect of this system, we can also assess the role of corre-
lations in the Langevin dynamics. The Gaussian assumption for the propagator in dilute
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systems seems very reasonable. Here we would again expect Gaussian type distribution of
the probability density of finding a colloid at a particle point in time at long times. This is
the late-time diffusive regime. Also, at early times when correlations are not relevant, we
would expect again, Gaussian type probability distribution, but on that spreads as t2 not
t as for late times. However, what happens when correlations are significant? To examine
this we plot the jump distribution, or self-part of the van Hove function (probability of a
particle being at a given location having started at x0). For all the colloids we determine the
displacement at a given time ∆x(t) = x(t)− x0 and then histogram the displacements. For
various times these are shown in Figure 2.10. It should be noted that in the main panel we
have normalized the various jump distributions by the second moment which should have the
effect of collapsing all the distributions onto a normalized Gaussian curve (the inset shows
the time dependent data – curves spreading in time). For early and late times, the data do
fall nicely onto a parabola in log-linear scale. However, at intermediate times, during the
sub-diffusive, correlated regime, we see a broadening of the tails in the distribution which
is not well fit by a Gaussian. In fact, it is well fit by a so-called q-Gaussian which is a
generalization of the Gaussian function due to Tsallis [34] and is given by

Figure 2.10. Jump distributions at various times for col-
loids at 40% volume fraction.

f(u) =

[
1 + (1− q)

(
u2

5− 3q

)] 1
1−q

, (2.0.43)

where u = ∆x(t)/
√
〈∆x2(t)〉. Once again we find a subtle difference with what has been

discussed in the literature in that here, q = q(∆t). At long time we recover the standard
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q(t →∞) = 1, which is the Gaussian distribution. There analysis is also somewhat different
from others based on CTRW type models [49], but the underlying math statistics may be
similar in that the explanation of Tsallis statistics in terms of physical processes also relies on
convolutions of probability densities [50]. This is a result of fluctuations within fluctuations,
or a stochastic processes in a noisy environment.
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Chapter 3

Diffusion in Inhomogeneous Systems

The previous chapter considered self-diffusion of colloids in equilibrium and macroscop-
ically homogeneous systems. The analytical and numerical results helped to shed light on
anomalous (non-Fickian and non-Gaussian) types of diffusive (mass) transport. Here we
consider diffusive processes in inhomogeneous systems.

Hard sphere Color Diffusion

In this section we consider diffusion in hard sphere fluids and in particular the diffusion
of inhomogeneous fluids, such as fluids at a planar hard wall. We study a problem of “color”
diffusion, whereby hard spheres are labeled A or B but are otherwise identical in all respects,
between planar hard walls. In the inhomogeneous fluid we consider a surface reaction. At the
left wall a particle of species A is converted to one of species B upon a wall collision. At the
opposing wall the reverse reaction takes place: B → A. Using molecular dynamics simulation
we study the steady state of this system. We demonstrate that in the inhomogeneous region
(near the walls) a diffusing particle is subject to an equilibrium oscillatory force, the solvation
force, that is due to the interfacial structuring of the fluid at the wall. For the particular case
at hand, the solvation force can be determined in various ways, from a direct measurement
of momentum transfer, from the pure hard sphere density profile, or from the potential
distribution theorem. We use the solvation force to solve the continuum diffusion equation
for the color diffusion. For the inhomogeneous fluid in the absence of any additional external
fields, we do this using a constant diffusion coefficient, and demonstrate that this provides an
adequate and accurate description of the reaction-diffusion problem. The simplicity of the
analysis presented here can be contrasted with attempts that have required the introduction
of a density dependent diffusion coefficient, D(ρ). Given that the density variations in an
inhomogeneous hard sphere fluid are on the length scale of a particle diameter, introducing a
density dependence in that context would neither be physical or provide insight into diffusion
processes in inhomogeneous regions. Finally, in Appendix B, we consider the more complex
case of color diffusion in the presence of a slowly varying field such as gravity. This creates a
gradual density variation on which the wall-induced inhomogeneities are superimposed. The
analysis of this case shows that the steady-state flux still consists of the same contributions,
a color density gradient term and a solvation force term. However, the latter is the solvation
force of a pure hard sphere fluid in the same external field, and thus embodies the external
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field contribution.

Background

The treatment of the problem of coupled reaction-diffusion has a long history, dating back
to M. v. Smoluchowski who published the equation that carries his name in 1915. With
the advent of molecular simulation there have been several attempts to refine the original
treatment, and treat the effects of molecular aspects, including intermolecular interactions
and external fields. Recently, De Michele and co-workers have performed molecular dynamics
(MD) and event-driven Brownian dynamics (EDBD) simulations to determine the effects of
density and intermolecular interactions on the encounter rate between hard spheres in a fluid
and a spherical reactive sink. The EDBD simulations addressed three aspects that influence
the encounter rate. These are: 1) the effect of density and intermolecular interactions,
together referred to as “crowding” or “caging”, 2) the variation of the diffusion coefficient
with fluid thermodynamic conditions, and 3) the role of the velocity distribution.

This chapter seeks to address the first two aspects, using a setting that differs in two
significant respects. First, we consider the large (more precisely, the infinite) radius limit
of a spherical reactive sink: a planar wall reactive sink. Secondly, we consider a simple
mass conserving reaction, i.e. A 
 B, that takes place at the planar wall. Using planar
symmetry improves the statistics of the fluid particle reactive sink rate. In the traditional
treatment the particle reacting with the sink is simply removed upon its arrival. At low
reactant densities this is not a serious issue. However, in the simulations of De Michele
et al. pure (hard sphere) fluids where employed at densities ranging up to typical liquid
densities. At the latter conditions the complete removal creates an instantaneous change
that is unphysical. That is, the sudden causes lack of mechanical equilibrium. In this paper
we consider color diffusion in hard sphere fluids. In color diffusion, the diffusing and reacting
particles are distinguished by the labels they carry, here A or B. Apart from these labels
there are no other differences between the two species, both are interacting as hard spheres
of identical diameters. This arrangement chosen guarantees that the diffusion and reaction
phenomena take place in a system that is always at thermal and mechanical equilibrium.
This simplifies the analysis, and allows equilibrium quantities to be used to analyze the
diffusion in a inhomogeneous fluid.

We consider two kinds of color diffusion systems. Both consist of a hard sphere fluid
confined by two parallel walls at which a surface reaction takes place (i.e., A → B at one
wall, and the reverse reaction at the other). In the first arrangement only the walls act
on the fluid. In the second scenario the fluid is also subject to a slowly varying one-body
external field that acts over the entire range of the simulation box. The case we consider
results in a constant force, and corresponds to the case of gravity. A main focus of the study
is the treatment of the inhomogeneous region near the reactive wall, where large density
oscillations present a challenge in the description of diffusion.

We demonstrate that by using the Smoluchowski diffusion equation, which describes the
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diffusion in the presence of an external field, one can produce an accurate description of
the reactive flux, provided the external field is identified as the equilibrium solvation force
(between a diffusion particle and the planar wall). The solvation force is the appropri-
ate representation of all the equilibrium solvent effects in the inhomogeneous region. The
Smoluchowski-solvation force approach applies to both cases introduced above: with and
without a slowly varying field such was gravity.

To derive the specific equations that underpin our approach we will use the potential
distribution theorem approach, due to Widom. This provides a convenient and transparent
formalism for the description of inhomogeneous fluids. We will use it to derive the Smolu-
chowski diffusion equation for inhomogeneous fluids. The paper describes the results of
molecular dynamics as well as EDBD simulations to validate the proposed analysis, and how
to apply in specific situations of relevance to important reaction-diffusion phenomena.

The Potential Distribution Theorem (PDT)

We will start by considering the operational definition for the chemical potential in a
single component inhomogeneous fluid, such as a hard sphere fluid in an external field.
Widom showed that the local chemical potential, µ(r), can be obtained through the so-
called potential distribution theorem, which provides a description of the configurational
contribution to the chemical potential. The PDT links the chemical potential at a position
r to the local number density, ρ(r), and the local potential energy of a test particle, Ut(r) +
Vext(r)

βµ(r) = lnρ(r)− ln < e−β(Ut(r)+Vext(r)) >

= lnρ(r)− ln < e−β(Ut(r)) > +βVext(r), (3.0.1)

where β = (kT )−1, with T the temperature and k the Boltzmann constant. The angled
brackets denote an ensemble average of the test particle insertion at r. Note that the test-
particle is identical to the actual fluid particles, interacting through the same interaction
potential. The difference lies in the fact that the test particle is a spectator that can probe
the local energy, but does not in any way affect the fluid particles. In practical terms, say
one performs a Monte Carlo or molecular dynamics simulation, then periodically one stops
the simulation and inserts a test particle at position r and measures its potential energy.
The latter comes in two contributions. One is simply the local value of a one-body external
field, Vext(r). This contribution does not depend on the position of the fluid particles but
solely on the test-particle’s location and hence can be taken outside the ensemble average.
The other is due to the interactions with the particles that make up the actual fluid.

At equilibrium the chemical potential is constant throughout the volume, independent of
position. For inhomogeneous fluids, each term on the right hand side varies with position,
but the PDT states that the sum of the two terms must be a constant, independent of
position.
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For a fluid between two planar hard walls we rewrite the above equation as

βµ(z) = lnρ(z)− ln < e−βUt(z) > +βVext(z). (3.0.2)

Specializing to a fluid between hard walls located at z = 0 and z = L we have Vext(z) = 0
for 0 < z < L and the writing of the PDT simplifies to

βµ(z) = lnρ(z)− ln < e−βUt(z) >; 0 < z < L (3.0.3)

≡ lnρ(z) + βµex(z), (3.0.4)

where the second line defines the local excess chemical potential.

Further specializing to a hard sphere fluid leads to a simple geometrical interpretation
of the second term. Namely, for a hard sphere fluid the Boltzmann factor exp(−βUt(z))
can only take on two values: unity when the test-particle does not overlap with any of the
fluid particles and zero when there is an overlap. In other words, the ensemble average
< exp(−βUt(z)) > is simply a probability, namely the probability that a hard sphere can be
inserted at a distance z, without overlap. The constancy of the chemical potential implies
that when a system is in equilibrium, there is no net drift of matter from one part of the
system to another. Rewriting the constancy of the chemical potential in differential terms,
we have,

∂lnρ(z)

∂z
= −∂µex(z)

∂z
=

∂ln < e−βUt(z) >

∂z
; 0 < z < L. (3.0.5)

Now, consider the net force on a particle in the fluid. In a bulk fluid this force is zero,
because of symmetry. However, in the inhomogeneous fluid that force is not zero everywhere,
but rather depends on position. For a fluid at a planar wall the normal component of the
force depends on the distance, z, form the wall. The tangential components are still zero on
average.

Coarse-Grained Densities

The local excess chemical potential is a function of position z, not just a function of
the local density, ρ(z). Its definition clearly shows that it depends on the averages over
configurations of hard spheres in the neighborhood of z. A test-particle inserted at z can
directly interact (i.e., exhibit potential overlaps) with fluid hard spheres which have positions
ranging from z − σ to z + σ. Fluid particles near z, have the largest potential impact, and
particles near z + /− σ have the least.
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An approximation for the local excess chemical potential could be sought by equating it
to the bulk excess chemical potential at a local coarse grained density, ρ̄(z). In other words,

µex(z) = µex(ρ̄(z)). (3.0.6)

And the nonlocal coarse-grained density may be a weighted density of the form:

ρ̄(z)) =

∫ z+a

z−a

dz′w(|z − z′|)ρ(z′), (3.0.7)

where the weight function, w is normalized to unity, so that in the bulk region, where
ρ(z) = ρb, µex(z) reduces to a bulk expression, i.e., µex(ρb).

The Solvation Force

As a sphere of species i diffuses through the inhomogeneous fluid it is subject to a
position-dependent force. This is the so-called solvation force between a sphere and the
planar wall and it is due to the structuring of the fluid that separates the two objects. In
general, the solvation force, F (z; d), can be easily determined in a simulation (see Challa and
van Swol [?]) by fixing the center of a sphere of diameter d at a distance z from the wall and
measuring the net force on the sphere. In a hard sphere simulation we could measure the
total force as the sum of all the momentum transfers due to colliding neighboring spheres.

The solvation force experienced by a stationary sphere is an oscillatory function with
an oscillation period that is on the order of the fluid particle diameter (σ). It reflects the
non-symmetrical nature of the fluid packing around the sphere of diameter d due to the
presence of the wall. The solvation force is a potential of mean force, and the associated
potential,V (z; d) is the solvation potential. A noninteracting (ideal) gas of bulk density, ρid

b ,
in an external field V (z; d) would exhibit a density profile that is identical to that of an
interacting inhomogeneous hard sphere fluid of the same bulk density. Thus, the solvation
potential and force can be viewed as the collective effect of all the surrounding spheres that
make up the fluid on a sphere of interest.

For such an ideal gas in an external field we have a profile given by the barometric law,
specializing to d = σ,

ρ(z) = ρb(z)e−βV (z,σ); 0 < z < L, (3.0.8)

or

∂lnρ(z)

∂z
= −β

∂V (z, σ)

∂z
. (3.0.9)
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Figure 3.1. Density profiles for the high density fluid be-
tween two planar hard walls. The top panel shows the lo-
cal packing fraction, η = (π/6)ρσ3, of the equilibrium hard
sphere fluid. The bottom panel shows the results for the com-
ponent profiles, ηi (i = A,B), for the fluid undergoing color
diffusion. A surface reaction on the left converts species A
into B upon a wall collision. The reverse reaction takes place
on the right hand side of the simulation box. The figure shows
the steady-state profiles of species A (black) and B(red). The
profiles for the separate components show the effects of pack-
ing near the wall, the mole fraction profiles, xA(z)(black) and
xB(z)(red), for each species are free of oscillations.
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A comparison with the inhomogeneous hard sphere fluid, equation 3.0.26, then identifies the
effective field as the excess chemical potential.

∂V (z, σ)

∂z
=

∂µex

∂z
. (3.0.10)

Color Diffusion

In this section we consider a simple diffusion process in an inhomogeneous monodisperse
hard sphere fluid. We consider a hard sphere fluid confined between two parallel walls,
located at z = 0 and z = Lz. The walls act as hard walls, preventing any sphere center
from penetrating. The system is run under conditions of a constant number of particles (N),
constant volume (V ), and constant temperature (T ).

To set up color diffusion one labels the spheres with a color or tag, say A and B. The
labeling has no effect on any of the interactions among the spheres, which continue to interact
as hard sphere collisions between spheres and hard walls. Once the spheres have been labeled
one can follow the location of the spheres in the fluid; studying a transient diffusion processes
for instance.

First, we state the PDT results for the equilibrium binary A, B mixture. For each com-
ponent we have,

βµi(z) = lnρi(z)− ln < e−βUt,i(z) > +βVext(z); i = A, B (3.0.11)

= lnρi(z) + βµex. (3.0.12)

We note that in the second line we dropped the species subscript. This is a direct
consequence of the fact that we are considering a color mixture, that is, a binary mixture
of two species of equal diameter. Thus, the configurational chemical potential, as the PDT
makes clear, equals minus the logarithm of the probability of being able to insert a sphere of
diameter σ at a distance z from the wall. The insertion does not depend on the label of the
particle, thus the excess chemical potential at a given position z is the same for each species,
and equal to the excess chemical potential of the pure hard sphere system that results when
all labels are removed.

Using equation 3.0.25 and ρ = ρA + ρB, we can express the chemical potential of species
i in terms of the pure hard sphere fluid and the local molefraction, viz.,

βµi(z) = βµ + lnxi(z); i = A, B, (3.0.13)
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where xi = ρi/(ρA + ρB). Thus, for an inhomogeneous equilibrium color mixture the local
density varies, but the the local mole fraction is constant throughout.

Now, consider the case of diffusion coupled to a surface reaction. A color surface reaction
can occur at a wall when a sphere collides with the wall. To be specific, consider an anti-
symmetric system, where the left wall will convert spheres of type A to spheres of type B
and leave spheres of type B unchanged. Similarly, at the right hand wall we consider the
complimentary reaction, B → A, while species A will be unaffected by a wall collision. The
precise reaction behavior at the wall is easily generalized to other variants. For instance,
upon the colliding with the wall, one can apply a probability 0 ≤ q ≤ 1 that the reaction will
actually proceed. In addition, one could allow for the reaction to proceed in either direction,
i.e., A 
 B, with forward and backward rates set by probabilities 0 ≤ qF , qB ≤ 1. This
allows for the study chemical equilibria, but also allows for steady-state behavior when qF

and/or qB take on different values at the opposing walls.

If a simulation is run with an anti-symmetric set of wall reactions a steady-state concen-
tration profile will develop. At steady-state the concentration of species A will decrease from
right to left while the concentration of B will decrease from left to right. This is shown in
Figure 3.1. Notice that the concentration profiles are anti-symmetric, as expected, but they
are no monotonic. In stead, in the neighborhood of the wall, each species exhibits oscillations
in space. These oscillations are manifestations of the oscillatory nature of the density itself.

The Smoluchowski Equation

We will now consider the continuum approach of diffusion and seek to apply it to the color
diffusion problem. Our starting point is the Kramers-Klein equation, which is a special case
of the Fokker-Planck equation for a Brownian particle in an external field [51]. It describes
the behavior of a density distribution in time and space. In the high friction limit, where the
velocity distribution rapidly thermalizes, we can limit ourselves to the positional equation.
This is known as Smoluchowski’s diffusion equation. In the case of one-dimensional diffusion
we have,

∂ρi

∂t
= D

∂2ρi

∂z2
− 1

ζ

∂Kρi

∂z
(3.0.14)

= D
∂

∂z

(
∂ρi

∂z
− Kρi

kT

)
; i = A, B, (3.0.15)

the first term describes pure diffusion, while the second describes the drift under the influence
of a position dependent external force, K(z). ζ denotes the drag, and is related to the
diffusion coefficient through D = kT/ζ. In the expression formulated here, the diffusion
coefficient is considered to be a constant, independent of position.
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Introducing the flux of species i in the z−direction, ji, we can also express the diffusion
process as

∂ρi

∂t
= −D

∂ji

∂z
; i = A, B. (3.0.16)

At steady-state conditions ∂ρi/∂t = 0 and the flux of species i is a constant. Hence, from
equation 3.0.15, we obtain,

ji = −D
∂ρi

∂z
−D

K(z)ρi

kT
; i = A, B. (3.0.17)

In the case of color diffusion coupled with surface reaction, we can easily measure the
steady-state flux ji at any point in space, including at either wall (i.e., at z = 0 or z = Lz).
In addition, we can readily obtain the density profiles ρi(z). This puts us in a position to
identify the spatially varying force as:

K(z)

kT
=

ji

Dρi

+
1

ρi

∂ρi

∂z
; i = A, B

=
ji

Dρi

+
∂lnρi

∂z
. (3.0.18)

The above is all applicable to a pure hard sphere fluid. If such a system is at equilibrium
this implies that the flux vanishes, and hence we find that

K(z)

kT
=

∂lnρ

∂z

=
∂µex

∂z
. (3.0.19)

In other words, in the color diffusion problem, the external driving force K(z) that represents
the influence of all the surrounding spheres on a sphere diffusing (toward or away from a
wall) is, in fact, the solvation force acting on the diffusing sphere. In addition, that solvation
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force is given in terms of the density profile of the pure hard sphere equilibrium problem.
This approach is naturally attractive, since the solvation force, K(z), is indeed the force that
can be mechanically measured as a sphere moves through a hard sphere fluid.

This implies that the color diffusion problem can be solved by finding the solution to the
diffusion equation 3.0.15, applying as an external force K(z) = ∂lnρ/∂z, obtained from the
equilibrium profile of the pure hard sphere system at the appropriate bulk density, and using
for D the bulk diffusion coefficient for the same pure hard sphere system. This approach
allows for a complete time and space dependent solution ρi(z, t). Setting the left hand side
of equation 3.0.15 to zero leads to the steady state solution, ρi(z).

The analysis outlined here, whereby the effect of the fluid particles are represented as an
external force K(z) and D is considered a constant is to be contrasted with the approach
taken by De Michele and co-workers. Those workers have considered a very closely related
problem of reaction-diffusion in spherical symmetry. Their system consisted of a pure hard
sphere fluid in a spherical container. At the center of the container was placed a fixed
reactive sphere of diameter d. Upon colliding with this spherical sink, a hard sphere would
be instantaneously removed from the sample, and re-introduced at the spherical boundary.
After a transient time, a steady-state develops where the fluid particle density vanishes at
the surface of the spherical reactive sink. The system differs slighly from ours in that in the
De Michele approach the removal of the sphere forces the density at the sink surface to be
zero, and hence the density distribution of the fluid can not be an equilibrium distribution.
However, there is in principle no problem with a study of the color diffusion problem in
spherical geometry.

In De Michele’s system, like in the one we presented, the diffusion takes place through
an inhomogeneous structured fluid. Surrounding the spherical reactive sink the radial fluid
structure, closely resembling the product ρg(r) of the bulk density and the radial distri-
bution function. In their treatment, De Michele, treated the diffusion problem through the
structured fluid by introducing a diffusion coefficient dependent on the local density D(ρ(z)).

A density-dependent diffusion coefficient is an appropriate choice when the density is
slowly varying. This situation is familiar in the description of the atmosphere, where the
density is indeed very slowly varying, and the gravitational length is of the order of a kilo-
meter. However, in a dense inhomogeneous fluid the fluid structure varies rapidly on very
short length scale, of order σ, and the amplitude of the local density can grow well above
any reasonable bulk limit. This problem occurs in different guises in different contexts. In
density functional theory the free energy is considered a functional of the density, and one
often introduces so-called weighted densities ρ̄(z), that are obtained as some form of weighted
integrals over a finite range (also of order σ) of the local density ρ(z) (i.e., a ”smeared out”
density). Such weighted densities are much more gently behaved, although they still exhibit
some undulations.
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Figure 3.2. A comparison of three routes to the force K(z).
The black (speciesA) and red dashed (species B) curves rep-
resent the right hand of equation 3.0.18, using the measured
fluxes jA and jB, in combination with the profiles ρA(z) and
ρB(z), respectively. The solid circles represent the measured
average net z-component of the solvation force on a sphere
at position z. The noise of the red curve is larger than that
of the black curve because the value ρA(z) is very small at
the left hand side wall. Note that each term on the right
hand side of equation 3.0.18 diverges (in opposite directions)
as ρA(z) → 0.
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Simulation Results

In this section we will illustrate the ideas outlined in the introductory sections with the
help of some color diffusion molecular dynamics simulations. We performed two simulations
on 4000 hard spheres in a rectangularly shaped box, of square cross section. Planar hard
walls, placed in the z−direction at z = 0 and z = Lz, do not allow any sphere center to
approach closer than σ/2. Periodic boundary conditions are applied in the remaining direc-
tions. Similar simulations were described by Henderson and van Swol [52], and the reader is
referred to that study for simulation details. The box dimensions and the thermodynamic
data are collected in Table 3.1. The simulation started with randomly labeling 2000 spheres
A, and the remainder B. At the left wall, each sphere of species A that collided with the
wall was relabeled B, while on the opposing wall colliding B’s were converted to species A.
After some time a stationary density profile develops, signaling that a steady state whereby
two opposing constant fluxes develop. Species A showing net transport from right to left
and species B in the opposite direction. The left wall acts as a reactive sink for species A
and the opposite wall is a reactive source. The reverse applies to species B.

Table 3.1. Dimensions and thermodynamic results for
N = 4000 and a rectangular simulation box with square cross
section (Lx = Ly). We provide the normal pressure pN and
invert the hard-sphere bulk equation of state to obtain the
bulk packing fraction, ηb. The diffusion coefficient is the bulk
self-diffusion coefficient, which we obtained from the analysis
by Heyes et al. [53]. The flux, j, is the average of the conver-
sion at the left wall where A → B and the right wall where
B → A.

Lx/σ A/σ2 βpNσ3 ηb D(m/kTσ2)1/2 jσ3(m/kT )1/2

47.1599 144.9611 2.3335 0.3030 0.19866 0.2241× 10−2

40.4661 107.4650 9.8042 0.4728 0.03397 0.6195× 10−3

The results are displayed in figure 3.1. Because of the simplicity of the model the density
profiles are perfectly anti-symmetric, and the density profile of the entire system, viewed as
a pure hard sphere fluid, is at equilibrium at all times. Thus there is thermal and mechanical
equilibrium. There is also chemical equilibrium for the unlabeled spheres, as expressed by the
PDT, see equation 3.0.26. However, there is a chemical potential gradient for each separate
species. The latter results from the reaction conditions at the wall. The reaction A 
 B
takes place with probability 1 at each wall, and hence the conversion rate is determined by
the contact densities at the wall. That is, ρA(z = σ/2) and ρB(z = Lz − σ/2). In the hard
sphere system these contact densities are directly related to the system’s pressure,p. Namely,

βp = ρA(σ+/2) + ρB(σ+/2), (3.0.20)
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where the plus sign indicates that we take the limit z → σ/2 from above.

Our simple choice of surface reaction makes it straightforward to measure the fluxes jA

=jB, as the number of conversions NAB of A to B (and NBA for the reverse reaction), per
unit area and per unit time. This is because for a one-dimensional diffusion problem the
constancy of flux in time implies a constancy of flux in space.

Having determined the fluxes and the density profiles, it is possible to perform a direct
assessment of the force K(z) in the Smoluchowski equation 3.0.18. That is, for each species
we can determine each term on the right hand side of equation 3.0.18, namely ji/(Dρi) and
∂lnρi/∂z. By adding the terms we obtain estimates for the force K(z). The results are
shown in figure 3.2 for the left wall. The two curves (black and red) correspond to species
A and B respectively.

Although formally equivalent, the accuracy of the two routes are not the same. As the left
wall acts as a reaction sink for species A, ρA(z) approaches zero at that wall. That causes
both terms of equation 3.0.18 to diverge (in opposite directions), and hence the error in
determining K(z) from ρA(z) grows large at that wall. In the figure, the deviations become
apparent when z < 0.9σ, where ρA(z)σ3 < 1.5 × 10−3. An added source of inaccuracy
stems from the central difference approximation used to calculate the slope ∂lnρi(z)/∂z. In
contrast, the errors in extracting K(z) from ρB(z) are well-behaved. Also shown in the same
figure is the result of a direct measurement of the average z-component of the net force
on a sphere at position z from the wall, i.e., the solvation force. We conclude that there
is excellent agreement between the different routes, demonstrating that the Smoluchowski
equation can be successfully used in the description of the diffusion of hard spheres in the
inhomogeneous region near a hard wall.

The point of view embodied by the Smoluchowski approach is that of Brownian motion
of a particle that is acted on by the external field K(z). In our context, we map a fully
interacting system of labeled hard spheres onto a system of independent Brownian particles
in a field K(z). The mapping involves replacing the explicit many-body effects of the fluid
particles by an average solvation force (a potential of mean force). Our analysis of the
molecular dynamics results demonstrate that for the color diffusion problemthe role of K(z)
is indeed played by the solvation force (see figure 3.2) .

Given that this external field is oscillatory, the steady-state density profile also appears
highly oscillatory. The sequence of barriers presented by K(z) are significant, as can be seen
from figure 3.2, which shows that several are larger than the thermal energy, kT .

Relevance to liquid metal solutions

In the previous section, the role of thermodynamic conditions (through the chemical
potential) on the diffusion of hard spheres was addressed. Here, the relevance of this line of
thought to liquid metal solutions is considered. In the first subsection the relevance of hard
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Figure 3.3. Density profiles for the high density fluid be-
tween two planar hard walls in the presence of a gravitational
field of strength βmgσ = 0.2, and pointed to the left. The
top panel shows the local packing fraction, η = (π/6)ρσ3, of
the equilibrium hard sphere fluid (solid black). In addition,
we show, in red, the intrinsic packing fraction profile that cor-
responds to the linear intrinsic chemical potential, µint (see
text). This profile coincides with the local packing fraction
profile except close to the wall, where the intrinsic profiley re-
mains monotonic, and free of oscillations. The bottom panel
shows the results for the component profiles, ηi (i = A,B),
for the fluid undergoing color diffusion. A surface reaction
on the left converts species A into B upon a wall collision.
The reverse reaction takes place on the right hand side of
the simulation box. The figure shows the steady-state pro-
files of species A (black) and B(red). The profiles for the
separate components show the effects of packing near the
wall. In addition, the presence of the gravitational field pro-
duces a packing fraction profile for species A, that displays
a maximum (around z = 32.6σ). The mole fraction profiles,
xA(z)(black) and xB(z)(red), for each species are free of os-
cillations. Note that in contrast to the g = 0 case, the mole
fraction profiles are no longer straight lines, and the intersec-
tion point of equal composition is to the left of the center of
the box, signifying that the overall mole fraction is no longer
0.5. The top figure also shows the position dependent diffu-
sion coefficient, D(z) = D(µint(z)), based on the fit of Heyes
et al.
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sphere simulations and theory to the transport coefficients (self diffusion, viscosity) of liquid
metals is considered. In the last subsection the role of heterogeneity (i.e., multiple species
or components) is considered with a view toward reactive wetting applications (e.g., joining
and brazing).

Equilibrium Pure Liquid Metals

The fact that for the problem at hand liquid metals can be considered classical simple
liquids helps to make the problem considerably more tractable. That is, liquid metals are
atomic fluids, and can be successfully described with interatomic potentials that are spher-
ically symmetric and short-ranged. The classical potential of choice is the embedded-atom
method (EAM) potential, which is a multi-body potential with a contribution that depends
on the local density surrounding two interacting atoms i and j. However, the potential en-
ergy given by the EAM potential can still be written as a function of all the pair distances.
As with traditional pair-potentials, the force of a particle i, Fi, can still be written as a sum
over central pair forces, Fij = −Fji, i.e.,

Fi =
∑
j 6=i

Fij. (3.0.21)

Molecular simulation

As a result of the pair property for the energy, it is straightforward to perform standard
molecular simulations (molecular dynamics or Monte Carlo) for metals; and a definition of
a local pressure tensor (the negative of the Cauchy tensor) is free of complications, as is the
mechanical route to the surface tension.

Perturbation theory

In addition, just like the quintessential simple liquids, the noble gases, the liquid structure
of metals is dominated by the short-range (repulsive) part of the interatomic potential.
Loosely speaking, a liquid metal can be considered to be a collection of repulsive spheres
moving around in a more uniform attractive background. As a result, one can successfully
apply WCA (Weeks, Chandler and Andersen) perturbation theory, which starts by writing
the interatomic potential as the sum of a repulsive and an attractive term. The repulsive term
is so short-ranged that it can be represented by a hard sphere potential (with a suitable hard
sphere diameter). Hence the liquid structure, as expressed by the radial pair distribution
function, g(r), and thus all the equilibrium thermodynamic properties can be calculated
from the knowledge of the free energy of the hard sphere fluid and the application of an
attractive perturbation. The attractive contribution is calculated as an integral over the
reference fluid’s g(r). This produces very accurate thermodynamic properties of the dense
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fluid, typically within 1 − 2% of the values calculated by the ’exact’ molecular simulation
approach. In a strict mean field theory a further approximation is made: g(r) ≈ 1. This, of
course, simplifies the calculation at the expense of reduced accuracy of the equation of state.

Classical Fluids DFT

The strict mean field equation of state is what underlies classical fluids density func-
tional theory (CF-DFT). This is an important observation since CF-DFT can be viewed as
the inhomogeneous analogue of perturbation theory and strict mean field theory. It is a
powerful technique that allows one to determine the interfacial properties, that is, density
and composition profiles and the surface free energy.

Dynamical Properties of liquid metals

Over the decades there has been much effort devoted to predicting the self-diffusivities of
simple liquids. The basic assumption (see the work of Protopapas, Andersen and Parlee [54])
made is that the self-diffusion coefficient of a simple liquid is equal to that of an appropriate
hard sphere(HS) fluid. The basic idea for this assumption, contrasting the roles of repulsive
and attractive forces, goes back to van der Waals and Boltzmann (see the paper by Ben-
Amotz and Herschbach [55]) and it has been embodied in the modern theory of fluids. Since
the hard sphere fluid is characterized by just the hard sphere diameter, determining the
appropriate hard sphere fluid is equated with specifying a hard sphere diameter for the
simple liquid of interest.

Thus, two ingredients are required, 1) the self-diffusivity of the hard sphere fluid as a
function of density, and 2) a determination of the equivalent hard sphere diameter.

Hard sphere self-diffusivity: Enskog Theory.

The well-known Enskog theory approximation for the hard sphere self-diffusion coefficient
is

DE =
3

8ρσ2

(
kT

πm

)1/2
1

g(σ)
≡ D0

g(σ)
, (3.0.22)

where m and σ denote the mass and diameter of the hard sphere, k is Boltzmann’s constant
and T is the absolute temperature, and ρ is the number density. g(σ) is the value of the
radial distribution function , g(r) (or rdf), at contact ( i.e., at closest approach: r = σ). The
latter is related to the equation of state. In terms of Z ≡ p/kT (the compressibility factor),
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we have

g(σ) =
Z − 1

4η
≈

1− 1
2
η

(1− η)3
, (3.0.23)

where the packing fraction η = (π/6)ρσ3 characterizes the dimensionless density.

At low densities η < 0.1 the Enskog expression is accurate. At intermediate 0.1 < η ≤ 0.4
it is too small, while for larger values, it rapidly becomes too large. Using MD HS data a
better fit has been developed for the HS self-diffusivity (DHS) which covers the entire density
range, all the way to random close packing

DHS(η) = DE(η)fD(η) (3.0.24)

fD(η) = 1 + 2.4699 η3/2 + 9.7682 η3 − 144.5786 η5 + 246.7832 η7. (3.0.25)

Equivalent hard sphere diameter

There exists several approaches to assign an equivalent hard sphere diameter to a sim-
ple fluid atom (or molecule). Experimentally, these can be based on various approaches,
including second virial coefficients, equation of state data and molecular refractivities (i.e.
polarizabilities). Theoretical routes include Boltzmann’s approach and perturbation theory
(which comes in slightly varying forms).

Ben-Amotz andd Hersbach [55] present a nice overview of the many ways an effective
hard sphere diameter can be obtained. Common to all is that this diameter is temperature
dependent, that is σ = σ(T ), and sometimes slightly density dependent as well (e.g., WCA).
σ(T ) is always a decreasing function of temperature. This stems from the fact that a higher
temperature, the increased kinetic energy allows atoms to explore close distances.

Several prescriptions and fits are available for σ(T ), and differ based upon which class
of fluids is being studied (e.g., metals, molecular fluids, Lennard-Jones model fluids). For
metals, Protopapas et al. [54] first introduced

σ(T ) = σm
1−B(T/Tm)1/2

1−B
; B = 0.112, (3.0.26)

where Tm denotes the melting temperature. Protopapas et al. [54] define σm, the diameter
at the melting temperature, as follows. They assume that for all liquid metals at Tm, the
packing fraction at the melting point is a constant equal to 0.472:

ηm =
π

6
ρσ3

m = 0.472. (3.0.27)

59



This fixes1 the value of σm. Notably, σ(T ) is based just on the melting temperature and the
melting density.

Hard sphere fluid viscosity

Given that the Stokes-Einstein relation

DHS =
kT

cπµHSσ
, (3.0.28)

links the diffusion to the viscosity, µHS, it comes as no surprise that the equivalent hard
sphere diameter can also be used to predict the viscosity of a liquid based on the value of an
equivalent hard sphere fluid. In equation 3.0.28 the constant c equals 3 for stick BC’s and
equals 2 for slip BC’s.

Protopapas et al. [56] describe this in a second paper. The Enskog theory approximation
for the hard sphere viscosity is

µE =
5

16σ2

(
mkT

π

)1/2

4η

[
1

4ηg(σ)
+ 0.8 + (0.7614)4ηg(σ)

]
(3.0.29)

≡ µ04η

[
1

4ηg(σ)
+ 0.8 + (0.7614)4ηg(σ)

]
. (3.0.30)

As was the case for self-diffusion, MD simulations have provided a correction factor to lead
to an expression for the viscosity2

µHS(η) = µE(η)fµ(η) (3.0.31)

fµ(η) =
16σ2

5

(
π

mkT

)1/2
2kT

πDEfD(η)

1

4.285− 0.4128η
. (3.0.32)

Alternatively, an entirely empirical fµ(η) can be generated by fitting experimental values of
µ/µE, as was done by Protopapas et al. [56].

Equilibrium Liquid Metals Mixtures

Given that the metals are atomic fluids and given that the pure metals liquids are so-
called simple liquids, it is not surprising that liquid mixtures (alloys) of metals are simple

1Putting equations 3.0.26 and 3.0.27 together gives σ(T ) = 1.288× 10−8ρ
−1/3
m [1− 0.112(T/Tm)1/2], with

ρm the number density in cm−3 at the melting point
2This specific form arises from a fit to the product µHSDHS , which varies far more slowly than either

term. In particular, a good fit to the MD data of Alder et al. [57] is 2kT/πµHSDHS = 4.2852− 0.4128η, see
reference [56]
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liquid mixtures. However, that statement does not imply that all metal mixtures are simply
ideal solutions (they are not). Immiscibility, partial miscibility, compound formation, and
non-ideality are well within the scope of mixtures of simple liquids.

Molecular simulation of mixtures

To simulate a binary mixture of metals A and B requires an extension of the EAM
approach to metals. For mixtures of noble gases, simple pair-potentials such as the well-
known two-parameter Lennard-Jones potential can be used, and the two parameters (ε and
σ) used for the pure fluid are replaced by species dependent ones: εAA, εBB and εAB, and
similarly for σ. If the pure fluid parameters, εii and σii, with i = A, B are known, estimates
for the parameters, εAB and σAB can either be simply stipulated or alternatively constructed
from the pure species values by the application of a so-called ”mixing rule”. For noble gases
one often uses

εAB = (εAAεBB)1/2

σAB = (σAA + σBB)/2. (3.0.33)

These mixing rules are referred to as the Lorenz-Berthelot rules. They reproduce the exact
second virial coefficient of the binary mixture. In practice, when a specific mixture is the
focus, the values of εAB and σAB are fitted to some mixture property.

For metal mixtures where EAM potentials are used, a similar approach is taken. Johnson,
and co-workers have provided generalized EAM potentials for 16 metals and their mixtures.
The pure metals considered by Zhou et al are Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta,
W, Mg, Co, Ti, and Zr.

Perturbation theory for mixtures

Perturbation theory for mixtures requires two ingredients. First, of course, one needs the
interatomic potential function for the mixture. This was already described in the previous
subsection. Second, one needs a reference fluid for the mixture of interest. This reference
fluid is the hard sphere mixture. Then for each species a hard sphere diameter is determined
using the WCA criterion. The free energy of the N -component hard sphere mixture is
obtained from an accurate equation of state due to Mansoori and Leland. The N(N + 1)/2
distinct radial distribution functions for the hard sphere mixture are usually obtained from
the Percus-Yevick approximation, and used in integrals to obtain the attractive part of the
energy and pressure. Again, a strict mean field theory results when one sets gij(r) = 1 for
all combinations of i and j.
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van der Waals one-fluid theory

This is an example of conformal solution theory, an approach that maps the fluid mixture
at density ρ and temperature T onto a pure fluid characterized by a size parameter σ0 and
energy parameter ε0, at some corresponding density and temperature. The theory hinges on
finding a mapping that works. Van der Waals one-fluid theory has been very successful in
this respect. It defines the following size and energy parameters

σ0 =
∑

i

∑
j

xixjσij (3.0.34)

ε0 = σ−3
0

∑
i

∑
j

xixjεijσ
3
ij, (3.0.35)

where xi denotes the molefraction of species i, and the cross terms σij and εij obtained using
the Lorentz-Berthelot rules. With these in hand one then approximates the gij(r)’s by that
of the equivalent pure fluid. The actual approximation consists of

gij(r/σij; ρ, T,x) ≈ g0(r/σ0; ρσ3
0, kT/ε0), (3.0.36)

where x ≡ (x1, x2, ..., xN−1) denotes the composition vector of the N−component mixture.

CF-DFT of mixtures

The extension of DFT from pure fluids to mixtures contains two aspects. The attractive
contribution is straightforward, and simply requires mixed coefficients for the attractive part
of the interaction potential. The treatment of the reference fluid, a hard sphere mixture, is
challenging, but has been made straightforward by Rosenfeld who developed the so-called
fundamental measure theory [58]. Thus, the CF-DFT of liquid mixtures is now as straight-
forward as that of pure fluids, and can be readily used to generate surface tensions as a
function of composition.

Dynamical Properties of liquid metals

Two dynamical properties are required in the description of reactive wetting problems,
namely viscosity and diffusion. The viscosity, η, is a scalar quantity (for liquid metals)
that depends on temperature, density and composition (T ,ρ, and x), and is needed at the
continuum level to describe the flow of liquids. To describe multicomponent mass transport
requires many Maxwell-Stefan (MS) diffusion coefficients Dij that are also functions of the
state point, i.e., T ,ρ, and x.

In this section, we will address how the viscosity and the MS diffusivities can be obtained.
We use equilibrium techniques, such as the Green Kubo relationships, to calculate Onsager
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coefficients and MS diffusivities. Such quantities apply to mass transport problems that
involve the dynamic behavior of systems close to equilibrium. However, the conditions
encountered in metal joining, where rapid heating takes place, and sudden contacts are
formed (e.g., between hot liquid metals and cold solid substrates), may in fact constitute
large deviations from equilibrium. Extending the linear-response approach to situations far
from equilibrium is currently the only viable strategy available. At this point there exists no
complete theoretical framework that could treat the large deviations, although there is much
work in this developing field. However, MD simulations can be used to make an assessment
of the limitations of the linear-response regime. That is, within an MD simulation one
can study the dynamical behavior of large gradients and large external fields (such as in
field-driven nonequilibrium MD (NEMD)) [59] and directly compare the results with the
linear-response approach.

The driving force for diffusion of species i is the spatial gradient of its chemical potential3,
i.e. ∇µi. The transport equation is,

−β∇µi =
m∑

j=1,j 6=i

xj(ui − uj)

Dij

, (3.0.37)

where β = 1/kT and k is Boltzmann’s constant. The velocity of species i is denoted by
ui. We see that 1/Dij acts as a friction coefficient, describing the friction between species
i and j. It is immediately clear that for multicomponent mixtures a large number of MS
diffusivities Dij(x) are required, as many as there are distinct pairings of components, i.e.
m(m− 1)/2. Note that Dij = Dji.

The MS diffusivities are convenient quantities as their values are independent of the
reference frame. Experimentally, these quantities are difficult to obtain directly because
chemical potential gradients can not be measured directly. In general, the diffusivities are
needed as a function of composition, and thus a large data set is required to address mass
transport problems. Obtaining diffusivities from molecular dynamics simulations is compar-
atively straightforward, although sometimes it can be costly in computer time. However, if
one seeks to limit the brute force MD approach it is crucial to explore predictive methods for
the MS diffusion coefficients. This we will address in the sections below, where we outline a
strategy that minimizes the amount of MD simulation to the simpler problem of determining
self diffusion constants in multi-component mixtures.

Mutual Diffusion Coefficients of liquid metals mixtures. Enskog Theory

Following the success of Enskog theory of transport coefficients of the pure hard sphere
limit first presented in 1922 [60, 61], it took many decades before the extension to the binary
and later multicomponent hard sphere fluid was attempted by Thorne and, in 1971, by Tham

3There are only m − 1 independent chemical potential gradients, as they satisfy the Gibbs-Duhem rela-
tionship.
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and Gubbins [61, 62]. Lopez de Haro et al. [63] subsequently derived explicit expressions for
the transport coefficients of heat and matter, based on the so-called revised Enskog theory.
Later, Erpenbeck performed MD simulations for an isotopic binary mixture, and provided
an excellent review of the subtle underlying issues in 1986 [64].

At this point in time there does not appear to be a generalization available of the work
of Protopapas et al [54] that was described earlier, for pure metals. In other words, there
exists currently no mapping strategy of the mutual diffusion coefficients of a metal mixture
onto an appropriate hard-sphere mixture. Therefore, this would appear to be a worthwhile
direction to explore.

A metal mixture could be characterized by the equivalent hard sphere diameters σi(T )
of the pure metals. The cross interactions between species i and j involves an prescription
for σij. For an additive mixture we expect that σij ≈ (σi + σj)/2, c.f., equation 3.0.33.
In that case the metal mixture can be mapped onto an additive hard-sphere mixture of
equivalent density, and the existing Enskog predictions of Lopez de Haro [63] couid be used.
If the mixture is nonadditive, one could consider a mapping onto a nonadditive hard-sphere
mixture, i.e., σij = (1 + α)(σi + σj)/2, with α positive (preferring like neighboring spheres)
or negative(preferring unlike neighbors). This would require MD results and Enskog theory
to be generalized to nonadditive hard-sphere mixtures. This is straightforward for MD, but
might be more involved for the revised Enskog theory.

Mutual Diffusion Coefficients of liquid metals mixtures

Recently Liu, Vlugt and Bardow (LVB)[65] have introduced a robust method for predict-
ing Dij, from self-diffusivities, Di,self . The predictive method consists of multicomponent
Darken equation derived from linear response theory and Onsager’s relations. The result is

Dij(x) =
Di,self (x)Dj,self (x)

Dmix(x)
, (3.0.38)

with

Dmix(x) ≡
m∑

i=1

xi

Di,self (x)
. (3.0.39)

Equation 3.0.38, together with 3.0.39, is referred to as the multicomponent Darken equation,
as it generalizes the familiar Darken equation for binary mixtures4. .

Equation 3.0.38, requires the self-diffusion coefficients, Di,self (x), of all the components
in a multicomponent system of composition x. To avoid this effort LVB introduced the

4For m=2, the multicomponent Darken equation reduces to the traditional Darken equation, Dij(x) =
xiDj,self (x) + xjDi,self (x)
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following approximation

Di,self (x) ≈
( m∑

j=1

xj

D
xj→1
i,self

)−1

, (3.0.40)

where D
xj→1
i,self is the infinite-dilution self-diffusion coefficient of species i in a binary mixture

of i and j. When j = i, D
xj→1
i,self becomes te pure component self-diffusion coefficient (note

that the summation in equation 3.0.40 includes the term j = i.)

The multicomponent Darken equation combined with the approximation 3.0.40 is referred
to as the predictive Darken-LVB equation.

The approach outlined above is not the only approximate approach in the literature. For
instance, the Vignes-LBV equation[65] is also based on pure component data together with
binary mixture data

Dij = (Dxi→1
j,self )

xi(D
xj→1
i,self )xj

N∏
k=1,k 6=i,j

(
Dxk→1

i,self Dxk→1
j,self

Dxk→1
k,self

)xk

. (3.0.41)

Here D
xj→1
i,self is the infinite-dilution self-diffusion coefficient of species i in a binary mixture

of i and j, while Dxk→1
k,self is the pure component self-diffusivity.

Viscosity of liquid metals mixtures

The viscosity of liquid mixtures, µ = µ(T, ρ,x), is a scalar quantity that can be calculated
using the Green-Kubo expressions, or alternatively from a NEMD simulation. Predictions
based on the pure metals can be generated using a linear relation of the logarithm of the
viscosity, as suggested by Arrhenius in 1887[66],

ln ηmix =
∑

i

xi ln ηi. (3.0.42)

Grunberg and Nissan [67] suggested an extension of this expression to account for observed
deviations

ln ηmix =
∑

i

xi ln ηi +
∑

i

∑
j

xixjdij, (3.0.43)

where the constant dij can be positive or negative.
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Eutectic mixtures

A eutectic system is a mixture (alloy) of a unique composition. It has a lower freezing
point than any other composition of the same components. Thus, for the binary alloy of Sn
and Pb, the freezing temperature is much below that of both the pure metals, see figure B.1.

In our section on diffusion coefficients of liquid metals, we described the Darken-LVB
prediction, which is based on the self diffusivities D

xj→1
i,self at the infinite-dilution self-diffusion

coefficient of species i in a binary mixture of i and j at the same p and T . Its is clear that
for a eutectic liquid mixture this approach breaks down in a serious fashion. This is because
a mixture at infinite dilution and the same T might very well be a solid, or a combination
of solid and a specific composition liquid mixture (of non infinite dilution character). Note
that the equivalent hard sphere approach that was described in a previous section does not
not suffer from this problem, as the temperature only enters through the description of the
equivalent hard-sphere diameter σ(T ), and the hard sphere fluid phase diagram is only a
function of density.

Although the eutectic mixture presents a problem for some approximate methods, such
as the Darken-LVB prediction, the dynamic information (i.e., diffusivities and viscosity) can
always be obtained from an MD simulation.

Lastly, a preliminary study of obtaining nonequilibrium tensions has been performed,
and will be discussed elsewhere.
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Chapter 4

Experiments: Diffusing Wave
Spectroscopy

In previous chapters aspects of the relevance of diffusion, models for diffusion, and ob-
taining diffusion coefficients in a number of systems (applications) that are inhomogeneous or
heterogeneous (mulitcomponent) have be examined. Here a return is made to the archetypal
system of colloidal diffusion at high concentration to examine experimental techniques de-
veloped to gain physical insight into these systems. Specifically, diffusing-wave spectroscopy
is discussed.

Diffusing-wave spectroscopy (DWS) is one of the only experimental methods that exist
for measuring diffusion coefficients of particles in highly concentrated, turbid samples. Here,
a diffusing wave spectrometer was designed and built. To verify the setup and technique,
its ability to measure both the diffusion coefficients of particles in dilute suspensions and
also bubble size and rearrangements in Gillette foamy shaving cream were tested. In both
of these cases, the expected behavior is known. Finally, this method was used to measure
the diffusion coefficients of particles in concentrated suspensions where the particle diffusion
was expected to be non-Fickian.

Background

Diffusing wave spectroscopy (DWS) extends the theory utilized in dynamic light scatter-
ing (DLS) to multiple scattering samples such as concentrated suspensions [68, 69, 70, 71],
foams [72, 73], light scattering surfactant solutions [74, 75], and emulsions [76, 77, 78]. Fur-
thermore, under common experimental conditions particle motions on the order of nanome-
ters, much less than the particle radius, can be detected [79, 80].

Both DLS and DWS detect the intensity fluctuations that arise when coherent light is
passed through and scattered by a colloidal sample. In both cases, the temporal fluctuations
are due to scattering from moving particles; consequently, the temporal autocorrelation
function of the intensity can be related to the diffusion coefficient of the scatterers.

A typical experimental setup is shown in Figure 4.1. Coherent light from a laser is po-
larized and expanded to impinge on a sample. Within the sample, the light is scattered in
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(a) (b)

Figure 4.1. (a)Diffusing wave spectrometer experimental
setup; (b) Illustration of light paths through a particulate
suspension

multiple events before it passes from the cuvette and is collected in both the transmission
and backscatter geometries. Any one speckle that is detected on the cuvette surface is pro-
duced from many different possible scattering paths scattering from many different particles
(Figure 4.1), so the light direction is randomized and the angle of the two detectors does
not matter to the measurement. This is one distinguishing feature of DWS as compared to
DLS where the light is assumed to only scatter once in a dilute medium and the angle of the
detected scatter pattern contains useful information. A change in the scattering intensity
is produced when the path of light through the sample changes by at least one light wave-
length, λ. Since a photon can scatter > 104 times in a DWS experiment, this means that
each individual scatterer only has to diffuse a small distance for the change to be detectable
[80].

Experimentally, the temporal autocorrelation function g2 of a speckle of scattered light
of intensity I is calculated as

1 + βg2(t) =
〈I(t = 0)I(t)〉

〈I(0)〉2
. (4.0.1)

The experimental parameter β is defined so that g2(0) = 0.

The speckle intensity autocorrelation function g2 is related to the scattered electric field
autocorrelation function g1 through the Siegert relation

g2(t) = |g1(t)|2. (4.0.2)
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The speckle intensity measurements are related to the particle diffusion coefficients by
fitting the measured g1 data to the expected functional form of g1. To determine the expected
decay behavior of the autocorrelation function g1, the light path through the sample is
modeled as a random walk through a slab of thickness L. Each step length is known as l∗,
the transport mean free path, or the average distance across which the light path direction
is randomized. In the case where L is much greater than l∗, meaning that the light scatters
many times before leaving the sample, the diffusion approximation can be used to describe
the light density U through the slab with a diffusion coefficient for the light DL

dU

dt
= DL∇2U. (4.0.3)

By assuming an initial condition describing an instantaneous light pulse at a distance
z0within the sample U(z, t = 0) = U0δ(z−z0, t = 0), and boundary conditions requiring that
the net flux of light at both slab faces is zero for t > 0, the following expression is obtained
for the autocorrelation function of light transmitted through the slab

g1,t(t) =

L
l∗ + 4

3
L
l∗ + 2

3

{sinh( z0

l∗

√
6t
τ
) + 2

3

√
6t
τ

cosh( z0

l∗

√
6t
τ
)}

(1 + 8t
3τ

) sinh( z0

l∗

√
6t
τ
) + 4

3

√
6t
τ

cosh( z0

l∗

√
6t
τ
)

(4.0.4)

For a detailed derivation of this equation, see [81]. The time constant τ describes the
time required for a scatterer with diffusion coefficient D to move one optical wavelength λ

τ =
1

k2
0D

=
λ2

4π2D
. (4.0.5)

This definition is useful only if the diffusion coefficient is constant for all observation time
lengths. If not, the time constant can be redefined in terms of the mean square distance that
the particles have traveled, 〈∆r2〉

τ =
λ2t

〈∆r2(t)〉( L
l∗

)4φ2
. (4.0.6)
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A good approximation for the distance z0 is l∗ and t is most often much greater than τ ,
leading to a simplification of the transmission autocorrelation function

g1,t(t) =

L
l∗

+ 4
3

√
6t
τ

(1 + 8t
3τ

) sinh( L
l∗

√
6t
τ
) + 4

3

√
6t
τ

cosh( z0

l∗

√
6t
τ
)

(4.0.7)

This function is nearly an exponential decay with a decay time of τ(l∗/L)2. The decay
time can be understood by recognizing that (l∗/L) is equal to the number of random walk
steps across the width of the cuvette and τ is the time that it takes the light pathlength to
change by one laser wavelength.

The two unknowns in this equation are l∗ and τ . The transport mean free path l∗ can
be estimated directly knowing the particle concentration and index of refraction of both
particles and solvent using Mie theory in the specialized case of monodisperse particles of
very low concentration. In highly scattering media such as those used in DWS applications
it must instead be experimentally discovered by a second measurement of the backscattered
light.

The backscattering experiment is treated with similar analysis and assumptions as com-
pared to the transmission experiment, leading to an approximation for the backscatter au-
tocorrelation function

g1,b(t) =
exp− z0

l∗

√
6t
τ

1 + 2
3

√
6t
τ

(4.0.8)

For most experimental setups, this expression can be simplified even further to

g1,b(t) = exp−γ

√
6t

τ
(4.0.9)

The parameter γ is found experimentally to vary between 1.5 and 2.7 and is constant for
a given polarization state and particle/solvent system.
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In summary, DWS experiments obtain g2,b(t) and g2,t(t) by measuring the intensity of a
speckle in either transmission or backscatter geometries. Once normalized and transformed
to g1b,t using the Siegert relation, the autocorrelation data is compared to expected forms
of the autocorrelation functions. By fitting the data in this way, parameters l∗ and τ are
obtained. Diffusion coefficient information is encapsulated in the parameter τ .

Experimental Apparatus

A diffusing wave spectrometer was constructed using a Coherent Verdi V6 laser (532
nm) as a light source. The laser beam is first expanded to a diameter of approximately 1
cm before it impinges upon the sample. Various cuvettes are available, ranging in thickness
from 1 mm-10 mm in thickness. Some are thermally controlled using a water circulator
(Jalabo, Allentown, PA). Cuvettes were purchased from Starna Cells (Atascadero, CA).
Both backscattered and transmitted light are collected using silicon avalanche photodetec-
tors (APD110A, Thor Labs), and the signals are then collected using either a National
Instruments DAQ or an Agilent Oscilloscope (DPO7254). A LabVIEW routine was writ-
ten to process the photodetector data and calculate the autocorrelation functions for both
measurements. For samples that do not change with time, the LabVIEW routine is written
to collect and average multiple autocorrelation measurements in order to reduce noise. A
schematic of this setup is shown in Figure 4.1.

Typical measurements are obtained using a laser power less than 0.75 W and data col-
lection lag times as low as 10−7s. Each measurement contains up to 500, 000 points.

Scoping Experiments

To verify the efficacy of the home built diffusing wave spectrometer at measuring particle
diffusion rates, a series of scoping experiments are performed. Solutions of various viscosities
containing monodisperse particles are created. The viscosity of each suspension is predicted
from the liquid composition, the sedimentation rate of particles through the liquid, single
particle tracking, and finally DWS. The last two measurements are of the diffusion coefficient
of particles in the liquid, which is then used to infer the viscosity assuming that the particles
move through pure Brownian motion.

The composition of each solution is shown below in Table 4.1, showing that the range
of viscosities explored is between 4.2-755 cP. Glycerol and water solution viscosities are
estimated at 25◦C [82](Segur and Oberstar, 1951) and 50◦C [83] based on their composition,
although pure glycerol is hydroscopic so the true concentration of water in the glycerol is
unknown. UCON polyalkylene glycol oil (Dow Chemical, Midland MI) is also used as a high
viscosity fluid. Added to each solution is 1 vol% monodisperse silica (Alfa Aesar, 1µm in
diameter).
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Table 4.1. Solutions of different viscosities used for scoping
experiments

Solution Composition Refractive index µ cP (20◦C) µ cP (50◦C)
12 90 wt% glycerol + water 1.458 249 52.4
13 85 wt% glycerol + water 1.450 116 28.8
14 75 wt% glycerol + water 1.435 35.7 11.3
15 60 wt% glycerol + water 1.412 10.2 4.2
16 75-H-1400 UCON oil 1.4655 755
17 75-H-450 UCON oil 1.4653 213

Upon adding silica particles to each water/glycerol solution, it is discovered that the silica
is hardly visible in the 75 wt% glycerol solution (Figure 4.2). Silica has an expected index
of refraction of nsilica = 1.54, which is significantly different than the expected refractive
index of all of the solutions used. It is concluded that the silica particles are porous, which
alters their refractive index to 1.43. Because of this, the light scattering of the 75 wt%
glycerol solution was insufficient for DWS measurements. Porosity is not unexpected for
monodisperse colloidal silica fabricated using certain methods [84].

Figure 4.2. Sedimentation experiment for solutions (left
to right) 12-15. Silica is hardly visible in Solution 14, the 75
wt% glycerol solution.

Sedimentation

A sedimentation experiment is performed for 1 vol% silica in water (pH = 8.5) to de-
termine the particle density. To quantify the settling velocity, cuvettes are filled with the
solution and images of the falling silica/water interface are taken periodically. For dilute
monodisperse particles of radius r and density ρP settling in a liquid of density ρL and
viscosity µ the Stokes settling velocity Vs is
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Vs(t) =
2gr2(ρP − ρL)

9µ
(4.0.10)

Because the particles are known to be dilute, this equation neglects any effects of particle
concentration on the sedimentation rate that could arise due to backflow of solvent or particle
interactions. To maintain these assumptions, the sedimentation rate is only measured for
the initial decrease and not as the particles concentrate at the bottom of the cuvette.

Through this method, the density of the 1µm silica particles is found to be 2.2g/cm3,
which is 83% of the expected density of 2.65g/cm3. This is consistent with the conjecture
that the particles are porous. Using the particle density found for the pure water case, the
viscosity of the glycerol/water and UCON oil solutions are found. The measured viscosity
is slightly higher than the predicted viscosity (Figure 4.5).

Figure 4.3. Sedimentation data for 1µm and 0.5µm silica
particles in pure water

Single Particle Tracking Velocimetry

Single particle tracking velocimetry was also performed to measure the diffusion coef-
ficient of the particles. Particle diffusion is recorded at 20x magnification using a Leica
inverted microscope at 100 frames per second using a Phantom Miro camera (Vision Re-
search, Wayne NJ). Particle locations are identified and linked into tracks with a modified
single particle tracking routine [85] adapted by Blair and Dufresne for MATLAB [86].
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Typical data for the average mean squared displacement of particle versus the observation
time is shown in Figure 4.1. Overall, the MSD is linear with delay time. At short times,
errors result in approximating particle displacements that are smaller than a pixel. Over
long observation times, particles tend to drift out of the observation plane and can no longer
be imaged. In the example shown, very few particles tracked longer than 10s, and errors in
linking particle positions give erroneous estimations for the particle displacements.

Assuming that particle diffusion in dilute samples follows Stokes-Einstein behavior, the
best fit line to the data is used to obtain the solvent viscosity

〈∆x2〉 = 4D0t = 4
kBT

12πµr
t (4.0.11)

For the data in Figure 4.1, the solvent was pure water with a known viscosity of 1 cP.
Using a diffusion coefficient calculated using the above equation, the pink line was drawn.
The data fits this prediction well. Particle tracking of silica particles in glycerol/water
solutions gave viscosity values that were slightly higher than were predicted using the solvent
composition, but well in line with the viscosity estimated using the sedimentation method
(Figure 4.5).

Figure 4.4. Average mean squared displacement of dilute
1µm polystyrene particles in water versus observation time
for two separate data sets (green, black). The pink line gives
the predicted behavior given the Stokes Einstein diffusion
coefficient for the system. Inset: raw image of 1µm particles.
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Diffusing Wave Spectroscopy

Diffusing wave spectroscopy measurements were performed using APD photodiodes as a
backscatter detectors and a National Instruments data acquisition system. Up to 106 samples
were collected at up to 106 Hz with a laser power of 1W spread over an approximate 1cm2

area.

Since this sample was not expected to change in time, multiple autocorrelation functions
were calculated and then averaged together to reduce noise further. Backscatter measure-
ments were analyzed using Equation 4.0.9 to obtain the time constant τ and the diffusion
coefficient D using Equation 4.0.5. Once again assuming that the solutions were dilute,
Equation 4.0.11 was used to find the solvent viscosity.

Initially, samples were contained in a 1 cm thick cuvette with no thermal control. How-
ever, glycerol and water solution viscosities are highly dependent on temperature, as shown
in Table 4.1. After a typical DWS measurement was taken using a 1 W laser power impinging
on a sample contained in a 1cm2 square cuvette, the temperature of the solution was 50◦C.
When the predicted viscosity of the glycerol/water solutions was adjusted for this warmer
temperature, the agreement between the DWS measurements and the theoretical predictions
is within the same error as the sedimentation and particle tracking methods (Figure 4.5).

Figure 4.5. Viscosity of glycerol/water and UCON oil so-
lutions as measured by different methods

A water cooled jacketed cuvette was employed to maintain the temperature of the sus-
pension during the DWS measurement. This cuvette also has a transmission path length of
1 cm. Using this cuvette, the sample temperature was maintained at 22◦C with a 1 W laser
power. Once again, the sample diffusion coefficient was measured accurately (Figure ??.

In general, the predicted Stokes-Einstein diffusion coefficient was verified for water/glycerol
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mixtures and UCON oils ranging over three orders of magnitude of viscosity. In most cases,
the predicted water/glycerol viscosity was slightly lower than what was experimentally mea-
sured. This may be because the hydrodynamic diameter of the silica particles was larger than
the reported 1µm diameter, measured through scanning electron microscopy. The hydrody-
namic radius of the silica would be different in the UCON oils, two of the highest viscosity
solutions measured. Regardless of the predicted viscosity, the viscosities found through all
three experimental methods were very consistent, implying that the DWS apparatus as built
is effective at measuring the diffusion coefficient of these particles.

Diffusion of Highly Concentrated Particles

Introduction

One of the attractions of diffusing wave spectroscopy as a technique is the ability to
observe particle diffusion in highly turbid samples or across very small distances. Both of
these are required for probing highly concentrated particulate suspensions where the diffusion
coefficient is likely be non-Fickian. Because very small particle motions can be detected,
particle diffusion coefficients can be measured over orders of magnitude in delay time. The
technique was demonstrated for various concentrations of silica particles in water.

Methods

Aqueous dispersions of 0.5µm diameter monodisperse silica particles (Alfa Aesar) were
created for concentrations ranging from 1 - 40 vol%. Concentrations were calculated based on
the cited 0.5µm diameter for the ceramic solid size. The density of the silica was measured
through the sedimentation methods previously described to be 2.0g/cm3. Particles were
electrostatically stabilized in Milli-Q (Millipure) purified water which was buffered at pH 8.5
using a weak potassium hydrogen phthalate (KHP) and sodium hydroxide buffer. Although
silica is more dense than water, the sedimentation speed of these particles was estimated to
be 100 times slower than the diffusion time. The Brownian time, τB, for these particles is
estimated to be 2.7x10−11 s, which is faster than the capabilities of the current DWS setup.

Backscatter and transmission diffusing wave spectroscopy measurements were made on
the samples using 1 mm, 2 mm, and 5 mm cuvette path lengths. Measurements made with
5 mm cuvettes were thermally controlled to 21◦C. Sample temperatures were measured at
various laser powers to justify the lack of thermal control for thinner cuvettes. Without the
laser, the sample temperature was 20.9◦C. At 0.5 W of laser power, the temperature was
21.0◦C. At 1 W of laser power, the temperature was 25◦C. Therefore, each measurement was
taken at or below 0.5 W of laser power. Most measurements were recorded at 106 Hz for 106

samples. Over fifty autocorrelation functions were averaged to reduce noise.
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Results and Discussion

Backscatter autocorrelation functions are displayed in Figure 4.6 for 1% - 40% vol%
silica solutions. As the concentration increased, more light was scattered backwards from
the sample and the noise in the autocorrelation function decreased. In accordance with
Equation 4.0.9, the autocorrelation function is approximately linear when plotted on a log
scale versus t1/2. Deviations from linearity occur at short delay times. These data derive
from long path lengths of many scattering events in the sample, and the decay is due to light
absorption during this process. At long times, the data becomes noisy. This is due to a lack
of resolution in the intensity measurements afforded by the detectors and the oscilloscope.
Further nonlinearities exist due to non-Fickian behavior of the particles.

An average diffusion coefficient over the experimental delay times was measured by fitting
the backscatter autocorrelation function data to Equation 4.0.9. This average diffusion
coefficient was then used to fit the transmission data for the parameter l∗. An example of
this fit for a 1 vol% silica solution is shown in Figure 4.7. At low silica concentrations, the
particle diffusion is expected to follow Stokes-Einstein behavior with one constant diffusion
coefficient. Figure 4.7 is well fit by Equation 4.0.7 with one constant diffusion coefficient.

Figure 4.6. Backscatter autocorrelation function raw data
for 0.5 ?m silica particles in 1% (red), 5%, 10%, 20% and 40
vol% (blue) concentrations. The slope of this line determines
the average diffusion coefficient.

As the concentration of silica increases, the diffusion coefficient is not constant with
observation time. To find a mean squared particle displacement for each delay time, the
transmission equation was inverted for each autocorrelation measurement to find a value of τ
for each delay time. The mean squared particle displacement was then found using Equation
6. These data are shown in Figure 4.8. At low particle concentration, the diffusion coefficient
is very close to the Stokes-Einstein Do value of 9x10−13m2/s. As the concentration increases
and the particles begin to feel effects from their neighbors, the mean squared displacement
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Figure 4.7. Transmission data (black) and fit to transmis-
sion data (red) for 1 vol% silica in water, 2 mm cuvette, 0.5
W laser power. D = 8 ∗ 10−13m2/s

Figure 4.8. Mean squared displacement of various concen-
trations of silica particles

decreases as expected. According to predictions, the behavior of each of these suspensions
should be characteristic of the constant diffusion rate plateau (as described in Chapter 2)).
At low concentrations the mean squared displacement seems to increase slightly with time.
This behavior is not predicted by hard sphere simulations, but could be caused by the
measured mean squared displacement being a combination of both ballistic and diffusive
motions.
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Errors are introduced in these measurements from many sources. As particle concen-
trations increase, the intensity of the laser signal passing through the sample decreases and
the data become noisier. As discussed earlier, data at fast and slow measurement times are
unreliable due to light absorption and intensity resolution issues. Furthermore, this silica
and water suspension is not a simple model system. The particles are not expected to act
like hard spheres in the dilute buffer, and likely have a larger hydrodynamic radius than
0.5µm. The particles are also known to be porous, so likely scatter light more strongly than
pure silica particles. This means that Mie theory cannot be used in this instance to predict
l∗ as was done in previous studies [81]. Instead, both l∗ and the diffusion coefficient must be
fit independently from two light scattering measurements, introducing more sources of error.

Foam Bubble Dynamics

Introduction

Wet foam bubble size and bubble dynamics are difficult to experimentally quantify since
foams are fragile, mobile, and scatter light very well. Their opacity, derived from efficient
light scattering, makes foams inaccessible to techniques such as optical microscopy yet ideal
for diffusing wave spectroscopy. In a series of reports, Durian et al. have shown that DWS
is an effective tool for determining foam bubble size as it changes with time, and also bubble
rearrangement rates as the foam coarsens, cures, or dries [87, 88, 72, 73, 89]. In these studies,
Gillette Foamy Regular shaving cream was used as a well-studied and reproducible foam with
bubbles that are known to coarsen but not rupture. These observations are reproduced here
in order to demonstrate the capability of the DWS apparatus for studying foams.

The theory for analyzing the light back and forward scattered from foams has many
similarities to that for scattering through colloidal samples. The static transmission of
light, T , through a non-absorbing foam of thickness, L, is roughly proportional to l*, the
transport mean free path of light in the material (T ≈ 5l∗/3L). Studies have shown that l∗ is
proportional, but not equal to, the bubble size. This implies that the scattering direction of
the light is randomized after it passes through a defined number of interfaces (greater than
one) [73]. To discover the proportionality constant, a, between T and the bubble diameter
db, a second experimental technique such as optical microscopy must be used.

Analogous to DWS of particle suspensions, the timescales of the backscatter and trans-
mission autocorrelation functions can be used to gain information about the bubble rear-
rangement rate. As previously discussed for particulate suspensions, Equation 4.0.7, a nearly
exponential function with a decay time of τ(l∗/L), is used for understanding the transmis-
sion autocorrelation function. Equations 4.0.8 or 4.0.9, also nearly exponential with a decay
time of τ 1/2 are still valid for understanding the backscatter autocorrelation function. For
foams, the characteristic time scale τ is the average time between bubble rearrangements at
a point in the sample. If rearrangements of size r occur at a rate R per unit volume, then
τ ≈ 1/(Rr3).
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One complication with studying foams that does not exist in studying particulate suspen-
sions is their nonergodicity. Because foams have heterogeneous, slow moving microstructures,
averaging data over time for one location in the foam is not necessarily equivalent to aver-
aging over the entire sample. This is a breakdown of the ergodicity assumption that was
implicitly made in deriving Equations 4.0.1-4.0.9. Many experimental methods have been
invented to spatially average data collection over a greater area of the sample. These include
rotating or translating the sample, placing a second cuvette of known dynamics in front of
the sample to randomize the light scattering, and to use a CCD camera to record a great
number of speckles at the same time [79, 90]. In this report, transmission data from a CCD
camera are compared to that using a photodiode.

Experiments and Results

To demonstrate that the home-built DWS setup is capable of studying foams, the Gillette
Foamy Regular shaving cream experiments performed by Durian et al. were reproduced.

Since future experiments are planned for foams that are not easily removed from their
container, a special disposable cuvette was developed to contain the foam samples. Here, a
spacer was machined from acrylic to provide a known standoff distance for two 5 cm x 3 cm
glass slides. Since pressure affects the development of most foams, a bead of grease is placed
around the edges of the glass slides to prevent air escaping at the edges. Mold release can
be applied to the inner surface of the spacer to reuse this part, whereas the glass slides are
replaceable. This setup is illustrated in Figure 4.6.

Both transmission and backscatter intensity measurements were recorded at intervals
over five hours. Backscatter intensity was recorded using an APD photodiode, whereas
transmission measurements were taken both with an APD photodiode and a Phantom high
speed camera (v9.1). Speckle patterns were initially averaged over a data collection period
of ten seconds for each data point. The data collection time was adjusted as the foam aged.
Camera videos were recorded at 4, 000 pictures per second with a 240µs exposure time.
Videos were processed following the procedure of Viasnoff et al. [90]. Screenshots of the
transmission speckle pattern recorded by the Phantom camera are shown in Figure 4.7.

Figure 4.8 shows the average transmission intensity over the data collection period of
ten seconds determined both by the photodiode and also the average grayscale value in
the camera images. Both the camera and the photodiode give analogous results. It is
likely that the photodiode captures multiple speckles on one detector. To relate the average
transmission intensity T to the bubble diameter d, the proportionality constant a would
first have to be determined by optical microscopy. However, the qualitative behavior of the
bubble coarsening can still be observed. Initially, for the first 20 minutes, the transmission
intensity does not change significantly. After 20 minutes, the bubbles coarsen with time, the
light does not need to travel through as many interfaces to transverse the cuvette, and the
light intensity increases. This behavior is similar to what was reported by Durian et al. for
the same system (Figure 4.8). Both data sets display a power law behavior in the bubble
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Figure 4.9. Specialized large cuvette developed to contain
foam

Figure 4.10. Example speckle patterns recorded by the
Phantom camera

size over time. Here, d ∼ t0.41, whereas the previously published data reported d ∼ t0.45.

The bubble size evolution can independently be determined through the dynamic speckle
data. Both the transmission and backscatter autocorrelation functions for the speckle inten-
sity over time were calculated to find the parameters τ and Γ = τ(l∗/L). The backscatter
data shows that over time the bubble rearrangement rate slows, also with power law behav-
ior. By comparing τ and Γ, it is found that d ∼ t0.48, which is within the acceptable error
of the measurement. Depending on the diffusion mechanism of air between bubbles, foam
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coarsening rates range from d ∼ t0.33 - t0.5.

The diffusing wave spectroscopy setup was able to find bubble size and coarsening rates as
this simple foam aged over time. The measurements are uniquely interesting because they are
characteristic of the entire sample instead of just near a cuvette wall. DWS measurements
of more complex foams that rupture or drain would also be possible in the future. To
improve the setup, it is desired to create a mechanism for heating the foam to various curing
temperatures. Also, because in the previous study three measurements were taken of two
unknowns, the coarsening rate and the bubble size, it may be possible to introduce another
unknown, the refractive index of the foam liquid. In this way, curing foams could be studied.

Figure 4.11. Gillette Foamy Regular DWS data versus
foam age, comparing published data (Durian et al., 1991a)
(left) to data from this report (right). (Top): Average static
light transmission through a sample (Middle): Time scale ?,
as determined through backscattering measurements. (Bot-
tom): Transmission ACF decay time Γ = (L/l∗)2/τ
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Chapter 5

Thermal Conduction in Particulate
Materials

To this point it may have been difficult to stretch the imagination to see how generalized
stochastic models can be relevant for general transport in heterogeneous materials. In this
final chapter we begin to address this concern directly. We show how inhomogeneities in
material microstructure introduce fluctuations at the meso-scale that in some limits are
reminiscent of thermodynamic fluctuations within otherwise macroscopically homogeneous
thermodynamic systems. These fluctuations due to random microstructures also provide a
means of characterizing the aleatory uncertainty in material properties at the mesoscale.

Introduction

Heterogeneous materials such as carbon particle composites and ceramics play an impor-
tant role in many energy related applications including electrodes for energy storage devices
and catalytic devices for regulation of emissions from the combustion of fossil fuels. The
key to better performing devices is detailed prediction and control of the bulk behavior of
the component materials whether in terms of transport through the material during its end
use or transport of the materials during the manufacturing process. Accordingly, numerical
modeling and simulation plays a vital role in elucidating basic physical phenomena at a level
of detail that is challenging to achieve experimentally, but that is complementary to such
efforts. Hence, the task is to develop mathematical models and numerical algorithms that
more faithfully represent the inhomogeneous structure and the physical processes that occur
in this class of materials.

In particular, the nature of “conduction” (thermal, electrical, etc.) in heterogeneous
materials is of fundamental importance. Assuming that classical diffusion is sufficient to
describe the basic transport process, the challenge here is to accurately solve the diffusion
equation on a complex, random microstructure with varying material properties. In the
simplest case there may be two materials, e.g., solid particles of equivalent size and shape
and identical material properties randomly dispersed in a second material of differing prop-
erties. Various theoretical approaches to this problem have been taken to determine the
effective conductivity of the bulk material, or at least place upper or lower bounds on its
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value (e.g., [99, 98, 104, 103, 105]). In addition, various modeling and simulation approaches
have been taken to calculate effective properties of such systems (e.g., [111, 101]). For many
applications, what is required for numerical simulations is a generalizable, robust, efficient,
scalable, verifiable and validatable approach. Traditionally, for macroscale engineering de-
sign problems, computational continuum mechanics via the Finite Element Method (FEM)
has provided just such an approach. In this chapter we report on a method to extend
macroscale, continuum FEM to a mesoscale, heterogeneous material; we assess the perfor-
mance of a technique to introduce and couple discrete particulate and continuous phases
within a continuum FEM without requiring complicated and expensive body-fitted meshing
routines.

Methods based on continuum mechanics approaches where particles are resolved dis-
cretely and the full thermal conduction problem is considered are widely discussed in the
literature. Interest in these generalizable approaches is understandable since many sys-
tems are composed of irregular shaped particles and complex fluid matrix materials for
which simultaneous solution of multiple, coupled macroscale balance equations is required.
To improve the performance of coupled discrete-particle and continuum approaches the
key is to introduce discontinuities accurately and efficiently in the continuum fields, e.g.
[92, 93, 94, 95, 110]. Recently, a new approach termed a Conformal Decomposition Finite
Element Method (CDFEM) was developed for this class of problems [91]. In CDFEM, a
background, non-conformal mesh is decomposed into elements that conform to the particle
interfaces. The particle interfaces are described with implicit functions, such as a level set.
Nodes are added where the background mesh intersects the implicit surfaces. In this way,
the approximation space is enriched, much like so-called eXtended Finite Element Methods
(XFEM) [96, 97]. In fact, the discrete space introduced in CDFEM contains the space used
in XFEM with Heaviside enrichment, since the XFEM space can be recovered by adding
constraints on the nodes added in the conformal decomposition [91]. This property implies
that the CDFEM accuracy is no less than that afforded by XFEM with Heaviside enrich-
ment [102]. When applied to problems with Dirichlet boundary conditions, CDFEM is very
similar to the recently proposed immersed finite element method [108, 109]. Both methods
decompose the background mesh into conformal elements.

Previous work demonstrated CDFEM for static interfaces and showed that optimal rates
of convergence were obtained for multiple fluid dynamics problems [91]. In the following,
CDFEM is verified against known results for thermal conduction in particle packs and used
to elucidate the role of fluctuations in conduction due to microstructural inhomogeneities.

Method

We consider ordered and random dispersions of mono-sized particles for various packing
fractions below the close-packed limit. The results for ordered dispersions are obtained
on unit cells in Simple Cubic (SC), Face-Centered Cubic (FCC), and Body-centered Cubic
(BCC) arrangements. We create the random configurations of particles by performing a
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Brownian dynamics (BD) simulation of purely repulsive colloidal spheres [46]. Particles
are initially placed randomly without overlap in a periodic simulation domain with initial
velocities drawn from a Maxwell-Boltzmann distribution consistent with a given temperature.
The initial volume fraction of particles φ2 = 0.1. Subsequently, the simulation domain is
shrunk to obtain the desired final volume fraction 0.1 < φ2 < 0.55. The particles are
then equilibrated for a million time steps; sufficient to ensure a well equilibrated sample.
The inter-particle potential is purely repulsive and sufficient to prevent contact between
spheres [47]; resulting in a fully dispersed suspension (i.e., non-contacting particles). A non-
percolating contact network is an implicit assumption of the theories to which results shall
be compared [101]. Snapshots of the particle configurations are then taken every time step
for ∼ 100− 1000 time steps. This gives many particle configurations for statistical analysis
at each volume fraction considered. In effect, if the BD simulation is considered to be a
process for manufacturing particle dispersions we can begin to quantify the distribution of
effective bulk properties that are characteristic of this dynamical process.

The equation solved on the particle dispersions is the steady-state heat equation or
Laplace equation

σi∇2Ti(r, t) = 0, (5.0.1)

where i = 1 labels the interstitial region and i = 2 the particles. This equation is solved in
the entire domain Ω = Ω1 ∪ Ω2 (Ω2 = ∪Np

j=1Ωpart,j). At the interfaces of materials 1 and 2

T1 = T2

σ1∇T1 = σ2∇T2, (5.0.2)

which corresponds to a “do-nothing” boundary condition.

We discretize the governing equation on a length scale smaller than the particle diameter
(d/∆x ∼ 10, typically) using a standard Galerkin Finite Element Method. We solve the
resulting equations numerically via the Sierra–Aria [106] code developed and maintained
at Sandia National Laboratories. The key to this direct numerical simulation approach
is the manner in which a mesh conformal to the complex geometry of the random particle
dispersion is created from a background structured mesh. To achieve this, a level set function
is associated with each particle in the dispersion. Where the level set function changes sign is
an interface between the particle and the interstitial or matrix material. Where this interface
crosses an element of an initial structured mesh, the element is cut and decomposed as shown
schematically in Figure 5.1. New nodes and corresponding degrees of freedom are introduced
at the interface. This method performs well even though elements can be created with high
aspect ratios [91, 102]; however, this is still a matter of ongoing analysis.

In order to determine the effective conductivity, a temperature gradient is established
in the z-direction by applying a unit temperature on one of the z boundaries and zero
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Figure 5.1. Schematic of conformal mesh decomposition
algorithm due to interface intersecting element.

temperature on the other while periodic boundary conditions are applied in the remaining
two directions. After solving the equations detailed above, the area-averaged flux through a
plane perpendicular to the z-axis is found by

jz =
1

A

∫
A

σin̂z · ∇Ti, (5.0.3)

where n̂z is the unit normal of the plane in the z-direction. It was verified that this flux is
relatively independent of the location of the plane, which is what would be expected for an
isotropic dispersion of particles. With this flux calculated, the effective conductivity can be
found as [111]

σe =
jzL

∆T
, (5.0.4)

where L is the thickness of system in the z-direction and the difference between the temper-
atures on the two z boundary planes is set to ∆T = 1.

The following section details the simulation results.

Results

Verification of the technique described in the preceding section is accomplished by com-
paring the effective conductivity calculated from numerical simulations with rigorous ana-
lytical lower bound and approximations to the effective conductivity found in the literature
[104, 100, 101]. Specific results on unit cells for order packs and random dispersion follow in
the next subsections.
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Ordered Dispersions

The systems considered here are unit cells so that only a minimal number of particles need
to be resolved in the simulations. Once the particle configuration is given, the simulation is
performed and the effective conductivity is determined as outlined above. In Figure 5.2 the
effective conductivity, normalized by the conductivity of the matrix material, is plotted as a
function of packing fraction for SC, FCC, and BCC unit cells. In this case, the ratio of the
conductivities of the particle material to the matrix material α = 10000 ≈ ∞. Also plotted
for comparison are the theoretical results of [104]. As can be seen, the comparison is very
good even at the higher volume fractions where one might expect the poor quality elements
that result from the CDFEM would have a greater impact on the calculations.

Figure 5.2. Theoretical (solid lines) and FEM simulations
(points) of σeff/σ1 for a simple cubic lattice with conductiv-
ity ratio α = σ2/σ1 = ∞.

In the following subsection we consider systems of many particles in random configura-
tions.

Random Dispersions

As described above, the random particle configurations considered were taken from BD
simulations of mono-disperse, purely repulsive, soft spheres. The simulation domain was
cubic of dimension L = 10d, where d is the particle diameter. The total number of particles
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then varied with the volume fraction; however, there were typically O(102) particles in a
simulation. Also, the particle configurations are taken from the BD simulation every time
step for 100 or 1000 time steps giving the potential to investigate the distribution of effective
conductivities. Figure 5.3 shows typical results from the steady-state thermal conductivity
simulations for volume fractions φ2 = 0.3 and 0.4 with α ≈ ∞. The color scale indicates
the magnitude of the heat flux and the arrows indicate the direction. As can be seen, the
heat flux tends to be greatest in regions of near contact between spheres due to their greater
conductivity (the matrix is relatively insulating). These regions appear in chains of particles.
As the volume fraction increases, some indication of increasing density and length of chains
can be seen, but still no clear percolating structures are seen.

Figure 5.3. Simulation image of thermal conduction
through random dispersions of O(102) mono-disperse parti-
cles (a) φ2 = 0.2 (b) φ2 = 0.4. Color scale indicates mag-
nitude of heat flux and arrow indicate direction of largest
fraction of heat flux vectors (scaled and colored for empha-
sis).

In Figure 5.4a the quantitative results of the simulations are shown. Average effective
conductivities for the particle configurations at each volume fraction are plotted and com-
pared to the rigorous lower bound as well as an approximation based on assumptions about
the particle microstructure [100]. Again, good agreement is obtained particularly below
φ2 ≤ 0.45. Although the value of the effective conductivity at the highest volume fraction
φ2 = 0.55 compares well also, some care should be taken for this case. For these mono-
disperse hard-sphere like systems an ordering transition is encountered at φ2 ≈ 0.45. Hence,
at φ2 = 0.55 significant ordering effects are present (compare value here with that of FCC
in Figure 5.2).

In addition to average values of the effective conductivity, since multiple configurations
consistent with Brownian motion of the particles in thermal equilibrium for each volume
fraction are possessed, the distribution of conductivities for each volume fraction can be
plotted. In Figure 5.4b the distribution of conductivities for φ2 = 0.3 is shown. Note that
the distribution is not symmetric with a longer tail to larger effective conductivities. Similar
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Figure 5.4. (a) Theoretical and FEM model predictions
of σeff/σ1 for a simple cubic lattice with conductivity ratio
α = σ2/σ1 = ∞; (b) Distribution of effective conductivities
for volume fraction φ2 = 0.3.

results (particularly the asymmetric form of the distribution) have been seen before in two-
dimensional and three-dimensional simulations for general conduction [112, 113, 114] type
problems. For two-dimensional systems the width of the distribution has been shown, not
surprisingly, to decrease as a function of system size [112, 113] and converge to a homoge-
neous macroscopic value in a manner reminiscent of thermodynamic fluctuation theory [115].
With respect to the last citation, note the role that a diffusion-like equation plays in the con-
vergence of fluctuations to the thermodynamic (macroscopic, deterministic, homogeneous)
limit.

Other interesting connections to these non-Gaussian, asymmetric distributions are found
in extreme value statistics, generalized extreme value statistics and sums of correlated ran-
dom variables, as well as fluctuations of global observables in complex correlated systems
particularly finite-sized critical systems. However, we emphasize that a formal verifica-
tion/convergence study remains to be performed on these systems, particularly for questions
related to the thermal flux. To gain more insight into the nature of the statistics of the
distribution of bulk conductivities we plot the increments of the conductivities.

Figure 5.6 shows the increments of the thermal conductivities (i.e., the change in thermal
conductivity from one configuration taken from the BD simulation to the next ∆σe = σe(t+
∆t) − σe(t)). What is interesting to note here is the qualitative feature of sharp spikes
in the increments which are of greater magnitude than the majority of the fluctuations.
This is different from standard “white-noise” type fluctuations and gives an indication of
the “volatility” in the effective conductivity perhaps due to the formation and break-up
of conducting clusters of particles which produce configuration with relatively high bulk
conductivity.
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Figure 5.5. thermal fluctuation

Figure 5.6. Increments of the effective thermal conductiv-
ity between successive snapshots taken from BD simulation
of particles at φ2 = 0.3.
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Yet another way to analyze the effective conductivity data is to histogram the change in
thermal conductivity from one time step to the next. Interestingly, this gives a distribution
that is relatively symmetric, but that appears to have tails that are broader than Gaussian;
although more data and analysis is needed to obtain better statistics.

Figure 5.7. Distribution of increments in the effective ther-
mal conductivity between successive snapshots taken from
BD simulation of particles at φ2 = 0.3. For guides to the
eye: solid line is an exponential distribution, which dashed is
Gaussian.

Inhomogeneity and Fluctuations

In the previous section we considered the statistical information contained in the ensemble
of configurations generated by a nominal manufacturing process. Here, for this nonequilib-
rium system, we are interested in the fluctuations in the temperature within a representative
configuration. In a homogeneous system, for the boundary conditions given here, a linear
temperature profile would result. In these inhomogeneous, system the temperature profiles
are still linear on average with a slope equal to the bulk effective conductivity which is dif-
ferent from the conductivity of the constituent material. Examples of these temperature
profiles can be seen in Figure 5.8.
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Figure 5.8. Temperature of three linear slices in the z-
direction and y− 0, x±L/4. Lower right inset: temperature
profile of all nodes plotted against z-coordinate

In Figure 5.9 the fluctuations (δt = T−〈T 〉) in the temperature of the nodes relative to the
homogeneous, linear temperate profile. Also plotted are best fits of Gaussian distributions
to the data. To first order a Gaussian distribution is not a terrible approximation; however
some discrepancies can be seen in the tails. This may be due to sampling bias in that most
of the nodes in the system are found near the interface of the particles and the matrix and
are not uniformly distributed throughout the system.

Relevance to Manufacturing Process and Uncertainty

Quantification

Finally, we show in Figure 5.10 the so-called exceedance probability for the effective
conductivities. This is equivalent to the survival function or the complementary cumulative
distribution function of the distribution of effective conductivities shown in Figure 5.8. Com-
parison is also made to Gaussian-type statistics as well as Gumbel statistics. Note the heavy
(relative to Gaussian), exponential tail in the exceedance probability. The difference between
the two statistics indicates an over population of large values of the bulk conductivity rela-
tive to Gaussian. This could have a significant impact on performance of a component and
may indicate the need to better control the manufacturing process and hence microstructure
to reduce the frequency of undesirable properties. Also, seen in Figure 5.10 are the data for
three different volume fractions (20%, 20%, 40%) collapsed onto each other by appropriate
rescaling. This is intriguing and brings to mind other work on the universality of fluctuations
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Figure 5.9. Histogram of fluctuations in temperature due
to inhomogeneous microstructure compared to Gaussian (red
and green-dashed lines). Inset: Survival function (comple-
mentary cumulative distribution) of fluctuation compared to
Gaussian.

in correlated systems [116], but must remain a subject for future work.

Figure 5.10. thermal UQ
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Chapter 6

Conclusions and Outlook

In this work we have explored a number of issues related to transport in heterogeneous
systems. In Chapter 2 we considered models based on contraction of the underlying stochas-
tic processes that suggested models capable of bridging multiple scales in complex, disordered
materials. We found the non-Fickian behavior was related to non-stationarity of the pro-
cesses. In addition, for systems with correlations due to transient inhomogeneities, it was
shown that the non-stationary processes were also non-Gaussian. Continuing work along
these lines is investigating continuous-time random walk models for conduction in particu-
late systems in connection with the results of work described in Chapter 5.

The effect of inhomogeneities on diffusive processes was explored in Chapter 3. We found
that an external field could be added to the diffusion equation to account for deviation from
the homogeneous case. This external field was shown to be the equilibrium solvation force
related to the excess chemical potential. Given this thermodynamic basis, the relevance to
multispecies diffusion systems in dense simple fluids (i.e., metals) was discussed. This is a
potentially fruitful direction for future work.

Chapter 4 reported on efforts to build and test an experimental apparatus to measure
the constitutive relation associated with non-Fickian discussed in Chapter 2. Future efforts
to deploy this technique in a number of complex, soft matter systems are also underway.

In Chapter 5 a numerical simulation technique for the calculation of effective conductiv-
ities in particulate heterogeneous media was briefly discussed. Simulation results compared
well with theoretical results for mono-sized dispersions. Additionally, the statistical informa-
tion obtained from the multiple particle configurations suggested a stochastic approach to
model the variation of properties due to the dynamical processes used to create the configura-
tions. With this information in hand uncertainty quantification of component performance
based on effective material properties may be given a firm basis in terms of the physical
processes involved in manufacturing.

In summary, we’ve only scratched the surface of a broad area of research. However, we
believe we have developed and deployed capabilities that have highlighted some fundamental
issues related to transport in complex, disordered materials. We believe these tools and
techniques will continue to add value to discovery research efforts in this field.
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Numerical Integration of the Extended Variable Generalized Langevin Equation with a

Positive Prony Representable Memory Kernel

Andrew D. Baczewski1, a) and Stephen D. Bond1

Multiphysics Simulation Technologies Department, Sandia National Laboratories,

Albuquerque, NM 87185, USA

Generalized Langevin dynamics (GLD) arise in the modeling of a number of systems, ranging

from structured fluids that exhibit a viscoelastic mechanical response, to biological systems,

and other media that exhibit anomalous diffusive phenomena. Molecular dynamics (MD)

simulations that include GLD in conjunction with external and/or pairwise forces require the

development of numerical integrators that are efficient, stable, and have known convergence

properties. In this article, we derive a family of extended variable integrators for the Gener-

alized Langevin equation (GLE) with a positive Prony series memory kernel. Using stability

and error analysis, we identify a superlative choice of parameters and implement the cor-

responding numerical algorithm in the LAMMPS MD software package. Salient features of

the algorithm include exact conservation of the first and second moments of the equilibrium

velocity distribution in some important cases, stable behavior in the limit of conventional

Langevin dynamics, and the use of a convolution-free formalism that obviates the need for

explicit storage of the time history of particle velocities. Capability is demonstrated with

respect to accuracy in numerous canonical examples, stability in certain limits, and an ex-

emplary application in which the effect of a harmonic confining potential is mapped onto a

memory kernel.
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I. INTRODUCTION

Langevin dynamics1 is a modeling technique, in which the motion of a set of massive bodies in the

presence of a bath of smaller solvent particles is directly integrated, while the dynamics of the solvent

are “averaged out”. This approximation may lead to a dramatic reduction in computational cost

compared to “explicit solvent” methods, since dynamics of the solvent particles no longer need to

be fully resolved. With Langevin dynamics, the effect of the solvent is reduced to an instantaneous

drag force and a random delta-correlated force felt by the massive bodies. This framework has

been applied in a variety of scenarios, including implicit solvents,2,3 Brownian dynamics,4 dynamic

thermostats,5 and the stabilization of time integrators.6

In spite of the numerous successes of conventional Langevin dynamics it has long been rec-

ognized that there are physically compelling scenarios in which the underlying assumptions break

down, necessitating a more general treatment.3,7 To this end, generalized Langevin dynamics (GLD)

permits the modeling of systems in which the inertial gap separating the massive bodies from the

smaller solvent particles is reduced. Here the assumptions of an instantaneous drag force and a

delta-correlated random force become insufficient, leading to the introduction of a temporally non-

local drag and a random force with non-trivial correlations. GLD has historically been applied to

numerous problems over the years,8–11 with a number of new applications inspiring a resurgence

of interest, including microrheology,12–15 biological systems,16–18 nuclear quantum effects,19–21 and

other situations in which anomalous diffusion arises.22

To facilitate computational exploration of some of these applications, a number of authors have

developed numerical integration schemes for the generalized Langevin equation (GLE), either in

isolation or in conjunction with extra terms accounting for external or pairwise forces as would be

required in a molecular dynamics (MD) simulation. These schemes must deal with a number of

complications if they are to remain computationally efficient and accurate.

• The retarded drag force takes the form of a convolution of the velocity with a memory kernel.

This requires the storage of the velocity history, and the numerical evaluation of a convolution

at each time step, which can become computationally expensive.

• The generation of a random force with non-trivial correlations may also require the storage of

a sequence of random numbers, and some additional computational expense incurred at each

time step.

Numerous methods exist that circumvent either one or both of these difficulties.8,23–30 Each has a

2
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different computational cost, implementation complexity, order of convergence, and specific features,

e.g., some are restricted to single exponential memory kernels, require linear algebra, etc. To this

end, it is difficult to distinguish any individual method as being optimal, especially given the broad

range of applications to which GLD may be applied.

Motivated by the aforementioned applications and previous work in numerical integrators, we

have developed a new family of time integration schemes for the GLE in the presence of conservative

forces, and implemented it in a public domain MD code, LAMMPS.31 Our primary impetus was to

enable the development of reduced order models for nanocolloidal suspensions, among a variety of

other applications outlined above. Previous computational studies of these systems using explicit

solvents have demonstrated and resolved a number of associated computational challenges.32 Our

method enables a complementary framework for the modeling of these types of systems using im-

plicit solvents that can include memory effects. Otherwise, to date the GLE has only been solved

in the presence of a number of canonically tractable external potentials and memory kernels.16,33,34

Integration into the LAMMPS framework, provides a number of capabilities. LAMMPS includes a

broad array of external, bonded, and non-bonded potentials, yielding the possibility for the numer-

ical exploration of more complex systems than have been previously studied. Finally, LAMMPS

provides a highly scalable parallel platform for studying N-body dynamics. Consequently, extremely

large sample statistics are readily accessible even in the case of interacting particles, for which par-

allelism is an otherwise non-trivial problem.

In this paper, details germane to both the development of our time integration scheme, as well

as specifics of its implementation are presented. The time integration scheme to be discussed is

based upon a two-parameter family of methods specialized to an extended variable formulation of

the GLE. Some of the salient advantages of our formulation and the final time integration scheme

are:

• Generalizability to a wide array of memory kernels representable by a positive Prony series,

such as power laws.

• Efficiency afforded by an extended variable formulation that obviates the explicit evaluation

of time convolutions.

• Inexpensive treatment of correlated random forces, free of linear algebra, requiring only one

random force evaluation per extended variable per timestep.

• Exact conservation of the first and second moments of either the integrated velocity distribu-

3
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tion or position distribution, for harmonically confined and free particles.

• Numerically stable approach to the Langevin limit of the GLE.

• Simplicity of implementation into an existing Verlet MD framework.

The specialization to Prony-representable memory kernels is worth noting, as there is a growing

body of literature concerning this form of the GLE.14,35,36 A number of results have been presented

that establish the mathematical well-posedness of this extended variable GLE including a term

accounting for smooth conservative forces, as may arise in MD.36 These results include proofs of

ergodicity and exponential convergence to a measure, as well as a discussion of the Langevin limit of

the GLE in which the parameters of the extended system generate conventional Langevin dynamics.

One somewhat unique feature of our framework is that we are analyzing the GLE using methods

from stochastic calculus. In particular, we focus on weak convergence in the construction our

method, i.e., error in representing the moments of the stationary distribution or the distribution

itself. The optimal parametrization of our two-parameter family of methods will be defined in terms

of achieving accuracy with respect to this type of convergence. In particular, the optimal method

that has been implemented achieves exactness in the first and second moments of the integrated

velocity distribution for harmonically confined and free particles. Few authors have considered

this type of analysis for even conventional Langevin integrators, with a notable exception being

Wang and Skeel,37 who have carried out weak error analysis for a number of integrators used in

conventional Langevin dynamics. To the best of our knowledge, this is the first time that such a

weak analysis has been carried out for a GLE integrator. We hope that these considerations will

contribute to a better understanding of existing and future methods.

The remainder of this paper is structured as follows:

• Section II A introduces the mathematical details of the GLE.

• Section II B presents the extended variable formulation and its benefits.

• Section IIC develops the theory associated with integrating the extended variable GLE in

terms of a two-parameter family of methods.

• Section IID provides details of the error analysis that establishes the ‘optimal’ method

among this family.

• Section II E discusses the extension of our method to a multi-stage splitting framework.

4
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• Section III summarizes details of the implementation in LAMMPS.

• Section IV presents a number of results that establish accuracy in numerous limits/scenarios,

including demonstration of utility in constructing reduced order models.

II. MATHEMATICAL DETAILS

A. Statement of the Problem

The GLE for Np particles moving in d-dimensions can be written as

MdV (t) = F c (X(t)) dt−
t∫

0

Γ(t− s)V (s)dsdt + F r(t)dt, (1a)

dX(t) = V (t)dt, (1b)

with initial conditions X(0) = X0 and V (0) = V0. Here, F c : RdNp → RdNp is a conservative force,

F r is a random force, M is a diagonal mass matrix, and Γ is a memory kernel. The solution to this

stochastic integro-differential equation is a trajectory, which describes the positions X : R+ → RdNp

and velocities V : R+ → RdNp of the particles as a function of time, t ≥ 0. The second term on

the right-hand side of Equation 1a accounts for the temporally non-local drag force, and the third

term accounts for the correlated random force. The nature of both forces are characterized by the

memory kernel, Γ : R+ → R, consistent with the Fluctuation-Dissipation theorem (FDT).3,38 The

FDT states that equilibration to a temperature, T, requires that the two-time correlation of F r(t)

and Γ(t) be related as follows:

〈F r
i (t + s)F r

j (t)〉 = kBT Γ(s)δij, s ≥ 0. (2)

Here, δij is the Kronecker delta, and kB is Boltzmann’s constant.

In the context of an MD simulation, we are interested in solving Equation 1 for both X(t) and

V (t) at a set of Nt uniformly spaced discrete points in time. To this end, we seek to construct a

solution scheme that is mindful of the following complications:

• Calculation of the temporally non-local drag force requires a convolution with Γ(t), and thusly

the storage of some subset of the time history of V (t).

• Numerical evaluation of F r(t) requires the generation of a sequence of correlated random

numbers, as specified in Equation 2.

5
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• As Equation 1 is a stochastic differential equation (SDE), we are not concerned with issues

of local or global error, but rather that the integrated solution converges in distribution.

To circumvent the first two complications, we work with an extended variable formalism14,20,39,40 in

which we assume that Γ(t) is representable as a Prony series:

Γ(t) =

Nk∑
k=1

ck

τk

exp

[
− t

τk

]
, t ≥ 0. (3)

As will be demonstrated in Section II B, this form of the memory kernel will allow us to map the

non-Markovian form of the GLE in Equation 1 onto a higher-dimensional Markovian problem with

dNk extended variables per particle. The third complication is resolved in Sections II C and II D,

in which a family of integrators is derived, and then ‘optimal’ parameters are selected based upon

an error analysis of the moments of the integrated velocity.

B. Extended Variable Formalism

We introduce the extended variable formalism in two stages. First, we define a set of extended

variables that allow for an effectively convolution-free reformulation of Equation 1. Then, we

demonstrate that the non-trivial temporal correlations required of F r(t) can be effected through

coupling to an auxiliary set of Ornstein-Uhlenbeck (OU) processes.

We begin by defining the extended variable, Zi,k(t), associated with the kth Prony mode’s action

on the ith component of X(t) and V (t):

Zi,k(t) = −
t∫

0

ck

τk

exp

[
−(t− s)

τk

]
Vi(s)ds (4)

Component-wise, Equation 1 can now be rewritten as:

midVi(t) = F c
i (X(t)) dt +

Nk∑
k=1

Zi,k(t)dt + F r
i (t)dt, (5a)

dXi(t) = Vi(t)dt. (5b)

Rather than relying upon the integral form of Equation 4 to update the value of Zi,k(t), we consider

the total differential of Zi,k(t) to generate an equation of motion that takes the form of a simple

SDE:

dZi,k(t) = − 1

τk

Zi,k(t)dt− ck

τk

Vi(t)dt (6)

6
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Now, the system of Equations 5 and 6 can be resolved for Xi(t), Vi(t), and Zi,k(t) without requiring

the explicit evaluation of a convolution integral.

Next, we seek a means of constructing random forces that obey the FDT, as in Equation 2. To

this end, we consider the following SDE:

dFi,k(t) = − 1

τk

Fi,k(t)dt +
1

τk

√
2kBTckdWi,k(t) (7)

If Wi,k is a standard Wiener process, this SDE defines an Ornstein-Uhlenbeck (OU) process, Fi,k(t).

Using established properties of the OU process,41 we can see that Fi,k(t) has mean zero and two-time

correlation:

〈Fi,k(t + s)Fi,k(t)〉 = kBT
ck

τk

exp

[
− 1

τk

s

]
, s ≥ 0 (8)

It is then clear, that the random force in Equation 1 can be rewritten as:

F r
i (t) =

Nk∑
k=1

Fi,k(t) (9)

Here each individual contribution is generated by a standard OU process, the discrete-time version

of which is the AR(1) process. While we are still essentially forced to generate a sequence of

correlated random numbers, mapping onto a set of AR(1) processes has the advantage of requiring

the retention of but a single prior value in generating each subsequent value. Further, standard

Gaussian random number generators can be employed.

Combining both results, the final extended variable GLE can be expressed in terms of the

composite variable, Si,k(t) = Zi,k(t) + Fi,k(t):

midVi(t) = F c
i (X(t)) dt +

Nk∑
k=1

Si,kdt (10a)

dXi(t) = Vi(t)dt (10b)

dSi,k(t) = − 1

τk

Si,k(t)dt− ck

τk

Vi(t)dt +
1

τk

√
2kBTckdWi,k(t) (10c)

It is for this system of equations that we will construct a numerical integration scheme in Section IIC.

It is worth noting that other authors have rigorously shown that this extended variable form of

the GLE converges to the Langevin equation in the limit of small τk.
36 Informally, this can be seen

by multplying the Si,k equation by τk, and taking the limit as τk goes to zero, which results in

Si,k(t)dt = −ckVi(t)dt +
√

2kBTckdWi,k(t).

7
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Inserting this expression into the equation for Vi, we obtain

midVi(t) = F c
i (X(t)) dt−

(
Nk∑
k=1

ck

)
Vi(t)dt +

√
2kBT

Nk∑
k=1

√
ckdWi,k(t),

dXi(t) = Vi(t)dt,

which is a conventional Langevin equation. We have been careful to preserve this limit in our

numerical integration scheme, and will explicitly demonstrate this theoretically and numerically.

C. Numerical Integration of the Extended GLE

We consider a family of numerical integration schemes for the system in Equation 10 assuming

a uniform timestep, ∆t. Notation is adopted such that Xi(n∆t) = Xn
i for n ∈ N. Given the values

of Xn
i , V n

i , and Sn
i,k, we update to the (n + 1)th time step using the following splitting method:

1. Advance Vi by a half step:

V
n+1/2
i = V n

i +
∆t

2mi

F c
i (Xn) +

∆t

2mi

Nk∑
k=1

Sn
i,k (11)

2. Advance Xi by a full step:

Xn+1
i = Xn

i + ∆tV
n+1/2
i (12)

3. Advance Si,k by a full step:

Sn+1
i,k = θkS

n
i,k − (1− θk) ckV

n+1/2
i + αk

√
2kBTckB

n
i,k (13)

4. Advance Vi by a half step:

V n+1
i = V

n+1/2
i +

∆t

2mi

F c
i

(
Xn+1

)
+

∆t

2mi

Nk∑
k=1

Sn+1
i,k (14)

Here, each Bn
i,k is drawn from an independent Gaussian distribution of mean zero and variance

unity. The real-valued θk and αk can be varied to obtain different methods. For consistency, we

require that

θk = 1− ∆t

τk

+O(∆t2), and αk =

√
∆t

τk

+O(∆t).

For the remainder of this article, we restrict our attention three different methods, each of which

corresponds to a different choice for θk and αk.

8



a
n
d

m
a
y

b
e

b
e

fo
u
n
d

a
t
h
t
t
p
:
/
/
j
c
p
.
a
i
p
.
o
r
g
/
r
e
s
o
u
r
c
e
/
1
/
j
c
p
s
a
6
/
v
1
3
9
/
i
4
/
p
0
4
4
1
0
7
s
1

T
h
e

fo
llo

w
in

g
a
rtic

le
a
p
p
e
a
re

d
in

J
.
C

h
e
m

.
P

h
y
s.

1
3
9
,
0
4
4
1
0
7

(2
0
1
3
)

• Method 1: Using the Euler-Maruyama scheme to update Si,k is equivalent to using

θk := 1− ∆t

τk

and αk :=

√
∆t

τk

• Method 2: If Vi is held constant, the equation for Si,k can be solved exactly. Using this

approach is equivalent to setting

θk := exp(−∆t/τk) and αk :=

√
(1− θ2

k)

2τk

• Method 3: Both methods 1 and 2 are unstable as τk goes to zero. To improve the stability

when τk is small, we consider the following modified version of method 2:

θk := exp(−∆t/τk) and αk :=

√
(1− θk)2

∆t

Note that all three methods satisfy the consistency condition, and are equivalent to the Störmer-

Verlet-leapfrog method42 when ck = 0 and Si,k(0) = 0.

D. Error and Stability Analysis

To help guide our choice of method, we compute the moments of the stationary distribution for a

one-dimensional harmonic potential (natural frequency ω) and a single mode memory kernel (weight

c and time scale τ). A similar approach has been used for the classical Langevin equation.37,43 The

extended variable GLE for this system converges to a distribution of the form

ρ(X, V, S) =
1

Z
exp

[
−(mV 2 + mω2X2 +

τ

c
S2)/2kBT

]
Where Z is the usual normalization constant. From this, we can derive the analytic first and second

moments

〈V 〉 = 0, 〈X〉 = 0, and 〈S〉 = 0.

〈XV 〉 = 0, 〈V S〉 = 0, and 〈XS〉 = 0.

〈V 2〉 =
kBT

m
, 〈X2〉 =

kBT

mω2
, and 〈S2〉 =

ckBT

τ
.

Next, we consider the discrete-time process generated by our numerical integrators, and show

that the moments of its stationary distribution converge to the analytic ones in ∆t.

V n+1/2 = V n − ∆t

2
ω2Xn +

∆t

2m
Sn

Xn+1 = Xn + ∆t V n+1/2

Sn+1 = θ Sn − (1− θ)c V n+1/2 + α
√

2kBTc Bn

V n+1 = V n+1/2 − ∆t

2
ω2Xn+1 +

∆t

2m
Sn+1

9
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The stationary distribution of this process is defined by the time independence of its first moments

〈Xn+1〉 = 〈Xn〉, 〈V n+1〉 = 〈V n〉, and 〈Sn+1〉 = 〈Sn〉

Enforcing these identities, it can be shown that

〈V n〉 = 0, 〈Xn〉 = 0, and 〈Sn〉 = 0.

Hence, the first moments are correctly computed by the numerical method for any choice of θ and

α. Computing the second moments, we obtain

〈XnV n〉 = 0, 〈V nSn〉 = 0, 〈XnSn〉 =
2∆t2α2c kBT

2c∆t(1− θ)2 −m(1− θ2)(4− (ω∆t)2)
,

〈(V n)2〉 =
kBT

m

∆tα2

(1− θ)2
, 〈(Xn)2〉 =

kBT

mω2

∆tα2(2c∆t(1− θ)2 − 4m(1− θ2))

(1− θ)2(2c∆t(1− θ)2 −m(1− θ2)(4− (ω∆t)2))
,

and 〈(Sn)2〉 =
c kBT

τ

2τα2m(4− (ω∆t)2)

m(1− θ2)(4− (ω∆t)2)− 2c∆t(1− θ)2

From this analysis, we conclude that we obtain the correct second moment for V for any method

with ∆tα2 = (1− θ)2. Now, applying the particular values of θ and α, and expanding in powers of

∆t, we obtain the following.

• Method 1:

〈(V n)2〉 =
kBT

m
, 〈(Xn)2〉 =

kBT

mω2

(
1 +

(ω∆t)2

4

)
+O(∆t4),

〈XnSn〉 =
∆t2 c kBT

4mτ
+O(∆t3), and 〈(Sn)2〉 =

c kBT

τ

(
1 +

∆t

2τ

)
+O(∆t2)

• Method 2:

〈(V n)2〉 =
kBT

m

(
1 +

∆t2

12τ 2

)
+O(∆t4), 〈(Xn)2〉 =

kBT

mω2

(
1 +

(1 + 3(ωτ)2)∆t2

12τ 2

)
+O(∆t4),

〈XnSn〉 =
∆t2 c kBT

4mτ
+O(∆t4), and 〈(Sn)2〉 =

c kBT

τ

(
1 +

c∆t2

4mτ

)
+O(∆t4)

• Method 3:

〈(V n)2〉 =
kBT

m
, 〈(Xn)2〉 =

kBT

mω2

(
1 +

(ω∆t)2

4

)
+O(∆t4),

〈XnSn〉 =
∆t2 c kBT

4mτ
+O(∆t4), and 〈(Sn)2〉 =

c kBT

τ

(
1 +

(3cτ −m)∆t2

12mτ 2

)
+O(∆t4)
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For methods 1 and 3, we obtain the exact variance for V , independent of ∆t, since they both satisfy

∆tα2 = (1 − θ)2. For method 2, the error in the variance of V is second-order in ∆t. All three

methods overestimate the variance of X, with an error which is second-order in ∆t. The error in

the variance of S is first-order for method 1, and second-order for methods 2 and 3.

It is possible to choose θ and α to obtain the exact variance for X, but this would require using

a different value for θ and α for each value of ω. This is not useful in our framework, since the

method is applied to problems with general nonlinear interaction forces.

We would like our numerical method to be stable for a wide range of values for τk. As we

mentioned in Section II B, the GLE converges to the conventional Langevin equation as τk goes

to zero, and we would like our numerical method to have a similar property. For fixed ∆t, both

methods 1 and 2 are unstable (αk is unbounded) as τk goes to zero. However, method 3 does not

suffer from the same problem, with θk converging to zero and αk bounded.

From this analysis, we conclude that method 3 is the best choice for implementation. Prior to

providing implementation details, however, we briefly consider a simple multistage extension that

can capture the exact first and second moments of position and velocity simultaneously at the

expense of introducing a numerical correlation between them.

E. Multistage Splitting

Inspired by the work of Leimkuhler and Matthews,43 we consider a generalization of the splitting

method considered in Section II C in which the position and velocity updates are further split,

V
n+1/4
i = V n

i +
∆t

2mi

F c
i (Xn) + (1− ξ)

∆t

2mi

Nk∑
k=1

Sn
i,k

X
n+1/2
i = Xn

i +
∆t

2
V

n+1/4
i

V
n+1/2
i = V

n+1/4
i + ξ

∆t

2mi

Nk∑
k=1

Sn
i,k

Sn+1
i,k = θkS

n
i,k − (1− θk) ckV

n+1/2
i + αk

√
2kBTckB

n
i,k

V
n+3/4
i = V

n+1/2
i + ξ

∆t

2mi

Nk∑
k=1

Sn+1
i,k

Xn+1
i = X

n+1/2
i +

∆t

2
V

n+3/4
i

V n+1
i = V

n+3/4
i +

∆t

2mi

F c
i

(
Xn+1

)
+ (1− ξ)

∆t

2mi

Nk∑
k=1

Sn+1
i,k

11
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In the special case that ξ = 0, we have V
n+1/4
i = V

n+1/2
i = V

n+3/4
i , the two updates of X can be

combined, and we recover our original splitting method.

Repeating the analysis in Section II D for the harmonic oscillator with a single memory term,

we find

〈(V n)2〉 =
kBT

m

∆tα2(4− (∆tω)2ξ)

4(1− θ)2
, 〈XnV n〉 = 0, 〈V nSn〉 = 0,

〈(Xn)2〉 =
kBT

mω2

∆tα2(c∆t(1− θ)2(4− (ω∆t)2ξ2)− 2m(1− θ2)(4− (ω∆t)2ξ))

(1− θ)2(c∆t(1− θ)2(4− (ω∆t)2ξ)− 2m(1− θ2)(4− (ω∆t)2))
,

〈XnSn〉 =
4∆t2α2(1− ξ)c kBT

c∆t(1− θ)2(4− (ω∆t)2ξ)− 2m(1− θ2)(4− (ω∆t)2)
,

and 〈(Sn)2〉 =
c kBT

τ

4τα2m(4− (ω∆t)2)

2m(1− θ2)(4− (ω∆t)2)− c∆t(1− θ)2(4− (ω∆t)2ξ)
.

In the special case that ξ = 1, we can simplify these expressions to obtain

〈(V n)2〉 =
kBT

m

∆tα2(4− (∆tω)2)

4(1− θ)2
, 〈(Xn)2〉 =

kBT

mω2

∆tα2

(1− θ)2
, 〈XnV n〉 = 0,

〈XnSn〉 = 0, 〈V nSn〉 = 0, and 〈(Sn)2〉 =
c kBT

τ

4τα2m

2m(1− θ2)− c∆t(1− θ)2
.

From this analysis, we conclude that we obtain the correct second moment for X for any method

with ξ = 1 and ∆tα2 = (1 − θ)2. To guarantee the correct second moment for V , the choice of θ

and α becomes ω dependent. As was discussed in the previous section, the parameters prescribed

by methods 1 and 3 using the original splitting have a similar behavior but with the roles of X and

V reversed.

It is then tempting to formulate a method that exactly preserves the second moments of both

X and V at the same time. It turns out that this is possible by simply shifting where we observe

V , using either V
n+1/4
i or V

n+3/4
i in the multistage splitting method above. For example, consider

the following asymmetric method, with ξ = 1,

X
n+1/2
i = Xn

i +
∆t

2
V n

i

V
n+1/2
i = V n

i +
∆t

2mi

Nk∑
k=1

Sn
i,k

Sn+1
i,k = θkS

n
i,k − (1− θk) ckV

n+1/2
i + αk

√
2kBTckB

n
i,k

V
n+3/4
i = V

n+1/2
i +

∆t

2mi

Nk∑
k=1

Sn+1
i,k

Xn+1
i = X

n+1/2
i +

∆t

2
V

n+3/4
i

V n+1
i = V

n+3/4
i +

∆t

mi

F c
i

(
Xn+1

)
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For this method we obtain,

〈(V n)2〉 =
kBT

m

∆tα2

(1− θ)2
, 〈(Xn)2〉 =

kBT

mω2

∆tα2

(1− θ)2
, 〈XnV n〉 =

−∆t2α2kBT

2m(1− θ)2
,

〈XnSn〉 = 0, 〈V nSn〉 = 0, and 〈(Sn)2〉 =
c kBT

τ

4τα2m

2m(1− θ2)− c∆t(1− θ)2
.

If we use a method with ∆tα2 = (1 − θ)2, we find that we obtain the exact moments for X and

V , but we have introduced an O(∆t) correlation between X and V . This is in contrast to the

symmetric methods where this correlation is identically zero.

III. IMPLEMENTATION DETAILS

Method 3, as detailed in Section II D has been implemented in the LAMMPS software package. It

can be applied in conjunction with all conservative force fields supported by LAMMPS. There are a

number of details of our implementation worth remarking on concerning random number generation,

initial conditions on the extended variables, and the conservation of total linear momentum.

The numerical integration scheme requires the generation of Gaussian random numbers, by way

of Bn
i,k in Equation 13. By default, all random numbers are drawn from a uniform distribution with

the same mean and variance as the formally required Gaussian distribution. This distribution is

chosen to avoid the generation of numbers that are arbitrarily large, or more accurately, arbitrarily

close to the floating point limit. The generation of such large numbers may lead to rare motions

that result in the loss of atoms from a periodic simulation box, even at low temperatures. Atom

loss occurs if, within a single time step, the change in one or more of an atom’s position coordinates

is updated to a value that results in it being placed outside of the simulation box after periodic

boundary conditions are applied. A uniform distribution can be used to guarantee that this will

not happen for a given temperature and time step. However, for the sake of mathematical rigor,

the option remains at compile-time to enable the use of the proper Gaussian distribution with the

caveat that such spurious motions may occur. Should the use of this random number generator

produce a trajectory in which atom loss occurs, a simple practical correction may be to use a

different seed and/or a different time step in a subsequent simulation. It is worth noting that the

choice of a uniform random number distribution has been rigorously justified by Dünweg and Paul44

for a number of canonical random processes, including one described by a conventional Langevin

equation. We anticipate that a similar result may hold for the extended variable GLE presented in

this manuscript.

13
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With respect to the initialization of the extended variables, it is frequently the case in MD that

initial conditions are drawn from the equilibrium distribution at some initial temperature. Details

of the equilibrium distribution for the extended system are presented in Section 2 of an article by

Ottobre and Pavliotis.36 In our implementation, we provide the option to initialize the extended

variables either based upon this distribution, or with zero initial conditions (i.e., the extended

system at zero temperature). As it is typically more relevant for MD simulations, the former is

enabled by default and used in the generation of the results in this paper.

Conservation of the total linear momentum of a system is frequently a desirable feature for

MD trajectories. For deterministic forces, this can be guaranteed to high precision through the

subtraction of the velocity of the center of mass from all particles at a single time step. In the

presence of random forces such as those arising in GLD, a similar adjustment must be made at each

time step to prevent the center of mass from undergoing a random acceleration. While it is not

enabled by default, our implementation provides such a mechanism that can be activated. When

active, the average of the forces acting on all extended variables is subtracted from each individual

extended variable at each time step. While this is a computationally inexpensive adjustment, it

may not be essential for all simulations.

IV. RESULTS

Throughout this section, results will be presented, primarily in terms of the integrated velocity

autocorrelation function (VAF). This quantity is calculated using “block averaging” and “subsam-

pling” of the integrated trajectories for computational convenience.45 Error bars are derived from

the standard deviation associated with a set of independently generated trajectories.

We begin by presenting results that validate our time integration scheme for a GLE in the absence

of a conservative force with a single mode Prony series kernel. In this case, the GLE is analytically

soluble.46 We consider the normalized VAF as a metric for comparison. For a kernel of the form

Γ(t) =
c

τ
exp

[
−t

τ

]
, t ≥ 0, (15)

the normalized VAF takes the following form:

〈V (t)V (0)〉
〈V (0)V (0)〉

=

exp
[−t

2τ

] (
cos(Ωt) + 1

2τΩ
sin(Ωt)

)
for Ω 6= 0

exp
[−t

2τ

] (
1 + t

2τ

)
for Ω = 0

, Ω =
√

c/τ − 1/4τ 2. (16)

Making an analogy with the canonical damped harmonic oscillator, we consider three scenarios, i.

14
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underdamped (real Ω), ii. critically damped (Ω = 0), and iii. overdamped (imaginary Ω). In Figure

1, we demonstrate that we can recover all three regimes using our integrator.
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FIG. 1. Normalized VAF for a single Prony series mode in the i.) underdamped (c = 1, τ = 1), ii.)

critically damped (c = 0.5, τ = 0.5), and iii.) overdamped limits (c = 0.25, τ = 0.25). A time step of

∆t = 0.01 is used for all runs, and error bars are drawn based upon a sample of 10,000 walkers over 10

independent runs.

To validate our integration scheme in the presence of a conservative force, we next consider GLD

with an external potential. The analytic solution of the GLE with a power law memory kernel

and a harmonic confining potential has been derived by other authors.33 In the cited work, the

GLE is solved in the Laplace domain, yielding correlation functions given in terms of a series of

Mittag-Leffler functions and their derivatives. Here, we apply our integration scheme to a Prony

series fit of the power law kernel and demonstrate that our results are in good agreement with the

exact result over a finite time interval. The GLE that we intend to model has the form:

dV (t) = −ω2
0X(t)dt−

t∫
0

γλ

Γ(1− λ)
(t− s)−λV (s)dsdt + M−1F r(t)dt, 0 < λ < 1 (17)

We begin by constructing a Prony series representation of the memory kernel. As it exhibits a

power law decay in the Laplace domain, as well, a Prony series representation will have strong

15
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contributions from modes decaying over a continuum of time scales. To this end, rather than

relying on a non-linear fitting procedure to choose values for τk, we assume logarithmically spaced

values from ∆t/10 to 10Nt∆t. By assuming the form of each exponential, the Prony series fit

reduces to a simple linear least squares problem, that we solve using uniformly spaced data over an

interval that is two decades longer than the actual simulation. In Figure 2, the Prony series fit of

the memory kernel for λ = 0.5 is compared to its exact value.
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Exact
4 Mode
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8 Mode

FIG. 2. A Prony series fit of the power law memory kernel in Equation 17 for γλ = 1, λ = 0.5 with an

increasing number of modes.

Here, the maximum relative error is ∼ 10%, while it is ∼ 1% for Nk = 8. In Figure 3, the

normalized VAF computed via numerical integration of the extended GLE with a variable number

of modes is shown compared to the exact result for some of the parameters utilized in an article by

Despósito and Viñales.33 It seems evident that the accuracy of the integrated velocity distribution

improves relative to the exact velocity distribution as the number of terms in the Prony series fit

increases. This is quantified in Figure 4, in which the pointwise absolute error in the integrated

VAF is illustrated.

Next, we demonstrate that our implementation is robust in certain limits of the GLE - particu-

larly the Langevin and zero coefficient limits. As our implementation is available in a public domain

code with a large user base, developing a numerical method that is robust to a wide array of inputs

is essential. For the zero coefficient limit we consider a harmonically confined particle experiencing

a single mode Prony series memory kernel of the following form:

dV (t) = −ω2
0X(t)dt−

t∫
0

c

τ
e−(t−s)/τV (s)dsdt + M−1F r(t)dt, 0 < λ < 1 (18)

The initial conditions on X and V are drawn from a thermal distribution at T = 1. In the limit

that c → 0, we expect the integrated normalized VAF to approach that of a set of deterministic
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FIG. 3. Comparison of numerically integrated results to the exact solution of Equation 17 for γλ = 1,

λ = 0.5, and ω0 = 1.4. A time step of ∆t = 0.01 is used, and error bars are drawn based upon a sample of

10,000 walkers over 10 independent runs with ∆t = 0.01.
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FIG. 4. Pointwise absolute error in the normalized velocity autocorrelation function for the same conditions

as Figure 3. Error is computed with respect to the mean of VAFs computed from 10 independent runs.

harmonic oscillators. The initial conditions on X and V are drawn from a thermal distribution at

T = 1, giving the integrated result some variance, even in the Newtonian/deterministic limit. In

Figure 5, that this limit is smoothly and stably approached is illustrated.

In the exact c = 0 limit, oscillations in the VAF occur at the natural frequency of the confining
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FIG. 5. Illustration of the smooth/stable manner in which the proposed integrator approaches the c = 0

(Newtonian) limit from c = 1 for a single Prony mode with τ = 1. The particle is harmonically confined

with ω0 = 1, and the expected period of oscillation is restored for c = 0.

potential, ω0 = 1, whereas for non-zero c, these oscillations are damped in proportion to c, as one

may expect on the basis of intuition. The Langevin limit is illustrated next. To this end, we utilize

the same single mode Prony series memory kernel, but remove the confining potential (i.e., ω0 = 0).

We have done so to ensure that the Langevin limit yields an Ornstein-Uhlenbeck process. In Figure

6, we illustrate that this limit is also smoothly and stably approached.
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FIG. 6. Illustration of the smooth/stable manner in which the proposed integrator approaches the τ = 0

(Langevin) limit from τ = 1 for a single Prony mode. The particle is subject to no conservative forces,

so the resultant dynamics correspond to an Ornstein-Uhlenbeck process. The ‘exact’ Langevin limit was

integrated using fix langevin in LAMMPS.

The result for the Langevin limit itself was integrated using the existing fix langevin command

in LAMMPS. For τ = 100, the GLE yields results that differ from the Langevin limit as one might

expect on the basis of the previous results. However, even for τ = 10−1, the GLE yields results that

are close to that of the Langevin limit, as the resultant numerical method retains some GLE-like

18



a
n
d

m
a
y

b
e

b
e

fo
u
n
d

a
t
h
t
t
p
:
/
/
j
c
p
.
a
i
p
.
o
r
g
/
r
e
s
o
u
r
c
e
/
1
/
j
c
p
s
a
6
/
v
1
3
9
/
i
4
/
p
0
4
4
1
0
7
s
1

T
h
e

fo
llo

w
in

g
a
rtic

le
a
p
p
e
a
re

d
in

J
.
C

h
e
m

.
P

h
y
s.

1
3
9
,
0
4
4
1
0
7

(2
0
1
3
)

behavior. However, for τ = 10−8 and ∆t = 0.01, the parameter θ = exp [−106], is below machine

epsilon. As mentioned in Section IID, this results in a method that is indistinguishable from

conventional Langevin dynamics, and consequently, the integrated dynamics are indistinguishable.

This result demonstrates that the method is robust, even if the user ‘accidentally’ crosses into a

Langevin-like regime. We again emphasize that methods 1 and 2, considered earlier, will not stably

approach this limit.

To demonstrate capability in reduced order modeling, we next invert the VAF associated with a

set of trajectories generated in the presence of a conservative force, to construct a memory kernel

that will reproduce the same dynamics without such a force. In other words, we seek an effective

memory kernel, Γeff (t), such that a simplified GLE of the form:

dV (t) = −
t∫

0

Γeff (t− s)V (s)dsdt + M−1F r(t)dt (19)

reproduces the VAF of a GLE of the more general form given in Equation 1.

The starting point for this procedure is the observation that for Equation 19, the VAF and

memory kernel have the following relationship in the Laplace domain:13

〈Ṽ (σ)V (0)〉 =
kBT

mσ + Γ̃eff (σ)
. (20)

Here, tildes indicate that the associated time domain quantities have been Laplace transformed, with

transform domain variable σ. Given 〈Ṽ (σ)V (0)〉 for some process whose VAF we wish to reproduce

via integration of Equation 19, Γ̃eff (σ) can be resolved algebraically, and its time domain form can

be found via an inverse Laplace transform:

Γeff (t) = L−1

{
kBT

〈Ṽ (σ)V (0)〉
−mσ

}
(t) (21)

This effective memory kernel can then be fit to a Prony series, and Equation 19 can be integrated

using the numerical method developed in this manuscript. In Figure 7, we demonstrate that we

can use this inversion procedure to take the exact VAF generated by Equation 17, and compute a

Γeff (t) for Equation 19 that reproduces it:

Here, the parameters utilized in Equation 17 were ω0 = 0.5 and λ = 0.9, and the associated

analytic VAF was fit to a three term Prony series. This initial fit was done to realize a simpler

form of the Laplace domain VAF, which was inserted into Equation 21. The resultant Γeff (t) was

also fit to a three term Prony series. It is interesting to note that one term of this fit reduced

to a conventional Langevin term (i.e., one that was proportional to δ(t) rather than exp [−t/τ ])
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FIG. 7. Illustration of the result of the kernel fitting procedure described in Section IV. Note that while

the exact VAF evolves under the influence of a harmonic confining potential (Equation 17), the integrated

VAF is spawned by a GLE free of any conservative forces (Equation 19). The effect of the force is included

in the construction of Γeff (t).

highlighting the utility of our method’s reproduction of the Langevin limit. This Prony series

representation of Γeff (t) was used in Equation 19, which was numerically integrated to yield the

integrated VAF result in Figure 7.

This result is especially interesting as it demonstrates capability for effecting a confining po-

tential, on a finite timescale, exclusively through the GLE drag/random forces. This same fitting

procedure could be used to remove inter-particle interactions, albeit with some loss of dynamical

information, and will be discussed in more detail in future work.

It is important to note that while the dynamics of a confined particle are reproduced in the

absence of an explicit confining force, this is only the case over the interval for which the mem-

ory kernel is reconstructed. Outside of this interval, the asymptotic behavior of the Prony series

memory kernel will give rise to unbounded diffusive motion. While the expected discrepancies in

the dynamics are difficult to notice in the VAF, as both the analytic and reconstructed quantities

decay to zero, it is very evident in the mean-squared displacement (MSD). Here the asymptotic

exponential behavior of the Prony series memory kernel necessarily leads to asymptotic diffusive

motion signaled by a linear MSD. In contrast, the analytic memory kernel with the confining force

will generate an MSD that remains bounded. This is illustrated in Figure 8. Here, the fit VAF is

integrated to yield the MSD for the Prony series model, and compared with the exact MSD over

both the interval of the fit, and beyond. This example illustrates the importance of choosing an

appropriate interval for fitting memory kernels to achieve the appropriate limiting behavior in one’s

dynamics.
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FIG. 8. Comparison of the exact normalized MSD and the MSD generated from integrating the VAF fit.

The exact MSD is normalized such that its asymptotic limit is 1, and the same normalization is applied to

the MSD integrated from the fit. The grey line indicates the upper bound of the interval over which the

VAF fit was constructed.

V. CONCLUSIONS

A family of numerical integration schemes for GLD have been presented. These schemes are

based upon an extended variable formulation of the GLE in which the memory kernel is rendered

as a positive Prony series. In certain limits, it can be shown that a specific instance of this family of

integrators exactly conserves the first and second moments of the integrated velocity distribution,

and stably approaches the Langevin limit. To this end, we identify this parametrization as optimal,

and have implemented it in the MD code, LAMMPS. Numerical experiments indicate that this

implementation is robust for a number of canonical problems, as well as certain pathologies in the

memory kernel. An exemplary application to reduced order modeling illustrates potential uses of

this module for MD practitioners. Future work will further develop the VAF fitting procedure in

the context of statistical inference methods, and present extensions of the numerical integrator to

mixed sign and complex memory kernels.
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25E. Guàrdia and J. Padró, J. Chem. Phys. 83, 1917 (1985)

26J. Straub, M. Borkovec, and B. Berne, J. Chem. Phys. 84, 1788 (1986)

27D. Smith and C. Harris, J. Chem. Phys. 92, 1304 (1990)

22



a
n
d

m
a
y

b
e

b
e

fo
u
n
d

a
t
h
t
t
p
:
/
/
j
c
p
.
a
i
p
.
o
r
g
/
r
e
s
o
u
r
c
e
/
1
/
j
c
p
s
a
6
/
v
1
3
9
/
i
4
/
p
0
4
4
1
0
7
s
1

T
h
e

fo
llo

w
in

g
a
rtic

le
a
p
p
e
a
re

d
in

J
.
C

h
e
m

.
P

h
y
s.

1
3
9
,
0
4
4
1
0
7

(2
0
1
3
)
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Appendix B

B.0.1 An Approximation for a Slowly-Varying Field

In this we derive the equilibrium condition for a system of particles in a slowly varying
field c.f. [?]. In what follows below we will distinguish between the fluid viewed as pure fluid,
and the fluid considered as a binary mixture of two labeled species, A and B. To denote
the latter we will explicitly use subscripts (i, A, or B, as appropriate) to indicate a density
or (total or excess) chemical potential of a certain species. If no subscripts are present, we
refer to a property of the pure fluid.

We start with the PDT in equation 3.0.22,

βµ = lnρ(r)− ln < e−β(Ut(r) > +Vext(r) (B.0.1)

≡ lnρ(r) + βµ̃ex(r) + Vext(r) (B.0.2)

where we have simplified the notation by writing µ̃ex(r) for the test-particle insertion term.
This notation is suggested by the observation that in the absence of an external field that
term becomes indeed the excess chemical potential. However, at this stage we are merely
simplifying the notion, and the last line of equation B.0.2 simply defines the meaning of
µex(r). Specializing to an external field that just varies in the z-direction

βµ = lnρ(z) + βµ̃ex(z) + Vext(z) (B.0.3)

If the local density is slowly varying, i.e., if the gradient of ρ(z) is small, we can use the
approximation,

βµ̃ex(z) ≈ βµex(ρ(z)) (B.0.4)

That, is the test-particle insertion term is approximated by the bulk excess chemical
potential of a fluid with a bulk density equal to the local density at position z, ρ(z)). Thus,

βµ ≈ lnρ(z) + βµex(ρ(z)) + Vext(z) (B.0.5)
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The constancy of µ at equilibrium implies

0 =
∂lnρ(z)

∂z
+

∂βµex(ρ(z))

∂z
− Fext(z)

=
∂lnρ(z)

∂z
+

∂βµex(ρ(z))

∂ρ(z)

∂ρ(z)

∂z
− Fext(z)

=
∂lnρ(z)

∂z
+

1

ρ(z)

∂βpex(ρ(z))

∂ρ(z)

∂ρ(z)

∂z
− Fext(z)

=
∂lnρ(z)

∂z

(
1 +

∂βpex(ρ(z))

∂ρ(z)

)
− Fext(z)

=
∂lnρ(z)

∂z

∂βp(ρ(z))

∂ρ(z)
− Fext(z) (B.0.6)

where Fext denotes the gradient of the one-body external field Vext. Examples of the
applicability of the above equation include a fluid, or a Brownian suspension in a gravitational
field. Equation B.0.6 is equation (7.70) of Dhont’s monograph [?].

If the local density gradient is not sufficiently small it may be beneficial to define a coarse-
grained or weighted density, ρ̄(z), and the modified expression for equilibrium becomes

0 =
∂lnρ(z)

∂z

∂βp(ρ̄(z))

∂ρ̄(z)

∂ρ̄(z)

∂ρ(z)
− Fext(z) (B.0.7)

To make contact with our earlier expression, we turn to the color diffusion problem. The
equilibrium condition for species i is, or a slowly varying density profile:

0 =
∂lnρi(z)

∂z
+

∂βµex(ρ(z))

∂z
− Fi,ext(z) ; i = A, B

=
∂lnρi(z)

∂z
+

∂lnρ(z)

∂z

∂βpex(ρ(z))

∂ρ(z)
− Fi,ext(z)

=
∂ln(ρi(z)/ρ(z))

∂z
+

∂lnρ(z)

∂z

∂βp(ρ(z))

∂ρ(z)
− Fext(z)

=
∂lnxi(z)

∂z
+

∂lnρ(z)

∂z

∂βp(ρ(z))

∂ρ(z)
− Fext(z) (B.0.8)

130



We stress the distinction between ρi and ρ = ρA+ρB. Thus, the excess chemical potential
term is expressed entirely in terms of the pure hard sphere profile.

In a nonequilibrium situation the imbalance in the force terms on the right hand side
leads to a flux of the form;

ji = −D(ρ(z, t))

(
∂lnρi(z)

∂z
+

∂lnρ(z)

∂z

∂βpex(ρ(z))

∂ρ(z)
− Fi,ext(z)

)
ρi(z, t) ; i = A, B(B.0.9)

Specializing to a diffusion coefficient that is the bulk diffusion, D(ρb), we can re-arrange this
expression, as before, to give,

ji

Dρi

+
∂lnρi(z)

∂z
=

∂lnρ(z)

∂z

∂βpex(ρ(z))

∂ρ(z)
− Fi,ext(z) ; i = A, B

=
K̃(z)

kT
− Fi,ext(z) ; i = A, B (B.0.10)

B.0.2 Color Diffusion in a Slowly-Varying External Field

Next, we will consider the problem of color diffusion in the presence of a one-body external
field, e.g., gravity, that acts identically on each species. For each component (as well as for
the pure system) we have the equilibrium condition

βµi = lnρi(z) + βµ̃ex(z) + Vext(z) ; i = A, B (B.0.11)

Again, we stress that for our system of labeled species the configurational contribution
to the chemical potential is independent of the the type of species. Taking the derivative
with respect to position we have, at equilibrium,

0 =
∂lnρi(z)

∂z
+

∂βµ̃ex(z)

∂z
− Fext(z) ; i = A, B (B.0.12)

[As an aside: this expression also holds for the pure system, i.e. without subscripts. It
lets us identify the solvation force as in the case without a slowly-varying field. In particular,
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simulations show that the z-component of the solvation force (the sum of all the forces due
to the surrounding fluid) is :

F z
solv(z) =

∂lnρ(z)

∂z
− Fext(z) (B.0.13)

= −∂βµ̃ex(z)

∂z
(B.0.14)

]

Similarly, if the system is not balanced there will be a flux given by,

ji = D(z)

(
∂lnρi(z)

∂z
+

∂βµ̃ex(z)

∂z
− Fext(z)

)
ρi(z) ; i = A, B (B.0.15)

or

− ji

D(z)ρi(z)
=

(
∂lnρi(z)

∂z
+

∂βµ̃ex(z)

∂z
− Fext(z)

)
; i = A, B

=
∂lnρi(z)

∂z

∥∥∥∥
V

− ∂lnρ(z)

∂z

∥∥∥∥
V

; i = A, B (B.0.16)

where we used equation B.0.12 to express the configurational contribution in terms of the
pure sphere profile. Notice that the external field has dropped out of the expression. It is
interesting to note that the form of the above equation is the same as it is in the absence of
the the one-body external field. However, both derivatives on the right hand side are taken
for a system in an external field, Vext, a fact that we have highlighted by subscripting the
derivative.

The presence of the external can significantly change the density profiles. Thus, in the
case of a constant force (i.e., ”gravity”), Fext, the profile can become quite asymmetric.
Regions well away from the hard walls, exhibit a sloping profile, albeit no oscillations. In
other words, although the overall pure hard sphere system is equilibrium, and hence has
constant chemical potential, µ, the so-called intrinsic chemical potential varies with position
z. The intrinsic chemical potential is defined as:

µint(z) ≡ µ− Vext(z) (B.0.17)
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The intrinsic chemical potential is a useful concept in the presence of a slowly varying field.
For example, the atmosphere has slowly varying properties with elevation from the Earth’s
surface. Specifically, in gravity the intrinsic chemical potential decreases with elevation,
according to

µint(z) = µ−mg(z − z0) (B.0.18)

where m denotes the mass and g is the gravitational acceleration. The position z0 is a
reference position. Thus, a fluid in a gravitational field has an intrinsic chemical potential
that varies linearly with distance from the reference point. Combined with a bulk equation
of state that links the chemical potential with the bulk density (i.e., some relation µ(ρ)),
equation B.0.18 constitutes an implicit equation for the local density, ρ(z).

We note that, in a situation where we have a fluid confined by two parallel hard walls in
the presence of gravity, the intrinsic chemical potential is a linear function throughout the
entire volume, including the inhomogeneous region.

Locally, on a length scale much smaller than the gravitational length (which is of order
a kilometer), the atmosphere appears to have uniform properties. To describe that region of
the atmosphere one assumes that the fluid is of one intrinsic chemical potential, µint(z) at
the local z. Whereas in the absence of Vext, we were able to provide an excellent description
of the flux by selecting a constant D, one cannot expect this to hold true for the more general
case. It is natural to use a D that depends on on the slowly varying density, in order to rely
on a relationship for the bulk fluid, D(ρ) or D(µ) . We do not seek a D(ρ(z)) that depends
on the local density, as that would re-create physical problems in inhomogeneous interfacial
regions, with a D varying wildly and rapidly on a molecular length scale. It is, in fact, only
the slowly-varying part of the density, that marks the entire profile, that we seek to capture
in a density dependent D.

From the discussion above it is clear that the way in which we can best phrase this is
with the help of µint(z). Namely, we propose to use D = D(µint(z)). This has the desired
properties, namely that when Vext(z) vanishes it reduces to a constant D, as before; and
since, at equilibrium, µint(z) varies like Vext(z) (because µ is a constant), it captures the
thermodynamic state of the local fluid. In fact, it is the only definition that appears to make
sense.

In practice, one can use Widom’s insertion method to determine µint(z) at some point z.
Since we know Vext(z) we can then, from equation B.0.17, determine the intrinsic chemical
potential at all other values of z. Alternatively, we can determine ρ(z), well away from the
wall, where it is slowly-varying, and use as an estimate: µint(z) ≈ µ(ρ(z)), and apply a bulk
equation of state ( i.e., a functional relationship µ(ρ)).

For sufficiently small, and slowly-varying, Vext(z) a profile that is fairly close to linear
may result. In such a case an estimate of the variation of D over the extent of the box can
be obtained from a simple fit of the smooth parts of the profile, extrapolating it toward the
inhomogeneous interfacial regions.
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Figure B.1. The self-diffusion coefficient for hard spheres
as a function of packing fraction. The solid black curve rep-
resents the fit by Heyes et al. For comparison, the Enskog
approximation, which becomes exact in the low density limit,
is shown as a red dashed line.
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B.0.3 Color Diffusion in a Slowly-Varying External Field: an al-
ternate derivation

As an alternative starting point we can consider Fick’s first law for an ideal mixture. We
recall that for our system of labeled hard spheres the local chemical potential of species i is
given by (c.f. Equation 3.0.13)

βµi(z) = lnxi(z) + βµ (B.0.19)

where the mole fraction xi ≡ ρi/ρ. This expression applies whether there is an external field
or not. Hence, Fick’s first law for the flux of species i = A, B states that

ji = −Di(z)ρi
∂βµi

∂z
(B.0.20)

= −Di(z)
∂ρi

∂z
−Diρi

∂lnρ

∂z
(B.0.21)

given that the total local density, ρ, is also a function of z. Note that if ρ is a constant,
this equation reduces to the simplest form of Fick’s first law, j = −D∂ρi/∂z, as it should.
Equation B.0.21 applies in the inhomogeneous region caused by the presence of the hard
wall, but it is also applies away from the walls if there is a slowly-varying field present.

The above equation can be rearranged to read,

− ji

D(z)ρi(z)
=

∂lnρi(z)

∂z
− ∂lnρ(z)

∂z
; i = A, B (B.0.22)

which is equation B.0.16.

Equation B.0.21 can be readily used to determine the flux ji once the steady-state pro-
files ρi(z) and ρ(z) are established. As discussed earlier, D(z) should be approximated by
D(µint(z)). An example of a test of the constancy of the fluxes is shown in figure B.2 below,
where we have used the data shown in figure 3.3. The onersion rate is a function of the reac-
tion rate as well. One way to implement this is introduce a probability pA→B that controls
the conversion of A into B once a particle of species A hits the wall. The conversion rate
(per unit area and per unit time), R, is related to the density of species A at the left hand
wall by:

RAB = pA→B
ρA(0)

ρA(0) + ρB(0)
cw (B.0.23)

= pA→B
ρA(0)

βp
cw (B.0.24)
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Figure B.2. The fluxes, jA (black) and jB (red) for a
case of color diffusion between two reactive planar hard walls
in the presence of gravitational field. Flux jA is negative,
as it diffuses in the negative direction (i.e., to the left), in
the direction of gravity. Flux jB is in the opposite direc-
tion, toward the righthand side wall. The strength of the
constant force is given by mg = 0.2kT/σ. The data clearly
shows that, although there is significant scatter, the fluxes
are constant throughout the box, and the average value is in
agreement with the conversion rate measured at each wall,
and jA = −jB . The scatter is larger in the center of the box,
as both derivatives on the right hand side of equation B.0.21
are nearly zero.
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where we have used the contact theorem (that the sum of the densities at the wall equals
the pressure) and that the wall collision rate per unit area is related to the collision rate by
cw = βp/(2π)1/2.
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