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Abstract 
 
The charter for adversarial delay is to hinder access to critical resources through the use of 
physical systems increasing an adversary’s task time. The traditional method for characterizing 
access delay has been a simple model focused on accumulating times required to complete each 
task with little regard to uncertainty, complexity, or decreased efficiency associated with 
multiple sequential tasks or stress. The delay associated with any given barrier or path is further 
discounted to worst-case, and often unrealistic, times based on a high-level adversary, resulting 
in a highly conservative calculation of total delay. This leads to delay systems that require 
significant funding and personnel resources in order to defend against the assumed threat, which 
for many sites and applications becomes cost prohibitive. A new methodology has been 
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developed that considers the uncertainties inherent in the problem to develop a realistic timeline 
distribution for a given adversary path. This new methodology incorporates advanced Bayesian 
statistical theory and methodologies, taking into account small sample size, expert judgment, 
human factors and threat uncertainty. The result is an algorithm that can calculate a probability 
distribution function of delay times directly related to system risk. Through further analysis, the 
access delay analyst or end user can use the results in making informed decisions while weighing 
benefits against risks, ultimately resulting in greater system effectiveness with lower cost. 
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Executive Summary

Traditional access delay methodology involves adding up a series of delay times for a series of
obstacles in an adversarys path to determine total delay for a system. These obstacles can be as
complex as sophisticated barrier systems requiring significant skill and equipment to breach, or
as simple as a distance over that an adversary must traverse to get to the next barrier or target.
Measured delay and task rate data is often sparse and is rarely considered statistically viable in the
classical sense. Further, for any task conducted by different people, tools, or techniques, there will
be a range in the time required to complete a task or series of tasks to overwhelm a barrier, and
ultimately complete the path.

Classical statistical methods, those based on a frequency approach, permit the combination of
point estimates but stumble when confidence in system level performance must be characterized
or when minimal data is available. Alternatively, the use of a Bayesian methodology provides a
formal process for synthesizing and learning from the data that is in agreement with the current
information sciences. It permits relevant expert opinion, sparse field data, and laboratory test
information to be objectively codified and integrated.

This report describes a new methodology that considers the uncertainties inherent in the prob-
lem to develop a realistic timeline distribution for a given adversary path, taking into account the
uncertainty in each of the model parameters. This methodology calculates adversary delay by
advanced Bayesian statistical methodologies, taking into account small test sample size, expert
judgment, and defined threats.

Because this has been a starting point, this investigation has focused first on the mathematical
structures to handle small data set problems, second on the steps to mathematically combine mul-
tiple sequential tasks to form an overall delay distribution for a given scenario and set of data, and
finally to present an algorithm that could be used to conduct actual delay analysis. The analysis
approach is outlined for the situation where the breach of each barrier may involve multiple tasks,
each of which must be accomplished before the barrier is successfully breached.

Human performance factors must be considered when seeking to characterize any access de-
lay system. Several variables may impact human performance on the type of tasks needing to be
completed by an adversary during an attack. Fatigue, workload, lighting, noise, extreme tempera-
ture, and task switching are some of the stressors that can affect a persons performance. Applying
multipliers to the developed calculations is discussed.

This research has shown that by using Bayesian techniques, mathematically defendable prob-
ability density functions representing barrier breaching times can be generated for small data sets.
Using these calculated time distributions, a sequential string of tasks/barriers (time distributions)
can be combined to develop a probability density function for the time required to complete the
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chosen path.
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Nomenclature

ASD Adversary Sequence Diagram

CDP Critical Detection Point

DBT Design Basis Threat

EASI Estimate of Adversary Sequence Interruption

HEP Human Error Probability

HRA Human Reliability Analysis

PIF Performance Influencing Factors

PPS Physical Protection System

SME Subject Matter Expert

PC Probability that the need for the response force is successfully communicated

PD Probability of detection

PE Probability of effectiveness

PN Probability of neutralization

PND Probability of non-detection

PNI Probability that scenario is not interrupted in time

Tk Normal distribution of task time for each remaining adversary task (EASI model)

TR Response force time

Shortest Path Analysis Dominant current practice. The shortest path from entry to target is found
using, for example, worst case delay times.

Stochastic Shortest Path Delay and task times are now random variables. Assume that no re-
sponse is available.
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Chapter 1

Introduction

1.1 Problem Definition

The charter for adversarial delay is to hinder access to critical resources through the use of physical
systems to increase an adversary’s task time. Assuming prompt adversary detection, the result is
an increased time for response forces to mobilize, arrive, interrupt, and neutralize the adversary.

The traditional method for characterizing access delay has been a simple model focused on
accumulating times required to complete each task with little regard to uncertainty in the model,
model parameters, task complexity, or decreased efficiency associated with multiple sequential
tasks or stress.

The delay associated with any given barrier or path is often further discounted to report worst
case, and often unrealistic, delay times based on a high-level adversary team. The result is a con-
servative calculation of total delay where all attack paths are considered viable in the minimum
possible time. This methodology results in the requirement for high levels of funding and person-
nel resources to defend attack scenarios which would have little chance of adversay success with
reasonable adversary timelines.

Complicating the analysis is that measured delay and task rate data is often sparse and is rarely
considered statistically viable in the classical sense. Budgetary and schedule constraints often limit
testing to data sets with six or fewer repetitions, with many tests only able to conduct one, two,
or three repetitions for any given test scenario or task. In some cases subject matter expert (SME)
opinion and/or subscale testing are used to fill in known data deficiencies.

This report proposes a new methodology that considers the uncertainties inherent in the prob-
lem to develop a realistic timeline distribution for a given adversary path, taking into account the
uncertainty in each of the model parameters. By specifically considering minimal test data that
takes into account adversary ability, tool set, breach time distribution, probability of successfully
breaching a barrier, as well as barrier effectiveness to these factors, a model can be developed to
represent the effectiveness of the delay system against various attack scenarios and threats.

This methodology calculates adversary delay by novel statistical methodologies, taking into
account small test sample size, expert judgment, and defined threats. The goal has been to create
an easy to communicate distribution of delay times for a given path in terms of adversary threat.
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Armed with this information, system designers and security personnel can then focus their limited
resources on defeating attack scenarios that are most advantageous to an adversary, ultimately
resulting greater system effectiveness with lower cost.

1.2 Background

Traditional access delay methodology involves simply adding up a series of delay times for a
series of obstacles in an adversarys path. These obstacles can be as complex as sophisticated
barrier systems requiring significant skill and equipment to breach, or as simple as a distance over
flat ground that an adversary must traverse in order to get to the next barrier or target. The time
required to breach any given barrier can be further broken into smaller or individual tasks that will
comprise the overall delay for the barrier or barrier system. Once a list of tasks are agreed upon,
the time required to complete each task is assigned, and the final reported delay for that path is
given as the sum of the task times required to complete the path.

It should be noted that task time is not considered delay unless detection has occurred, because
only when the adversary is detected does the response force know that it must assess the detection
and respond accordingly.

As with any task conducted by different people, different tools, or different techniques, there
will be a range in the time required to complete a task or series of tasks to overcome a barrier,
and ultimately complete the path. The potential factors that affect the delay time are numerous
and are not always easy to characterize. As a result when testing is conducted to determine delay
time through a barrier, individual task time (single test), average times, and minimum times are
recorded and used in different ways. Because it is possible, depending on the requirements of the
analysis, to use minimum times, average times, or some hybrid calculation of minimum, average,
and maximum, different path delay times can be calculated for the same set of steps. Currently,
statistical methods are rarely used to manually calculate task times, and most often are simply
calculated by adding comparable elements (minimum, average, or less often maximum). One
methodology, for instance, is to calculate the average time to breach a barrier, then subtract 50%
of that value for the assumed minimum time and add 50% of the average to give the assumed
maximum time (effectively resulting in a symmetric triangular distribution). Negative 50% of the
average is chosen to account for potentially high level adversaries, while adding 50% of average
simulates a less capable adversary.

Further complicating current analysis is the use of delay multiplication factors. These are delay
mechanisms such as combat stress, being put under small arms fire, visual obscurants (which are
not technically a barrier), sensory irritants (e.g. loud sounds), etc. Typically, it is left to the analyst
to apply delay multiplication factors based, in some cases, on test data or SME judgement.

The problem of developing a methodology that is generally applicable to a wide variety of
facilities and attack scenarios is extremely complex with a plethora of dark corners for in-depth
investigation. The intent of this effort is to develop a solid foundation for future efforts. The goal

18



has been to develop a new approach and demonstrate the potential through the application and
testing on a sample problem with real, measured data.

1.3 Scope

The scope of this research effort is primarily to investigate statistical methodologies that may be
better applicable to the realities of practical access delay analysis.

Because this is a starting point, this investigation will focus first on the mathematical structures
to handle small data set problems, second on the steps to mathematically combine multiple sequen-
tial tasks to form an overall delay distribution for a given scenario and set of data, and finally to
propose an algorithm that could be used to conduct actual delay analysis. Specifically out of scope
for this effort is:

• Probability of Neutralization (PN) of the Adversary: This research focuses on determination
of adversary task/path time (which can also be applied to response force task/path time by
simply redefining tasks). The requirement for the response force to neutralize the adversary
force once the adversary is interrupted is beyond the scope of this project.

• Adversary Pathing Analysis: To date, a significant amount of research has been undertaken
by others at SNL and elsewhere that looks into adversary pathing strategies. This analysis
often takes into account fastest path, path of least detection, adversary tool set, and even
insider information. This project does not seek to characterize the statistical likelihood of an
adversarys choice of path. Instead, the current work relies on an analyst choosing the most
appropriate path for analysis. That said, the methods discussed in the following chapters
could be incorporated into a larger pathing analysis.

• A User-Ready Access Delay Tool: The present research investigates the applicability of
new and novel statistical methodologies up to the point that an access delay calculation
can be accomplished. But this will likely involve statistical and computer tools outside of
the common operating environment of most delay analysts. The ultimate end goal of this
work is to develop a computer tool that an analyst can use in the field by inputting a set
of required data, along with a pre-programmed database of access delay task times and
adversary capabilities. This final step will require additional funding from a source yet to be
named.

• A level determination of adversary capability: Recently, the difference in delay times asso-
ciated with different levels of adversary capability has been discussed. Currently, the precise
definitions of high, medium, and low level adversaries are still in process. This research does
not propose to define adversary task time as it relates to capability. That said, the statistical
methodologies proposed can be applied to any level of adversary given a viable data set. Fur-
ther, a discussion on how the methodology output can be applied to the different adversary
level categories.
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The following presented research is focused on the approach for the general problem of cal-
culating a distribution of delay times for a single path or set of obstacles. The discussion begins
with a very broad perspective and outlines in specific terms, the mathematics required to tackle the
complete problem. The result is a framework for the solution to the larger problem, with the un-
derstanding that it is not possible to tackle something of this complexity under the current research
project. Rather, the larger solution highlights the general requirements for the foundation to be laid
by this project. It is critical to understand what hooks need to be in place so that the results of the
current effort can be extended to tackle the larger site security problem.

The discussion builds from the perspective of deterministic breach times using Dijkstras Algo-
rithm as an example of one approach. The discussion is then extended to stochastic breach times
with known probability distributions and concludes with the most general case where the distri-
bution of breach times is not known. This latter situation is a necessary goal given that there can
be limited data available on various security aspects, e.g. breach time, and it might be required to
merge data from expert opinion and various field testing.

1.4 Long Term Issues and Obstacles

The long term problem to be addressed is highly complex, and there are a number of major char-
acteristics of the problem that need to be addressed for a complete answer:

• Multiple intruders or intruder teams (i.e. coordinated attacks with parallel tasks)

• Single/multiple targets

• Multiple intruder paths (decision points)

• Uncertain delay/breach times

• Security monitors with detection error

• Uncertainty in response time

• Limited test data, possibly from multiple sources

A concerted effort was made to assure that the methodology developed had the capability to
be extended to account for the above issues. First order assumptions are to limit the analysis to
a single group of intruders and a single target. As a minimum, the analysis must account for
random delay times and random response times. Allowances will be made for possible extension
to multiple paths with random delay times.
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Chapter 2

Background

2.1 Problem Description

The objective of our methodology development activity is to analyze the performance of a physical
protection system for a facility. A physical protection system (PPS) performs well or is effective
to the degree that it prevents adversaries from achieving their desired objectives. A typical metric
for effectiveness is the probability PE that the PPS successfully prevents a prototypic adversary
(a design basis threat, or DBT) from accomplishing a successful attack. Adversaries may want
to steal an item, damage an item, damage a facility, collect information, or any of a number of
other tasks down to simply generating publicity by gaining access to a restricted area or even just
attempting an attack. An attack usually requires the adversary to successfully complete a series of
tasks as shown in Figure 2.1.

Figure 2.1. Representation of adversary tasks for a theft attack.
An access attack would be complete with Task 6, and a sabotage
attack would add a different Task 7 to represent the time required
to complete the sabotage action itself. Task 8 represents the time
required to escape from the facility.
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In order for the adversary to be successful, he must accomplish the desired task before the
defenders can respond to interrupt the task and neutralize the attack. The task might involve a
theft, in which the adversary must travel from a starting point that is usually outside the facility to
the target item inside the facility, obtain the desired item, and travel with the item to the outside
of the facility. If the task is to gain access or cause damage to a facility, the adversary need only
make the first part of the journey, encumbered by any tools needed to gain access or to commit the
desired action.

The physical security problem, as described above, is fundamentally a race. For the defend-
ers to be successful, they must detect that they are being attacked and delay the adversary from
completing their objective before defenders can respond to interrupt the task and neutralize the
attack. Key data used to evaluate the PPS include the probability that the defenders will detect the
adversarys attack during each attack task (which typically results in dispatch of a response force to
interrupt and stop the attack), the time taken by the adversary in performing each attack task, and
the time taken by the response force to arrive with sufficient force to interrupt the attack once the
force is dispatched. The adversaries are interrupted when they must stop their tasks and deal with
the response force, and are neutralized when they no longer pose a threat. The security mantra
detect, delay, respond captures these major features of the PPS, and encapsulates the wisdom that
one must detect the attack first, as an undetected adversary can (theoretically) spend as much time
as desired on each attack step because the response force will not be dispatched to even attempt to
interrupt the attack tasks.

This problem formulation sets up a race between the adversary and defender. Once detected,
the adversary must complete the attack tasks before the response force can arrive and interrupt
them. Thus, the adversary wins if the response force interruption time TR is greater than the sum
of the times for the attack tasks that occur after the attack is detected. Furthermore, an adversary
might decide to manage the point at which detection would be expected to occur by using stealth
or deceit for the early stages of the attack when detection is not desired, then transition into a
high-speed overt attack for those final attack tasks that can be accomplished before the response
force arrives. This shows that early detection is often a key to defender success. Analyses often
examine an attack scenario to determine the last point at which detection of the adversary will
lead to a response that is quick enough to prevent the adversary from successfully completing the
attack. This point is known as the Critical Detection Point (CDP) for the attack scenario. The
adversary’s optimal attack, then, may be to minimize their probability of being detected up to the
CDP, then minimize task time once beyond the CDP. If one assumes that the response force is
highly likely to respond effectively within the time TR, then the probability that the attack scenario
will be interrupted PI is simply the aggregated probability of detection over all attack steps prior
to the CDP. Once the response force arrives to interrupt the attack, the responders must finish the
task by neutralizing the adversary (often thought of as winning the gun battle). The probability
that the response force can neutralize the adversary given that interruption has occurred is PN ,
but neutralization cannot occur unless the attack has been successfully interrupted. The PPS is
successful if interruption and neutralization both occur, so PE = PIPN . Estimation of PN is beyond
the scope of this report, but involves a variety of methods such as simulated combat. The purpose
of this project has been to develop a more statistically sound method for estimating PI .
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Numerous tools have been developed to help in the calculation of PE and its components.
The tools that are used for estimation of PI will be discussed in the following sections with their
assumptions and limitations. This leads to a discussion of the need for a new method that can relax
certain assumptions and eliminate many of the limitations of the reviewed methods.

2.2 Evaluation of Individual Attack Paths

2.2.1 Manual Evaluation of Facility Security

The simplest method for evaluating PI is a manual algorithm that is taught in a variety of courses
and described in [16]. The evaluation can be done using pencil and paper, and requires only
basic math. It is a simple instantiation of the framework described in the previous section, and
assumes that an attack is attempted by a single adversary or a single group of adversaries who
travel together along a single pathway as they make their way to the target and, if necessary, back
out of the facility. This method does not discover attack pathways from a facility model, but rather
evaluates a single attack pathway that is of interest to the analyst.

The method begins with a simple diagram of the attack path much like the one shown in Fig-
ure 2.1. The adversary tasks are identified, and the data for each task are listed in a table, including
a description of the task and its required tools, the expected adversary time to complete the task,
and the probability that the adversary will be detected while carrying out the task. The time and
detection probability will naturally vary depending on the specific method used by the adversary
in the task. For example, a cinder block wall can be breached with explosives or a jackhammer
or hand tools. The hand tools may take longer than the explosives or jackhammer, but one might
imagine circumstances where hand tools could be used with a much lower probability of detection
than the other tools, if the adversary were to find that desirable. Thus, the task time and detection
probability must be specific to the particular task and tools, and for this evaluation method, a single
point estimate value is used for every time and probability considered.

The calculation begins with the analyst considering the TR and beginning to accumulate task
time starting at the end of the attack scenario (the final escape for a theft, or access to the target for
many other types of attacks). Task by task, the attack times are added in order until the total the
remaining task time just exceeds TR, which identifies the CDP. If the attack is detected at or before
this point, the response force can interrupt the attack, so the detection probabilities are aggregated
for all earlier tasks in the attack. These probabilities are assumed to be independent (unless ex-
tenuating circumstances or common cause failure events might indicate otherwise). Since, to be
successful, an adversary must avoid detection during all of these tasks, we compute the proba-
bility that detection fails at all relevant detection opportunities by multiplying the nondetection
probabilities together (PND = 1−PD) to obtain the overall nondetection probability for the attack
scenario PNI , which is the probability that the scenario is not interrupted in time for the defenders
to mount an effective response. PI is computed as (1−PNI), and the computation is complete. If
alternative attack paths are to be evaluated, the process is repeated, and the attack with the lowest
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PI is determined to be most advantageous to the adversary as it gives them the highest likelihood
of successfully completing the attack without being interrupted or neutralized.

Because of the simplicity of the calculation, point estimate values (estimates without uncer-
tainty) are used in these calculations. In order to ensure that a facility that is evaluated using this
method is not wrongly characterized as adequately secure, the times and probabilities used in the
calculation are deliberately chosen to be conservative. This means that the adversary task times
are often selected to be near the low end of the observed data, the response time is selected to be
near the high end of the observed data, and the detection probabilities are selected to be near the
low end of the observed data. While this produces a conservative estimate for PI , there have long
been concerns that the repeated compounding of conservatisms within the calculation produces
unrealistically short adversary timelines (the adversary finishes every task unusually quickly) and,
therefore, an unrealistically early CDP and an unrealistically low value for PI . In addition, the
level of conservatism increases with the number of adversary tasks in the attack scenario. This
can manifest itself in two unexpected ways. First, the longest and most complex attack scenarios
often have the most unrealistically short timelines as they aggregate a larger set of conservative
values than the simpler attack scenarios. Second, it is possible to obtain different adversary task
timelines for the same attack scenario depending on the granularity with which the attack tasks are
represented. Consider the task of using explosives to breach a wall. This task consists of several
subtasks such as setting up the explosives, retreating to a safe distance, detonating the explosives,
waiting for debris to clear, approaching the hole, and clearing debris from the hole. A conservative
value for the single breach wall using explosives task might be much longer than the aggregation
of conservative values for each of the six listed subtasks. Thus, the analyst must use care when
selecting data and task granularity using this method.

This manual calculation method is surprisingly powerful, however, in that it is not limited to
attack scenarios involving single targets. Consider a sabotage scenario in which an adversary must
visit three rooms in order to access all of the equipment necessary to successfully complete the
attack. This method simply requires the analyst to postulate the list and order of the attack tasks,
and PI can be computed regardless of the number of targets within the scenario. This is not true for
many of the automated attack path search tools that will be discussed later, although it is important
to note that for this manual calculation, the task of identifying the attack paths to be evaluated falls
completely on the analyst.

2.2.2 Evaluation With Uncertain Task Durations

Whereas the manual calculation method estimates PI for a single attack scenario only on the basis
of point estimate data, a method that is mathematically more sophisticated has been developed to
estimate PI while considering uncertainties in the task times for both the attacker and defender.
EASI (Estimate of Adversary Sequence Interruption) [6] is a simple method for evaluating the
performance of a PPS that can be exercised using nothing more than a calculator with statistical
functions. Like the manual calculation method, EASI does not discover attack pathways from
a facility model, but rather evaluates a single attack pathway that is of interest to the analyst,
and assumes that an attack is attempted by a single adversary or a single group of adversaries
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who travel together along that single attack pathway. And like the manual calculation method,
each detection opportunity is a point estimate value that represents the aggregate performance of
the detector sensing abnormal or unauthorized activities, the transmission of the detector’s signal
to an alarm assessment point, and the realization by the human in assessing the alarm that an
adversary attack requiring activation of the response force is in progress. However, unlike the
manual calculation method, the duration of each adversary task in the attack scenario and the
time required for the response force to react and interrupt the adversary are represented by normal
distributions, each characterized by a mean and standard deviation. In addition, EASI introduces
a probability, PC, that the need for the response force is successfully communicated to initiate
the response. The method by which the EASI model computes PI is as follows. Each possible
detection point is examined separately as though adversary detection occurs exactly at that point.
The adversary is detected exactly at that point only if they are not detected at all previous detection
points and are successfully detected at that point. This is computed by multiplying PND for all
previous detection opportunities by PD for the current opportunity. Now, given that the adversary
is detected, interruption requires that the alarm be successfully communicated to the response force
and that the remaining adversary task time is greater than the response force time TR. The method
convolves the normal distribution for the task time Tk for all remaining adversary tasks with the
response force reaction time TR to determine the probability that the response force arrives in time
to interrupt the adversary. Thus, the PI given detection at exactly the i-th detection opportunity PIi
can be written as:

PIi =

[
i−1

∏
j=1

(1−PDk)

]
PDi ·PC ·Pr

{(
TR−

n

∑
k=i

Tk

)
< 0

}

Since these computed interruption probabilities satisfy probabilistic conditions for being mu-
tually exclusive, the overall PI for this path is simply the sum of the interruption probabilities for
each detection opportunity, or:

PI =
n

∑
i=1

([
i−1

∏
j=1

(1−PDk)

]
PDi ·PC ·Pr

{(
TR−

n

∑
k=i

Tk

)
< 0

})

It is also possible to view the EASI method graphically in terms of a small event tree. Each
detection opportunity represents an event (or question) in the event tree that must be answered
probabilistically based on the probability of detection or nondetection. At the end of the event
tree one adds two events to represent the performance of the response force: one to represent the
probability that the alarm is successfully communicated to the response force, and one to represent
the probability that the response force arrives in time to interrupt the adversary. This probability
will vary between paths within the event tree to represent the differences in remaining adversary
task times as described previously. A representative event tree for a system with three possible
detection opportunities is shown in Figure 2.2.

Note that the concept of a CDP is less clear when the task times are uncertain. One could
theoretically compute the probability that each attack task is in fact the CDP through a series of
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Figure 2.2. Representation of the EASI model as an event tree
for an example with three detection opportunities.

additional convolution computations, although this is not done in EASI. The main assumptions
and limitations for EASI are similar to those for the manual computation method described in the
previous section, with the exception that all task and response times are represented as Normal
distributions. EASI, as originally developed, limits the times to Normal distributions and cannot
be used with other distribution types, although modern computational convolution methods can
relax this limitation and allow the use of arbitrary distribution types. Nothing has been published
in the literature that would guide an analyst through the selection of appropriate distributions or
the computational process, and no work is available to quantify the benefits that can be realized by
using other distribution forms. One important limiation relates to the fact that the Normal distri-
bution used in EASI has infinite support. Thus, for any task, there is a mathematical artifact that it
is possible to accomplish a task in less than zero time, which is not realistic. Use of distributions
with limited support would eliminate this artificiality from the method.

2.3 Automated Evaluation using Point Estimate Data

Both of the methods described in the preceding sections are subject to one important limitation:
they are applied for a single adversary pathway. If an analyst is to evaluate multiple pathways,
they must be discovered through a separate analysis. Over the last few decades, software has been
developed at Sandia National Laboratories that automates the process of exploring the model of a
security system in order to discover the most advantageous adversary pathway using the manual
calculation method described previously. The first generation software developed for this purpose
is Analytical System and Software for Evaluating Safeguards and Security (ASSESS) [22], while
the second generation software is Adversary Timeline Line Analysis Software (ATLAS) [1]. Both
tools operate on a similar principle.
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The analyst begins the adversary timeline analysis by constructing an Adversary Sequence
Diagram (ASD). The ASD shows how an adversary force encounters various barriers and tasks
as they move through a facility. Since it is common to design security systems under the concept
of layers or rings of security, the ASD embraces this concept. The analyst starts at the target that
would be sought by the adversary and works outward to the first layer of security, which would be
the last barrier the adversary would encounter before accessing the target. For example, this might
be the wall of the vault that contains the target. The analyst then examines this layer of security
to identify the various opportunities that an adversary might have to overcome this barrier. For
a vault, one might be able to break in through a wall or the ceiling (which might have different
construction characteristics), or enter through a door (which could be could be in different states
such as open, closed but unlocked, or closed and locked). The analyst then moves to the next layer
of security (say, the outer wall of the building that contains the vault) and specifies the adversary
opportunities for that barrier. The process is repeated until all layers of security are specified, i.e.,
the analyst has specified the first barrier that an adversary would encounter when arriving at the
facility from uncontrolled space external to the facility. Note that there are situations in which
an adversary might be able to bypass one or more security layers, such as by parachuting into an
inner area of a facility, or when the vault wall is also the outside wall of the building. In addition,
the characteristics of a barrier in the egress pathway for a theft scenario may be different from the
characteristics of the same barrier during the entry phase of the attack because, for example, the
barrier was destroyed during entry or the barrier has one-way characteristics (e.g., a crash bar on
an emergency exit). These conditions must be accounted for in the ASD and when the model is
solved by the software. An example ASD is shown in Figure 2.3.

Once the ASD is created, the software takes over and performs the analysis. First, each oppor-
tunity for an adversary to penetrate a layer, or security element, is characterized according to its
many possible defeat methods. For example, a locked door can be penetrated by an adversary by
using the key to unlock it, by picking the lock, by manipulating the latch mechanism, by kicking
it in, by breaking the window (if present), by cutting a hole in it with a saw, by using explosives,
or by any of a myriad of other methods. Each defeat method has its own characteristic task time,
detection probability, and required adversary training and tool kit. The software has a library of
these defeat methods and their characteristics that has been developed and validated over the course
of many years, and can simply associate the appropriate characteristics with each barrier as it is
described by the analyst. Thus, the analyst specifies the type of barrier that is present at each point
in the ASD, and the software provides appropriate defeat methods and their characteristics from
the validated library.

The ASD and the associated defeat methods for all barriers represent a series of choices that are
available to an adversary. In reality, an adversary can choose among all of the system elements and
defeat methods to gain access through the first security layer, then again choose among all of the
system elements and defeat methods to gain access through the second security layer, and repeat
this choice process until the target is accessed (and, for theft scenarios, until the adversary has
successfully egressed from the facility with the target item). Each combination of system elements
and defeat methods represents a unique attack path, and the software can automatically identify
each path and compute a value of PI to assess its attractiveness to an adversary. Mathematically, this
problem is combinatorial, and the search space expands rapidly with the number of security layers,
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Figure 2.3. Adversary Sequence Diagram (ASD) for a sample
facility. Functional protection elements form layers of protection
around the facility. Note that Room Surface 2 is a shared wall
between the Controlled Building Area and the Target Enclosure,
so the adversary is able to create a direct path and jump between
these two layers without entering the Controlled Room. [16]
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system elements and defeat methods. In order to make the analysis computationally tractable,
the search method is optimized using an efficient shortest path algorithm such as the Dykstra
algorithm (see Appendix A). At the conclusion of the search, the software presents the analyst
with the n attack paths that would be most desirable to an adversary because of their low PI scores.
Recall that a low value for PI indicates that there is a low probability that the adversary would be
interrupted before successfully completing the tasks of the attack.

The advantage of using an automated tool such as ATLAS or ASSESS is that it enables the
analyst to sift quickly through the myriad possible adversary attack paths and understand which
paths might be most attractive for an adversary and, thus, which paths should be subjected to
more detailed scrutiny and possible mitigation or remediation. However, these tools have all of
the remaining disadvantages of the manual calculation method in that they use only point estimate
values for the protection force response time, adversary delay times and detection probabilities.
Thus, the point estimate values used in the analysis are typically conservative (often to an unknown
degree) and the conservatisms are compounded upon one another as longer attacks (attacks with
more steps) are evaluated. While the algorithm seems to provide a reasonable rank ordering of the
attractiveness of paths of comparable length, the analyst must treat the actual PI values computed
with significant skepticism until a further, more detailed analysis of the most attractive scenarios
can be performed.

2.4 Other Directed Graph Approaches

The following discussion outlines some of the major approaches and issues for the most general
case of using directed graphs to evaluate multiple attack paths.

2.4.1 Multiple Attack Paths

We will begin with the most basic generalization by the attack problem where multiple paths are
possible (Figure 2.4). Let each security barrier be represented by a pair of nodes connected by an
edge. The weight associated with each edge characterizes the time to breach that barrier. Further,
we will assume that there is no detection system in place so only the minimum time for an intruder
to progress from start to finish will be considered. Once this foundation is in place, the analysis is
extended to include detection and response force reaction time.

Stochastic Shortest Path

The first variation to be discussed assumes that we know the distribution of edge weights. The
second variation will relax this assumption and simply assume some initial prior distribution on
the weights; these edge weights will then be updated as new information becomes available.
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A graph G is defined by a set of nodes S and a set of directed edges E ⊆ S× S. Every edge
(i, j) ∈ E has a weight of mi j. These edge weights capture the time and difficulty associated with
traveling from point i and point j. The graph is assumed to be acyclic, with each edge appearing
only once in a given path.

Let Lp = ∑mi j be the length of path p in G that connects the starting node s and termination
node t . In this case, the edge weights mi j of G will eventually be considered random variables,
where Lp is a random variable with mean and variance, respectively, µp and σ2

p .

Our goal is to find the path p with the smallest total value

min
p ∑

(i, j)∈E
δ

p
i jmi j

where δ
p
i j is an indicator function with value 1 if the edge (i, j) is part of the path p and 0 otherwise.

Deterministic Edge Weights

A classic algorithm for identifying all the shortest paths in a network with known edge weights is
Dijkstra’s approach presented in Appendix A, Algorithm A.1.1 . However, since we are interested
only in the shortest path from node s to node t, we can start with s and terminate the algorithm
when node t is visited.

30



msc

s

c

e

d

b

mcd

msb

mcb

mce

f

t

mbd

met

mdf mft

start

terminal
mde

Figure 2.5. Typical Directed Acyclic Graph

Currently, to characterize the security of a particular site, the intruder capabilities are assumed
to be known. For example, exercises are conducted and the times to breach a barrier are collected.
The set of best case times, e.g., 90-th percentiles, are used to populate the graph. A shortest path
algorithm, such as Dijkstra’s, is used to assess the time to breach. No intercept force reaction times
are included in the analysis.

Random Edge Weights with Known Distributions

This first case will follow the stochastic path analysis developed by Deng and Wong [15]. We will
assume that mi j are random variables and that the distributions are known or can be estimated.
Given the mean and variance of Lp, µp and σ2

p respectively, it is desired to minimize the cost func-
tion µp +Φ(σ2

p), where Φ(σ2
p) is an arbitrary function. To assure that the variance in our result is

bounded, we will assume an upper bound on the path variance: σ2
p < B. One final minor restric-

tion on the variance is to require the individual variances to be integer values. (It will generally be
possible to discretize the variances to the point where this is not a significant restriction.)

Let Xe be a random variable associated with the edge weights. If we assume that the edge
weights are all independent with mean and variance µe and σ2

e respectively, then: µp = ∑e∈P µe
and σ2

p = ∑e∈P σ2
e .

If the cost function is of the form Φ(σ2
p) = µp + kσ2

p then the optimal solution can be found
solving the deterministic shortest path problem with edge weights µe + kσ2

e . However, the cost
function µp + kσ2

p is difficult to relate to the effectiveness of the optimal solution. For example,
assume that the intruder breach times are normally distributed random variables and we wish to
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characterize the 1% risk of an intruder successfully using the fastest breach time then: P(|Lp−
µp| ≤ 3σp) > 0.99. This is not possible since the standard deviations are not additive: σp 6=
∑e∈P σe. It is possible to generalize this beyond Gaussian edge weights by using Chebyshev’s
Inequality:

P(|Lp−µp| ≤ kσp)> 1− 1
k2 .

The critical result is that the optimal path is not necessary composed of optimal subpaths. The
traditional shortest path algorithms, such as Dijkstra’s Algorithm, are no longer applicable.

In this report it will be assumed that the the shortest path is already identified, either
through expert judgement or application of the previous approach. However, an unstated
requirement for any new approach is that it be possible to extend and account for multiple
paths.

2.4.2 Monte Carlo Discrete Event Simulation

Another method that has been used to evaluate security systems is to use Monte Carlo Discrete
Event Simulation to track adversaries through a series of random walks through the model of the
security system. One can use arbitrary statistical distributions to represent any of the times or
probabilities in the model, and include arbitrary conditionality within the model to represent any
dependencies that exist in the real system. The advantage of using a method like this is that it
can, at least in theory, model the behavior of the system during attack with complete fidelity to the
actual system. There have even been simulation tools that model not only PI , but also attempt to
model the actual combat that would occur when neutralizing the adversary force after interruption
occurs [21, 2, 3]. While there is considerable debate about the validity of the combat model results,
some confidence exists for the path discovery that occurs and the associated computation of PI .

The chief advantage of this method is the degree to which it can be customized to model the
behavior of the system with fidelity that may not be available for the models based on ASDs and
directed graphs. This includes the ability do use arbitrary statistical distributions to most appro-
priately represent the detection and delay data relevant to the system. The disadvantages of the
method revolve around its Monte Carlo nature. It is by nature computationally intensive, and be-
cause it discovers paths by a random walk, it is impossible to state with certainty that the most
attractive attack paths have been discovered and are well-characterized in any particular execu-
tion of the software. Conversely, the strength of the directed graph and ASD approaches is their
completeness, while they are limited in the fidelity to which they can model the system. It is not
unusual for analysts to use these methods in a complementary manner by performing a triage of
the system using a tool like ASSESS or ATLAS to develop candidate attractive attack pathways
for further analysis using a higher fidelity tool.
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2.5 Need for a New Approach

The traditional approaches for evaluating physical security systems possess a variety of advan-
tages and disadvantages as outlined in the preceding sections. However, each of these methods
begins with the assumption that the underlying task duration and detection probability data is well-
represented using either point values or statistical distributions. In fact, the data are characterized
by few experimental trials, sparse observations, and experiments with only partial applicability to
the specific conditions under consideration in the facility being analyzed. Indeed, for some of the
experiments with multiple trials, the data suffer from a human learning phenomenon that biases
later experimental trials to have shorter durations than earlier trials. This is because, while an
adversary typically only has one chance to perform a task on the real system, the surrogate adver-
sary in the experiment may have the opportunity to perform the task multiple times for successive
experimental trials, effectively learning over the course of the trials and improving both the likeli-
hood of success and the duration of the task. While an adversary may also be able to rehearse on a
mockup of the facility to be attacked, there may be considerable uncertainty as to the fidelity with
which the mockup represents the real system due to limitations in adversary intelligence gathering.

The limitations in the supporting data are key to the need for a new approach to estimating PI
for security systems and attack pathways. The original experiments and statistical data analyses
were performed more than 30 years ago, and modern statistical methods, especially Bayesian
statistics and Markov Chain Monte Carlo computational methods, have made it possible to perform
computations that are less limited by the conservatisms inherent in previous analysis methods. This
project has developed new methods that make optimal use of the existing data, explicitly enable the
proper use of data that has only partial applicability, and appropriately captures the uncertainty in
the analysis results for parameters such as PI . The remainder of this report describes this method
and provides supporting computational examples. It also provides important insights into how
human performance can vary depending on the specific activities and environment of the task
being performed, and describes how these factors can be accounted for in the security analysis.
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Chapter 3

Introduction to Bayesian Methods

3.1 Background

Regardless of the particular perspective on system security, the critical point is the recognition that
resources expended in each level of security should be driven by the impact on the overall level
of facility security. The overriding goal is to assess the impact of various uncertainties associated
with internal and external variables on the uncertainty in security: an estimate in the probability
that the security system will perform as required (PE , or its component elements PI , and PN), in
conjunction with the confidence that we have in that estimate.

Clearly a balance must be obtained between the information gained from testing and modeling
at various security levels, the resources required to perform testing and develop models, and the
uncertainties associated with predicting system performance. The ability to logically combine in-
formation from these various areas as well as the organization, characterization and quantification
of this myriad of uncertainties are critical elements of the security design and analysis processes.
Importantly, although the ultimate objective is to obtain accurate predictions, it must be recognized
that merit also exists for simply obtaining more robust solutions than are presently possible (i.e.
simply improving the confidence in the facility security estimates).

3.2 An Alternative Approach

Fundamental to implementing the new approach is the recognized need to consider all the evidence
at hand through the use of nondeterministic methods. Classical statistical methods, those based
on a frequency approach, permit the combination of point estimates but not confidence intervals.
Alternatively, the use of a Bayesian methodology provides a formal process for synthesizing and
learning from the data that is in agreement with the current information sciences. It permits relevant
expert opinion, sparse field data, and laboratory test information to be objectively codified and
integrated.

In addition to providing an objective means of combining information, Bayesian methods pro-
vide a structured tool for robust model development. For example, if laboratory experiments and
detailed mathematical simulations are too expensive, empirical models based on data from field
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measurements and/or component/subsystem testing can drive model refinement.

The foundation for what is referred to today as Bayesian analysis was first formalized by Pres-
byterian minister Thomas Bayes of Tunbridge Wells, Kent. His article Essay Towards Solving
a Problem in the Doctrine of Chances was published posthumously in 1763 in the Philosophical
Transactions of the Royal Society of London. However, the work was rediscovered in 1774 by
Pierre Laplace and it is his formulation that is commonly referred to today as Bayes Theorem.

In the early 20th century, mathematicians became uncomfortable with the concept of only us-
ing available information to characterize uncertainty. The concept of long-run relative frequency
of an event based on an infinite number of trials became popularized by researchers such as Kolo-
mogorov, Fischer, and Neyman, among others. Practitioners of this latter mathematical philosophy
are commonly referred to as Frequentists. However, since it was actually impossible to observe an
infinite number of trials, various data transformations (i.e. statistics) were developed. The result
has been a array of different statistics for different applications, leading to the classical type of
statistics commonly practiced today.

At about this same time, Jefferys[19] published one of the first modern books on Bayes theory,
uncovering the work by Laplace many years earlier. Unfortunately, the work appeared at the
same time maximum likelihood estimation was being popularized in the literature and much of the
potential impact was not realized.

In recent years, the work of Bayes, Laplace and Jefferys has received increasing attention for
a wide variety of related reasons. Information sciences and the rise of decision theory as an aid to
management are the most recent additions to the list. For engineers, the high cost of testing has
led to a push to investigate some alternative means to extort as much information as possible from
existing data.

Beyond costly system level testing, possible information sources include materials testing, sub-
system laboratory testing as well as data from similar systems and finally computer simulations.
From the perspective of increasing confidence in the final decision (within budget constraints), it
is of immense importance to efficiently use information from all available sources. For example,
information from field analysis and/or laboratory testing at the task level is commonly used to
make system level assessments, since laboratory testing is generally much less expensive than full
facility testing in an operational environment. This approach has been particularly appealing for
those situations where extensive system testing is impractical for a variety of reasons (e.g. cost of
prototype development, safety or environmental contraints) or even impossible due to international
treaties (e.g. nuclear weapons). While there is no substitute for full scale testing in a realistic oper-
ational environment, it is always difficult to justify not considering data from all relevant sources.

In Bayesian statistics, probability is interpreted as representing the degree of belief in a proposi-
tion, such as the mean of X is 0.44, or the polar ice cap will melt in 2020, or the polar ice cap would
have melted in 2000 if we had not..., etc. Thus we see it can be applied to reasoning about one
time events (ice cap melting), counterfactual events (ice cap would have melted), as well as more
traditional statistical questions, such as computing distributions over random variables. Bayes rule
provides the mechanism by which prior beliefs are converted into posterior beliefs when new data
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arrives.

In frequentist statistics (also called classical statistics or orthodox statistics), probability is
interpreted as representing long run frequencies of repeatable events. Thus it cannot be used to
reason about one time events or counterfactual events. One can talk about the probability of data
having a certain value, p(D|θ) (this is the likelihood function), since one can imagine repeating the
experiment and observing different data. But one cannot talk about the probability of a parameter
having a certain value, p(θ |D), since parameters are assumed to be fixed (but unknown) constants,
which do not have probability distributions associated with them.

The Bayesian approach is often criticized because the interpretation of probability in terms of
beliefs seems subjective. In particular, the dependence on the prior distribution (see below) is seen
as unscientific. However, all statistical modeling depends on prior assumptions (e.g., the form of
the model); Bayesian statistics make such assumptions explicit.

3.3 Basic Concepts

The subsequent discussion closely follows Wikle and Berliner [33]. Let X be unobservable quan-
tities of interest and D be our data. Then the full probability model can be factored: P(x,d) =
P(x|d)P(d) = P(d|x)P(x). Applying Bayes’ Rule:

P(x|d) = P(d|x)P(x)
P(d)

(3.1)

P(d|x) is the sampling distribution also known in classical statistics as the likelihood function. It
represents the data (observations) conditioned on the true, but unobservable, variables. If X is
the true air temperature, then D represents our observed (possibly inaccurate) measurements
of the temperature.

P(x) is the prior distribution. This distribution quantifies our a priori understanding of the unob-
servable quantities of interest. This prior distribution may be based on historical information
(climatology) or perhaps from a forecast model. In general, prior distributions can be in-
formative or non-informative, subjective or objective. The choice of such distributions is an
integral part of Bayesian inference.

P(d) is the marginal likelihood distribution where, for the continuous case: p(d)=
∫

p(d|x)p(x)dx.
This is simply a normalizing constant that assures that the final distribution is a valid proba-
bility distribution.

P(x|d) is the posterior distribution and characterizes our unobservable variables given our data. It
is the analysis item of primary interest. It is proportional to the product of the data model
and the prior. The posterior is the update of our prior knowledge about X as summarized
in p(x) given the actual observations d. In this sense, the Bayesian approach is inherently
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scientific in that it is analogous to the scientific method: one has prior belief (information),
collects data, and then updates that belief given the new data (information).

We can see from Equation 3.1 that Bayesian analysis is identical to traditional statistical anal-
ysis except that the likelihood function, P(d|x), is weighted with the available prior information
P(d) (depicted in Figure 3.1 ).

Data Model

Data

Prior
Information

Likelihood

Bayes
Theorem

Posterior
Distribution

Inference

Figure 3.1. Flow of Information in Bayesian Analysis

A major historical impediment to the use of Bayesian techniques is the specification of the
appropriate form of the prior. It should be noted that the choice of likelihood function in classical
statistics is in many ways also subjective.

As outlined in Berger [7] and Bernardo [8], there are a variety of techniques for developing
priors in practice. Priors can be obtained from past studies, from subject area expert opinion or
scientific first principles, though compromises are typically made for mathematical simplicity. For
example, conjugate prior and data model pairs of distributions lead to posterior distributions of the
same functional form as the prior, as with the normal data, normal prior examples above. In other
words, in such cases, one knows the normalizing constant in Bayes rule.

There is also a significant literature on the notion of non-informative or objective priors. A
non-informative prior does not represent total ignorance about the problem at hand, but is used
when information is lacking or very vague. There are typically a variety of non-informative priors
in a given problem, which serve as reference or default priors. They also often yield results which
match or nearly match those of traditional non- Bayesian approaches, thereby providing them with
Bayesian interpretations.

The following section provides a simple example to explore the impact of combining test data
with the prior information using a Bayesian updating.
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3.4 Example

Appendix B provides a basic introduction to the mathematics underlying Bayes’ Theorem with
some basic but familiar problems. This section goes a step further and demonstrates the impact of
new data on overwhelming the prior assumptions.

Consider Figure 3.2. Assume we are asked to characterize the time required to perform a breach
task. Based on historical data (observations of similar tasks, expert judgement, etc.), we can assign
a prior distribution on the task completion time with a mean of µprior = 30 and a standard deviation
of σprior = 8 (dashed blue line).

We then perform 10 new tests which provide a better estimate of the task time with a mean
of µdata = 15 and standard deviation of σdata = 7 (black line). If we assume that these times are
normal distributed random variables then it is rather straightforward to combine the new test data
with the historical information using Bayes theorem.

The resulting posterior mean and standard deviation are µpost = 16.1 and σpost = 5.3 (green
line). We can see that the posterior estimates are heavily influenced by the data and overwhelm our
initial prior data. However, if we reduce the number of test samples to N = 1, and from the data
estimate a new mean and standard deviation: µdata = 15, and σdata = 10, then the prior maintains a
stronger influence on the results (red line): µpost = 24.1 and σpost = 6.2. Note how σpost decreases
when the larger number of tests also decreases σdata as also suggested by classical statistics.

3.5 Risk and Benefits of the New Approach

3.5.1 Risk: Establishing Priors

A major point of extraneous contention regarding the use of Bayesian methods is construction of
the various priors. It is true that the choice of a poor prior distribution can lead to misleading
results. However, the same pitfall occurs with traditional methods where the poor choice of any
probability model can lead to poor results. A benefit of Bayesian methods is that they provide
results that are more robust to the choice of the underlying probability model than if traditional
approaches were used in isolation.

3.5.2 Benefits

In addition to the additional level of robustness, there are other benefits to the proposed approach;
the full discussion and demonstration of these is beyond the scope of this work. However, a few of
the benefits include:

• Objectively deals with limited test data
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• More cost effective test planning. Data collection is driven by the value of the information
gained from the test(s). The new approach can provide direction relative to specific tests and
how many samples.

• Objectively consider uncertainties in intruder capabilities. A major uncertainty in facility
security assessment is the skill level, risk attitude of the intruder, and possible equipment
capabilities. These can be handled directly through the prior distributions and updated as
new intelligence or test results become available (Figure 3.3).

• Expert judgement regarding situations that are difficult or costly to test can be incorporated
in the analysis.

• Objectively merge data from multiple, possibly similar tests. If we have a series of tests
performed by different agencies, under similar but different conditions, it is possible to merge
test results and increase the confidence in our security assessment(see the brief discussion of
integrating test results in Appendix B.1).

• Deal with unusual situations such as non-zero minimum breach time by:

– adjusted distribution, e.g. Weibull with non-zero minimum time

– truncated distribution e.g. truncated normal

– sum of two distributions, e.g. Tmin ∼U(a,b)+Ttask ∼Weibull(ν ,η)

• Robust to black swan events. No method can predicts or account for extremely rare events.
Traditional analysis methods are limited to addressing only those events that can be tested
and/or observed. However, if objectively applied, Bayesian methods will assist in identifying
the possibility of these events and provide a solution that is more robust to these events than
traditional methods (see also the discussion in the Appendix B.2.1).
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Figure 3.3. Sample Priors Based on Intruder Type
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Chapter 4

A New Approach

This section focuses on the development of the basic framework for a new approach. Three very
general types of intruder scenarios are introduced and the associated analysis method is developed.
The discussion begins with the most basic situation where the intruders are, with certainty, detected
when they first breach the facility. The second scenario involves the possibility that during the
course of intrusion, various sensors are in place that are each susceptible to failure: detection at
each point is not guaranteed. Finally, building on the first two scenarios, an analysis approach
is outlined for the situation where the breach of each barrier may involve multiple tasks, each
of which must be accomplished before the barrier is successfully breached. Detailed numerical
examples of each are provided in the Appendices.

4.1 Introduction

The following discussion assumes that the most likely intruder path has been identified. Either we
assume that we already know which path into a facility that an intruder will take or assume that
the analysis in the previous section provides a characterization of the stochastic shortest path that
an intruder would take through a system. Even in a situation involving multiple likely paths, the
underlying approach outlined in the following is extremely fast and could be applied quickly and
easily on multiple scenarios.

Figure 4.1 depicts the situation where an intruder moves from barrier to barrier with the possi-
bility of detection at each barrier. Define the following variables:

• n is the length of the shortest path through the security facility, i.e. the maximum number of
barriers that must be breach for successful intrusion.

• PDi probability of detection at point i

• ti, i= 1, . . . ,n is a random variable describing the time it takes for an intruder to breach barrier
i.

• Tp is a random variable characterizing the time it takes for an intruder to successfully traverse
all security barriers in the facility, i.e. get from s to t. Tp = ∑

n
i=1 ti.
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• tR is a random variable characterizing the probability that the response force responds by
time tR, cdf FR(t)

s 1 t

start

2

t0
t1 t2

tn

terminate
PD1

PD2

Figure 4.1. Stochastic Shortest Path w/Random Edge Weights

The clock doesn’t start for the response team until the intruder is detected. Any intruder detec-
tion after the first provides no value (for this single path analysis).

The following sections discuss the results for three different scenarios of increasing complexity
and intruder attack resolution:

Case I In this case the intruder is detected at the first barrier and the response team reacts immedi-
ately. The analysis then involves, effectively, a race between the intruders and the response
team.

Case II The intruder encounters barriers and detection sensors sequentially along a single path.
The time to breach each barrier is characterized by a single random variable. The probability
of detection at each barrier is a random variable that captures the possibility that a number
of barriers may be defeated before the response team becomes aware of their presence. And
the race between the intruders and response team begins as in Case I.

Case III This is an extension of Case II with increased resolution of the steps needed by the attack
team to breach each of the barriers. Defeat of each barrier requires the successful completion
of a sequence of tasks, each of which may require a specific skill set or set of tools.

4.2 Case I: Intruder Detected Immediately

This is the simplest characterization of the problem, removing detection probabilities at each bar-
rier. This simplifies Figure 4.1 to the system depicted in Figure D.2. Assuming intruder detected
at first breach, then the response team successfully intercepts the intruders if the response time is
less than the passage time for the intruders to breach every barrier: tR < Tp, and the probability of
successful site security system performance ps is given by:
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PI = Pr{response time < total breach time}

= Pr

{
tR <

n

∑
k=1

tk

}
= Pr{tR < Tp}

s t
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response time - tr

breach time - tp

Figure 4.2. Case I: Basic Description

This type of problem is refereed to as an interference problem involving the convolution of two
distribution functions (Figure 4.3).
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Figure 4.3. Case 1 Distribution Interference

4.3 Case II: Individual Detection Events

Stage 1 Probability that the response team encounters the intruders before they breach all barri-
ers, Pr{response time is less than intruder passage time}. Assuming intruder detected at
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first breach, then the response team successfully intercepts the intruders if tR1 < Tp, and the
probability of successful site security configuration is given by:

PI1 = Pr{detection∩ fast response}
= Pr{detection}Pr{fast response|detection}

PI1 = PD1Pr{tR1 < Tp}

Stage 2 Intruder not detected at first barrier but detected at second barrier

PI2 = [(1−PD1)PD2]Pr{tR2 < (Tp− t1)}

Stage 3 Not detected until third barrier

PI3 = [(1−PD1)(1−PD2)PD3]Pr
{

tR3 < (Tp− (t1 + t2))
}

Stage j Not detected until jth barrier

PI j = PD j

j−1

∏
i=1

(1−PDi)Pr

{
tR j <

[
Tp−

j−1

∑
k=1

tk

]}

PI j = PD j

j−1

∏
i=1

(1−PDi)Pr

{
tR j <

n

∑
k= j

tk

}

Stage n Not detected until nth (last) barrier

PIn = PDn

n

∏
i=1

(1−PDi−1)Pr{tRn < tn}}

Finally, the overall probability of adversary success is:

PAS =
n

∑
j=1

PS j

because the adversary success scenarios are mutually exclusive. The overall probability of a
successful security system:

QI =
n

∑
j=1

QI j =
n

∑
j=1

(1−PI j)

and

PI = 1−QI = 1−
n

∑
j=1

QI j = 1−
n

∑
j=1

(1−PI j)
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4.4 Case III: Intrusion Failure Due to Task Failure

To this point the analysis method has not considered the possibility that the adversary might expe-
rience an unrecoverable failure while performing one of the tasks during the attempted attack. That
is, the attempted attack has been assumed successful if the adversary is not interrupted before the
objective is achieved, regardless of the relative ease or difficulty of the tasks to be accomplished
during the attack. For some tasks, the adversary may be able to make repeated attempts if the first
attempt is unsuccessful (e.g., tossing a backpack over a fence), with the repeated attempts incurring
additional time. Such repeated attempts can be represented in the adversary task time distributions
described earlier in this chapter. However, there is also the potential for an adversary to fail at a
task in such a manner that the entire attack must be declared a failure (e.g., accidentally stripping
delicate bolt threads, power tools that fail to start, or inadvertently causing building collapse when
explosively breaching a wall). If the adversary’s task list is entirely straightforward, there is little
conservatism in assuming that all adversary tasks are performed successfully. But if the task list
contains tasks that are delicate and where a second attempt is not possible (i.e., task failure is un-
recoverable), the conservatism of this assumption may be large, and a more detailed and realistic
calculation may be appropriate.

The previous section described how one can compute the probability of successful site security
system performance PI to interrupt an adversary during an attack timeline that consists of detection
events, timed adversary tasks, and a timed security response. The inverse condition, adversary
success, was modeled as 1−PI = QI . In this extended formulation, the adversary is successful
when the following conditions both occur:

• The response force is not timely (i.e., the response force does not successfully intercept the
intruders, as described previously), and

• The adversary team does not commit any unrecoverable errors.

It is possible to represent this situation using only the method described for Case II if one were
to set the time required to perform a task to infinity (or, more practically, to a very large num-
ber) to indicate that the adversary could not succeed in performing the task no matter how many
times it was attempted. While this may be methodologically simple and intuitively appealing,
the probability distributions that would be required to model these task durations would likely be
poorly behaved, bimodal, or overly constrained since one would need to ensure that the proba-
bility embodied in the tail of the task time distribution (i.e., for those times beyond the response
force arrival time) matches the likelihood of the adversary making an unrecoverable error while
performing the task. Fortunately, this situation can be modeled simply with an extension to the
Case II methodology.

Assume that PUi represents the probability that the adversary team commits an unrecoverable
error while performing the ith task in the attack. Its complement, QUi , is the probability that
no unrecoverable error is committed during the performance of this task. If the likelihoods for
successful completion of these tasks are assumed statistically independent, one can write the an
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equation for QU , the probability that no unrecoverable errors were committed during any of the n
tasks during the attack, as:

QU =
n

∏
i=1

QUi =
n

∏
i=1

(1−PUi)

and PU the probability that at least one unrecoverable error is committed during the attack, is its
complement.

To be successful, the adversary must not make any unrecoverable mistakes QUi and must suc-
cessfully beat the security system (QI from the preceding section). Thus, the probability of adver-
sary success for the attack mission PAS can be written as PAS = QIQU , where QI is as defined in the
preceding section.

Chapter 6 provides demonstration problems in which adversary task times are represented as
Bayesian random variables (Case I). Appendix D provides an additional demonstration problem
in which both the adversary task times and the detection probabilities are represented as Bayesian
random variables (Case II). A calculation in which the likelihoods for unrecoverable errors are
also represented as Bayesian random variables (Case III) would follow the same methods as the
demonstration problem in Appendix D. Alternatively, one could obtain a scoping estimate for PAS
by computing PI using the Case II equations and initial estimates for PU to determine whether the
additional insights to be gained are worthy of the additional computational complexity required by
the Case III equations.

A very simple system is analyzed in Appendix D to demonstrate the methodology.
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Chapter 5

Integrating Human Factors

5.1 Background

Several variables may impact human performance on the type of tasks needing to be completed
by an adversary during an attack. Fatigue, workload, lighting, noise, extreme temperature, and
task switching are some of the stressors that can affect a persons performance within situations
similar to those being discussed in this report. However, there is disagreement among researchers
regarding the level of disruption such stressors may cause [29]. Furthermore, there is a lack of
understanding of what constitutes stress and how to measure it. Dekker [14] explains the issues as,
Psychologists still debate whether stress is a feature of a situation, the mental result of a situation,
or a physiological and psychological coping strategy that allows us to deal with a demanding
situation. This complicates the use of stress in any causal statement, because what produced
what? (pg. 141). This section presents background on the variables most relevant to the scenarios
of interest within this report and further elaborates on the difficulties encountered in trying to model
their impacts: workload, ergonomics, fitness for duty, and time pressure.

5.2 Workload

Workload may be defined as either the tasks the environment places on the individual (defined as
task load by Parasuraman and Hancock [24]) or as the internal interpretation of the loading by the
person in attempting to adapt to the situation. This distinction may appear rather arbitrary however,
as the perception, either real or created, will impact the individual in the same way. However, the
impact on a persons performance will not be the same across individuals.

Workload often becomes a catch all phrase to refer to multiple forms of stress impacting an
individuals performance. Furthermore, the impacts may be positive or negative. Too low a level
of workload and an individual will easily become bored. This phenomenon may be particularly
relevant during a monitoring task when the person must stay tuned to some instrument or indicator
for a long period of time with no other engaging task. After a certain length of time (different across
individuals), the person becomes bored and easily distracted or loses all monitoring capability by
falling asleep.
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The ability to handle the stress of increased (or, conversely, decreased) workload is aided by a
persons experience and training. There also exists a level of optimal arousal (or stress) to which a
person responds. Figure 5.1 [11, 32, 34] demonstrates the effect upon performance based on level
of stress experienced by the individual. Eustress, which represents the facilitative effects of stress,
is seen at the optimal arousal level range. Above this optimal level, performance degrades until it
reaches a point where performance fails completely due to the effects of distress in the situation.
Swain and Guttman [31] make the direct connection between the performance effects of stress to
the effect of task or workload. In their description of levels of task load, the effect on performance
mirrors that explained by differing effects of stress.

Although in theory the arousal curve could be used to help predict the performance of an ad-
versary during an attack, difficulty is encountered in determining where on the curve an individual
would fall given a specific situation. Each individual responds differently in terms of stress level
and effect of workload to the situation. Furthermore, the magnitude of the impact is difficult to
determine and would also differ across individuals. Therefore, a generalized rule specifying an
error adjustment to be applied in the model representing all cases cannot be recommended.

Figure 5.1. Performance versus arousal/perceived stress
curve [11]

5.3 Ergonomics

Ergonomic issues could certainly be present during a site breach. The adversary may face a num-
ber of obstacles creating an ergonomic challenge such as low lighting (e.g., either through low
illumination or high amounts of dust particles in the air following, for example, an explosion),
loud noises (especially in the presence of alarms), confined spaces, and/or carrying heavy weight.

Ergonomic issues alone or in combination may serve in two roles that may hamper an adver-
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sarys progress. First, these variables create a stressful environment with similar consequences to
those already discussed in the workload section. The degraded ergonomic conditions often present
a novel situation on which the individual has no experience or training. For instance, although an
individual may be quite proficient in operating some tool, once his or her vision is obscured (e.g.,
through low illumination or thick dust particles in the air), the individual is unable to operate the
tool through touch alone.

The nature of the task being executed is defined by the less than optimal conditions. That is,
due to the secrecy and desire to go undetected as well as the necessity of working in conditions
that were specifically designed to inhibit the task being completed (i.e., breaching an area that was
designed to not be breached), the adversary faces ergonomic challenges. As already mentioned,
lighting may become an issue either due to time of the attack (many attacks occur during the night),
location of attack (sites of breach are in low-light areas to discourage being seen by surveillance),
or clouded vision (due to dust particles in the air caused by the breaching activities, or deliberate
obscurance is often designed into security systems). Low light (or even no light) creates obvious
difficulties for the adversary in completing their tasks. It is only for the advanced attacker (i.e.,
Level A adversary to be explained in Section 5.7) that lighting would probably not create an ob-
stacle slowing progress as they are typically prepared for such difficulties (e.g., through the use of
night-vision goggles).

Working in confined spaces presents another difficulty for the average attacker. This challenge
goes beyond the need to often crawl though restricted openings. That particular challenge would
be estimated directly in the times to complete the task. However, the variability seen in individuals
using a tool or manipulating some item in a confined workspace is not as easily accounted for.
Working in such areas may also lead to psychological impairments due to claustrophobic feelings
stressing the individual and causing numerous mistakes.

Completing tasks in the presence of loud noises has been shown in many studies to lead to
degraded performance [29]. Staal points to several studies showing noise negatively impacting
performance in several areas including tasks of vigilance and attention, memory, reaction-time,
and psychomotor tasks. Not only might the loud noise interfere with cognitive processing of the
task at hand, but if the adversary is working as a team, the noise will interfere with communica-
tions between team members. As mentioned previously, these effects by noise are probably more
pronounced for the average adversary.

A final ergonomic condition to consider is the common need to carry heavy loads during the
attack. These loads may be due to the need to carry tools or, during the exit, carrying the newly
acquired prize. The ability to deal with such loads is clearly dependent on the individual. A
further complicating factor is the impact on response time and speed the weight has further into
the scenario when fatigue is setting in. the effect of fatigue is discussed further in the next section.
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5.4 Fitness for Duty

The phrase fitness for duty may be used to capture several variables impacting performance. Fa-
tigue and the influence of drugs or medications are two of the most prevalent and evaluated vari-
ables, especially regarding performance in a workplace. The impact drugs or medication may have
on the individual’s performance is highly dependent on the individual as well as the substance.
Therefore, this impact is very difficult to predict or model. The effects of fatigue, on the other
hand, are well studied and have continuously been shown to negatively impact performance.

Although the effects of fatigue are well described, the mechanism of effect is not so well un-
derstood. Cercarelli and Ryan [12] offer the following explanation for fatigue, fatigue involves a
diminished capacity for work and possibly decrements in attention, perception, decision making,
and skill performance. The effects of fatigue may be divided into those that are physical (i.e.,
muscle tiredness causing mistakes in performance) versus cognitive or mental. It is the mental fa-
tigue that is perhaps more difficult to manage as it is more difficult to recognize and recover from.
Mental fatigue may be a factor either due to lack of sleep or due to continuous interaction, moni-
toring, or cognitive stimulation. Staal [29] points out that one hypothesis attempting to explain the
effects of fatigue proposes that fatigue removes resources in some direct way or perhaps indirectly
diverts them toward coping strategies. Thus, performance falls off on tasks due to the depletion of
resources (pg. 93).

Similar to the difficulty experienced in trying to measure stress and predict its effect on perfor-
mance, fatigue has been a difficult variable to measure. For both phenomena, the difficulty boils
down to a difficulty in measuring the variable. Staal [29] captures the issue well as, In many in-
stances, fatigue is spoken of as being present or absent, yet theoretically most consider it to be a
continuous variable. Thus, at what degree of subjective experience or objective measure is one to
be considered to be fatigued? ( [29], pg. 94).

5.5 Time Pressure

Time pressure and its effects on the performance of an adversary defeating a barrier are probably
the most relevant to this model. Although the other variables may certainly be relevant, the ability
to predict their influence is difficult unless an adversay description and some specific factors sur-
rounding the situation are known or can be closely estimated. In fact, many researchers contend
that time pressure is at the root of all performance decrements and that any element impacting
workload does so through this variable [29],. This observation, and the broad effects of time pres-
sure, point to its importance in being assessed in situations such as those being discussed in this
report. Staal’s review explains the effects of time pressure have been found to degrade performance
in a number of areas such as judgment and decision making, visual search, vigilance and attention,
memory recall, and subjects self-rating of performance. The effects of time pressure are far reach-
ing: In addition to a general drop in performance, time pressure and the corresponding sense of
urgency experienced tends to result in strategy shifting in teams (explicit to implicit rules and
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greater coordination between members), task- or load-shedding (of which strategy-shifting may be
seen as one specific example), tunneling of attention and visual scanning, and a speed/accuracy
trade-off in performance (pg. 84). Zakey [35] asserts that the degradation seen in performance of
complex tasks due to time pressure could be attributed to the shortage of cognitive resources lead-
ing to the adoption of simple strategies and an increase in errors. Amabile et al. [5] researched
the effects of time pressure on creative thought and found that individuals are less likely to be able
to think creatively if under time pressure. This effect may be particularly pertinent to this report as
an adversary will likely encounter situations he or she will be required to creatively think through
solutions for and the pressure of time will slow his or her ability to do so.

5.6 Accounting for Effect

Human actions are embedded within the contexts in which they occur. It is, therefore, impossible to
account for the effect of human error without understanding and accounting for the context within
which those errors occur [28]. One manner in which the effects of human performance variables
are accounted for in determining failure rates is the study of human reliability analysis (HRA).
Within HRA, the context leading to a human failure event (HFE) is described in enough detail to
allow the analyst to make a judgment as to the most likely performance influencing factors (PIFs)
impacting behavior. These PIFs represent the stressors, similar to the ones described in this chapter,
affecting human performance. The impact of the PIFs is accounted for when calculating the human
error probability (HEP). PIFs may have a negative or a positive impact on human performance.
However, for our purposes, we are more interested in the negative impact and how it might affect
the likelihood of success.

Several HRA references may be useful in determining appropriate multipliers to apply to calcu-
lations of error rates when defeating barriers (SPAR-H, THERP, etc.). However, a fairly standard
multiplier applied in this arena is two. Given severe time pressure (e.g., trying to compensate for
an error made in an emergency situation), the initial error rate is multiplied by two and is doubled
for each additional attempt after the initial failure until the limiting condition of 1.0 is reached
(Swain and Guttman [31]. To account for more specific individual-, environmental- or task-related
influences on performance, the HRA methods may be used to find specific multipliers or adjust-
ments to apply representing specific PIFs. The HRA method SPAR-H (standardized plant analysis
risk-human reliability analysis; Gertman et al. [17]) is based on the assessment of eight key PIFs:
available time, stress, complexity, experience and training, quality of procedures, ergonomics and
human-machine interface, fitness for duty, and work processes. Boring et al. [10] offers guidance
on how to assess the PIFs and the appropriate multipliers to apply. Similar detailed guidance is
provided in THERP (Technique for Human Error Rate Prediction; Swain and Guttman [31]) on a
few PIFs if information is known on the context of the situation.

An alternative to the use of multipliers in accounting for the impact of human error on perfor-
mance is to capture within the model the distribution of PIF. Berry [9] argues that the often used
Gaussian (or normal) distribution is not the correct distribution for modeling task performance,
although it is often used in this capacity. In contract, Berry argues that the Weibull distribution
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is more aptly suited for modeling human performance tasks times. However, data is often not
available for estimating the Weibull parameters. Berry offers guidance in which the parameters
maybe estimated after determining (through expert judgment) the mean and standard deviation of
task performance time. This lack of data on human performance in specific situations creates the
real problem seen in including PIFs within the model. It is a further complication in estimating
performance differences between the three levels of adversaries discussed in the next section.

5.7 Adversary Skill Levels

Three types of adversaries are thought of in relation to the scenarios discussed in this report: types
A, B, and C. The Type A adversary is an expert in the field. This individual comes equipped with
all the necessary tools, has knowledge on the use of the tools in a variety of situations, and is
extremely capable of success in what is considered a stressful environment. Type B adversary has
some training in the tasks, but would not be considered a top of the line expert. This individual is
very capable of success, but he or she would succumb to some stressful impacts. Finally, the Type
C adversary is the average individual who would be the most susceptible to the stressful impacts
incurred in these tasks. One of the primary difficulties in predicting human performance in an
attack breach scenario is understanding what type of adversary is being considered. The optimal
case would be to build separate models for each type of adversary. However, this is impractical due
to the dearth of data on human performance for any of the adversary types across multiple tasks.
Furthermore, there is difficulty in simply defining what category the adversary falls in; that is, given
a certain adversary description, what type would he or she be assigned to? Although an adversary
may be considered Type A in one task type, does this label apply to the same individual for all
tasks involved in the site breach? Finally, it is possible that the type of distribution associated with
the performance task time is different across the adversary types, but further research on experts
versus novices in these domains is needed.

Although it may be tempting to model the Type A adversary by setting each of the PIFs to a
nominal state, thereby taking a very conservative view and stating the adversary is not likely to
fail based on human error due to a stressor, this view would be flawed. Although experts excel
in a number of ways making their performances more robust than novices, they are susceptible
to errors in a number of instances. Expertise is domain-limited such that although an individual
may be an expert in one particular area or on some particular task, his or her performance in other
areas or tasks may be very similar to those less experienced or novices. Experts may also show
inflexibility in adapting to changes in problems that have a deep structure that deviates from those
that are acceptable in the domain ( [13], pg. 26). This inflexibility in an expert’s response may
also manifest as a bias in response to other similar task types. Greater domain knowledge can also
be deleterious by creating mental set or functional fixedness. In a problem-solving context, there is
some suggestion that the more knowledgeable participants exhibit more functional fixedness in that
they have more difficult coming up with creative solutions ( [13], pg27). That is, an expert becomes
fixated on applying their specialized knowledge to any problem encountered that resembles the
one they are most prepared for. This vulnerability may be particularly relevant when predicting
performance by experts in these attack scenarios.
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Figure 5.2. Priors Based on Intruder Type

Given the vulnerabilities in an expert’s performance, it is inaccurate to think that experts are
immune to human performance issues. However, it is likely that the variability in their response
times is much more restricted than that for the other two types of adversaries. The literature sug-
gests that when inter-individual variability declines with the development of expertise, a group of
expert performers can be expected to show much smaller differences between them than do novices
( [4], pg. 153). Therefore, one approach to consider for modeling the performance task time is
to let the coefficient of variation be constant across all intruder types. Then as the mean breach
time increases, so does the standard deviation (see Figure 5.2). An alternative perspective would
suggest a more general statement: as skill level decreases, the variance in task times increases.
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Chapter 6

Demonstration of Approach

This section brings together the major points of the previous material and, using a simple scenario,
demonstrates an access delay assessment using the proposed framework. The access delay situation
is first analyzed using traditional methods and then the new framework is employed. The two
results from the two methods are then compared.

6.1 Problem Description

Consider an access delay situation where there are seven barriers, each with multiple tasks required
to breach each barrier. While the data are taken from actual delay testing, the details of what has
been tested are withheld for security reasons. Data for this example is provided in Appendix E.
In some cases, there were resources available for twelve tests, while for others, only one test was
possible. Of the twenty-eight total tasks, the data recorded for each task vary between one and
twelve repetitions, with most tasks receiving three to five. In summary, the adversary will be
required to complete all 28 tasks in order to complete their objective.

The issues become: how to combine the test data from each task into a characterization of the
breach time for that barrier and how to objectively combine the breach times for the barriers into a
total time to breach the security system for the facility.

6.2 Traditional Access Delay Calculation

For the traditional access delay calculation, two calculations are presented. The first is the calcu-
lated delay using the average of the measured data for each task. The total accumulated time for
this scenario is 3227 seconds (53.8 minutes) (Table 6.1) .

The second scenario calculates the accumulated delay from 50% of the average measured times
for each task. The total time for this scenario is 1614 seconds (26.9 minutes) (Table 6.2).
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Table 6.1. Path Time for Average

Barrier Task Task Time Accumulated Time Comments
1 1 66.7 66.7 Barrier 1, Two Tasks, 173 sec

2 106.3 173
2 3 16.2 189.2 Barrier 2, One task, 16.2 sec
3 4 67.8 257 Barrier 3, Five Tasks, 2279.1 sec

5 718 975
6 1051 2026
7 313 2339
8 129.3 2468.3

4 9 17.4 2485.7 Barrier 4, Five Tasks, 210.8 sec
10 26.8 2512.5
11 37.2 2549.7
12 57.6 2607.3
13 71.8 2679.1

5 14 54 2733.1 Barrier 5, Five Tasks, 420.1 sec
15 71.6 2804.7
16 84.5 2889.2
17 90.8 2980
18 119.3 3099.2

6 19 5.7 3104.9 Barrier 6, Three Tasks, 25.7 sec
20 8 3112.9
21 12 3124.9

7 22 8 3132.9 Barrier 7, Seven Tasks, 102 sec
23 3.8 3136.7
24 9 3145.7
25 1 3146.7
26 42.5 3189.2
27 18 3207.2
28 19.8 3226.9
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Table 6.2. Path Time for - 50%

Barrier Task Task Time Accumulated Time Comments
1 1 33.3 33.3 Barrier 1, Two Tasks, 86.5 sec

2 53.2 86.5
2 3 8.1 94.6 Barrier 2, One task, 8.1 sec
3 4 33.9 128.5 Barrier 3, Five Tasks, 1139.6 sec

5 359 487.5
6 525.5 1013
7 156.5 1169.5
8 64.7 1234.2

4 9 8.7 1242.9 Barrier 4, Five Tasks, 105.4 sec
10 13.4 1256.3
11 18.6 1274.9
12 28.8 1303.7
13 35.9 1339.6

5 14 27 1366.6 Barrier 5, Five Tasks, 210.1 sec
15 35.8 1402.4
16 42.3 1444.6
17 45.4 1490
18 59.6 1549.6

6 19 2.9 1552.5 Barrier 6, Three Tasks, 12.9 sec
20 4 1556.5
21 6 1562.5

7 22 4 1566.5 Barrier 7, Seven Tasks, 51 sec
23 1.9 1568.3
24 4.5 1572.8
25 0.5 1573.3
26 21.3 1594.6
27 9 1603.6
28 9.9 1613.5
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6.3 Statistical Analysis
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Figure 6.1. Facility Barrier-Task Decomposition

6.3.1 Task Times

For this example, we will assume that the time required to complete each task is a lognormally
distributed random variable (Figure 6.1):

f (t|µ,τ) =
√

τ

2πt2 exp
[
−τ

2
(log(t)−λ )2

]
, t > 0 (6.1)

The lognormal is a logical choice since it applies only for task times > 0 and similar to the Weibull
distribution, with two parameters, it can take on a variety of shapes. Further, it can easily be mod-
ified; for example truncated to allow for situations where a constant or minimum time is required
to complete a task.

It can be shown that if T ∼lognormal, then the transformed random variable ln(T ) = Z ∼
normal.

E(Z) = µZ = λ

V (Z) = σ
2
Z = 1/τ

E(T ) = µT = exp [λ +1/2τ]

V (T ) = σ
2
T = µ

2
T [exp(1/τ)−1]
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Recall that µT ,σ
2
T are random variables, and therefore µZ,σ

2
Z are random variables. The next

section outlines an approach for estimating the prior distribution for these parameters to be used to
initiate our analysis.

6.3.2 Construction of Priors

While our survival is intimately tied to causality and probability theory, humans continue to strug-
gle with communicating and summarizing probability. This can present a challenge when estab-
lishing priors for our analysis. Our goal then is to: 1) make the establishing the prior as objective
as possible, 2) ensure that our results are insensitive to the prior.

However, we are probably most comfortable with the normal or Gaussian distribution. Since
Z = ln(T ) ∼ N(µZ,σ

2
Z), we will form our priors in Z-space and then easily transform the priors

back to T -space.

While the following may appear to be rather complicated, in practice it is straightforward to
automate within a security analysis program and would require very limited user input.

Consider the test results for Barrier 1 in Appendix E and for convenience repeated below in
Table 6.3. Let µZ ∼ N(µ,σ). A reasonable estimate of µ = E[µZ] is the mean of the transformed

Table 6.3. Barrier 1 Data

Test Task 1 Task 2
1 75 113
2 64 106
3 61 100
µ 66.7 106.3
σ 7.37 6.51

task times from our historical data: µ = ∑i ln(ti)/n ≈ 4.19. The choice of V [µZ] = σ2 can poten-
tially influence the sensitivity of our results to our prior on the mean; we want this sensitivity to
be as low as possible. For this reason will will set σ2 to a very large (relative) value on the order
of (3µ)2 ≈ 144. The result is a prior distribution centered on the mean from the test data, but
with a very flat shape across the interval of extreme possible values: (µ−3µ,µ +3µ) = (−8,16)
(Figure 6.3).

To estimate a prior on σ2
Z we will assume that the distribution for σ2

Z is an inverse-gamma
distribution: σ2

Z ∼ InvGamma(α,β ) where E[σ2
Z ] = β/(α−1) and V [σ2

Z ] = β 2/[(α−1)2(α−2)].
Fortunately, it’s easier to find a prior on τ = 1/σ2

Z . If σ2
Z follows an inverse gamma distribution,

then τ is a gamma distribution with E[τZ] = α/β and V [τZ] = α/β 2. Common robust values for
our problem are α = 1 and β = 1/(2µ); for Task 1 µ = 4.2.
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Therefore the expected variance is E[σ2
Z ] = 0.112 and variance of the variance is V [σ2

Z ] = 0.014.
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Figure 6.2. Prior on µz = E[ln(t)]

An alternative that provides similar results is to relax the previously assumed independence
between µ and σ and assign a prior on µ|σ2∼N(µZ,σ

2/n0), and σ2∼ InvGamma(ν0/2,ν0σ2
0/2)

where ν0 > 0 is chosen to be the number of historical samples to find the sample variance ν0σ2
0

from the historical sample, and n0 is a prior ’sample size’ that characterized the strength of belief
in the prior. )

6.4 Results

Analysis of the access delay timeline was accomplished using a open source Markov Chain Monte
Carlo simulation tool (JAGS [25]).

The following tables summarize the uncertainty analysis of the time to complete each task
(zt[i] in Table 6.4) and uncertainty in the time to breach the individual barriers (bi in Table 6.4).
For each variable, the 2.5, 25, 50 (median), 75, and 97.5-percent quantiles are provided. These
quantiles are not the same as confidence intervals. These quantiles are estimates of the probability
that the variable of interest is less than the specified value. For example, in Table 6.4 we see that
P[total delay < 14311.4 sec] = 0.975.

From Table 6.6 we can see that the median times correspond well with the results from the
traditional method of only using the mean values (also evident in Figure 6.5). However, as we can
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Figure 6.3. Prior on τz = 1/V [ln(t)]

see from Table 6.4 there is considerable uncertainty in the total access delay time. Since there is
such limited task data available for some of the barriers, and for others the test times for a single
task vary by as much as 200%, this result is not surprising.

As a rough comparison, it can be seen that the Bayesian and the traditional methods provide
similar results when the mean and the median times to overwhelm all barriers are compared: 3453
versus 3227. However, the range for the new approach and the traditional approach are compared,
the differences of the two methods is clear: [2295,14311] versus [1614,4841]. The new approach
provides a broader, hopefully more realistic characterization of the intruder delay.

Figure 6.6 provides an additional perspective. As noted previously, there is uncertainty in the
Response Force reaction time. Simultaneously considering the facility access time, TA, by the
Adversary and the Response Force time, TR, the probability that Response Team intercepts the
Adversary, TA−TR > 0 is depicted in Figure 6.6.
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Table 6.4. Individual Task Times - Quantiles

Quantile
Task 2.5% 25% 50% 75% 97.5%
zt[1] 29.83 53.14 65.99 82.35 146.65
zt[2] 51.11 87.15 105.75 130.25 227.36
zt[3] 3.42 10.08 15.17 22.41 68.72
zt[4] 29.90 53.10 65.88 83.19 140.76
zt[5] 145.09 530.31 722.35 982.29 4177.68
zt[6] 231.50 781.90 1051.27 1439.00 5089.02
zt[7] 117.64 246.46 312.77 393.16 799.23
zt[8] 35.98 87.91 121.77 167.57 420.82
zt[9] 8.62 14.16 17.35 21.26 34.37

zt[10] 14.44 22.24 26.67 32.17 49.81
zt[11] 20.42 31.15 36.96 44.12 67.06
zt[12] 31.89 48.25 57.29 67.97 102.41
zt[13] 41.94 61.55 72.03 84.77 124.36
zt[14] 29.73 45.53 53.71 63.47 95.98
zt[15] 37.79 59.05 70.61 84.78 129.02
zt[16] 43.78 70.42 84.33 101.02 156.07
zt[17] 50.09 75.75 90.56 108.28 165.19
zt[18] 64.17 99.89 118.97 141.63 222.94
zt[19] 2.88 4.51 5.53 6.90 10.95
zt[20] 4.67 6.60 7.91 9.42 13.97
zt[21] 6.80 9.95 11.85 14.14 20.71
zt[22] 3.26 6.22 8.07 10.41 21.42
zt[23] 1.15 2.67 3.74 5.20 12.17
zt[24] 1.57 5.10 8.04 12.48 42.48
zt[25] 0.29 0.71 1.01 1.45 3.62
zt[26] 7.09 25.86 38.76 59.85 245.12
zt[27] 1.42 11.15 18.19 28.88 215.80
zt[28] 8.16 15.01 19.39 24.94 47.28

Table 6.5. Barrier Breach Times - Quantiles

Barrier 2.5% 25% 50% 75% 97.5%
1 104.93 150.77 176.16 207.28 328.66
2 3.42 10.08 15.17 22.41 68.72
3 1302.87 1991.69 2414.29 3079.12 10927.52
4 165.23 197.52 216.12 238.29 294.02
5 329.73 394.36 430.06 473.26 585.42
6 18.51 23.21 25.97 29.11 37.60
7 58.73 88.92 109.87 144.82 581.32

total delay 2295.33 3013.38 3452.57 4165.90 14311.41
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Table 6.6. Comparison of Traditional v Statistical

Traditional Statistical
Barrier Mean 0.5*Mean Median

1 173.0 86.5 176.2
2 16.2 8.1 15.2
3 2279.1 1139.6 2414.3
4 210.8 105.4 216.1
5 420.1 210.1 430.1
6 25.7 12.9 25.97
7 102.0 51.0 109.87

total delay 3226.9 1613.5 3452.6
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6.5 Implementation Summary

This section provides a brief summary of the steps taken to implement the proposed approach. The
actual steps are necessarily very problem specific, but the following will provide general guidance.
It is presumed that the objectives of the physical protection system have been established and the
goal is to begin characterizing the risks associated with the facility protection system.

The broad goal of this research was the investigation into methods for risk analysis associated
with simultaneous, multi-path adversary intrusions into a facility. The new approach discussed
in previous sections was developed with the express intent that it could be extended or evolve to
account for this broad analysis perspective. However, as noted previously, the research objective
was simplified to demonstrate the feasibility of the approach on multiple, independent adversary
paths.

6.5.1 Characterize Adversary Paths

The first step in the evaluation of any physical protection systems is to characterize the various
adversary paths. This includes, for each possible adversary path, descriptions of possible adversary
actions, identification of the delay elements, and the possible detection elements. This is consistent
with existing and proposed methods of protection system evaluation. The major difference is in
the effectiveness assessment. Given that the adversary paths have been described the following
describes the data collection and analysis steps necessary to measure effectiveness.

6.5.2 Collect Historical Data

Prior to conducting any tests, characterize the anticipated uncertainty associated with each of the
tasks on the adversary path being evaluated. This analysis may be based on expert judgement,
historical testing data, etc. The characterization may be as simple as minimum, median, and max-
imum delay times. Alternatively, it may be based on physical testing related to similar systems.
it is possible, but discouraged, to begin an adversary path analysis in complete ignorance of the
times associated with the delay elements along the path. Various methods can be employed to
objectively transform this prior information into a probabilistic description of the task times. One
proven method is the SHeffield ELicitation Framework (SHELF) [23]. SHELF is a package of
documents, templates and software to carry out elicitation of probability distributions for uncertain
quantities from a group of experts.

Alternatively, as demonstrated in Section 6.3, even with a minimal amount of historical data it
is possible to capture the uncertainty in the task times with sufficient objectivity to avoid unduly
influencing the results.
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6.5.3 Conduct Testing

The focus then returns to the more traditional component of conducting the new tests. For each
task on the path conduct appropriate tests to characterize the delay times associated with taskSince
an explicit effort has been made to collect and organize historical data, the prior information should
provide insight into areas of focus when setting up test conditions. An additional side benefit of the
effort to characterizing historical information is that these data provides some relief on the stress of
collecting vast quantities of new test data. New testing can focus on quality of the testing, perhaps
investigating more extreme task or barrier situations.

6.5.4 Characterize Adversary Path Risk

In Section 6.4 the historical data, test data, and the final adversary path risk analysis were ac-
complished in a single stroke. A more insightful approach would have been to first combine the
historical and test data and investigate the sensitivities of the relationship between prior and test
data. This comparison was implicitly available in Figure 6.4 and Table 6.4, but a more in-depth
analysis would have been more appropriate. Intermediate task results that appeared to be too sen-
sitive to prior information would suggest revisiting the accuracy or relevance of the historical data.

The time associated with the adversary delay is now available as an entire uncertainty distribu-
tion (Figure 6.5). In contrast to the traditional single point mean values or max-min delay times,
this provides considerably more information to the decision maker regarding the facility risk. It is
also possible with the current information to bound this CDF with a credibility interval to better
understand the true risk.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

The prime assertion in beginning this investigation was that a new delay time calculation method-
ology was needed in order to better understand realistic system delays beyond the traditional worst
case or conservative scenario assumptions. This work has developed a statistically based method-
ology that utilizes available test and historical data. As believed prior to and confirmed during this
project, access delay test data is extremely limited in the amount of data collected for any given
attack or breaching method. Previous investigations that used classical statistical methods have
generally fallen short of expectations due the inapplicability of frequency based methodologies to
these small data sets.

This research has shown that by using Bayesian techniques, mathematically defendable prob-
ability density functions representing barrier breaching times can be generated for small data sets.
Using these calculated time distributions, a sequential string of tasks/barriers (time distributions)
can be combined using convolution techniques to develop a probability density function for the
time required to complete the chosen path.

Barrier breaching or task times can be further modified based on human factors data for a given
task complexity, environmental condition, or adversary ability. This step represents a corollary to
multiplication factors that have been applied in the past for non-barrier delay methods such as
visual obscurants. Instead of a simple multiplication of a discrete delay or task time, these factors
are applied across the entire range of the individual task or barrier distribution. It was shown that
a task multiplication factor of 2 is justified from test data from nuclear power plant high-stress
emergency event simulations.

The specific steps needed to conduct the developed Bayesian access delay methodology are as
follows:

1. Determine the adversary path to be analyzed. As discussed, this methodology currently only
applies to a single chosen path, requiring analyst to discover possible attack paths using
traditional security analysis methods.

2. Gather the data for the individual tasks that must be completed or barriers that must be
breached for an adversary to successfully complete an attack along the chosen path. This
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could require gathering discrete test data points or already calculated probability density
functions for the applicable tasks or barriers.

3. If task/barrier probability density functions are not available, compute each PDF using the
developed Bayesian method and Markov Chain Monte Carlo analysis.

4. Apply human factors modifiers as necessary based on the task complexity, environmental
conditions, and/or adversary skill level.

5. Use a convolution algorithm to compute the PDF for the full path

6. Appropriately use the calculated path PDF for the final delay analysis conclusions such as
the probability that the adversary will be interrupted by the response force before the attack.

Because this methodology is new to the delay analysis community, step 6 above will require
some additional thought as to how to use the calculated path probability density function in time.
It is envisioned that this data could be used in a number of ways:

Calculate a range of delays and probabilities for a given path and set of data. This would be
the most basic use of the statistical methodology, and would be similar to the current methodology
for access delay analysis. While the calculation of the final delay distribution would be conducted
though the developed Bayesian statistical methodology, the analyst could choose the most applica-
ble delay metric: shortest time, median probability time (50% probability), or another probability
level of interest (Figure 7.1).

Calculate the risk if only a certain delay can be achieved. If a security system analysis de-
termines that the protective force has a fixed response time for whatever reason (funding, physical
geography, skill, etc.) the developed Bayesian methodology can provide the data to evaluate the
magnitude of adversary success rate. In Figure 7.2, if the time t is the known minimum system
response, then it can be seen that percentage of attacks that cannot be interrupted is that below
the line. This can also be accomplished as part of the convolution step if a distribution is used to
represent the uncertainty in the protective force response time.

Evaluate a required delay based on adversary skill level. As was seen from the test data gath-
ered for this study, it is often unknown (after the fact) what skill level of adversary is represented
by that data. If an adversary skill level were to be defined in relation to the percentage of the total
delay time distribution, the required delay time to interrupt given adversary could be calculated
(Figure 7.3). For instance, if an A level adversary were defined as being able to achieve the top
15% of delay times, the B level adversary defined as achieving delay between say 15% and 60%
of delay times, and the C level adversary the bottom 40% of delay times, the PDF is essentially
broken into three time ranges of interest. Thus, the facility can choose the required response time
to correspond with the adversary in question. How to create this breakdown would need to be
developed and agreed upon by the access delay and security communities.
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Figure 7.1. Delay as a Function of Median Time
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Figure 7.2. Delay as a Function of Minimum System Response
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Figure 7.3. Access Delay For Adversary Skill Level
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7.2 Future Work

This research has shown that small data sets can be used to calculate probability density functions
for tasks and barrier breach times. While one of the goals of this work was to create an easily
explained and defendable delay calculation methodology, in its current form the methodology is
a mathematical construct and not quite ready for use by delay analysts. The current algorithm
implementation was programmed in an open source computing package called R, which could be
used as an underlying engine with a graphical front end to calculate delay distributions. It is not
necessary to use this package, and the method could easily be programmed in a more common
computing language like C++. Ultimately the implementation success will rely on an easy to use
tool that can call upon a library of delay data as well as allow the user to input new or updated data
as necessary. Thus, the next step in the evolution of this technique should be the development of
a simple (initially) tool that runs efficiently on a laptop or similar device that the analyst can take
into the field.

After a simple working tool has been demonstrated and shown to compute reliable results in a
number of situations, the next step would be to incorporate the methodology (or at least its results)
into a more complex combat and security simulation tool, such as DANTE. Here, the tool could
be used in conjunction with established performance libraries and behavior models to calculate
system effectiveness.

While the mathematical basis for the developed calculation technique is believed to be solid,
the validity of the techniques output is only as good as the validity of the input data that was
used in the calculation. With minimal understanding of how a test or test series was planned,
conducted, and reported, no statistical method can adequately predict discrete A,B, or C level
performance without significant assumptions being made. If it is assumed that the time delay data
is representative of high-, medium-, and low-level adversary skill sets, the methods output will in
essence be a distribution covering span of adversary skill sets. While not discretely applicable to
A,B, or C level adversary, this combined distribution may still of use to the analyst depending on
how that data is used.

Access Delay test data that is being used today has been collected for literally dozens of years,
but there is relatively little detailed information on how each specific piece of data was collected or
how that data could (or should) compare with other predecessor or successor data. Typically, the
objectives for much of the delay testing have been to breach a barrier in the shortest time possible
within the limitations of the test itself. These limitations include budget, available test personnel,
skill level of available test personnel, tool set considered, tool set available, along with a multitude
of other factors that have some potential to influence the final outcome.

Simply, it is difficult to extract adversary level from past reports. Considering there has been
no standardized test protocol for conducting delay testing for input into advanced simulations and
analysis, the best assumption that can be made about existing reported data is that it was conducted
in a manner that best optimized the test conditions for the resources at hand. This would have likely
have resulted in an A or B level adversary threat, but even this resolution of skill is unlikely to be
recovered. Moving forward, it would be highly advantageous to define a common test protocol for
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use in all future delay test activities. At this time, it is difficult to recreate a test series conducted
at a different location or by different personnel because there is no standard protocol to which that
test or test series was designed or conducted. The development of a standard protocol would be
extremely advantageous to the analyst needing to utilize all of the data available to calculate path
access delay. An added benefit would be to allow for greater definition of the required resources
when proposing and planning a set of access delay tests.
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Appendix A

Dijkstra Example

As an example, we will populate Figure 4.1 with sample values (Figure D.2) and walk through
Dijkstra’s algorithm. The results are summarized in Table A.1.

A.1 Dijkstra’s Algorithm

A classic algorithm for identifying all the shortest paths in a network with known edge weights is
Dijkstra’s approach presented in Algorithm A.1.1.

Algorithm A.1.1 Dijkstra(G,c,s)
S← /0
Ds(s)← 0
Q←V
for all u ∈V such that u 6= s do

5: Ds(u)←+∞

end for
while Q 6= /0 do

find u ∈ Q such that Ds(u) = minu′∈Q(Ds(u′)
Q← Q\u

10: for all v ∈V (u)∩Q do
if Ds(u)+ c(u,v)< Ds(v) then

Ds(v)← Ds(u)+ c(u,v) {The edge (u,v) is selected.}
end if

end for
15: S← S∪{u}

end while

The above analysis is not particularly realistic since we have assumed the most conservative
times for intruder breach at each barrier. This generally leads to an overly conservative security
system design. The following section discusses an approach that recognizes the uncertainty in the
intruder capabilities.
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Table A.1. Steps in Dijkstra Algorithm

Step Node path Distance to Node from Node ’s’ Visited
1 b {s,b} 6 no

c {s,c} 4 no
d infinite no
e infinite no
f infinite no
t infinite no

2 b {s,b} 6 yes
c {s,c} 4 yes
d {s,b,d} 14 no
e {s,c,e} 16 no
f infinite no
t infinite no

3 b {s,b} 6 yes
c {s,c} 4 yes
d {s,b,d} 14 yes
e {s,c,e} 16 no
f {s,b,d,f} 18 no
t infinite no

4 b {s,b} 6 yes
c {s,c} 4 yes
d {s,b,d} 14 yes
e {s,c,e} 16 yes
f {s,b,d,f} 18 no
t {s,c,e,t} 22 yes

5 b {s,b} 6 yes
c {s,c} 4 yes
d {s,b,d} 14 yes
e {s,c,e} 16 yes
f {s,b,d,f} 18 yes
t {s,c,e,t} 22 yes
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Appendix B

Introduction to Bayes Theorem

B.1 Impact of Testing

Let X be unobservable quantities of interest and D be our data. Then the full probability model can
be factored: P(x,d) = P(x|d)P(d) = P(d|x)P(x). Applying Bayes’ Rule:

P(x|d) = P(d|x)P(x)
P(d)

(B.1)

The real power of Bayes theorem lies in the ability to combine data in an objective manner. The
ability of humans to process probability information is limited at best. The following is a rather
classic example of an (important) situation where humans typically do very poorly.

Let’s assume that you have tested positive for a disease, breast cancer for example. What is the
probability that you actually have the disease? This latter question depends on the accuracy and
sensitivity of the test, as well as the (prior) prevalence of the disease.

Assume the following quantities (reasonably accurate numbers):

P(Test = positive|Disease = true) = 0.80
P(Test = negative|Disease = true) = 0.20(false negative)

P(Test = positive|Disease = f alse) = 0.096(false positive)
P(Disease = true) = 0.01

Therefore:

P(D = true|Test =+) =
P(T =+|D = true)P(D = true)

P(T =+|D = true)∗P(D = true)+P(T =+|D = f alse)∗P(D = f alse)

=
0.80∗0.01

(0.80∗0.01)+(0.096∗0.99)
=

0.008
0.103

= 0.078
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So, if a woman has a positive mammogram, there is only a 7.8% probability that she actually
has breast cancer. [Only 15% of doctors got this number correct. [ref]] This is a result of the prior
assumption that the disease is rare P(Disease = true) = 0.01. Alternatively, if you ignore the prior
(assume that there is a 50-50 chance someone has the disease), P(Disease = true) = 0.5 then:

P(D = true|Test =+) =
0.80∗0.5

(0.80∗0.5)+(0.096∗0.5)
=

0.4
0.448

= 0.89 (B.2)

Of course, this conclusion relies on your belief that 50% of the women in the world have
breast cancer. A better approach is to use a plausible prior (e.g. P(D = true) = 0.01), but then
conduct multiple independent tests; if they all show up positive, then the posterior will increase.
For example, if we conduct two (conditionally independent) tests T1, T2 with the same reliability,
and they are both positive, we get

P(D = true|T 1 =+,T 2 =+) =
P(T 1 =+|D = true)∗P(T 2 =+|D = true)∗P(D = true)

P(T 1 =+,T 2 =+)

=
0.80∗0.80∗0.01

0.80∗0.80∗0.01+0.096∗0.096∗0.99
=

0.32
0.366

= 0.874

The probability of breast cancer being present goes from about 8% to almost 90% with the positive
results from only one more test. The value of that one additional test is clear.

For complicated probabilistic models, computing the normalizing constant P(d) is computa-
tionally intractable, either because there are an exponential number of (discrete) values of X to sum
over, or because the integral over X cannot be solved in closed form (e.g., if X is a high-dimensional
vector). Graphical models can help because they represent the joint probability distribution as a
product of local terms, which can sometimes be exploited computationally (e.g., using dynamic
programming or Gibbs sampling). Directed graphical models are a natural way to represent many
hierarchical Bayesian models.

B.2 Second Example

A second example, slightly more involved, again demonstrates the application of Bayes theorem [?
]. Consider the toss of a coin where we observe the number of heads, x ∈ {0,1, . . . ,n}, that occur
in N tosses. The probability of x heads is characterized by the binomial distribution:

p(x|θ) =
(

n
x

)
θ

x(1−θ)n−x (B.3)

and the likelihood of generating a sequence of head/tails data is given by:
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p(d|θ) =
n

∏
i=1

θ
I(x=1)(1−θ)I(x=0) (B.4)

where the number of heads is given by: N1 = ∑
n
i I(x = 1) and N0 = ∑

n
i I(x = 0). Finally, we note

that the constant p(d) =
∫

p(d|θ)p(θ)dθ can be difficult to compute except in the simplest of
cases. The integral is typically solved using Monte Carlo simulation, etc.

B.2.1 Black Swan

Traditional statistics can be used to find a maximum likelihood estimate (MLE) of θ : θ̂ = N1
N .

The difficulty with MLE methods, and traditional statistics in general, is that if we don’t see
something during test, it is presumed that it can never happen. For example, if we flip a coin 4 times
and do not see a head, then the MLE is θ̂ = 0

4 = 0. This is called the black swan paradox. This name
comes from the fact that for many years of observing swans in England, it was believed that all
swans were white and black swans were an impossibility in nature. However, on visiting Australia
in 1697, Dutch explorer Willem de Vlamingh discovered that indeed, black swans existed.

B.2.2 Bayesian Approach

B.2.2.1 Prior

Let us assume that the probability of observing a heads on any toss is a random variable. For
convenience, let this distribution be a Beta distribution with parameters α , β (α and β are referred
to as hyperparameters).

P(θ |α,β )∼ Beta(θ |α,β ) =
Γ(α +β

Γ(α)Γ(β )
θ

α−1(1−θ)β−1 (B.5)

where:

mean =
α

α +β
(B.6)

mode =
α−1

α +β −2
(B.7)

variance =
αβ

(α +β )2(α +β +1)
(B.8)

It remains to identify the hyperparameters α and β . These can be estimated using historical
data, expert judgment, etc. For example, to set the hyper parameters of the beta distribution,
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suppose your prior is that the probability of heads should be about p, and you believe this prior
with strength equivalent to about N samples. Then you just solve the following equations for α

and β :

p =
α

α +β
(B.9)

N = α +β (B.10)

This is just one approach to estimating the prior. We could also have queried experts who might
have suggested that the true value of p is in the interval [pL, pU ] and solved Equations B.6, and B.8
simultaneously for the required hyperparameters.

Caution must be exercised when choosing hyperparameters to assure that the results are con-
sistent. However, in general, the estimates are robust to the choice of the distribution (e.g. Beta)
and the associated hyperparameters.

B.2.2.2 Posterior

The posterior distribution can be found by multiplying the likelihood and the prior. Neglecting the
normalizing constant for now:

p(θ |d) ∝ p(d|θ)p(θ) (B.11)

= [θ N1(1−θ)N0][θ α−1(1−θ)β−1 α

α +β
(B.12)

= Beta(θ |N1 +α,N0 +β ) (B.13)

It is no coincidence that the posterior distribution is of the same family (Beta) as the prior; our
choice of the prior was made with this in mind for this example so we could develop some intuition
about the mechanics of Bayesian analysis. The hyperparameters α and β can be thought of as
pseudo-heads and pseudo-tails respectively, and α+β is the pseudo number of trials assumed prior
to the actually testing. This latter value represents the strength of our belief in the prior estimate of
p: the larger α +β , the more strongly we believe that the true value is close to p = α

α+β
.

It is interesting to note that the posterior mean is a weighted combination of the prior mean and
the likelihood function. Let α ′ = α/(α +β ) and N′ = α +β :
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E[θ |α,β ,N1,N0] =
α +N1

α +N1 +β +N0
(B.14)

=
N′α ′+N
N +N′

(B.15)

=
N′

N′+N
α
′+

N
N +N′

N1

N
(B.16)

= wα
′+(1−w)

N1

N
(B.17)

where α ′ = α

α+β
is the prior mean and N1

N is the MLE mean from the observations. Note
that this weighting of the prior information and data likelihood is the result as demonstrated in
SectionB.1.

This is also the same concept that is used in modern aircraft navigational systems to update,
estimate current flight position and velocity, and predict location at some future time.
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Appendix C

Example - Case I: Intruder Detected
Immediately

C.1 Background

Case I is a simple example involving eleven sequential tasks. The prior to any testing the distribu-
tions for the 11 tasks are assumed to have wide uncertainty:

Tasks 1,3,5,7,9,10 Gaussian

f (ti|µi,τi) = N(µi,τi)

µi ∼ N(0,1000)
τi ∼ Gamma(0.0001,0.0001)

Tasks 2,4,6,8,11 Gamma

f (t j|α j,β j) = Γ(α j,β j)

α j,(β j)
−1 ∼ Gamma(0.0001,0.0001)

The Gaussian distribution is characterized by the mean, µ , and the tolerance τ = 1/σ2. The
Gamma distribution is defined:

f (t|α,β ) =

{
1

β α Γ(α)t
α−1 exp(−t/β ) for t > 0,α > 0,β > 0,

0 otherwise
(C.1)

where: α = shape parameter, β = scale parameter, and αβ , αβ 2 are the mean and variance
respectively.

To demonstrate the methodology, sample of task times are drawn from the distributions in
Table D.2. For each task, 10 times are generated. In addition, 10 random times for response force
reaction are also generated. These samples are used to update the priors described previously.
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Table C.1. Case 1: Distributions for Generating Simulated Data

Task Distribution Mean Std Dev α (shape) β (scale)
1 Gaussian 0.7000 0.080
2 Gamma 1.0000 0.410 6.00 0.1660
3 Gaussian 0.1100 0.012
4 Gamma 0.5500 0.305 3.25 0.1692
5 Gaussian 0.1540 0.018
6 Gamma 1.0000 0.410 6.05 0.1653
7 Gaussian 0.1100 0.012
8 Gamma 0.5500 0.305 6.05 0.1653
9 Gaussian 0.1500 0.075

10 Gaussian 0.1540 0.180
11 Gamma 4.4785 1.410 10.00 0.4470

C.2 Results

Table C.2. Case 1: Results

Task 2.5% 25% 50% 75% 97.5%
m1 0.5191 0.6281 0.6764 0.7237 0.8285
m2 0.3673 0.8408 1.1466 1.5050 2.4799
m3 0.0793 0.0997 0.1093 0.1185 0.1401
m4 0.1753 0.4371 0.6230 0.8722 1.5760
m5 0.1171 0.1448 0.1583 0.1717 0.2038
m6 0.1374 0.5668 0.9353 1.4216 3.1274
m7 0.0695 0.0956 0.1081 0.1206 0.1511
m8 0.3860 0.8342 1.1035 1.4500 2.3824
m9 0.0277 0.1195 0.1609 0.2032 0.2989

m10 -0.1060 0.1433 0.2509 0.3508 0.5833
m11 2.0306 3.7562 4.8021 5.9972 9.2565

Breach Time 7.0738 9.1341 10.3933 11.9135 15.7362
Response Time 1.9587 2.8399 3.1753 3.4779 4.0515

Delta 3.8615 5.9530 7.2602 8.8323 12.8526
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Figure C.1. Case 1: PDF of Task Times
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Appendix D

Example - Case II: Individual Detection
Events

A very simple system will be used to demonstrate the methodology. Consider the system depicted
in Figure D.2. The system consists of four barriers where the time to breach for each is a random
variable ti. Further, the probability of detection at each barrier is considered a random variable PD.

s 1 t

start

2

t0 t1 t2 t4

facilityPD

3

PD PD PD

t3

Figure D.1. Demo Problem: Stochastic Breach, Response Times,
and Detection Probability

D.1 Uncertainty Foundation

s 1 t

start

2

t0
t1 t2

tn

terminate
PD1

PD2

m11 m12 m1r

Figure D.2. Demonstration System

The time to breach t will be assumed to be characterized by a Weibull probability density
function: (Note: a gamma distribution would have been appropriate also.)

97



f (t|γ,α) =

{
αγtα−1 exp(−γtα) for t > 0,α > 0,γ > 0,
0 otherwise

(D.1)

with cumulative distribution function: F(t|α,γ) = 1− exp(−γtα). It is anticipated that it will be
convenient to reparameterize the variables by defining: λ = log(γ) resulting in:

f (t|λ ,α) = αtα−1 exp(λ − exp(λ )tα)

For example, this transformation will allow future consideration for average breach times to be
functions of external variables, e.g. defensive measures, intruder exhaustion, etc.

The Weibull distribution is a logical choice since it covers a wide range of possible true distri-
butions and the support is limited to positive breach times, ti > 0.

Further, since very little data is available to characterize the breach times exactly, it will be
assumed that true breach time distributions are unknown and therefore the parameters of the dis-
tributions are unknown. Specifically, the parameters α and λ independent random variables to be
characterized by observational data, expert judgement, etc.

ti|αi,λi ∼Weibull(αi,λi)

αi ∼ Gamma(ai,bi)

λi ∼ N(µi,τi), where σ
2 = 1/τ

Priors will be assigned to α and λ by choosing initial values for a = 1,b = 0.0001 and µ =
0,τ = 104 to represent very diffuse intial understanding of the breach times, but operational data
will ultimately be used to estimate the distribution parameters of the breach times.

Intruder detection at each point will also be assumed to be unknown, in this case characterized
as Bernoulli random variable, d, where the distribution function is defined:

f (d|p) =

{
p if d = 1 a intruder is detected,
1− p if d = 0 intruder is undetected

(D.2)

and the uncertainty in the detection probability p is described with a Beta probability distribution
with parameters θ ,η :

π(p|θ ,η) =
Γ(θ)Γ(η)

Γ(θ +η)
pθ−1(1− p)η−1, (D.3)

The Beta distribution is chosen since it is defined over the interval [0,1] and, similar to the
Weibull for the breach times, it is extremely flexible in characterizing the uncertainty in p. A very
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neutral prior will be assigned to p by choosing initial values for θ(= 1/3) and η(= 1/3) [20], but
operational data will ultimately be used to estimate the distribution parameters and the probability
of detection at each point.

D.2 Scenario

For this initial exercise, the initial uncertainty in the probability of detection at each barrier will
be assumed to be characterized by a Beta distribution with parameters θ , and η . Since at the
beginning of this effort (prior to the consideration of available data) these parameters are assumed
to be unknown, this lack of knowledge will be captured with a probability density function on each
parameter. The distribution of each parameters will be assumed to be a non-informative Gamma
distribution (depicted in Figure D.3).

The Gamma distribution in Figure D.3 indicates that the values of η and θ are more likely to
be small, and suggesting that we are assuming a high level of uncertainty in the initial probability
of detection. For reference, θ = 1 and η = 1 results in a non-informative distribution which
simply suggests that the probability of detection is equally like to be any value in the interval
[0,1]; depicted in Figure D.4 as a blue line. As the values for η and θ increase, the uncertainty
in the probability of detection decreases suggesting we are more confident in our understanding
of PD. For example, θ = 40 and η = 40 results in a narrow distribution depicted as a red line in
Figure D.4.

The response times of the Security Forces is also assumed to be a Weibull distributed ran-
dom variable with unknown parameters. The unknown parameters are also assumed to have non-
informative prior distributions which are updated with observational data and expert judgement.

The particular prior distributions are chosen to be flexible enough to capture the basic properties
of our understanding of the problem, e.g. only positive values, but also general enough to allow
observational data to quickly dominate our initial characterizations.

Table D.1. Data Table

t1 3 1 2 5 3 1 2 5
t2 10 5 20 40 10 5 20 40
t3 30 20 40 50 30 20 40 50
t4 2 2 2 3 2 2 2 3
tr 11 12 20 10 40 6 5 10

pdet 0.9 0.8 0.9 0.9 0.9 0.8 0.9 0.9

For reference, the test data for the breach times ti and response times tr, and detection proba-
bility pdet are summarized in Table D.1. Two chains were run so simulation convergence could be
checked (using Gelman’s criteria).
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D.2.1 Demonstration Results

Table D.2 summarizes the results of this initial analysis; only the quantiles of representative param-
eters are provided. Figure D.6 depicts the resulting uncertainty in the probability that the intruders
are successfully intercepted, Ps. After consideration of the data related to probability of detection,
the resulting uncertainty in PD is provided in Figure D.7.

Note that there are two superimposed lines on each graph. Each line represents the results
from an independent simulation of the problem. It is expected that two simulations (i.e. simulation
chains) should result in the similar characteristics and this is visually assessed by superimposing
the density functions of the results. In addition, with Markov Chain Monte Carlo convergence is
always an issue. Since two chains were run, it is possible to qualitatively check convergence using
the Gelman method. Figure D.9 summarizes the results and we see no significant problems (the
red line should be close to the black line at the end of the simulation). The variable t3 should be
monitored carefully and perhaps the number of simulations or number of chains could be increased
in future analyses.

Table D.2 summarizes the quantiles for the major random variables in the problem. Intermedi-
ate variables pyi represent the probability that, given the intruder is first detected at point i, what
is the probability that the response team will successfully intercept. For example, looking at the
plot of py1 in Figure D.8, there is a high probability (with high credibility) of intruder intercept at
the first breach point (assuming that the intruder was detected). However, if the intruder makes it
to breach point 4 before being detected, then we are very confident that the probability of intruder
intercept is very low. Note the short times for breach point 4, particularly relative to the response
times (Table D.2).
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2.5% 25% 50% 75% 97.5%
PI 0.7301 0.8388 0.8723 0.9015 0.9411

PD 0.7635 0.8473 0.8792 0.9070 0.9480
t1 0.5039 1.7976 2.7845 4.0120 7.1111
t2 1.0118 8.8943 17.1628 27.3798 57.7349
t3 12.4359 28.3554 36.2884 44.1881 59.8076
t4 1.0550 1.9408 2.3156 2.6565 3.4026
tR 0.9916 7.2564 13.6694 21.9656 48.0730

Table D.2. Results From Initial Demonstration Problem
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Figure D.9. MCMC Convergence Check - Gelman Statistic
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Appendix E

Test Data

Table E.1. Barrier 1 Data

Test Task 1 Task 2
1 75 113
2 64 106
3 61 100
µ 66.7 106.3
σ 7.37 6.51

Table E.2. Barrier 2 Data

Test Task 1
1 8.6
2 20
3 20
µ 16.2
σ 6.58

Table E.3. Barrier 3 Data

Test Task 1 Task 2 Task 3 Task 4 Task 5
1 60 718 1051 292 200
2 100 334 93
3 60 95
4 68
5 51
µ 67.8 718 1051 313 129.33
σ 18.98 UNK UNK 29.7 61.21
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Table E.4. Barrier 4 Data

Test Task 1 Task 2 Task 3 Task 4 Task 5
1 17 29 40 65 69
2 17 24 34 57 70
3 20 27 35 57 71
4 15 28 38 51 77
5 18 26 39 58 72
µ 17.4 26.8 37.2 57.6 71.8
σ 1.82 1.92 2.59 4.98 3.11

Table E.5. Barrier 5 Data

Test Task 1 Task 2 Task 3 Task 4 Task 5
1 51 86 89 90 114
2 49 72 91 99 113
3 52 74 82 88 117
4 59 67 76 86 133
5 59 59
µ 54 71.6 84.5 90.75 119.25
σ 4.69 9.91 6.86 5.74 9.32

Table E.6. Barrier 6 Data

Test Task 1 Task 2 Task 3
1 5 8 14
2 6 9 10
3 6 9 11
4 6 9 12
5 9 10 11
6 6 10 11
7 6 7 13
8 6 7 14
9 6 7
10 4.5 7
11 4 6
12 4 7
µ 5.71 8 12
σ 1.32 1.35 1.51
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Table E.7. Barrier 7 Data

Test Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7
1 8 4 5 1 26 18 26
2 8 3 7 1 59 18
3 8 4 15 1 15
4 8 4 1 20
µ 8 3.75 9 1 42.5 18 19.75
σ 0 0.5 5.29 0 23.33 UNK 4.65
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