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Abstract

This paper examines task mapping algorithms for non-contiguously allocated parallel jobs.
Several studies have shown that task placement affects job running time for both contiguously
and non-contiguously allocated jobs. Traditionally, work on task mapping either uses a very
general model where the job has an arbitrary communication pattern or assumes that jobs
are allocated contiguously, making them completely isolated from each other. A middle
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ground between these two cases is the mapping problem for non-contiguous jobs having
a specific communication pattern. We propose several task mapping algorithms for jobs
with a stencil communication pattern and evaluate them using experiments and simulations.
Our strategies improve the running time of a MiniApp by as much as 30% over a baseline
strategy. Furthermore, this improvement increases markedly with the job size, demonstrating
the importance of task mapping as systems grow toward exascale.

Acknowledgments

We thank Courtenay Vaughan and Kevin Hastings for helpful discussions. D.P. Bunde,
J. Ebbers, S.P. Feer, N.W. Price, Z.D. Rhodes, and M. Swank were partially supported
by contract 899808 from Sandia National Laboratories. Z.D. Rhodes also acknowledges
support from a Post-baccalaureate Fellowship from Knox College. We also thank all those
who contributed traces to the Parallel Workloads Archive.

4



Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Organization of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Motivation and related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Number of cores per MPI rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Comparison between mappers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Correlation with hop metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Trace-based simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Incremental improvement mapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Results on traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5



List of Figures

1 Possible mapping of a 4×3 job onto a 5×4 machine. Left: Job tasks with
communication pattern shown. Right: Tasks mapped to dark processors. . . . . 10

2 Mapping by ColMajor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Mapping by RowMajor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Mapping by Corner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Mapping by AllCorners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Mapping by Overlay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7 Mapping by TwoWayOverlay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

8 First cut made by RCB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

9 Mapping by RCB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

10 Running time for 64K-core job as a function of the number of cores per MPI
rank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

11 Running time as a function of job size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

12 Running time as a function of job size for the best mapping algorithms . . . . . 19

13 Snake curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

14 Average hops for each trace using the MC1x1 allocator. . . . . . . . . . . . . . . . . . . 24

15 Average hops for each trace using the snake best fit allocator. . . . . . . . . . . . . . 24

16 Average hops as a function of job size for the RCB mapper over all traces. . . 24

6



List of Tables

1 Job Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Summary of traces used in simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7



8



Introduction

This paper focuses on improving the performance of parallel jobs by optimizing the
placement of their tasks. This problem is called task mapping because the tasks are being
mapped to processors. It has a long history (eg. [12]) and parallel algorithms used to
be designed for specific architectures so that the task placement could be specified. This
changed in the mid-1980s, when the adoption of wormhole routing made task mapping less
important by making a message’s latency independent of its size. Several generations of
machines were made and used with little concern for task mapping.

Now it appears that this hiatus is ending. Several recent experiments have shown that
task placement can significantly impact performance on modern systems (e.g. [4, 22, 18,
11, 16, 20, 6, 14]). These experiments include actual applications, one of which exhibited a
speedup of 1.64 times when the task mapping was improved [18]. The issue now is contention
for limited bandwidth. Poorly placed tasks lead to messages traveling more hops in the
network, consuming part of the capacity of each link along the route. Of course, messages
traveling longer distances have always consumed more bandwidth, but the importance of this
fact is being fueled by two ongoing trends. First of all, processors continue improving faster
than networks, increasingly making bandwidth the limiting factor in performance. Second
of all, processor counts in state of the art HPC systems have continued to grow, which both
increases the number of hops between processors and the potential for hotspots.

Growing recognition of the importance of task placement has led to a resurgence of work
on the problem. Broadly speaking, prior work on task mapping falls into two categories,
graph-based approaches and whole-machine approaches. Graph-based approaches are too
general. The problems are hard, and the solutions do not exploit the regular structure of
some common communication patterns. Whole-machine approaches like that of Blue Gene
assume structured communcation patterns that fold and stretch one grid into another and
ignores non-contiguous allocations.

Contribution

In this paper, we begin the study of task mapping for jobs with structured communi-
cation patterns and non-contiguous allocations. Specifically, we look at mapping jobs that
communicate in a regular 3D nearest neighbor pattern onto a 3D mesh with xyz routing.
This is the simplest possible case, but non-trivial because processors allocated to other jobs
interfere with the mapping. Figure 1 shows a good 2D mapping of a 4×3 job onto 12 al-
located processors of a 5×4 machine. The solid lines connecting allocated processors show
which pairs of processors communicate; actually communication must use the mesh edges
(shown as dotted lines).

One of our algorithms, which recursively divides both the task graph and the set of
allocated processors, is shown to greatly outperform the other algorithms, including the
current mapper on Cielo.
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Figure 1. Possible mapping of a 4×3 job onto a 5×4 ma-
chine. Left: Job tasks with communication pattern shown.
Right: Tasks mapped to dark processors.

In addition, our experiments show that the average number of hops between communi-
cating tasks is strongly correlated with the running time, facilitating later simulator-based
studies by others.

Organization of the paper

The rest of the paper is organized as follows. We summarize related work in Section .
In Section , we explain our algorithms. Section describes the results of our experiments.
Section describes simulations used to evaluate the algorithms on a variety of traces. Finally,
in Section we summarize our results and discuss future work.

Motivation and related work

As mentioned above, previous work on task mapping falls into two main categories. The
first category was introduced by Bokhari [12] in the first paper on task mapping. In this
category, the job is represented as a graph whose nodes are the tasks and whose edges
represent communication between their endpoints. Similarly, the machine (or the available
part of it) is represented as a graph of processors with connections. In general, both graphs
have weighted edges to represent the amount of communication needed between pairs of
tasks and the cost of communicating between pairs of processors respectively. Since the
problem is clearly NP-complete (formally shown in [20]), the papers generally use heuristic
techniques such as genetic algorithms [15] and simulated annealing [13]. Since the graph
formulation of task mapping is the most general, it remains a goal for recent researchers.
Chung et al. [16] use a hierarchical approach to simplify the mapping problem to reasonable
complexity. Hoefler and Snir [20] use a combination of heuristics: greedy, recursive bisection,
a spectral method, and a local search scheme.
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In the worst case, the graph representation of task mapping is necessary since jobs can
have arbitrary communication patterns and failures or interference from other jobs can com-
plicate networking. The generality of the model obscures some practical simplifications,
however: both the network and the job are likely to exhibit useful structure. HPC sys-
tems have highly structured topologies, such as a mesh or fat-tree. Similarly, jobs often
communicate in regular patterns such as trees and stencil patterns.

The other main category of work on task mapping focuses on mapping mesh commu-
nication patterns onto meshes, a restriction we adopt as well. The difference is that this
work implicitly assumes that the entire machine is devoted to a single job. (This occurs for
capability jobs, but is also the norm on BlueGene systems, which guarantees each job its
own submesh, which is kept isolated from other jobs [5].) For example, Yu et al. [31] devise
strategies based on folding one mesh into another with a minimum of dilation (stretching a
communication graph edge across multiple communication links). Several other heuristics
for the mesh to mesh mapping problem are proposed by Bhatelé et al. [10]; we adapt some
of their heuristics and evaluate them in our setting.

Recently, some work has been done in the middle ground of jobs on a mesh, communi-
cating in stencil patterns, but not isolated from other jobs. Barrett et al. [6] apply a custom
reordering algorithm to their miniGhost and CTH jobs on a large Cray XE6 (Cielo). Origi-
nally their miniGhost jobs employing an x major mapping of processes to processors did not
scale well above four thousand processes on Cielo. They reordered the mapping to “chunk”
two by two by four submeshes of the job onto each sixteen-core Cielo node and mapped the
chunks onto nodes in an x major fashion. This reordering reduced both the average hops
between processes in the stencil and processing time for the jobs. Brown et al. [14] performed
similar work on the more general processors command for LAMMPS [1].

Algorithms

Now we describe our task mapping algorithms. All of them are stated in terms of nodes;
rather than assigning tasks to individual cores, follow the “chunking” approach described
above so that each node gets a submesh. This preserves the job’s mesh communication
pattern while reducing the problem size and resolving the additional choices presented by
having multicore nodes. It also automatically enforces a Sandia policy against multiple jobs
running on a single node.

Linear algorithms The first set of algorithms we considered are linear algorithms, in
which a linear ordering is used to assign tasks to processors. These algorithms are fast and
easily implemented, making them attractive as a starting point.

The baseline task mapping algorithm provided by ALPS, Moab, and miniGhost is a linear
algorithm. The cores are numbered by assigning the cores of each node consecutive numbers
and visiting the nodes in the allocation order, which uses a space-filling curve similar to the
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Figure 3. Mapping by RowMajor.

linear scheme described in Section ; see [3] for details. This algorithm then orders tasks
according to row-major order (consecutive numbers move in the x direction, then start the
next row by increasing y (jumping back to x = 0) and eventually increasing the z coordinate.
Given these three orders, each task is assigned to its corresponding core. We call this the
Baseline algorithm since it is the task mapper provided by ALPS, Moab, and miniGhost and
it was in use prior to our work.

Barrett et al. [6] proposed a refinement of this which groups the tasks into 2 × 2 × 4
blocks, each of which is assigned to a node (which has 16 cores since their experiments, like
ours, were performed on Cielo). We use Grouping as a shorthand name for their algorithm.

In addition to these previously-implemented algorithms, we added ColMajor, in which
both the tasks and the allocated processors are numbered in column major order (coordinates
increase first in y, then x, and finally in z). Each task is assigned to its corresponding
processor. This algorithm in 2D is illustrated in Figure 2.

The algorithm RowMajor is the same as ColMajor except that the numberings are
done in row major order, as illustrated in 2D in Figure 3.

A natural extension of ColMajor and RowMajor is to try different linear orderings.
This is the basis for the algorithm Ordered, which considers these orderings plus their
“flips”, where the dimensions are traversed in the opposite direction. (For example, using
a row major ordering, but traversing the rows right to left instead of left to right.) In two
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Figure 5. Mapping by AllCorners.

dimensions, there are 2 · 22 = 8 such orderings. Ordered compares all these orderings and
takes the one that yields the lowest average hops. (As we show later, this metric is highly
correlated with running time.)

Corner-based algorithms Our next set of algorithms are called corner-based algorithms
since they build mappings from the corners rather than the sides. The first of these is
the Corner algorithm. As in the linear algorithms, Corner numbers both the tasks
and processors, mapping each task to the corresponding processor. The ordering it uses is
distance from front bottom left corner of the mesh, with ties broken by the z coordinate,
then the y coordinate, and finally the x coordinate. This algorithm in 2D is illustrated in
Figure 4.

The AllCorners algorithm is similar except that it rotates between the corners. Thus,
its first processor is the one closest to the front bottom left corner, the second is closest to
the front top left, the third to the front top right, the fourth to the front bottom right, and
so on. This ordering in 2D is illustrated by Figure 5.

The corner-based algorithms are adaptations of heuristics “Expand from corner” and
“Corners to center” described by Bhatelé et al. [10] for task mapping when all processors
are available.
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Overlay-based algorithms Another set of algorithms constructs the mapping by “over-
laying” the job’s desired shape on the mesh to find the best processor to assign each task.
Each overlay is placed relative to a basepoint. The coordinates of the front lower left base-
point are the coordinatewise minimums of each coordinate among processors assigned to the
job. The overlay places the front bottom left corner of the job in this location, with other
tasks placed relative to it as if all processors were available. Thus, a task with coordinates
(i, j, k) within the job is placed within the overlay i positions from the basepoint in the x
direction, j positions from the basepoint in the y direction, and k positions from the base-
point in the z direction. The algorithm Overlay uses this overlay and, considering tasks
in column major order, assigns each task to the unassigned processor closest to that task’s
location in the overlay. Figure 6 illustrates the Overlay algorithm in 2D.

The algorithm TwoWayOverlay extends this idea to work from both directions, with
the sequence of tasks to assign alternately selected in column major order from the front
bottom left and the reverse order from the back top right. When assigning a task reached
in the forward direction, it behaves identically to Overlay. When assigning a task reached
in the reverse direction, it uses the overlay computed from a back top right basepoint whose
location is the coordinatewise maxima of processors assigned to the job. This algorithm in
2D is illustrated by Figure 7.

Recursive Coordinate Bisection Our final algorithm, recursive coordinate bisection
(RCB) [9], works by recursively dividing both the job and the set of allocated processors.
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Specifically, it splits the job into two parts along its largest dimension as evenly as possible.
Then it similarly divides the allocated processors into two parts of the same size based on
the same dimension (with tie-breaking). Figure 8 shows a division based on x coordinate.
Next, the algorithm recursively maps the tasks to the left onto the processors on the left
and the tasks to the right onto the processors on the right. (Substitute above/below or
in-front-of/behind for left/right when the division is made along other dimensions.) The
recursion stops when a part contains just a single task, at which point that task is mapped
to the single processor. The completed mapping in 2D is illustrated in Figure 9.

Rotations As a preprocessing step for most of the algorithms, we rotate the job if doing
so makes its aspect ratio match more closely with the chosen set of allocated processors.
Specifically, we compare the relative orders of dimension lengths for the job and the bounding
box of the set of allocated processors. If these orders differ, we rotate the job to bring them
into the same order. For example, if the job has a longer x dimension while the bounding
box has a longer y dimension, we rotate the job so that both have a longer x dimension.

This rotation operation is performed for all the algorithms except the baseline and
Grouping. Grouping is excluded because it was specifically motivated by a desire to
lessen the number of hops between jobs in the z dimension and rotations would interfere
with this.
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Experiments

Experiment setup

The experiments were run on the Los Alamos National Laboratory Cielo machine [24].
Cielo is a Cray XE6 with 143,104 compute cores in 8,944 compute nodes. Each node is a
dual AMD Opteron 6136 eight-core “Magny-Cours” socket G34 running at 2.4 GHz. The
service nodes are 272 AMD Opteron 2427 six-core “Istanbul” socket F running at 2.2 GHz.
The high speed interconnect is a Cray Gemini 3D torus in a sixteen by twelve by twenty-four
(XYZ) topology. There are two nodes (sockets) per Gemini. The bi-section bandwidth is
6.57 by 4.38 by 4.38 (XYZ) TB/s. As of November 2012, Cielo was number eighteen on the
top 500 list [2].

The applicaton used in the experiments was miniGhost. As part of the exascale research
program, the DOE lab community is developing mini applications (miniApps) that are rep-
resentative of the computational core of major advanced simulation and computing codes.
MiniGhost is a miniApp for exploring boundary exchange strategies using stencil computa-
tions in scientific parallel computing. The miniGhost application [7] is a bulk-synchronous
message passing code whose structure is modeled on the computational core of CTH [19].
CTH is a multi-material, large deformation, strong shock wave, solid mechanics code devel-
oped at Sandia National Laboratories.

A set of experiments consists of miniGhost runs for various numbers of total cores and
cores per MPI rank as shown in Figure 1, which gives the job dimensions. All jobs in a set of
experiments were submitted at roughly the same time. Due to system load, the first set of
experiments took almost two weeks to get on and off of Cielo. A second set of experiments
took less than a day.

For a given number of cores, a single script (allocation) was used. Ten task mapping
algorithms were then run for each core per rank on that allocation. The entire set of ten
algorithms were run one job after another. This was done to minimize the experimental
variances other than the cores per rank and task mapping algorithms for a given number of
cores in a single set of experiments.

The task mapping algorithm is selected early in the
miniGhost application. All the task mapping algorithms are implemented in a similar man-
ner. The results show that the differences in running time for the task mapping algorithms
are insignificant. The miniGhost output includes total time, communication time as a per-
centage of total time, and average hops between neighboring ranks in the application. The
application spends about thirty percent of its time communicating.
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Total Cores per Rank (X, Y, Z)
Cores 16 8 4 2 1

16 1, 1, 1 1, 2, 1 2, 2, 1 2, 4, 1 2, 4, 2
32 1, 2, 1 1, 2, 2 2, 2, 2 2, 4, 2 2, 4, 4
64 1, 4, 1 1, 4, 2 2, 4, 2 2, 8, 2 2, 8, 4

128 2, 4, 1 2, 4, 2 4, 4, 2 4, 8, 2 4, 8, 4
256 2, 4, 2 2, 4, 4 4, 4, 4 4, 8, 4 4, 8, 8
512 2, 8, 2 2, 8, 4 4, 8, 4 4,16, 4 4,16, 8
1K 4, 8, 2 4, 8, 4 8, 8, 4 8,16, 4 8,16, 8
2K 4, 8, 4 4, 8, 8 8, 8, 8 8,16, 8 8,16,16
4K 4,16, 4 4,16, 8 8,16, 8 8,32, 8 8,32,16
8K 8,16, 4 8,16, 8 16,16, 8 16,32, 8 16,32,16

16K 8,16, 8 8,16,16 16,16,16 16,32,16 16,32,32
32K 8,32, 8 8,32,16 16,32,16 16,64,16 16,64,32
64K 16,32, 8 16,32,16 32,32,16 32,64,16 32,64,32

Table 1. Job Dimensions

Number of cores per MPI rank

The miniGhost application has as a tuning option the number of cores assigned to each
MPI rank. This can range from 1 (each core gets its own MPI rank) to 16 (one MPI rank
per socket). Note that we place multiple MPI ranks per socket as we increase the number of
ranks; these experiments are about changing the balance of MP and OpenMP used by the
job rather than its size. Figure 10 shows the running time for our largest size job (64K cores)
for different numbers of core per rank. Each entry is the average of two runs except for the 1
core per rank entries of Corner, AllCorners, Overlay, and TwoWayOverlay; one
of our runs for each of these timed out so those entries contain a single data point.

Figure 10 shows two different performance trends. For some of the mappers, the best
performance is at 16 cores per MPI rank, the maximum value considered. For others, it is
at an intermediate value. Because the latter behavior is consistent with results obtained by
others and the algorithms with the best overall performance fall into the second camp, we
focus on the results for 4 cores per MPI rank (best for most of these algorithms).

Comparison between mappers

Figure 11 shows the running time as a function of job size for all ten algorithms. RCB
performs consistently well and is the best algorithm for most job sizes.

Of the linear algorithms, ColMajor is consistently worse than RowMajor and it
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turns in some poor performances at large sizes. We attribute this to the job dimensions, in
which the y dimension is often larger than the others (see Figure 1). This is the dimension
that ColMajor’s order moves down first and going down the long dimension is bad for
the linear algorithms since one or two previously-allocated nodes in a column create long
communication distances because a column of tasks gets split between the top of one column
of nodes and the bottom of the next. Surprisingly, Ordered is sometimes worse than
ColMajor and RowMajor even though it chooses between these (and other) possible
orderings. We attribute this to the imperfect knowledge with which Ordered makes its
decision; even though we show that average hops and running time are correlated, Ordered
can misjudge the relative quality of its choices.

Our results consistently favor the algorithms that work from multiple ends of the job, with
AllCorners outperforming Corner and TwoWayOverlay outperforming Overlay.
Indeed, this intuition might extend to explain why RCB does so well since it builds the
mapping from both halves of the task at each step of the recursion.

Figure 12 focuses on the baseline and the 3 most promising other algorithms (Grouping,
TwoWayOverlay, and RCB). There is some noise in the results, but it is clear that RCB
performs much better at large scale than the others. Its outperformance of the baseline
algorithm increases with the job size, reaching nearly 17% at 64K cores. The outperformance
is even better with different numbers of cores per MPI rank. For 64K cores, with 2 cores
per MPI rank RCB achieved a 27.9% improvement over the baseline (the individual runs
achieved 27.6% and 28.4%) and with 1 core per MPI rank it achieved a 28.6% improvement
(26.3% and 30.8% for individual runs).

Beyond the specific numbers, the lesson of Figure 12 is that task mapping becomes
increasingly important with job size. Since the number of nodes and cores are expected to
continue growing as we move to exascale, the apparently-scalable performance of RCB (or
successor algorithms) could be crucial to keeping communication costs reasonable.
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Correlation with hop metrics

Since computer time on large systems for these experiments is scarce, we are also in-
terested in identifying metrics by which we can judge mapping quality in simulations. We
investigated a couple of possibilities. The first of these is the average L1 distance between
processors with communicating tasks. Assuming x-y-z routing, this is equal to the average
number of hops (average hops) required for a message to traverse a communication path. The
number of hops that a message travels has a direct impact on its latency, but also serves as
a proxy for contention since the message consumes bandwidth on each link that it traverses.
If the job performs the same amount of communication between each adjacent pair of tasks,
this metric is equivalent to the hops-bytes used by others (e.g. [10]).

In addition, we wanted to take long communication distances into account since delayed
messages can have disproportionate impact on job running time if tasks must wait for them.
The first of our added metrics is variance, the average of the squared deviation from the
average number of hops. This provides a measure of the “jitter” in communication times.
Our final metric is the maximum hops, the longest distance of any communication path,
which is justified by the observation that tasks wait for the last message of a communication
round before continuing.

Of these metrics, average hops turns out to be the best correlated with job running time.
For each combination of job size and number of threads per MPI rank, we calculated the
Spearman’s rank correlation. (Recall that we used job sizes that were powers of 2 from 16 to
64K and that the number of threads per MPI rank was a power of 2 from 1 to 16.) The rank
correlation coefficients are generally increasing with job size and decreasing with the number
of threads per MPI rank. Based on the achieved values, we can reject the null hypothesis
with significance level less than 0.05 for nearly all configurations of jobs having at least 512
cores and 8, 4, 2, or 1 threads per rank and all configurations of jobs having at least 8K cores
for larger numbers of threads per rank. (The single exception is 2K jobs having 2 threads
per rank.) We used the table in [30] for the confidence values. In addition, if we combine the
data points for different numbers of threads per rank, we find that all jobs sizes except 64
cores achieve this same significance level (determined by multiplying by

√
n− 1 to convert

the distribution of rank correlation coefficients to normal).

We used the same procedure to examine the other metrics, but the correlation was less
strong. For variance, the rank correlation coefficient still generally increased with job size,
but there was no clear pattern involving the number of threads per MPI rank. The best
numbers were 8 threads per rank, where all but one job size (2K) at least 1K achieved the
0.05 significance level, and 2 threads per rank, where 2K, 4K, 32K, and 64K did so. Of the
40 combinations of threads per rank and job sizes 2K or larger, 16 of them achieved this
level. When combining the data points for different numbers of threads per rank, it did so
for jobs of size 256 and larger except for 8K.

For max hops, the rank correlation coefficient again generally increased with job size and
decreased with number of threads per MPI rank, but only reached the 0.05 significance level
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for jobs with at least 32K cores and only for some of the numbers of threads per rank. When
combining the data points for different numbers of threads per rank, it did so for jobs of size
16K and larger.

In addition to these piecewise results, all three metrics achieved the 0.01 significance level
when all the runs were combined. Comparing the values of the rank correlation coefficients
suggests that average is most highly correlated with running time, then max hops, and finally
variance.

Trace-based simulation

To further explore the performance of our algorithms and to see them in more varied
scenarios, we examined them with a trace-based simulation. This simulator was used to
schedule and allocate jobs from the traces using algorithms similar to those used in practice.
The resulting allocations were then used as input to our task mapping algorithms, allowing
us to run the task mapping algorithms in situations very similar to those encountered on
actual systems. A partial description of the simulator is presented in Rodrigues et al. [28,
Section 4.7].

Simulation setup

To drive the simulator, we draw on the Parallel Workloads Archive [17], which contains
job logs from a variety of HPC systems. From these logs, we are able to get each job’s arrival
time, size, running time, and (in many cases) the running time estimate submitted by the
user. Unfortunately, the logs do not provide any information on job communication patterns
and very few give any guidance about the job’s desired shape. Since this information was
unavailable, we decided to remove issues of machine and job shape from our experiments by
focusing on the mapping of square jobs on square machines. Thus, we used only the logs for
machines whose number of processors is a perfect square; these are listed in Figure 2 along
with the shape each was assigned. From these logs, we present statistics on the mapping
quality for only the jobs that can be arranged in a perfect square of size greater than 1 (serial
jobs are uninteresting from a mapping perspective); the figure also shows the number of such
jobs in each trace along with the percent of jobs they represent. (Note that we simulate all
the jobs since non-square jobs still affect when the square jobs run and which processors
they are allocated.)

To schedule these traces, we used EASY [26], an algorithm that maintains a FIFO queue
but allows a job not at the front to start anyway (called backfilling) if it is not expected to
interfere with the job at the front of the queue when it does so. EASY is used in practice
and it is often used as a baseline in scheduling research.

To allocate jobs once EASY decides to run them, we used two different allocators. The
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Log name Machine # jobs used
DAS2-fs0-2003-1.swf 12×12 30,265 (13.8%)
DAS2-fs1-2003-1.swf 8×8 3,984 (10.1%)
DAS2-fs2-2003-1.swf 8×8 8,451 (12.9%)
DAS2-fs3-2003-1.swf 8×8 9,368 (14.2%)
DAS2-fs4-2003-1.swf 8×8 2,281 (6.9%)
KTH-SP2-1996-2.swf 10×10 5,949 (20.9%)
LLNL-T3D-1996-1.swf 16×16 6,538 (30.7%)
SDSC-Par-1995-2.1-cln.swf 20×20 19,108 (35.4%)
SDSC-Par-1996-2.1-cln.swf 20×20 15,330 (47.7%)
LLNL-Atlas-2006-2.1-cln.swf 96×96 12,474 (32.7%)

Table 2. Summary of traces used in simulations

first is MC1x1 [8], which identifies processors for an allocation by adding those at successively
greater L∞ (Manhattan) distances from a processor it selects as the center. The processors
at a given L∞ distance are called a shell. If all processors are free, the resulting allocation
is a square with odd side length except that the outermost shell may not be completely
populated depending on the number of processors being allocated. Processors that are busy
with other jobs become holes in this square, potentially requiring additional shells to be
examined.

The second allocation algorithm we considered is a linear scheme called snake best fit that
combines ideas of Lo et al. [27] and Leung et al. [25]. This algorithm organizes the processors
in a linear order along a “snake” or “s-curve”, which goes along the machine’s short dimension
and then curves back as shown in Figure 13. The free processors are grouped into intervals
according to their position along the curve and the algorithm allocates processors from the
smallest interval containing enough processors (best fit). If no interval is large enough, then
processors are selected to minimize the span, the maximum distance along the curve between
selected processors. If all processors are free, snake best fit will tend to create rectangular
allocations that cross the entire machine, possibly with gaps in the boundary columns. If
there is no interval entirely free, then busy processors again create holes in the allocation.
The snake best fit algorithm is much faster than MC1x1 and has been shown to generate
allocations of comparable quality to MC1x1 [29] when “quality” is measured in terms of
the average pairwise distance between processors allocated to a job. This is equivalent to
our average hops metric if the job’s communication pattern is all-to-all, the worst case and
perhaps the safest assumption if nothing is known about the job’s actual communication
pattern.

This linear scheme is similar to allocation algorithms provided as options in common
cluster management software. SLURM [23] provides one that organizes the processors using
an approximation to a Hilbert curve (also considered by Leung et al. [25]). ALPS [21] orders
the processors based on a curve selected from a number of options at startup. ALPS does not

22



Figure 13. Snake curve

use best fit packing, which was shown to be of lesser importance than curve selection [25].

Incremental improvement mapper

To provide context for the average hops metric, we also ran a simple incremental improve-
ment or local search task mapping algorithm which we call IncImprove. This algorithm
starts with RCB and then swaps the mappings of pairs of tasks as long as doing so improves
the average hops. We do not intend IncImprove to be used in practice, but present it
as an estimate of the best possible mapping. Note that IncImprove is not guaranteed to
find the absolute best possible since it can get caught in a local minima, but it serves as a
useful proxy since there are too many possibilities to use brute force search to find the best
mapping even for small jobs.

Results on traces

Figures 14 and 15 show the average hops for each trace using the MC1x1 and snake
best fit allocators, respectively. Note that we only ran the LLNL-Atlas trace with the snake
allocator; MC1x1 ran too slowly to include in our simulations (on a real system, the idle
processors could potentially help make allocation decisions, making an expensive algorithm
more practical).

As in the experiments, RCB looks to be the best algorithm of the ones discussed in
Section . In fact, its average hops are consistently quite close to IncImprove, suggesting
that it gives nearly optimal solutions according to this metric.

We were interested in what the trace-based results would say about the choice of allocator.
To examine this, we looked at the average mapping quality for RCB over all the jobs in
all the traces except LLNL-Atlas (for which only snake allocation is available; including it
makes snake look worse since the larger machine means larger average distances). Figure 16
shows the results broken out by job size; recall that all jobs are square so we just report the
side length. Note that there are no jobs of side length 12, 13, 14, 17, 18, or 19. We also
excluded side length 20 since that occupies all of the largest machine, meaning they get the
entire machine and a perfect mapping.

The results for the two mappers are quite similar, giving curves with similar shapes even
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though the specific values differ. For both mappers, the snake best fit allocator is nearly
always worse by the average hops measure. We believe this is explained by the tendency of
MC1x1 to give more “rounded” allocations while snake best fit favors skinnier allocations,
with small jobs receiving a group of processors all in a line. Since all the jobs considered
in these results are square, mappers working with MC1x1 generally have to “stretch” the
mesh communication pattern less to make it fit onto the allocated processors, giving better
average hop counts. On larger jobs, however, the disadvantage is somewhat lessened since
the curve comes back and the job begins to widen. In addition, rectangles that run the entire
length of the machine will pack more easily than the squarish allocations that MC1x1 tends
to produce.

Discussion

Our work shows that task mapping can improve job running times, with the effect be-
coming crucial to high performance as the job size grows. We also showed that RCB is
an effective task mapping algorithm for jobs using a stencil communication pattern. Future
research will also benefit from our result that average hops is highly correlated with job
running time since this facilitates simulations to identify promising algorithms.

We plan a number of steps going forward. Currently, RCB is implemented as a node
remapping performed within miniGhost. We will transfer it into a library so that other
programs can easily adopt it. We also plan on investigating other communication patterns,
with extensions of RCB being a natural place to start. In addition, we are interested in
further investigating IncImprove. Currently, it can run for a potentially-unbounded time,
which is clearly unacceptable, but it might be possible to capture some of its benefits while
adding limits (e.g. no more than x swaps, only make swaps that improve by x%, etc).
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