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Abstract 

 

Modeling geospatial information with semantic graphs enables search for sites of 

interest based on relationships between features, without requiring strong a priori 

models of feature shape or other intrinsic properties.  Geospatial semantic graphs can 

be constructed from raw sensor data with suitable preprocessing to obtain a 

discretized representation.  This report describes initial work toward extending 

geospatial semantic graphs to include temporal information, and initial results 

applying semantic graph techniques to SAR image data.  We describe an efficient 

graph structure that includes geospatial and temporal information, which is designed 

to support simultaneous spatial and temporal search queries.  We also report a 

preliminary implementation of feature recognition, semantic graph modeling, and 

graph search based on input SAR data. The report concludes with lessons learned and 

suggestions for future improvements. 
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1.  MOTIVATION AND OVERVIEW 

Prior work developed semantic graph models of geospatial image data, and showed how these 

may be used to identify sites matching patterns of features, even if individual features have 

varying shape and visual attributes (Strip and Watson 2011).  The work described in this paper 

results from a proposal to extend the prior work to include analysis of time, and to apply the 

extended result to perform search and change detection analysis on synthetic aperture radar 

(SAR) image data.   

However, limited funding led to a narrowing of scope to address initial study of extending 

semantic graph analysis to include time, and an initial application of semantic graph techniques 

to SAR data.  This report may thus be viewed as a progress report describing work in pursuit of 

geospatial-temporal semantic graphs, applied to image data captured by a variety of sources 

including SAR.   

This report will review geospatial semantic graphs and outline a design for their extension to 

include temporal analysis.  We will then review feature recognition results obtained for a SAR 

test data suite, and report the results of applying semantic graph analysis to the resulting 

recognized features.  Finally, we will wrap up with lessons learned and a discussion of possible 

next steps. 
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2.  GEOSPATIAL SEMANTIC GRAPHS 

Remote sensing data, such as overhead aerial imagery, is available in large quantities for a wide 

range of locations.  However, these data sets are difficult to automatically search, for two 

primary reasons.  First, the phenomenology of sensing causes complex artifacts to appear in 

images that must be distinguished from fundamental terrain features.  Second, items of search 

interest may be described by characteristics that do not map directly to image attributes such as 

intensity, color, or shape. 

Geospatial semantic graphs were proposed as a means to enable automated search for objects 

using high-level descriptions (Strip and Watson 2011).  In this approach, raw image data is 

reduced to a collection of discrete features, with associated attributes.  These features are then 

represented in the form of a discrete graph, where nodes and edges have attributes.  Search for 

objects of interest is then expressed as a search on this graph.  The next section will briefly 

review prior work developing semantic graphs for the static case without time, and the following 

section will explain a design for how to extend this work to include time information to enable 

graph-based change detection. 

 

2.1. Static Case 

The basic idea of geospatial semantic graphs is to reduce the complex and voluminous detail in 

raw image data to its most salient components, represent these distilled components in a discrete 

graph, and then perform pattern search in the resulting graph.  This allows search for items 

described by relationships between primary components, and also in principle allows 

simultaneous representation of information from heterogeneous data sources. 

Here we review the prior work reported in (Strip and Watson 2011), to provide background for 

the current work.  The basic flow of this prior result is shown in Figure 1.   

We begin with remote sensing data.  Semantic graphs are fundamentally independent of the 

specific data modality; in the prior work, the raw input data was a combination of RGB+IR 

imagery, LiDAR, and GIS data (see Section 3.1).   

This data ensemble was analyzed using automated feature recognition techniques to produce a 

map of basic terrain cover categories: building, trees, grass/shrub, bare earth, road, other paved, 

and water.  This recognition computation is summarized in Section 3.1.  

The resulting terrain cover map can be viewed as a discrete representation of the raw input data, 

where each connected region of a given terrain cover category corresponds to a different discrete 

feature.  A graph is constructed, where each node of the graph corresponds to a region in the 

terrain cover map.  Each node also has a list of associated attributes computed from the region, 
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Figure 1.  Geospatial semantic graph computation flow. 

such as area, aspect ratio, etc.  Edges in the graph describe relationships between the nodes; in 

this case the distance between the convex hulls of the corresponding regions in space.  Because 

the nodes and edges of the graph describe objects in the physical world and retain location and 

spatial properties, this is a geospatial graph. 

The geospatial graph may now be searched for patterns of interest.  This is achieved by 

formulating a query, defined by a small graph search template, where each node and edge in the 

template has a set of associated attribute bounds.  Search is then performed by first filtering the 

geospatial graph to only include nodes and edges that satisfy the attribute bounds, and then 

performing an approximate subgraph isomorphism search to find matches between the template 

subgraph and the remaining elements of the geospatial graph. 

This search produces a collection of candidate matches, which are then presented to the user for 

review.  The intent of this process is to provide cues to an analyst for further study by a human 

expert — not to produce final, definitive answers. 

This approach allows automated search for items that defy simple description via pixel-based or 

shape-based queries.  For example, this method was successfully used to search for public high 

schools in Anne Arundel County, Maryland, based on a search template defined by a 

combination of a building, parking lot, and grassy field meeting certain specific attribute 

constraints.  Reviewing the search results revealed substantial diversity in the building shapes 

and layouts of the resulting high school campuses. 
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2.2. Extension to Include Temporal Analysis 

We seek to extend our model of semantic graphs to include temporal analysis.  This would allow 

representation and search of relationships not only in space, but also time.  In particular, this 

would enable change detection informed by feature-level analysis.  This in turn would allow 

future systems to automatically search and analyze complex sequences of large image data sets.  

The design described in this section was developed in conjunction with a related project which 

seeks to develop geospatial-temporal semantic graphs for other types of input data.  This work is 

funded by the NA-221 Simulation, Algorithms, and Modeling program, sponsored by Colonel 

David LaGraffe. 

The envisioned extended computational flow is illustrated in Figure 2.  Here a time sequence of 

remote sensing data is received, and again subjected to image recognition analysis to produce a 

time sequence of terrain cover maps.  These maps would then be used to construct a geospatial-

temporal graph, which simultaneously represents the spatial and temporal relationships between 

features in the input data.  A query, similar to the pure spatial case but including temporal 

information in addition to spatial information, would then be used to filter the geospatial-

temporal graph to identify relevant elements.  The remaining graph would then be searched for 

matches to the query.  This would again return a set of candidate matches for review, but the 

resulting search would be capable of analyzing spatial, temporal, and combined spatiotemporal 

properties, as well as feature-level change detection. 

 

t = 0

t = 1

t = 2

t = 0

t = 1

t = 2

?

Remote
Sensing

Feature
Classification
(U. Vermont)

Spatiotemporal
Graph

Query:
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• Temporal parameters

• Subgraph pattern

• Ambiguity

Matches

Spatial

Temporal

Spatiotemporal

Change Detection

 

Figure 2.  Geospatial-temporal semantic graph computation flow. 

 

This work aims to develop software implementing the computational flow illustrated in Figure 2.  

A key question then becomes:  How should we represent the geospatial-temporal graph? 

Figure 3 shows two possible approaches.  Part (a) shows the first approach that might spring to 

mind:  Simply construct a geospatial semantic graph for each time slice, and then add edges 
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representing the correspondence between nodes across time slices.  This graph contains a full 

representation of the history of all the time slices, but it also includes significant redundancy.  

Since many nodes do not change from one time slice to the next, these nodes are unnecessarily 

replicated. 

Part (b) of Figure 3 shows a representation that avoids this redundancy.  Nodes are only added to 

the graph if they have changed; the resulting correspondence edges then imply a change 

condition.  This representation is much more efficient, and tends to concentrate graph complexity 

where change is happening, which is the area of interest. 

 

t=1

t=2

t=3

                 

t=1

t=2

t=3

 

(a)                                                                (b) 

Figure 3. Two approaches to representing time in a semantic graph. 

Figure 4 shows a hand-generated example temporal graph construction, for a very simple 

example.  The pictures on the left side of the figure show the sequence of input terrain cover 

maps.  In this scenario, there are four time slices.  In the first time slice (a), the terrain cover map 

includes two buildings, one on each side of a vertical road.  Both buildings are surrounded by 

grass.  In the second time slice (b), we see signs of construction for the building on the left; some 

grass has been replaced by bare dirt.  In the third time slice (c) construction is complete; there is 

a new wing on the building.  The fourth time slice (d) includes an additional change, a bridge 

connecting the two buildings. 

The right side of Figure 4 shows the evolution of the semantic graph representing this sequence 

of events.  For the first time slice t = 1 (a), the topology of the graph is the same as a geospatial 

graph, since change cannot be seen in a single time slice.  There is a node in the graph for each 

terrain cover region.  The nodes of the graph include various spatial attributes such as area, etc.; 

these are not shown.  The blue edges of the graph denote geometric adjacency relationships.  

(A full geospatial graph would include additional edges describing the distance between non-

adjacent nodes; these are omitted for clarity.) 
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(a)

(b)

(c)

(d)  

Figure 4.  Example temporal graph construction. 
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However, even the simple graph in (a) is different than a pure geospatial graph, since each node 

also includes time chronology information, shown by the (–, 1][1, +) attribute.  This attribute 

encodes what is known about the existence of the node over time, given data observations seen 

so far.  The fields of this attribute are (tlast.absent, tfirst.seen] [tlast.seen, tfirst.absent).  Time tlast.absent is the 

time of the latest observation in which the node was seen not to exist.  If there are no such 

observations, then we set this value to –, since as far as we can tell from our data, the 

corresponding object has been there since the beginning of time.  Time tfirst.seen is the time of the 

earliest observation when the node was seen.  Time tlast.seen is the time of the latest observation 

when the node was seen.  Time tfirst.absent is the time of the first observation after the node was 

seen, in which the node was observed to have changed or disappeared (either of which means 

that this node’s time span is terminated).  If we have not seen an observation indicating the 

node’s disappearance or change, then we set this value to +, since as far as we can tell, the node 

will persist forever. 

This representation supports detailed time analysis, under a simple assumption that if a node is 

seen at time t1, and then is again observed at a later time t2, then then node persisted unchanged 

between times t1 and t2.  This assumption is reasonable for durable nodes such as buildings.  

Under this assumption, this attribute gives us a precise representation of the node’s history, up to 

the limits of available data.  For example, suppose we have processed eight observations, and an 

example node has chronology attribute (2, 3][8, +).  Suppose we ask: Did the node exist at 

time 1?  The answer is no, because we saw at time 2 that it had not yet appeared.  Did the node 

exist at time 5?  Yes; it was seen at earlier time 3 and later time 8.  Did the node exist at 

time 2.5?  We cannot know for sure; it was seen not to exist at time 2, and seen to exist at time 3, 

so it may or may not have appeared by time 2.5.  Does the node exist now?  We can’t be sure, 

but it was last seen at time 8, and we have not seen any data that provides a counterexample. 

 

Returning our attention to the simple graph in Figure 4(a), we set that all nodes have an initial 

chronology attribute set to (–, 1][1, +), consistent with a new node supported by only one 

observation, and which does not supplant any previously-seen nodes.   

In the second time slice t = 2 (b), new nodes are added to describe the observed change.  In this 

case a node has been added to represent the new bare dirt, and a node has also been added to 

represent the new grass shape.  The grass in a new shape is considered a new node; the time span 

of the grass in its initial shape is considered ended.  The original graph of time slice (a) is now 

updated to include the new nodes, plus orange edges indicating change relationships.   

The time attributes of all nodes are updated as required to reflect what is known after time t = 2.  

Unchanged nodes have their chronology attribute extended to (–, 1][2, +), indicating that 

these nodes are assumed to have existed continuously at least from time 1 through time 2.  The 

initial grass node GA1’s chronology is updated to (–, 1][1, 2), indicating that it was seen at 

time 1, but had disappeared by time 2.  The new orange change edge from GA1 indicates what 

happened to it: it changed into nodes GA2 and D2.  These nodes have associated chronology 

attributes to (1, 2][2, +), indicating that they were seen at time 2, were known not to exist at 

time 1, and so far we have seen no counterexample to their continued existence. 

The remaining time slices t = 3 (c) and t = 4 (d) show similar extensions to the graph in response 

to observed changes.   
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The graph design shown in Figure 4 forms the basis of our current ongoing work developing 

semantic graphs with temporal analysis.  We are currently developing solutions to a number of 

important algorithmic issues, such as efficient identification of corresponding nodes, change 

analysis, and proper handling of sensor noise and missing data.  This work is in progress, and 

will be reported in a later document. 

The following sections will describe our work applying semantic graph techniques to SAR data.  

This work focused on geospatial graphs, without time information.  This was due to two reasons:  

First, our temporal graph analysis code is not complete, and second, suitable SAR data spanning 

multiple time slices was not available. 
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3.  SAR FEATURE ANALYSIS 

The first step in semantic graph analysis is to convert raw image data into discrete features, 

suitable for encoding in a graph.  Our goal in this study is to apply semantic graph analysis 

techniques to SAR image data.  Consequently, the conversion of SAR image data to discrete 

features is a key first step. 

Our group’s focus is on semantic graph representations and search algorithms; the image feature 

recognition required as pre-processing is generally outside the scope of our primary effort.  To 

obtain the required features recognized from SAR data, we contracted Mr. Jarlath O’Neil-Dunne, 

who is the Director of Spatial Analysis Laboratory at the University of Vermont (UVM).  Mr. 

O’Neil-Dunne brings several strong qualifications to this work.  He has successfully performed 

geospatial feature recognition from remote sensing data for a variety of problems, producing 

very high-quality results.  In addition, Mr. O’Neil-Dunne is a former Marine Corps officer.  He 

served is key leadership positions in several geospatial units in which the analysis of SAR data 

was performed, including during Operation Iraqi Freedom.  This combination of experience 

made Mr. O’Neil-Dunne an excellent choice for engaging this work. 

This section will describe Mr. O’Neil-Dunne’s initial results in recognizing static terrain features 

in SAR image data.  To maximize understanding, we will first present a summary of his methods 

for recognizing terrain cover features in other data.  As we shall see, this summary will provide 

useful context for understanding the SAR feature recognition algorithm and results, described in 

the sections that follow. 

3.1. Terrain Categorization Using LIDAR and RGB-IR Image Data 

Mr. O’Neil-Dunne provided terrain categorization data for another Sandia project applying 

semantic graph analysis to geospatial data (Strip and Watson 2011).  In this study, RGB+IR 

imagery was combined with LiDAR and GIS road data to obtain a detailed model of land cover 

for Anne Arundel County, Maryland.  This data was originally collected and analyzed to 

measure tree cover for urban and county tree canopy monitoring programs. 

In this section we will review Mr. O’Neil-Dunne’s method for constructing a land cover model 

for Washington, DC.  These data were provided to support a current project aiming to perform 

semantic graph temporal analysis, funded by the DOE NA-22 program.  This analysis may be 

summarized by the following problem statement: 

Given input overhead imagery (RGB+IR), LiDAR, and GIS road network data, 

develop an accurate model of the location and extent of the terrain cover 

categories:  building, trees, grass/shrub, bare earth, road, other paved, and water. 

This is an important problem in geospatial imagery analysis, and Mr. O’Neil-Dunne has 

achieved good success for a variety of locales.  We will summarize his method in the paragraphs 

that follow; see (O’Neil-Dunne, et al 2012) for a fully detailed description.  Other researchers 

have achieved similar successful results using different techniques (Kluckner and Bischof 2010). 

The inputs to this procedure for Washington, DC are shown in Figure 5 and Figure 6.  The 

images in Figure 5 are both raster files.  The left image in Figure 5 shows an orthorectified 

mosaic of RGB+IR images, represented as 1 m square pixels and clipped to the DC boundary.  

These aerial images were captured in the summer of 2011, during which time the deciduous trees 
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had their leaf on.  The right image in Figure 5 shows an elevation map, indicating the elevation 

of the highest terrain feature for each 1 m square pixel.  This digital surface model (DSM) 

depicts LiDAR data collected in 2008, during a season when leaves were off the trees.  Figure 6 

depicts vector data outlining roads throughout the DC area.  The road models used for this 

computation were released in 2011. 
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Figure 5.  Input: RGB-IR image and digital surface model (DSM). 

 

Figure 6.  Input: Road polygons. 
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The first step in the construction is to convert the digital surface model (DSM), showing 

elevations above sea level, to a normalized digital surface model (nDSM), showing heights 

above local ground level.  This is accomplished in two steps: 

1. Construct a digital elevation model (DEM), showing elevation of the ground above sea 

level.  First, LiDAR points corresponding to ―ground‖ are classified and then interpolated 

to construct a model of the ground that would occur if there were no buildings, trees, or 

other tall structures.  There are a number of techniques for solving this problem; see 

(Evans and Hudak 2007) for an example. 

2. Subtract the DEM from the DSM, to obtain a model of the net height of the top-most 

surface above the ground.  This is the normalized digital surface model (nDSM). 

Figure 7 shows the result of this calculation for the DC data set.   

  

                                  (a)                                                                           (b) 

Figure 7.  Digital elevation model (DEM) and  
normalized digital surface model (nDSM). 

The RBG+IR image, nDSM, and road network data may then be used to obtain the desired 

terrain categorization.  This algorithm may be summarized as follows: 

1. Use the nDSM to identify tall objects. 

2. Among the tall objects, differentiate trees from buildings using either the normalized 

difference vegetation index (NDVI) computed from the RGB+IR image, or if LiDAR 

point cloud data is available, by using the standard deviation of the z values (see O’Neil-

Dunne, et al 2012 for details). 

3. Among the remaining ground objects, differentiate grass/shrub areas using NDVI. 
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4. Among the remaining objects, differentiate bare earth, pavement, and water regions based 

on spectral, geometric, and contextual properties. 

5. For those pixels marked as pavement, differentiate roads and other paved using the GIS 

road shapes. 

6. Apply morphological and context-based routines to refine the landcover classification 

using spatial characteristics. 

This calculation produces a terrain cover categorization that partitions the input space.  This 

result is shown in Figure 8. 

 

Figure 8.  Resulting terrain cover category map. 

This terrain cover map is represented by a run-length encoded GeoTiff file with 1 m square 

pixels.  Figure 9 shows a zoomed-in view of the input image, nDSM, input road geometry, and 

output terrain cover map for the vicinity of the U.S. Capitol. 
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(a)                                                                     (b) 

     
(c)                                                                     (d) 

Figure 9.  (a) RGB-IR image. (b) nDSM. (c) Road polygons. (d) Land cover. 

Using well-accepted techniques for measuring the accuracy of remotely sensed data (Congalton 

and Green 2009), the UVM group has determined that the final terrain land cover data set has 

both a producer’s and user’s accuracy of better than 95% for the tree canopy category that was 

the focus of their study.  See (O’Neil-Dunne, et al 2012) for details. 

Note that in urban areas, vector GIS building polygons may be available, eliminating the need 

for using LiDAR for identifying these features.  But in sparsely populated areas such polygons 

are often not available or incomplete, and so LiDAR is used to map buildings in these areas.  In 

either case, LiDAR is used to measure tree canopy, for which no up-to-date data are available. 
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3.1.1. Comments 

The successful terrain categorization achieved by the UVM group for Washington, DC and other 

areas indicates what is possible when sensors, algorithms, and desired semantics are well-

matched.  The UVM terrain categorization algorithm is designed to include information from 

multiple sources, exploiting the characteristics of each data source to extract the information that 

the source is best able to discriminate.   For example, the (x, y, z) values of the LiDAR nDSM 

provide a robust method for distinguishing tall features from ground, and if the original LiDAR 

point cloud is available, for distinguishing porous tree canopy from solid building roofs.  LiDAR 

contains some spectral information in the form of intensity data that can be used to differentiate 

ground cover types such as grass vs. pavement.  Unfortunately techniques for the tonal balancing 

of LiDAR intensity have not been perfected, limiting the utility of this information.  RGB-IR 

data provides a rich spectral source to differentiate live vegetation from non-living materials.  

Similarly, the GIS data enables distinguishing roads vs. parking lots, which are defined by subtle 

differences that are difficult to discern using automated methods alone. 

The UVM group is well versed at designing algorithms that improve recognition performance by 

combining the best capabilities of multiple data sources.  During our initial discussions with Mr. 

O’Neil-Dunne, we sketched a similar study that would combine SAR image data captured over 

multiple time frames with other data modalities, producing a representation that would enable 

semantic analysis and change detection. 

However, during the process of identifying test data to send to UVM, this goal changed into a 

much more narrow definition, focusing only on static feature recognition, and based only on 

SAR data.  Further, suitable test data obtained at multiple times were not available.  These 

changes limited the methods that UVM could bring to bear on this problem.   

When we explained this narrowing of scope to Mr. O’Neil-Dunne, he offered this description of 

his experience using SAR data while interpreting remote sensing data in support of combat 

operations in Iraq: 

―Rarely, if ever, is a single SAR image used for feature recognition.  A given feature 

has the potential to have very different characteristics in a SAR image based on 

acquisition properties.  Typically the interpretation of SAR imagery is carried out in 

conjunction with optical imagery.  Even if the optical image is acquired at a different 

time period, it can provide important indicators to guide the interpretation of the 

SAR imagery.  SAR is most useful for change detection.  Examples include coherent 

change detection (CCD) and moving target indicators (MTI).  Once again, such 

analysis is typically carried out in conjunction with some reference optical imagery 

to guide the interpretation.‖ 

This challenge was compounded by a very short time window for recognition algorithm 

development, resulting from delays that accumulated from multiple causes.  Nonetheless, UVM 

engaged this problem with vigor, and developed a preliminary feature recognition algorithm 

which enabled initial semantic graph studies.  The following sections will describe the SAR data 

that was provided, and UVM’s algorithm for identifying terrain cover categories in the resulting 

image. 



- 24 - 

3.2. SAR Data for Study 

The selected SAR test data covered a roughly square area, 6.3 km × 6.6 km, in Valencia County 

south of Albuquerque.  This region is shown in Figure 10, and includes a mixture of barren, 

rural, semi-rural, and sparse suburban areas.  The image set was captured in December 2011, a 

time when most trees had lost their leaves. 

 

Figure 10.  Sample region for test SAR data, south of Albuquerque. 

The SAR images were captured by an aircraft flying overhead in 10 east-west passes.  The 

sensor was looking north, so SAR shadows appear on the north side of tall objects.  In each pass, 

27 image patches were captured.  The 10 passes were completed in roughly two hours’ time. 

Figure 11 shows several example image patches.  Each image patch is roughly 250 m × 700 m, 

represented in a 4 MB GeoTiff file with 1437 × 3389 pixels.  Thus each patch is approximately 

5 Mpixels, and the pixel size is roughly 17 cm × 21 cm.   
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Figure 11.  Example SAR image patches. 

Figure 12 shows the layout of image patches that cover the region shown in Figure 10.  After 

obtaining appropriate approvals, Sandia transmitted this collection of image patches to UVM, 

along with a few explanatory documentation files.  
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Figure 12.  Ensemble of patches that form the mosaic. 

Mr. O’Neil-Dunne combined these patches to form a single mosaic image, shown in Figure 13.  

The SAR tiles overlapped approximately 14% in each direction.  The mosaic process used 

weighted seam lines, in which cut lines that minimize adjacent pixel difference are generated, to 

handle the overlap.  Weighted seam lines were automatically generated using the ERDAS 

IMAGINE 2011 software package.  This image mosaic spans 6.3 km × 6.6 km, and has 33,848 

columns and 29,524 rows.  This 1 Gpixel image is about 1 GB in file size. 

The mosaic image shown in Figure 13 was the primary input to Mr. O’Neil-Dunne’s feature 

recognition algorithm. 



- 27 - 

 

Figure 13.  Mosaic SAR image. 

3.3. SAR Feature Recognition 

This section will explain the feature recognition algorithm, and then evaluate its performance. 

3.3.1. Method 

UVM’s approach to developing the recognition algorithm was first to study the image data 

manually to determine what features could be reliably identified by a human analyst, and then to 

develop an algorithmic approach to finding those features.  The automated code was developed 

using eCogntion
®
, a tool for developing image analysis and recognition procedures which is 

designed for object-based image analysis (OBIA).  Unlike more traditional pixel-based 

approaches that only make use of spectral information, OBIA allows spectral, textural, 

geometric, and contextual information to be incorporated into the feature extraction process 

(eCognition 2012). 
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This effort produced an eCognition rule set that accepts an input mosaic SAR image, and 

partitions it into terrain cover regions labeled with the following cover classes:  

Water, Tall, Road, Shadow, and Ground.   

The algorithm encoded by this rule set is summarized below: 

1. Break input mosaic image into tiles, to allow parallel processing. 

2. For each tile: 

- Recognize features: 

A. Recognize dark pixels corresponding to water features. 

B. Of remaining, recognize bright pixels corresponding to tall features. 

C. Of remaining, recognize road shapes and dark shadow features. 

D. Assign all remaining pixels to ground features. 

3. Stitch tiles back into a single mosaic map with categories Ground, Road, Shadow, Tall, 

and Water, and output to a GeoTiff file. 

The basic structure of the algorithm is to break the image into tiles, apply feature recognition to 

each tile, and then re-combine the tiles into a single monolithic result.  This enables parallel 

processing, to reduce total wall-clock time required to perform the computation.  The selected 

tile size was 5000 × 5000 pixels, resulting in the 42 tiles shown in Figure 14. 
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Figure 14.  Tiles used for image processing. 

Given this overall structure, the primary recognition work is performed by steps A – D within the 

loop.  The following paragraphs will explain the procedure to recognize features within a single 

tile (step 2). 

A. Find Water Features 

Flat water in SAR imagery appears dark, because the water's specular surface causes most of the 

radar beam to reflect away from the antenna.  Bodies of water thus appear as dark contiguous 

regions in the image. 

To find water features, the algorithm first considers all pixels and applies a general-purpose 

segmentation algorithm.  This segmentation algorithm groups pixels that have similar spectral 

properties.  A quadtree representation of the output is generated, allowing adjacent similar pixels 

to be represented more efficiently.  The result of this procedure for a sample image portion is 

shown in Figure 15(a). 
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Next, the algorithm applies a procedure to increase the size of found segmented regions, by 

merging adjacent regions which have similar mean pixel intensity values, and where the resulting 

grown region shape is moderately compact, where ―compact‖ is a parameter defined by 

eCognition that is closely related to the region’s area/perimeter ratio (eCognition 2012). 

The algorithm evaluates this merge criterion using a fuzzy logic calculation which weights pixel 

intensity similarity 90% and shape compactness 10%.  (See the road feature analysis below for 

an example fuzzy logic calculation.) 

The resulting segmentation is shown in Figure 15(b).  Note that all regions of the image are 

segmented; so far we have applied no criterion to prefer water pixels over other pixels. 

     

                                      (a)                                                                         (b) 

Figure 15.  After (a) quadtree segmentation and  
(b) multi-resolution grow operations. 
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The algorithm then identifies water features by finding seed regions, and then growing those 

regions to include adjacent regions that meet a similarity criterion.  The algorithm identifies 

initial water seeds by selecting all regions with a mean pixel intensity darker than a pre-defined 

intensity threshold Iw.max and intensity standard deviation less than w.max, merging adjacent 

qualifying seeds, and then discarding results smaller than a pre-set area threshold. 

Given the remaining seeds, the algorithm applies an iterative procedure to find regions adjacent 

to seeds where (a) the neighbor's mean pixel intensity equals the seed's mean pixel intensity 

within a pre-set threshold, and (b) the border with the seed is at least 15% of the neighbor's 

border.  As with most other criteria in this algorithm, this criterion is evaluated using fuzzy logic.  

Sub-criteria (a) and (b) each have a degree of match which maps to a likelihood probability; 

these subcriteria probabilities are combined to produce an overall probability that the criterion is 

true, and then the algorithm compares this criteria probability against a pre-set threshold to 

decide whether to merge the neighbor with the seed.  This process is applied to all seed 

neighbors, and the overall procedure is repeated three times, to capture neighbors whose 

common boundary with water grew as a result of other region merge operations.  This 

computation is illustrated in Figure 16. 

         

Figure 16.  Aggregating regions to recognize water features. 

This procedure successfully identifies water regions, but also sweeps up non-water regions as 

well.  To eliminate these undesired regions, the algorithm then filters the results by keeping only 

those regions whose mean pixel intensity is less than the tighter threshold (0.8  Iw.max).  The 

yellow regions in Figure 17 are example regions that fail this criterion.  All regions surviving this 

filter are labeled water and returned by the algorithm. 
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Figure 17.  Removing spurious non-water regions. 

B. Find Tall Features 

After labeling water regions and removing their pixels from further consideration, the algorithm 

proceeds to seek "tall" features.  The tall-object recognition algorithm is based on the assumption 

that tall objects are characterized by bright reflections distributed in a shape that has significant 

extent in both length and width.  Short objects such as curbs or fence rails can also give rise to 

bright reflections, so the algorithm includes steps to reject thin bright regions characteristic of 

these objects. 

The first step of the algorithm is to repeat the general-purpose quadtree segmentation and multi-

resolution grow operation on the remaining (non-water) pixels.  This produces a result similar to 

the prior segment/grow operation, but slightly different due to different control parameters.  

Compared to the first segmentation preparing for water region search, the segmentation for tall 

features uses a size threshold one-fourth the previous size threshold, and weights pixel intensity 

only 80% compared to the 90% used for water segmentation.  In addition, this segmentation 

requires results with a much higher compactness (area/perimeter ratio). 

The algorithm then finds candidate tall regions by filtering the segmentation results to retain only 

those regions with a mean pixel intensity brighter than a pre-set threshold.  This result is shown 

in Figure 18.   
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                                                (a)                                                   (b) 

Figure 18.  Initial classification of tall features. 

The algorithm then applies two methods to find and discard thin, spindly features.  The first 

method finds the subset of the candidate regions whose shape density less than 1.0, where 

―density‖ is defined by eCognition to be the number of region pixels divided by the region’s 

approximate radius based on the covariance matrix (eCognition 2012).  Then for each such thin 

candidate, if the thin candidate shares more than 40% of its perimeter with another candidate, 

then the two candidates are merged; otherwise the thin candidate is discarded.  This procedure is 

repeated twice.  The second method takes the remaining candidates and first shrinks their 

boundaries by five pixels, and then grows the remainder back by five pixels.  This has the effect 

of geometrically removing candidates that are less than 10 pixels wide, and separating large 

regions connected by a narrow isthmus.  Figure 19(a) shows regions removed by the two 

methods.  The surviving features are labeled tall and returned by the algorithm (Figure 19(b)). 
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                                                (a)                                                   (b) 

Figure 19.  Removing spindly regions from tall feature set. 

C. Find Road and Shadow Features 

At this point the algorithm has identified water and tall features, and their corresponding pixels 

have been removed from consideration.  The algorithm then searches the remaining pixels for 

road and shadow features. 

The algorithm's first step is to repeat the quadtree/multi-resolution grow segmentation analysis 

on the remaining pixels, this time allowing small features (as in the tall feature segmentation), 

and allowing a lower area/perimeter ratio (as in the water feature segmentation). 

Road features are then found by identifying segmented regions that meet either of two selection 

criteria, both of which are computed by fuzzy logic.  

 The first criterion is illustrated in Figure 20.  This figure shows two screen captures of 

eCognition dialog windows used to define the criterion.  The first window lists the sub-criteria 

and the calculation used to combine them to obtain an aggregate score.  The criteria are density 

and length/width ratio.  The second window shows the fuzzy logic mapping of length/width ratio 

to the subcriterion probability.  Length/width ratios less than three score a sub-criterion 

probability of zero, while length/width ratios greater than six score a subcriterion probability of 

one.  Ratio between three and six score sub-criterion probabilities indicated by the curve shown 

in the plot.  The density sub-criterion performs a similar calculation, and then the overall 

criterion score is taken to be the minimum of the individual sub-criterion scores.   
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Figure 20.  eCognition fuzzy logic definition windows. 

Given this criterion definition, regions with a criterion score greater than 0.2 are taken to be road 

features.  A second criterion is also used to identify roads, similar to the first but designed to 

accept longer and thinner regions.  Figure 21 shows the result of this road feature detection 

algorithm. 
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Figure 21.  Road detection results. 

After removing road features from consideration, the remaining segmentation results are checked 

to identify shadow features.  All regions with a mean pixel intensity darker than a pre-defined 

threshold are taken to be shadow features. 

D. Assign Remaining Pixels to Ground 

The algorithm then completes its analysis by categorizing all remaining pixels as ground 

features. 

Finally, merge operations are applied to combine all adjacent regions with identical feature 

classifications, and the resulting Water, Tall, Road, Shadow, and Ground regions are output to 

a GeoTiff file. 
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3.3.2. Results 

Given the SAR mosaic image shown in Figure 13 and repeated in Figure 22 for reference, the 

detection algorithm recognizes features and outputs the terrain cover map shown in Figure 23.  

This computation was performed in just under two hours, on a single workstation with dual six-

core Xeon 3.16 GHz processors, running 14 threads with hyper threading enabled.  The number 

of threads was limited by the number of eCognition licenses. 

 

Figure 22.  Full SAR image mosaic, with focus region. 

An examination of the results in Figure 23 immediately reveals basic aspects of the recognition 

output.  Water features corresponding to the Rio Grande river are properly identified throughout 

almost all the entire river length, and numerous tall features with expected adjacent north 

shadows can be seen.  Road features are visible revealing overall road network structure, but 

gaps are also noticeable.  We can also observe errors in feature categorization.  The long river 

feature is interrupted with a misclassified shadow feature, and the large shadow north of the hill 

in the middle right is misclassified as water. 
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Figure 23.  Full terrain cover categorization results. 

A better understanding of the recognition capability of the algorithm can be gained by examining 

zoomed-in views to see greater detail.  In the sections that follow, we will focus on the smaller 

area outlined by the white rectangle shown in Figure 22 and Figure 23. 
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Figure 24.  Focus region SAR image, with red close-up view box. 

Figure 24 shows a zoomed-in view of this portion of the input image.  (The red close-up view 

box will be referenced in later sections.)  Individual plots of land and the trees and houses they 

contain can now be seen, along with the network of roads and irrigation ditches and the forested 

area adjacent to the river.   

Figure 25 shows the feature recognition results for this same region.  In this section of the image, 

water features are correctly recognized, and properly distinguished from adjacent sand bars.  

Road features that correctly correspond to real roads are also seen, but large gaps are evident.  

We also see narrow features recognized as roads that upon closer examination turn out to be 

irrigation ditches; when viewed in SAR imagery, these long linear water surfaces look very 

similar to paved road surfaces.  Further examination at an even closer zoom level reveals that 

many tall features such as trees and houses are properly recognized, while many are also missed; 

we shall see examples in later sections. 
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Figure 25.  Terrain cover categorization for focus region. 

Mr. O’Neil-Dunne provided an objective, quantitative assessment of recognition accuracy.  This 

assessment was performed following the methods described in (Congalton and Green 2009), a 

standard practice in assessing the accuracy of products derived from remotely sensed data.  In 

this method, 500 random points were generated, and an independent reviewer who has never 

seen the SAR data or the resulting terrain categorization reviewed each point and determined its 

proper classification using recent 6-inch RGB optical imagery.  These classifications are then 

treated as ground truth, and compared against the feature recognition algorithm’s output for the 

same points. 
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The tabulated results are shown in Figure 26.  This matrix shows the results of the terrain 

categorization for all 500 sample points.  The vertical column under the heading ―Total‖ shows 

all of the ground-truth features.  For example, the 500 sample points contained 91 points that 

were classified Tall by the independent human analyst.  Of these 91 points, 34 were classified 

Tall by the algorithm, one was classified Road, 55 were classified Ground, and one was 

classified Water. 

Tall Road Ground Shadow Water Total Producer's Accuracy

Tall 34 1 55 1 91 37%

Road 6 17 23 26%

Ground 15 10 340 1 2 368 92%

Water 1 2 1 14 18 78%

Total 49 18 414 2 17 500

User's Accuracy 69% 33% 82% 82% 79% Overall Accuracy  

Figure 26.  SAR recognition error matrix. 

The values in the matrix are then used to compute the producer’s and user’s accuracy for each 

terrain cover category.  The producer’s accuracy reports the recognition algorithm’s capability to 

find features.  For example, of the 91 points that were truly Tall, the algorithm found 34, 

resulting in a producer’s accuracy of 34/91 = 37%.  The user’s accuracy reports the reliability of 

the found features.  For example, the algorithm found 49 Tall features, and 34 of these were truly 

Tall, yielding a user’s accuracy of 34/49 = 69%.   

The producer’s accuracy column and user’s accuracy row report the producer’s and user’s 

accuracy for each terrain cover category.  Note that some cover types, such as Water, were found 

much more reliably than others, such as roads.  The Ground category had the highest producer’s 

accuracy, resulting at least in part from the preponderance of area in the input image that 

corresponded to this broad terrain cover class. 

Overall accuracy is measured by summing the total number of correctly identified features 

summed along the matrix diagonal, and dividing this by the total number of sample points.  

The resulting high value of 79% is heavily influenced by the large number of points classified 

as Ground.  Note that Shadow features were excluded from the calculation, because from Mr. 

O’Neil-Dunne’s perspective these are always viewed as categorization errors, since Shadow is 

not an intrinsic terrain cover characteristic. 

This method of assessing errors was also used by the UVM group to assess other terrain cover 

recognition algorithms with much higher accuracies; see (O’Neil-Dunne, et al 2012) for an 

example. 

The recognition code includes many ―magic numbers‖ that serve as algorithm control parameters 

and decision thresholds.  The sensitivity of recognition to the values chosen for these parameters 

was not assessed. 
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4.  SEMANTIC GRAPH MODELS OF SAR DATA 

This section will describe our work to apply semantic graph analysis techniques to the SAR 

feature recognition results described in the previous section.  Budget constraints limited this to a 

preliminary study.  In the sections that follow, we will describe our construction of a semantic 

graph from the recognized features, and the outcome of a single template search performed on 

the resulting graph. 

4.1. Graph Construction 

As explained above, we applied pure geospatial semantic graph analysis to the recognized SAR 

features, rather than a geospatial-temporal analysis.  This was accomplished using the geospatial 

graph construction code reported in (Strip and Watson 2011).  This code is actually a set of 

utilities which convert an input GeoTiff file through a set of intermediate representations, 

ultimately producing a graph represented as an ensemble of csv files.  This program suite was 

written to generate initial proof-of-principle results, and is not optimized for speed, memory, or 

disk usage. 

Given the input terrain cover map shown in Figure 23 and a maximum inter-feature edge length 

of 560 m, the code generated a geospatial graph containing 52,018 nodes and 10,288,678 edges.  

Here is the breakdown of node types: 

Tall 46,404 

Ground 2,668 

Road 2,620 

Shadow 323 

Water 3 

TOTAL 52,018 

The resulting files were 8 MB for the graph nodes, 309 MB for the edges, and 224 MB for the 

node polygons.  (After graph construction, the polygons are only used for rendering purposes.) 

When computed as a single monolithic graph as described above, graph construction required 

48 hours from start to finish on a Mac workstation with dual 6-core Intel Xeon CPUs running at 

2.66 GHz.  However, the code allows partitioning the input into tiles to support parallel 

processing, enabling significant speedup.  After instructing the code to partition the input into a 

4×4 matrix of 16 tiles, graph construction was completed in 2.3 hours.  These tiles overlap 

slightly, which changes the number of graph nodes and file size.  We report the case of the 

single-tile run here, since the resulting monolithic graph was used to generate the search results 

reported below. 

Figure 27 and Figure 28 show partial visual renderings of the constructed graph, for the close-up 

view shown by the red box outline in Figure 24.  These are partial views, because not all edges 

are shown.  In Figure 27, only edges with edge length attributes up to 40 m are shown, while in 

Figure 28, edges with lengths up to 80 m are shown.  Since edges are computed with lengths up 

to 560 m, drawing all graph edges would result in a very cluttered picture, even for the small 

number of nodes shown in this close-up view. 
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Figure 27.  Close-up view of graph, with edge lengths up to 40 meters. 

 

Figure 28.  Close-up view of graph, with edge lengths up to 80 meters. 
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4.2. Graph Search Results 

After constructing the graph from the recognized SAR features, we specified a search template 

and performed a search.  Given the general uniformity of the rural area covered in the test data, 

and the broad nature of the terrain categories returned by the recognition algorithm, we chose a 

simple template for initial study.   

The conceptual goal of the template was to identify small buildings near a road.  The presence of 

a significant SAR shadow might aid discrimination of buildings compared to short features such 

as rail fences, so we included a shadow feature in the template.  The template thus included a 

Tall node, Shadow node, and Road node.  Here is the full definition: 

 Tall node:  20 m
2
  ≤  area  ≤  500 m

2
 

 Shadow node:  1 m
2
  ≤  area  ≤  500 m

2
 

 Road node:  1 m
2
  ≤  area 

 Tall-Shadow edge: distance  ≤  10 m 

 Tall-Road edge:  distance  ≤  50 m 

Given this input, the search procedure applied to the full monolithic graph returned 115 matches 

in under 20 minutes on the same Mac workstation.  These results are shown in Figure 29. 

 

Figure 29.  Matches found by the graph search. 
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How accurate are these results?  To gain insight into this question, we made a quick, rough 

estimate.  We visually surveyed a region starting in the lower-left corner of the image, 

proceeding northeast until reaching a position near match #23 in Figure 29.  This study region 

covered perhaps 5% of the SAR image area.  While studying this region, we made note of 

correct matches, and also counted small buildings that were not found.  Items near the edge of 

the image were discarded to eliminate the special influence of boundary clipping. 

Within this informal survey region, we found five matches that were not discarded.  Of these, 

four were correct in the sense that the shadow matched the tall object that was a building, which 

was indeed close to a correctly identified road, paved or unpaved.  We counted these as correct 

matches.  One match was incorrect, because the road feature was not an actual road but instead a 

dirt lot, and the SAR shadow was not a real SAR shadow but rather a concrete parking lot that 

gave a low reflection back to the sensor.  Meanwhile, we counted 40 occurrences of mostly 

buildings and a few large, well-defined trees as tall things that were not identified because they 

did not have the shadow behind them identified as a shadow. 

These initial measures allow us to compute a rough estimate of overall recognition accuracy.  Of 

the (40+4) = 44 small buildings in the sample area, our graph search found four of them, yielding 

a producer’s accuracy of 4/44 = 9%.  Of the five buildings found by the algorithm in the sample 

area, four were correct, yielding a user’s accuracy of 4/5 = 80%.  These are obviously rough 

estimates, but given the very low producer’s accuracy, investing additional effort to obtain a 

more precise accuracy estimate seems of dubious value. 

To help better understand the results, we will review an example good match, and a few match 

failures. 

 

4.2.1. Example Good Match 

Figure 30 shows an example good match.  The recognized tall feature, shown in yellow, 

corresponds to the portion of the house that is closest to the sensor.  The matched shadow is 

indeed the shadow associated with this house.  The adjacent road is a properly identified road 

feature.  Figure 31 shows the SAR image and terrain cover for this example good match.  For 

context, note that the close-up views shown parts (a) and (b) of Figure 31 correspond to the red 

outlines shown in Figure 24 and Figure 25, respectively.  This same view is shown in Figure 27 

and Figure 28; if you look closely you can see the match edges of Figure 30 as they appear in the 

context of the graph. 
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Figure 30.  An example good match. 
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(a) 

 

(b) 

Figure 31.  SAR image and terrain cover for the example good match. 
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4.2.2. Example Match Failures 

Figure 32 shows an example incorrect match, with the corresponding SAR image.  The match 

includes Tall, Shadow, and Road features, but the shadow does not correspond to the tall feature.  

Instead, the shadow appears south of the tall feature, which would never be possible in SAR 

imagery looking north.  This is a failure in the template design, which should be extended to 

include the geometric constraint that the shadow must appear on the north side of the tall feature.   

But this is also a symptom of feature recognition failure, because the metal shed adjacent to the 

shadow should have resulted in a correct template match, and this was absent.  The reason is that 

the shed did not produce a tall feature of adequate size and proximity to the shadow to generate a 

template match. 

   

Figure 32.  An example incorrect match. 

Feature recognition failures were the primary cause of overall search failure.  For our example 

goal of identifying small buildings, the principal recognition failures were failures to find the 

building and classify it as a Tall feature, or failure to find the Shadow adjacent to a Tall feature.  

Figure 33 and Figure 34 show example cases. 
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                         (a)                                             (b)                                              (c) 

Figure 33.  Example house that was missed by feature recognition. 

 

           

                          (a)                                             (b)                                              (c) 

Figure 34.  Example house where shadow was missed. 

It is worth noting that these failures are at least partly attributable to the feature recognition and 

graph search working at cross-purposes.  Mr. O’Neil-Dunne views shadows as information loss, 

and thus designed his feature recognition code to return meaningful feature information in lieu of 

shadows whenever possible.  Meanwhile, our search template requires a shadow to complete a 

match.  These two perspectives are obviously in conflict. 

One immediate response might be to adjust the feature recognition code to return shadows more 

often.  However, this would discard useful information in some cases, a disadvantage.  We will 

return to this topic in Section 5.3. 
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5.  DISCUSSION 

The search results obtained in this study are both poor and unexciting.  They are poor because for 

the conceptual target we had in mind (small buildings), the producer’s accuracy was only 9%.  

They are unexciting because even if we had achieved 100% accuracy, finding small buildings is 

not a result of great strategic importance.  Nonetheless, we learned important information 

through this effort, which we will recount here. 

First, let’s review the successes of this work.  Initial static feature recognition code was 

developed, which produced good performance results for water features.  The resulting features 

were used in a semantic graph construction and search, providing a first end-to-end semantic 

graph analysis of SAR data. 

Further, we gained some insight into the resources and time required to complete such an 

analysis.  To sum up the time information reported above, SAR data collection took roughly two 

hours to cover a 42 km
2
 area.  Feature recognition for this data set required 2.0 hours, graph 

construction required 2.3 hours (exploiting parallelism), and graph search required 0.3 hours.  

Thus if we imagine a pipeline running this computation serially using the software and hardware 

described in this report, we would expect that search results for a two-hour data collection could 

be available within 4.6 hours lag time.  Note that with required pre-processing complete, 

additional subsequent graph searches would run much faster — roughly two minutes for a 

similar template. 

This process has not been optimized for speed, and there are multiple opportunities for run time 

improvement.  Thus we can view this time measurement as an upper bound on what might be 

achieved for a computation with equivalent semantic performance.  That said, we know that 

semantic performance must be improved, and this will likely add computation.  So the results 

reported here give an initial reference regarding run time, without a clear indication of future 

performance. 

We can make a similar summary of data size.  The ensemble of input image patches consumed 

1,050 MB of disk; the intermediate terrain cover map was 976 MB, and the files required to store 

the semantic graph were 541 MB.  Thus the files required to support automated search required 

an additional 150% of the disk space required to store the SAR image data.  This additional 

storage can be thought of as analogous to the disk space required to store fast lookup indexes in 

SQL databases.  As with run time, we would expect that additional work would reduce required 

storage for equivalent semantics. 

5.1. Why is SAR Feature Recognition So Difficult? 

The performance of the feature recognition algorithm was a key factor limiting the overall 

recognition capability of this system.  The difficulty in feature recognition resulted from intrinsic 

aspects of SAR image data that make automated image analysis challenging.  In this section we 

will explore these aspects, to help better understand why these recognition problems are hard, 

and to inform possible future work to do better.  We will review aspects of SAR phenomenology, 

the lack of a consistent representations, and orthorectification issues. 
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5.1.1. Phenomenology 

The phenomenology of SAR brings many well-known difficulties to image interpretation.  One 

example is range layover, where reflective features on tall objects can appear displaced relative 

to their ground locations, due to the grazing angle used in image capture.  Another example is 

multi-path reflection, where the radar beam bounces from one object to another before returning 

to the antenna; this results in a range error that causes displaced signal information in the image.   

These effects are well-known, and are the subject of on-going research in SAR image analysis 

(Short 2005; Wolff 2012; Lamont-Smith2011; Andre, Hill, and Moate 2008; Krishnan, Yarman, 

and Yazici 2010).  In the following sections we will discuss other perspectives on this issue. 

5.1.2. No Consistent Representation of Objects 

A more fundamental problem is that SAR images produce widely different renderings of 

seemingly similar items.  In discussions regarding this issue, Mr. O’Neil-Dunne put it well: 

―Features don’t have a consistent representation in SAR data.  This makes automatic recognition 

difficult.‖ 

When viewed from this perspective, it is easy to find supporting examples when closely studying 

SAR images.  Here we will consider houses as an exemplary case.  Figure 35 shows a house and 

its corresponding SAR image.  This example shows a case where the house roof produces a clear 

signature that is both bright and delineates the full feature outline.  The corrugated metal roof on 

this house produced an easily recognizable, house-like signature. 

    

Figure 35.  Example house with a clear SAR signature. 

But this easily-recognized signature is not seen in many cases.  Figure 36 shows several 

examples.  House D on the right has a parapet roof, which produces a faint outline in the SAR 

image corresponding to the house shape.  House C has a corrugated roof similar to the example 

in Figure 35, but in this case the roof area is not seen, but instead a bright highlight is observed 

along the roof’s southernmost edge.  House E exhibits a faint, partial outline.  House A on the 

left does not seem to appear at all; the authors do not see how this house might be recognized 

even by a human.  Meanwhile, label B indicates a bright outline in the SAR image that appears 

very similar to the outlines of houses D and E; however, this is not a house at all, but rather a 

closed fence for containing livestock. 
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Figure 36.  Example houses of varying recognition difficulty. 

The examples of Figure 35 and Figure 36 support Mr. O’Neil-Dunne’s observation that features 

do not exhibit a consistent representation in SAR image data.  Examples selected from a basic 

category of ―small building‖ appear as bright rectangles corresponding to their area (Figure 35), 

faint outlines (Figure 36, D), partial faint outlines (E), bright linear highlights (C), or seemingly 

nothing at all (A).  Meanwhile, non-building features can produce SAR signatures remarkably 

like some buildings (Figure 36, B).  It would be difficult, if not impossible, to correctly recognize 

some of the features in Figure 36 without the accompanying optical imagery.  Confronting this 

variability clearly creates a challenge for automated SAR static feature recognition. 

5.1.3. Georectification Issues 

Another problem that caused difficulty for UVM when developing the feature recognition 

algorithm was the presence of feature dislocations resulting from orthorectification issues.  

Figure 37 shows a lateral dislocation occurring at the stitch boundary between two SAR image 
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patches.  This caused misalignment of several road features, and complete disconnection of the 

highway median and the bright linear feature alongside the highway which is a railroad.  These 

errors confound algorithms that exploit large-scale feature properties, such as tests designed to 

identify long contiguous stretches of roadway. 

 

Figure 37.  Image patch registration errors. 

This sort of problem is well-known in the field of aerial image processing, with several papers 

addressing the problem of stitching together images taken from different viewpoints.  Examples 

include (Afek and Brand 1998; Leprince, et al 2007; Thomas, et al 2008; Westerteiger, et al 

2012). 

Proper georectification of SAR imagery is challenging, but is important for supporting 

downstream analysis processes that consider more than just a single image patch.  These include 

feature recognition algorithms as described above, and also semantic graph analysis.  

Orthorectification is needed to support registration for two primary reasons: 

 Reason #1: Within the SAR data modality, registration across patches is necessary for 

proper modeling and identification of large-scale and linked features (roads are but one 

of many examples). 

 Reason #2: To allow reasoning across multiple data modalities, SAR data must be 

registered with other data types: GIS road network data, phone book information, 

RGB-IR image data, LIDAR data, etc. 
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Note that his second reason implies a stronger requirement — the need for proper geospatial 

location of image features.  Expressing SAR feature data in terms of geospatial coordinates 

would enable (a) registering adjacent SAR image patches (as seen above), (b) registering SAR 

data collected from different view angles to a common coordinate system, and (c) registering 

SAR image data with other data and information sources. 

5.2. Lessons Learned 

A key outcome of this work is confirmation of an obvious constraint regarding geospatial 

semantic graphs:  search capability is limited by both the quality and semantic depth of feature 

recognition.  Related work studying geospatial semantic graphs has focused on this issue, aiming 

to produce representations that have increased robustness to data errors, and allowing an increase 

in semantic depth by exploiting provenance back-pointers to obtain focused probes into raw data 

to improve discrimination capability.  This work is in progress. 

Since recognition performance limits semantic graph search performance, an important corollary 

is that for SAR data, strong search performance will only be enabled by substantial 

improvements in feature recognition capability.  Given the difficulties inherent in SAR data 

(see above), what strategies might we pursue?  This is the topic of the next section. 

5.3. Possible Next Steps 

Reviewing this work suggests several ideas for future improvement.  Here we will discuss five 

of these ideas: utilizing other data sources, georectification, developing a hybrid shadow 

representation, applying SAR data recognition to find perimeter fences, and addressing effects 

due to image tiling. 

5.3.1. Utilizing Other Data Sources 

As we have seen, SAR data includes several artifacts that make recognition difficult.  Further, 

Mr. O’Neil-Dunne’s direct field experience suggests that SAR has not historically been used as a 

sole source of static feature information.  Instead, it has been used successfully in conjunction 

with other data sources which provide useful context. 

This seems an idea worth exploring.  Static feature recognition is a particular task that might 

benefit greatly from ancillary data sources.  For almost all scenes in the world, it seems likely 

that prior data exists and is available.  These data might take the form of optical imagery, 

topographic height information, or road network information.  All of these data sources might be 

used to provide context to enhance the information gained from SAR image data. 

As one simple example, consider the recognition error seen in Figure 23, where the large shadow 

on the north side of the hill is misclassified as water.  Based on the SAR pixels alone, this 

shadow looked very similar to a lake.  However, we know based on other information that this is 

in fact a shadow on the back side of a large hill.  In reality this cannot be a lake, because the 

underlying surface is sloped.  Ordinary topographic information could easily reveal this to a 

computer analysis, because the hill would be clearly represented.  Recognition algorithms that 

consider this information would be able to readily decide that the region must be a shadow, 

because the alternative classification of standing water would be physically impossible. 
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Similar progress might be made using road network information.  For the vast majority of 

anticipated SAR images, roads in the scene are likely already mapped in digital form.  Why not 

make use of this information, instead of struggling to find all roads from scratch?  Given 

recognition results informed by GIS road models, regions of change to the road network seen 

through SAR might be readily recognizable, and even more significant when detected as a 

change from prior data models. 

Further, other sensors might provide information that complement SAR’s special capabilities.  

For example, LiDAR data provides excellent (x, y, z) surface models, which could obviate the 

need for difficult recognition of buildings and other durable structures using SAR.  At the same 

time, SAR might be very effective at detecting changes to these structures.  In addition, LiDAR 

could provide both the terrain elevation and key feature position measurements necessary to 

enable registration and georectification of SAR image data, needed for several reasons described 

above.  The necessary LiDAR data could be captured infrequently under preferred conditions, 

followed by regular re-visits by a SAR sensor. 

All of these suggestions fall under the approach of exploiting each information source to gain the 

best information it provides. 

If we choose to explore this approach, note that optical imagery, LiDAR, topographic, and GIS 

road network data are already available for the region covered by our test mosaic SAR image. 

5.3.2. Georectification 

Section 5.1.3 above explains why georectification is an important step allowing analysis of data 

across multiple SAR images, or across multiple data modalities.  Section 5.1.3 makes the case 

for this result, but we mention it again here as an important possible next step. 

5.3.3. Hybrid Shadow Representation 

As noted above, the feature recognition and graph search procedures employed in this report 

worked at cross-purposes.  The feature recognition code aimed to minimize shadows, since 

labeling a ground feature as Shadow amounted to admitting complete information loss.  

Meanwhile, the graph search desired shadows as confirmation of the substance of a tall object. 

This case brings to light a fundamental issue surrounding shadows, both for SAR and optical 

image data.  We’ll explore this first discussing visible optical sensing, and then return to SAR. 

In our personal experience, we encounter shadows all the time.  The shadows provide us with 

important information; when a shadow is present, it implies that something is nearby that blocks 

the primary source of incident light.  This might be a tall building, a tree, a passing cloud, or a 

pterodactyl about to attack us.  In all of these cases, the shadow provides important information 

about our surroundings. 

Yet at the same time, we can still generally see within the shadow, and make out important 

features.  In our outdoor experience this is enabled by scattered light from the sky, and the 

shadow penumbra that results from the finite diameter of the sun.  This ability to see into 

shadows and glean important information is essential to our survival. 

Inspection of the sample SAR data reveals that something similar is going on with SAR 

shadows.  First, shadows provide a very handy cue for image interpretation.  Tall objects with 

distinct shapes, such as trees in an open field, are more easily recognized and understood by 
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considering the shape of their shadows.  At the same time, shadows can include important image 

information.  Figure 38 shows an example.  Notice the fence line, delineated by the series of 

bright dots.  There are SAR shadows from nearby trees that are cast over the fence, but the fence 

line is still visible within the shadows!  This is important if we want to know whether the fence is 

continuous or has a gap.  We are not certain why this occurs, but will conjecture that this image 

witness to the fence continuation through the shadow is the result of penumbra effects due to the 

finite length of the SAR synthetic aperture, much like the penumbra due to the finite diameter of 

the sun. 

 

Figure 38.  Example shadow which still contains useful information. 

These observations raise a dilemma for those designing feature recognition and semantic graph 

algorithms:  Should we design our codes to find and exploit shadows, or minimize categorization 

as shadows, so that the information within the shadows can be utilized? 

We propose to have the best of both choices, by introducing a representation of hybrid shadows.  

These are land cover classes that retain the usual category choices, but with the modifier 

―in shadow.‖   

From the feature recognition perspective, this might make things easier, because (1) it eliminates 

the need to make an arbitrary decision in resolving the dilemma described above, and (2) it might 

reduce brittleness resulting from the selection of a shadow threshold for image analysis.  To 

facilitate robust recognition, it may help to loosen the expectation of precision of the shadow 

boundary, since these may be poorly defined.   

From the semantic graph perspective, this will certainly improve capability.  Given returned 

feature classes with ―in shadow‖ modifiers, separate graph nodes would be constructed for 

regions in and out of shadow.  However, at search time these nodes would be merged 

appropriately.  Representations that desire shadows for adjacency reasons (as in the template 

explored in this work) would have shadow information available.  Representations seeking 

information ignoring shadow information (such as asking whether the Figure 38 fence is 

continuous) can simply merge adjacent nodes whose attributes agree in all semantic 

characteristics except the shadow modifier. 
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5.3.4. Using SAR to Find Perimeter Fences 

We have seen how some features, such as small buildings, are easy to see in optical images but 

can be difficult to see in SAR.  Some features are the opposite, proving difficult to see in optical 

images but easily recognized in SAR image data. 

The rural area in the sample SAR data set is full of livestock fences, and these are clearly seen 

throughout the SAR imagery, including several figures above.  These fences are much less 

apparent in the optical images. 

In some cases perimeter fences can be quite difficult to see, yet are very important.  Consider the 

example shown in Figure 39.  This nice-looking facility has a beautiful skylight and surrounding 

recreational areas that suggest it might be a school.  The availability of parking for teaching and 

administration staff supports this hypothesis. 

 

Figure 39.  What is this place? 

And yet there’s something strange about this place.  Very close inspection of the optical image 

reveals that it is surrounded by two layers of fence — one surrounding the individual recreation 

areas, and a second surrounding the entire facility.  (These are so faint they might be invisible in 

your rendering of this image.)  There is a large gap between the inner and outer fences, and 

further inspection reveals that the outer fence is quite large, and bends over at the top toward the 

interior of the facility.  Odd.  What is this place? 
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It turns out that this facility is a hospital.  The Clifton Perkins Hospital, which is a maximum-

security forensic hospital for dangerous mental health patients.   

Notice that in studying this facility, it was the hard-to-see fence that raised our interest.  This 

observation suggests that using SAR in conjunction with other sensing modalities might be quite 

useful at detecting secured facilities, which might merit further scrutiny.  Geospatial semantic 

graphs might provide one effective method for representing the data from multiple modalities in 

a uniform representation facilitating search — imagine a template seeking a building complex 

found in optical data, in proximity to or surrounded by a perimeter fence found by SAR data. 

5.3.5. Eliminating Effects Due to Image Tiling 

We have seen how image tiling can be very useful in improving computation speed.  Breaking 

the large data mosaic into tiles was very effective at speeding up both feature recognition and 

graph construction.  If we desire fast computation and low latency, it seems that breaking data 

into smaller chunks and dividing the computation among different cores will play a key role. 

But breaking the image into tiles creates artificial boundaries, and these have been seen to 

produce adverse effects.  There are many examples noticeable at a zoomed-in level, but it’s most 

convenient to point to two large scale effects, readily visible in Figure 23.  Tile boundary effects 

played a role in the terrain categorization errors highlighted by both arrows.  The river section 

misclassified as shadow would likely have been correctly merged into adjacent water regions, 

but tile boundaries prevented this (compare with Figure 14).  Similarly, tile boundaries prevented 

the large shadow north of the hill from being classified as one big contiguous lake.  This would 

have been an error, but it shows how tile boundaries can interfere with image processing, 

yielding unexpected results.  Similar problems affect semantic graph analysis; we’ll skip the 

details here. 

These observations underscore the importance of understanding the effect of image tiling 

strategies, and preferably designing algorithms that are either immune to tile effects, or which 

correct problems due to tile boundaries during some sort of healing post-processing. 

5.4. Conclusion 

This report has described work toward developing geospatial semantic graphs capable of 

temporal reasoning, and applying semantic graph analysis techniques to SAR data.   

Effort in the first area has yielded a design for an efficient graph representation encoding both 

geospatial and temporal concepts, and which appears promising for solving a wide variety of 

spatial, temporal, and spatiotemporal search queries. 

Effort in the second area has demonstrated feature recognition, geospatial semantic graph 

construction, and search based on input SAR data.  While recognition performance needs 

substantial improvement, this work represents a successful initial step demonstrating feasibility 

and illuminating important focus areas for future work. 
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