
SANDIA REPORT
SAND2013-0055
Unlimited Release
Printed January, 2013

An Examination of Content Similarity
within the Memory of HPC
Applications

Scott Levy, Kurt B. Ferreira, Patrick G. Bridges, Aidan P. Thompson, Christian Trott

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2013-0055
Unlimited Release

Printed January, 2013

An Examination of Content Similarity within the
Memory of HPC Applications

Scott Levy
Patrick G. Bridges

Department of Computer Science
University of New Mexico

Kurt B. Ferreira
Aidan P. Thompson

Christian Trott
Sandia National Laboratories

Abstract

Memory content similarity has been effectively exploited for more than a decade to reduce
memory consumption. By consolidating duplicate and similar pages in the address space
of an application, we can reduce the amount of memory it consumes without negatively
affecting the application’s perception of the memory resources available to it. In addition to
memory de-duplication, there may be many other ways that we can exploit memory content
similarity to improve system characteristics.

In this paper, we examine the memory content similarity of several HPC applications. By
characterizing the memory contents of these applications, we hope to provide a basis for ef-
forts to effectively exploit memory content similarity to improve system performance beyond
memory deduplication. We show that several applications exhibit significant similarity and
consider the source of the similarity.

3

4

Introduction

Memory content duplication has been effectively exploited for more than a decade to
reduce memory consumption. By consolidating duplicate pages in the address space of an
application, we can reduce the amount of memory it consumes without negatively affecting
the application’s perception of the memory resources available to it. Although this approach
has been used to solve problems in a variety of system software domains, it has been most
fruitful in the context of virtualization.

Beginning with transparent memory sharing in the Disco Virtual Machine Monitor (VMM)
[3], memory deduplication in VMMs has been the subject of significant research efforts as well
as commercial development and deployment [17]. Collectively, these endeavors have yielded
impressive results. For some applications, memory deduplication across Virtual Machines
(VM) has been shown to reduce the total memory footprint by more than 50%.

In addition to consolidating duplicate pages, it is also possible to consolidate similar
pages. The Difference Engine was the first to demonstrate that this approach was feasible
for memory deduplication [4]. In the Difference Engine, two memory pages are similar if
the difference between the two can be captured in a patch file that is smaller than 2 kB. By
relaxing the requirement that only duplicate pages be consolidated, the Difference Engine is
able to achieve a larger reduction in memory consumption. In some instances, the Difference
Engine is able to extract nearly twice as much memory savings as a VMM that consolidates
only duplicate pages.

In retrospect, the extent of memory content similarity in virtualization (particularly
across VMs running the same guest OS and applications) is perhaps not surprising. Each
VM would otherwise maintain its own copies of libraries, instructions and other read-only
data. Given these results, memory deduplication and the existence of memory content
similarity are well established for virtualization workloads. In contrast, when we consider
HPC workloads we tend to believe that memory pages are unique. HPC applications are
designed for high performance on large-scale systems; we expect little or no similarity in the
memory of these applications. However, SBLLmalloc demonstrates that for several HPC
workloads significant duplication exists within and across MPI processes [2].

In this paper, we examine the memory content similarity of several HPC applications.
By characterizing the memory contents of these applications, we hope to provide a basis
for efforts to effectively exploit memory content similarity to improve system performance
beyond memory deduplication. We begin, in section 2, by describing our approach for
collecting the information that forms the basis of our analysis. In section 3, we present our
results. Finally, in section 4, we summarize our observations and conclude.

5

ASC Sequoia
Marquee
Performance
Codes [9]

AMG
A parallel algebraic multigrid solver for linear systems
arising from problems on unstructured grids [5].

IRS
Implicit Radiation Solver. Solves the radiation trans-
port equation by the flux-limited diffusion approxima-
tion using an implicit matrix solution [7].

DOE Production
Applications

CTH
A multi-material, large deformation, strong shock
wave, solid mechanics code [11]

LAMMPS
Large-scale Atomic/Molecular Massively Parallel Sim-
ulator. A classical molecular dynamics simulator [14].

Mantevo Mini-
Applications
[13], [6]

HPCCG
Designed to mimic the finite element generation, as-
sembly and solution for an unstructured grid problem.

phdMesh
Parallel Heterogeneous Dynamic Mesh. An applica-
tion designed to mimic the contact search applications
in an explicit finite element application.

Miscellaneous
Applications

SAMRAI

Structured Adaptive Mesh Refinement Application In-
frastructure. Designed to enable the application of
structured adaptive mesh refinement to large-scale
multi-physics problems [8].

Sweep3D
Solves a 1-group time-independent discrete ordinates
(Sn) 3D cartesian (XYZ) geometry neutron transport
problem. [10]

Table 1. A brief summary of HPC applications used

6

Approach

We examined the memory of the eight HPC applications in Table 1 to ascertain the
extent of memory content similarity in HPC applications. We began by placing each page
in the address space of an application into one of four categories:

• duplicate pages : pages whose contents exactly match one or more other pages and
include at least one non-zero byte.

• zero pages : pages whose contents are entirely zero.

• similar pages : pages that (a) are not duplicate or zero pages; and (b) can be paired
with at least one other page in application memory such that the difference between
the two can be represented by a cx bsdiff [15] patch that is smaller than 128 bytes.

• unique pages : pages that do not fall into any of the preceding three categories.

For the purposes of the analysis in this paper, we treat zero pages and unique pages
identically. In practice, we can treat zero pages as duplicate pages (i.e., if a memory error
occurs on a zero page, reconstruction of the damaged page is straightforward). However, to
avoid overestimating the impact of our proposed approach, we distinguished zero pages from
duplicate pages in our analysis. Zero pages may be an artifact of memory allocation and may
not represent memory that is actually being used. For example, to minimize the number of
requests for memory from the kernel, malloc requests more memory than it actually needs.
At least until malloc starts recycling pages within the application, its unused pages are
zero pages that are not actually resident in memory. And because of the way that we are
collecting application data (i.e., reading the entirety of the application’s address space), we
may be introducing zero pages that would not otherwise exist. Because of these caveats, we
believe that categorizing zero pages separately from non-zero duplicates is the clearest and
most accurate way to characterize the application behavior we describe here. Finally, we
observe that treating zero pages this way is consistent with our intuition; we tend to believe
that it is unlikely that an application would actively use large numbers of zero pages.

Evaluation

We generated the data presented in this paper by running each application using MPICH
on 8 nodes of a Cray XE6 supercomputer. We used 8 processes on each node for a total of
64 MPI ranks.

7

Data Collection

We built a library, libmemstate, to collect snapshots of the applications’ memory and
linked it against each of the target applications. The MPI Profiling layer allows us interpose
libmemstate in all calls by the application to MPI Init and MPI Finalize. By intercept-
ing the call to MPI Init, libmemstate is able to snapshot the application’s memory after
initialization but before the application has started execution. To generate a snapshot of
the application’s memory, libmemstate reads the /proc/<pid>/maps file provided by Linux
to gather information about the application’s address space. Based on the information it
gathers, libmemstate is able to write a copy of the address space to stable storage.

After the initialization snapshot is complete, libmemstate sets a timed signal (SIGALRM)
that allows it to periodically snapshot memory as the application runs. Unless otherwise
noted, we collected all of the data in this paper by configuring libmemstate to capture a
memory snapshot after every 60 seconds of application execution time.

The process is similar when the application calls MPI Finalize. The MPI Profiling layer
interposes a call to libmemstate. This allows libmemstate to take a finalization memory
snapshot and disable its timer.

Each snapshot includes all of the application’s heap, stack and anonymous memory.
We excluded memory-mapped files because the majority of pages that corresponding to
memory-mapped files in the applications that we considered are mapped read-only. The
most straightforward way to recover these pages is to re-read their contents from the backing
store. As a result, our approach offers little additional protective benefit. However, we can, in
practice, use pages backed by stable storage as reference pages for other pages in application
memory. But because of this asymmetry, we excluded pages that correspond to memory-
mapped files to simplify our analysis.

Data Analysis

After we collected snapshots of the applications’ memory, we analyzed them offline. For
each snapshot, we walked through the application’s virtual address space from low address
to high, categorizing each page of memory into one of the four categories described above:
(a) duplicate; (b) similar; (c) zero; and (d) unique.

Duplicate Pages

Naively, identifying duplicate pages is a O(n2) operation. To reduce the cost of identifying
duplicate pages, Each collision represents a duplicate page. Although it is conceivable that
two or more different pages could yield the same MD5 sum, we assume that the memory
contents of the applications we consider are not adversarial. As a result, the probability of
such an event is exceedingly small (i.e., ≈ 10−14) even for very large memory snapshots [18].

8

Similar Pages

As with identifying duplicate pages, the naive approach to identifying similar pages is
an O(n2) operation. To mitigate this cost, we use an approach inspired by [4]. Instead of
computing patches between every pair of pages, we attempt to identify a tractably small set
of pages for each candidate page that are likely to be similar to it.

At the outset, we randomly choose four locations, aligned on 128-byte boundaries, in a
4kB page of memory. Once chosen, these four locations are fixed for all of the 4kB pages in
the sequence of memory snapshots for a given application. We then create four hash tables
that correspond to each of these locations. Each hash table holds a single entry per key. For
each candidate page, we compute the MD5 sum of the four 128-byte blocks at the selected
locations. The MD5 sums are used to insert the page into the corresponding hash tables.
The effect is that, for each block, the associated hash table contains only the most recently
examined page for each MD5 sum (i.e., the nearest page with a given MD5 sum that occupies
a lower address in the application’s virtual address space.) A collision indicates that there
is a page that is likely to be similar. This approach identifies up to four pages that may
be similar to the current candidate page. In addition to these pages, we also consider the
previous candidate page (i.e., the page that occupies the next lowest address in use in the
application’s virtual address space). In all, this approach identifies as many as five pages
that are likely to be similar to the candidate page.

We then compute a patch between the current candidate page and each member of the
set of up to five likely similar pages. If any patch is smaller than 128 bytes, we mark the
current candidate page as similar. Because cx bsdiff does not generate symmetric patches,
observing a single patch that falls below our threshold is sufficient to categorize only a single
page as similar. Therefore, we also compute the reciprocal patch of each of the pages in
the set of likely similar pages to determine whether any of them should also be marked as
similar. As in [4], this is a statistical, heuristic approach. Although there may be more
effective ways of identifying similar pages, the fraction of similar pages we identify using this
approach is a lower bound on the total number of similar pages in application memory.

Zero Pages

Identifying zero pages is a straightforward process. Although there are many ways that
we could identify zero pages, we leverage the process of identifying duplicate pages. Initially,
we make no effort to distinguish zero pages from any other page; we insert them into the
duplicates hash table as we would any other page. By precomputing the MD5 sum of a 4kB
zero page, we can then identify the zero pages as the set of pages that were stored in the
duplicates hash table using the zero page MD5 sum as a key.

9

Unique Pages

Unique pages are those pages that fall outside of the criteria for the preceding three
categories. However, we note that this is not a rigid definition; it is highly dependent on
our somewhat arbitrary choice of patch size threshold. In particular, increases to the patch
size threshold will increase the number of similar pages and decrease the number of unique
pages. With a sufficiently large patch size threshold, we could, in principle, transform all
of the unique pages into similar pages. In subsequent sections, we examine the tradeoffs
involved in changing the patch size threshold.

Repeatability

Non-determinism exists in our methods for collecting and analyzing the data presented
here. With respect to data analysis, the source of non-determinism is explicit: as described
above, we randomly choose four hash blocks. To begin to understand the variation intro-
duced by this approach, we ran our analysis scripts ten times (randomly choosing four blocks
each time) on the memory snapshots collected for LAMMPS. We observed that the number
of similar pages varied by less than 0.28% across all of the snapshots (excluding the initial-
ization and finalization snapshots) we collected. This result is likely the product of our very
conservative patch threshold. Two pages whose difference can be captured in a 128-byte
patch likely differ on a relatively small number of bytes. As a result, we are likely to identify
the pages as potentially similar regardless of which set of locations we choose to hash.

With respect to data collection, the timers we use to determine the interval between
memory snapshots are not precise. As a result, from run to run we cannot be sure that the
snapshots are taken precisely relative to the application’s progress. Therefore, it is unlikely
that any two sequences of memory snapshots will agree on the exact contents of memory at
any given time. Moreover, there may be some variability in the layout of each application’s
address space that may effect how pages are categorized. To begin to understand the extent
of the variability in our data collection mechanism, we collected memory snapshots for ten
separate runs of LAMMPS. We then used our analysis scripts to categorize the pages for
each sequence of memory snapshots. To control for the variability introduced by our anal-
ysis scripts, we fixed the locations of the four hash blocks used in our similarity detection
algorithm. We observed that the number of similar pages varied by no more the 2%. We did,
however, observe more substantial variability in the number of zero pages. While the number
of zero pages varied by several thousand pages in certain cases, these changes were almost
entirely offset by changes in the number of unique pages. We believe that this behavior is
due to the fact that our memory snapshots are not taken at precisely the same point in the
application’s execution each time.

While these results are not exhaustive, they do suggest that the data we collected is
representative of the memory content behavior of the applications that we considered.

10

Results

We devote this section to presenting and analyzing the data that we collected from each
application. For each application, we examine the set of memory snapshots that we collected
to illuminate the nature of memory content similarity within the application’s memory.

Overview

 0

 0.2

 0.4

 0.6

 0.8

 1

A
M

G
2006

C
TH

IR
S

LA
M

M
P
S

S
A
M

R
A
I

H
P
C
C
G

phdM
esh

S
w
eep3D

F
ra

c
ti
o

n
 o

f
m

e
m

o
ry

 p
a

g
e

s

Duplicate Pages
Similar Pages

Zero Pages
Unique Pages

Figure 1. Page categorization within Rank 0 for each ap-
plication. Each bar represents the page categorization for
the memory snapshot that contained the smallest fraction of
similar and duplicate pages.

We begin by considering the categorization of the memory pages in the virtual address
space of each application. Figure 1 illustrates memory content similarity, expressed as a frac-
tion of application memory, for each application. Each bar represents the memory snapshot
(excluding the initialization and finalization snapshots) that contains the smallest fraction
of similar and duplicate pages that we observed for each application. Complete memory
categorization for the entire lifetime of each application can be found in Figures 8-15.

Overall, these figures demonstrate that significant similarity exists in half of the applica-
tions we considered. Between 25 and 35% of the pages in the memory of rank 0 for AMG,

11

IRS, CTH and Sweep3D are either duplicate or similar. LAMMPS, SAMRAI and phdMesh
exhibit more modest similarity with as little as 13.4%, 16.8% and 10.8% of application
memory devoted to similar and duplicate pages, respectively. However, even given these
modest results, there may still be opportunities to exploit similarity in these applications,
particularly if we consider patch sizes larger than 128 bytes.

HPCCG is a clearly an outlier. More than two thirds of the pages in its virtual address
space are similar or duplicate. This is substantially higher than the application with the
next highest fraction. Given these results and the fact that HPCCG is a mini-application,
we are inclined to discount this result.

Temporally, we observe that the trends in content similarity exhibited by these applica-
tions fall into three broad categories: (a) Stable; (b) Noisy; and (c) Dynamic. Examples
of the behavior that defines each of these categories is shown in Figure 2. LAMMPS, IRS,
HPCCG, phdMesh and Sweep3D constitute the temporally stable category. Excluding the
initialization and finalization snapshots, the virtual address space of each these applications
includes a stable fraction of duplicate and similar pages. The temporally erratic class of
applications consists of CTH and SAMRAI. These two applications show significant fluc-
tuations in the number of duplicate and similar pages in their virtual address spaces. The
number of duplicate pages in SAMRAI spikes twice during its run. At one point, the num-
ber of duplicate pages nearly triples. CTH exhibits similar, but less pronounced, behavior.
Early in its execution, the number of duplicate pages drops by more than 10%. Although
the snapshots of these applications captured only a handful of deviations, it suggests that
the memory contents of these applications may be more dynamic and unpredictable than
the other applications we considered. Finally, the duplication and similarity in the memory
AMG2006 exhibits significantly different behavior than any of the other applications. For
approximately the first half of its execution, the fraction of duplicate and similar pages in
the memory of AMG2006 steadily decreases before stabilizing for the remainder of its run.1

To account for this behavior, we define a third category: temporally dynamic applications.

NUMA

We ran all of our tests on a Cray XE6 system. Because each of the XE6 compute nodes
uses a NUMA architecture, we may be able to increase similarity by considering memory
across processes. Although it may also be possible to exploit sharing across NUMA domains,
the costs of maintaining similarity information is likely to be much higher. As a result, there
are likely many more opportunities to effectively exploit memory content similarity within
a NUMA domain. Therefore, throughout this document, we only consider similarity across
processes within a single NUMA domain.

Each compute node of the XE6 contains two 8-core AMD Opteron Magny-Cours proces-
sors. Each Magny-Cours processor is divided into two NUMA domains. And each NUMA

1We also observe that AMG is the only application that allocates significant quantities of memory after
initialization

12

 0

 0.2

 0.4

 0.6

 0.8

 1

0 60 120 180 240 300 360 420 0 60 120 180 240 300 360 420 480 0 60 120 180 240 300 360

F
ra

c
ti
o

n
 o

f
m

e
m

o
ry

 p
a

g
e

s

Duplicate Pages Similar Pages Zero Pages Unique Pages

Application Time (seconds)
AMG

Application Time (seconds)
SAMRAI

Application Time (seconds)
Sweep3D

Figure 2. Examples of notable temporal trends in mem-
ory content similarity: Stable (IRS), Erratic (SAMRAI) and
Dynamic(AMG)

 0

 0.2

 0.4

 0.6

 0.8

 1

A
M

G
2006

C
TH

IR
S

LA
M

M
P
S

S
A
M

R
A
I

H
P
C
C
G

phdM
esh

S
w
eep3D

F
ra

c
ti
o

n
 o

f
m

e
m

o
ry

 p
a

g
e

s

Duplicate Pages
Similar Pages

Zero Pages
Unique Pages

Figure 3. Page categorization within a NUMA domain as
a function of application time.

domain is comprised of four cores [16]. We use the default MPICH layout method which
results in SMP-style placement of MPI ranks. Based on this architecture, we were able
to group our memory snapshots by rank to effectively examine content similarity within a

13

Application
Rank 0 Rank 1 Rank 2 Rank 3 Total NUMA Domain

% Increase
Duplicate Duplicate Duplicate Duplicate Duplicate Duplicate

AMG2006 43820 47911 49173 44215 185119 234162 26.5 %

CTH 11573 9470 10153 9311 40507 63583 57.0 %

IRS 13769 13863 13829 13774 55235 59320 7.4 %

LAMMPS 3534 3537 3566 3662 14299 35541 148.6 %

SAMRAI 1174 518 1920 391 4003 7437 85.8 %

HPCCG 131143 134229 144576 147495 557443 778302 39.6 %

phdMesh 828 2842 2198 2137 8005 13921 73.9 %

Sweep3D 844 844 844 844 3376 6183 83.1 %

Table 2. Number of duplicate pages in the middle snapshot
for each application

NUMA domain for each application. The results are shown in Figure 3. As with the single
rank results, these figures also show the total memory usage of each application as a function
of time.

The effect of considering similarity across all of the processors in a NUMA domain varies
considerably among the applications that we consdiered. Tables 2, 3 and 4 break down the
effect in more detail. Table 2 shows the number of duplicate pages for each of the ranks in
a NUMA domain when they are considered individually and collectively. Similarly, Table 3
shows the number of similar pages for each of the ranks in a NUMA domain when they are
considered individually and collectively. Table 4 describes the overall effect of expanding the
scope of our similarity analysis to include an entire NUMA domain.

Three categories emerge from this data. First, Sweep3D, AMG, SAMRAI and HPCCG
see significant benefit from jointly considering all of the ranks in a NUMA domain. Second,
we observe more modest gains in phdMesh. Third, in the address space of LAMMPS, CTH
and IRS, the number of duplicate and similar pages changes little when the ranks in a NUMA
domain are considered together.

We broadly observe that expanding the scope of the application memory that we consider
to include a NUMA domain tends to significantly increase the number of duplicate pages at
the expense of similar pages. This effect is especially pronounced in LAMMPS and CTH;
we observe a sizeable increase in duplicate pages (148.6% and 57.0%, respectively) when the
NUMA domain is considered. However, these gains are almost entirely offset by a decrease
in similar pages. As a result, for these two applications, if we can effectively exploit similar
pages (and bear the metadata costs) there may be little benefit to considering the ranks of
a NUMA domain collectively.

14

Application
Rank 0 Rank 1 Rank 2 Rank 3 Total NUMA Domain

% Increase
Similar Similar Similar Similar Similar Similar

AMG2006 19614 13272 14087 16985 63958 53185 -16.8 %

CTH 6427 6663 5905 6462 25457 3737 -85.3 %

IRS 1195 1199 1285 1290 4969 2904 -41.6 %

LAMMPS 8744 8787 8855 8922 35308 14344 -59.4 %

SAMRAI 1002 1523 1062 1743 5330 3202 -39.9 %

HPCCG 21553 26747 26754 26753 101807 21569 -78.8 %

phdMesh 7483 9501 9078 9161 35223 31976 -9.2 %

Sweep3D 609 612 611 608 2440 812 -66.7 %

Table 3. Number of similar pages in the middle snapshot
for each application

Address Space Behavior

Given the observations that we have made regarding memory content similarity to this
point, it is instructive to consider where this similarity is coming from. To begin to answer
this question, Figure 4 contains a series of heat maps of the virtual address space of IRS.
Figures 16-24 contain a similar set of heat maps for the other applications that we considered.
In each heat map, we have divided the application’s address space into 256 buckets. Each
horizontal line in the heat maps represents one bucket of the application’s address space
over the lifetime of the application. In Figure 4(a), the heat map represents the fraction of
the application’s address space for rank 0 that is comprised of duplicate and similar pages.
Likewise, Figure 4(b) represents the fraction of duplicate and similar pages in the address
space of rank 0 when the three other ranks that jointly constitute a NUMA domain are
considered collectively.

In these two subfigures, the areas of dark orange represent buckets that contain a large
fraction of duplicate and similar pages. The areas of yellow represent buckets that contain
few duplicate or similar pages. As the color changes from yellow to orange, it indicates
an increase in the fraction of duplicate and similar pages in a particular bucket. The blue
portions of the map indicate virtual addresses that were not part of the application’s address
space when a given snapshot was taken. The most compelling feature of Figures 4(a) and
4(b) is the presence of distinct horizontal bands of color. In general, we observe very little
variation in color from left to right. This trend suggests that pages that are initially classified
as similar or duplicate remain similar or duplicate throughout the lifetime of the application.
If the classification of individual pages changes infrequently, it may also mean that the pages

15

Application Rank 0-3 Total NUMA Domain % Increase

AMG2006 249077 287347 15.4 %

CTH 65964 67320 2.1 %

IRS 60204 62224 3.4 %

LAMMPS 49607 49885 0.6 %

SAMRAI 9333 10639 14.0 %

HPCCG 659250 799871 21.3 %

phdMesh 43228 45897 6.2 %

Sweep3D 5816 6995 20.3 %

Table 4. Number of duplicate and similar pages in the
middle snapshot for each application

also change infrequently.2

Infrequent modification of similar and duplicate pages is important because it reduces
the overhead of maintaining similarity information. To effectively exploit memory content
similarity, we need to maintain metadata about which pages are duplicates of or similar to
each other. Each time a similar or duplicate page is modified, the similarity metadata needs
to be updated to account for the effect of the change. If the pages change infrequently, then
metadata maintenance will be less disruptive of the application.

To help answer the question of how often similar or duplicate pages change, Figure 4(c)
represents how the contents of application memory change over time for IRS. The address
space in this subfigure, as in the two preceding subfigures, has been divided into 256 buckets.
Here, as the color changes from yellow to orange, it represents an increase in the fraction of
pages whose contents have changed since the previous snapshot was taken. At a high level,
we observe that the dark orange bands (indicating large fractions of similar and duplicate
pages) in Figures 4(a) and 4(b) correspond to regions of yellow (indicating small fractions
of changed pages) in Figure 4(c). This is a promising trend; it suggests that similar and
duplicate pages change relatively infrequently.

Heat maps and change maps for all of the other applications that we considered are
available in Figures 16-24 of the Appendix. With the exception of SAMRAI and CTH, we
see very similar trends in the heat maps of the other applications; bands of orange in the
similarity heat maps correspond to regions that are relatively static. Based on this analysis,
CTH and SAMRAI are the most problematic of the applications that we considered. In
Figures 17 and 20, we observe that the color of a single bucket varies, sometimes dramati-

2We note that it is possible for a similar or duplicate page to be recategorized even if its contents of
the page itself are not altered. This can occur, for example, if the page to which a given page is similar is
modified.

16

0 120 240 360 480 600

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(a) Single Rank Heat Map

0 120 240 360 480 600

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(b) NUMA Domain Heat Map

0 120 240 360 480 600

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 changed
 pages

100 %
 changed
 pages

(c) Change Map

Figure 4. Address space behavior of IRS as a function of
application time.

cally, over the application’s lifetime. This suggests that these applications will require more
frequent maintenance of their similarity metadata.

In an effort to more fully understand the modification behavior of similar and duplicate
pages, Figure 5 presents a more detailed examination of a portion of the address space of
IRS. Figure 5(a) is the same as Figure 4(a) with one small change. About a quarter of the
way down the virtual address space is a small black rectangle. This rectangle represents the
excerpt of the virtual address space that we consider in detail in the remaining subfigures.
In Figure 5(b), each horizontal line represents a single page from the excerpt. Each page is
colored based on its categorization. Likewise, in Figure 5(c) each horizontal line represents
the modification history of a single page.

A distinct trend emerges from the detailed heat maps in Figures 5(b) and 5(c). As
indicated in the coarse-grained heat maps considered above, we observe that duplicate and
similar pages appear to change infrequently over the lifetime of the application. To explore

17

0 60 120 180 240 300 360 420 480 540 600

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(a) Full Heat Map. The small black
rectangle near the top of the figure
highlights the portion of the address
space considered in (b) and (c)

0 60 120 180 240 300 360 420 480 540 600

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

unique

zero

similar

duplicate

(b) Detailed Heat Map

0 60 120 180 240 300 360 420 480 540 600

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

changed

unchanged

(c) Detailed Change Map

Figure 5. Address space behavior of IRS as a function of
application time.

modification behavior in more detail, Figure 5 shows similarity and modification trends for
individual pages within a portion of the address space of rank 0 of IRS. Figures 5(b) and 5(c)
are almost mirror images of each other. To see this, consider the bottom of the the two figures;
each are dominated by a light blue region. The light blue region in Figure 5(b) represents
unique pages. The corresponding light blue region in Figure 5(b) represents pages that have
changed. Similarly, the upper portions of the address space are dominated by orange regions
in Figure 5(b) that represent duplicate and similar pages while the corresponding white
regions in Figure 5(c) respresent pages whose contents have not changed. In this detailed
look at the address space of IRS, we have a clear example of similar and duplicate pages
that remain unchanged while unique pages are modified frequently.

Finally, we consider the modification behavior of of the memory used by these eight
applications quantitatively. Table 5 illustrates how frequently similar and duplicate pages

18

Application
Changed Changed Changed Changed Changed

1+ Times 1 Time 2 Times 3 Times 4+ Times

AMG2006 20.2 % 12.0 % 3.8 % 3.0 % 1.5 %

CTH 39.1 % 6.5 % 3.5 % 14.1 % 15.0 %

IRS 31.7 % 17.2 % 0.1 % 0.0 % 14.4 %

LAMMPS 11.0 % 0.2 % 0.1 % 0.0 % 10.7 %

SAMRAI 82.2 % 16.0 % 6.9 % 35.9 % 23.4 %

HPCCG 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

phdMesh 6.9 % 1.7 % 0.4 % 0.3 % 4.4 %

Sweep3D 2.5 % 1.4 % 0.6 % 0.0 % 0.5 %

Table 5. Modification behavior of the pages in the memory
of Rank 0 that are ever categorized as similar or duplicate.

change. We begin by noting that for the purposes of this discussion, similar or duplicate
pages are those pages that are ever categorized as similar or duplicate. In the second column
of the table, we see the fraction of similar or duplicate pages that are modified during the
lifetime of the application. The subsequent columns break this fraction down based on the
number of times that a page changes.

The most striking feature of the data in this table is that for the majority of the ap-
plications that we considered, more than two-thirds of the duplicate and similar pages are
never modified. Moreover, for LAMMPS, HPCCG, phdMesh and Sweep3D, more 85% of the
similar and duplicate pages are static throughout the lifetime of the application. However,
SAMRAI, CTH and, to a lesser extent, IRS, are more problematic. More than 80% of the
similar and duplicate pages in SAMRAI are modified. Further, nearly two-thirds of all of
the similar and duplicate pages were changed three or more times. CTH sees substantially
fewer modifications, but nonetheless nearly a third of the similar and duplicate pages were
modified three or more times. This suggests that the overhead of maintaining similarity
metadata for these applications will be significant.

We observe that, for many of the applications that we considered, similar or duplicate
pages rarely change. Although we lack the application-specific knowledge to know definitively
the cause of this behavior, the data presented here suggests that the majority of similar or
duplicate pages are comprised of read-only or read-mostly data.

19

 0

 0.2

 0.4

 0.6

 0.8

 1

A
M

G
2006

C
TH

IR
S

LA
M

M
P
S

S
A
M

R
A
I

H
P
C
C
G

phdM
esh

S
w
eep3D

Patch 1-127 bytes
Patch 128-255 bytes
Patch 256-511 bytes

Patch 512-1023 bytes
Patch 1024-2047 bytes
Patch 2048-4095 bytes

Figure 6. Patch size distribution for rank 0 based on the
memory snapshot of each application that contains the small-
est fraction of similar and duplicate pages. Pages whose min-
imum patch size is less that 128 bytes are the pages that we
have categorized as Similar Pages throughout this document.

Patch Behavior

Throughout this document, we have considered the effect of defining similar pages based
on a patch size threshold of 128 bytes. This threshold represents a balance struck between
maximizing similarity and minimizing the size of metadata that must be maintained. To
characterize the benefits of increasing similarity by increasing the patch size threshold, Figure
6 illustrates the benefit of increasing the patch size. As we allow for larger and larger patches
the fraction of pages that are classified as similar increases. We note that in some cases,
cx bsdiff generates a patch that is larger than a page. For the purposes of this discussion,
we consider such pages to be unique.3

In Figure 6, three categories emerge: (a) applications for which the patches are almost
exclusively small (CTH and HPCCG); (b) applications that are dominated by large patches
(IRS, LAMMPS, SAMRAI and Sweep3D); and (c) applications for which the patches are
more or less evenly distributed (AMG2006 and phdMesh). For CTH and HPCCG, not

3Although we are treating these pages as unique in our analysis here, in practice it is straightforward to
capture the difference between any two pages in a single page.

20

only are the patches are relatively small but the number of potentially similar pages is also
relatively small. As a result, we expect the cost (in terms of metadata) of increasing the
patch size to extract additional similarity to be relatively small. On the other hand, for the
applications that are dominated by large patches, we expect the cost of a increasing the patch
size to grow rapidly. Finally, the relatively even distribution of patch sizes in AMG2006 and
phdMesh suggests that gains in similarity may be possible for relatively small increases in
total metadata.

Metadata Costs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.05 0.1 0.15 0.2 0.25 0.3

F
ra

c
ti
o
n
 S

im
ila

r

Metadata Size (fraction of application memory)

< 2048 byte patch
< 1024 byte patch

< 512 byte patch
< 128 byte patch

(a) AMG2006

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.05 0.1 0.15 0.2 0.25 0.3

F
ra

c
ti
o
n
 S

im
ila

r

Metadata Size (fraction of application memory)

< 2048 byte patch
< 1024 byte patch

< 512 byte patch
< 128 byte patch

(b) CTH

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.05 0.1 0.15 0.2 0.25 0.3

F
ra

c
ti
o
n
 S

im
ila

r

Metadata Size (fraction of application memory)

< 2048 byte patch
< 1024 byte patch

< 512 byte patch
< 128 byte patch

(c) IRS

Figure 7. Representative plots of the three categories of
metadata cost trends.

As shown in the preceding section, increasing the patch size threshold enables more
similarity to be extracted from the application’s memory. The primary cost of increasing
the patch size threshold is that the quantity of metadata that must be maintained also
increases. As we examine the fraction of similar pages in application memory as a function
of metadata size three categories emerge. In Figure 7, we provide plots for applications that
representative of these three categories. For the snapshot containing the smallest fraction
of similar and duplicate pages, these plots characterize the nature of the tradeoff between
the increase in similar (but not duplicate) pages and the required metadata. To illustrate
how these tradeoffs relate to specific patch size thresholds, we have plotted the results for
four different patch size thresholds ranging from 128 bytes to 2048 bytes. The slope of these
curves indicate how expensive it is to extract additional similarity.

A steep curve, as in Figure 7(a), indicates that extracting additional similarity is relatively
inexpensive. AMG, LAMMPS and phdMesh fall into this category. 25(b), 28(b), 31(b) For
these applications, increasing the patch size threshold results in significant increases in the
number of similar pages while imposing a relatively modest cost. For example, if we allowed
the metadata for AMG to occupy up to 5% of application memory, the total number of
similar and duplicate pages in AMG would approach 60%. For a similar cost, the number

21

Application
Similar and Duplicate Pages

original with metadata increase

AMG2006 61037 (29.1 %) 125290 (59.8 %)

CTH 16134 (35.3 %) 16746 (36.7 %)

IRS 14964 (32.8 %) 21146 (46.3 %)

LAMMPS 12275 (14.4 %) 27418 (32.1 %)

SAMRAI 1640 (16.8 %) 3306 (34.0 %)

HPCCG 152694 (68.8 %) 207429 (93.5 %)

phdMesh 8349 (10.9 %) 42651 (55.8 %)

Sweep3D 1457 (25.3 %) 2067 (35.9 %)

Table 6. Effect of Increasing Metadata Size. This table
quantifies the increase in similar and duplicate pages when
the metadata is allow to occupy 5% of application memory.
This data is based on the memory snapshot for each applica-
tion that contains the smallest fraction of similar and dupli-
cate pages.

of similar and duplicate pages in LAMMPS would rise to nearly 50%. Complete results for
allowing each application’s metadata to grow to 5% of application memory are shown in
Table 6.

However, for small increases in metadata, the cost curve for SAMRAI is relatively steep
and so we obtain inexpensive benefits. As a result, expanding to 5% of system memory yields
low-cost benefits. Beyond 5% of application memory, the curve flattens out and subsequent
gains are increasingly expensive.

For CTH, HPCCG, there is little cost and very modest benefit to increasing the patch
size threshold. Even for a very large patch threshold, the metadata will never As a result,
for these applications we would likley want to set a very high patch threshold. Finally, we
observe that our choice of 128 bytes as the patch size threshold has clearly struck the balance
in favor of minimizing metadata. For each application, the metadata necessary to manage
patches of this size is below 1% of application memory.

Related Work

Memory content similarity has been explored for more than a decade. As a result, a
significant body of relevant research has emerged. However, to our knowledge, we are the
first to consider the existence of both similar and duplicate pages in the memory of scientific

22

applications. Moreover, in the context of similar pages, ours is the first examinzation of the
costs and benefits of increasing the patch size threshold. Additionally, ours is the first to
consider the source of similar and duplicate pages in the memory of scientific applications.

To date, memory content similarity has been most thoroughly explored in the context
of data de-duplication. Although de-duplication has been examined in several contexts,
the preponderance of the relevant research has been in virtualization. In [3], the authors
introduced the concept of transparent memory sharing in VMMs. By intercepting disk
requests that DMA data into memory, the Disco VMM could consolidate read-only pages
(e.g., text segments of applications, read-only pages in the buffer cache4) containing data
from the disk across virtual machines. In some cases, this approach allowed the Disco VMM
to signficantly reduce memory consumption. For example, transparent memory sharing
allowed the VMM to reduce the total memory consumed by 8 VMs, each running the same
guest OS and workload, by more than half.

More recently, [17] described the broader approach to memory de-duplication that is
used in the VMware ESX server. Instead of intercepting disk requests, the authors propose
identifying all pages in a virtual machine by their contents. When any two pages are found
to have the same contents, the pages are consolidated using copy-on-write (COW). Applying
this approach to systems running as many as 10 identical VMs running the SPEC95 bench-
mark on Linux, the VMware ESX server is able to reduce memory consumption by nearly
60%.

The data we present here differs from these early de-duplication studies in a couple of key
respects. First, the applications considered in these studies have been those that are most
commonly used in practice with virtualization (e.g., web servers, databases and development
applications). Moreover, these studies examine applications running independently on indi-
vidual virtualized workstations. In contrast, we considered a suite of scientific applications
running on a single HPC system. Second, these virtualization studies explore sharing within
and across entire VMs. They allow for sharing between all of the applications running on a
VM as well as with the kernel. Our data was collected in the absence of virtualization and
represents content similarity that exists only within application memory. Third, in addition
to duplicate pages, we also identified pages that were similar but not identical.

The authors of [18] advocate broadening the scope of sharing in virutalization to consider
intranode sharing. To evaluate the feasibility of this approach, they consider the prevalence
of intranode sharing between nodes running several HPC applications. For some workloads
(notably HPCCG), they observe that significant inter- and intra-node sharing opportunities
exist. Based on these promising results, they propose a Content-Sharing Detection System
for exploiting intranode sharing in virtualized environments. Similarly, SBLLmalloc has been
used to demonstrate that memory consumption can be significantly reduced by consolidating
duplicate pages in the application memory of several HPC applications [2]. In several cases,
this approach yields memory savings in excess of 50%. Although we consider a different set

4Although the function of the buffer cache has since been folded into the page cache, this term reflects
time period in which this paper was written

23

of applications than [18] and [2], the most striking difference between our work and theirs
is that the data presented here in our paper presents a broader view of memory content by
examining both duplication and similarity in application memory.

Most memory de-duplication research has considered consolidating only duplicate pages.
However, the Difference Engine [4] introduced the idea that similar pages could also be
consolidated. In this context, two pages are similar if the difference between them can be
represented by an xdelta patch file that is smaller than 2kB. By relaxing the requirement
that only duplicate pages be consolidated, the authors show that, under some e-commerce
workloads, the Difference Engine can extract significantly more memory savings than the
VMware ESX server. Moreover, they show that the Difference Engine can reduce memory
consumption by more than 50% even for VMMs hosting a single VM. The data presented in
[4] was collected by modifying a Xen VMM and using it to host virtualized workstations run-
ning workloads consisting of a mix of web and database server and compilation benchmarks.
In contrast, we collected our data using by running several scientific applications natively
(i.e., without virtualization) on a single HPC system. Our results indicate that a significant
fraction of similar pages exist even when we exclude kernel memory and the memory of
ancilliary applications and only consider the memory of a single application. Moreover, we
have shown that similar pages exist even in scientific applications that have been carefully
designed for high performance on tightly-coupled systems.

In addition to virtualization, content duplication has been effectively exploited in other
domains. In context of data storage, reducing storage requirements in primary and archival
data storage applications by eliminating duplicate data blocks has been widely studied [12],
[20], [19]. Kernel Shared Memory (KSM) allows duplicate memory to be consolidated in
Linux with or without virtualization [1].

Conclusion

In this paper, we have presented the results of a detailed study of the application memory
of eight HPC applications. To the extent possible, we have considered the source of similar
and duplicate pages. We have also analyzed the effect of considering all of the application
memory in a NUMA domain. Additionally, we have presented data on the costs and benefits
of using different patch size thresholds. We discovered several interesting characteristics
of these applications. Based on the results and analysis presented above, we draw four
conclusions.

• Several HPC applications, including AMG, CTH, IRS and Sweep3D exhibit significant
memory similarity.

• Allowing similarity metadata to occupy a modest fraction (e.g., 5-10%) of application
memory would increase memory content similarity for several applications.

24

• Counterintuitively, considering all of the application memory in a NUMA domain does
not always yield more similar and duplicate pages.

• Similar and duplicate pages appear to be either read-only or read-mostly.

We believe that these results demonstrate that, for a meaningful fraction of HPC appli-
cations, significant memory similarity exists and that it may be possible to effectively exploit
it.

25

Appendix

Temporal Page Characterization

This section contains histograms showing how the categorization of application memory
pages changes over time. To put the results in the proper context, these figures also show
total memory used as a function of time.

 0

 20

 40

 60

 80

 100

0 60 120 180 240 300 360
 0

 50

 100

 150

 200

 250

P
e

rc
e

n
ta

g
e

 o
f

m
e

m
o

ry
 p

a
g

e
s

T
h

o
u

s
a

n
d

s
 o

f
4

k
B

 m
e

m
o

ry
 p

a
g

e
s

Application Time (seconds)

Duplicate Pages
Similar Pages
Zero Pages

Unique Pages
Memory Usage

(a) Rank 0

 0

 20

 40

 60

 80

 100

0 60 120 180 240 300 360
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

P
e

rc
e

n
ta

g
e

 o
f

m
e

m
o

ry
 p

a
g

e
s

T
h

o
u

s
a

n
d

s
 o

f
4

k
B

 m
e

m
o

ry
 p

a
g

e
s

Application Time (seconds)

Duplicate Pages
Similar Pages
Zero Pages

Unique Pages
Memory Usage

(b) NUMA

Figure 8. Page categorization in AMG2006 as a function
of application time.

 0

 20

 40

 60

 80

 100

0 60 120 180 240 300 360 420 480 540
 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

P
e

rc
e

n
ta

g
e

 o
f

m
e

m
o

ry
 p

a
g

e
s

T
h

o
u

s
a

n
d

s
 o

f
4

k
B

 m
e

m
o

ry
 p

a
g

e
s

Application Time (seconds)

Duplicate Pages
Similar Pages
Zero Pages

Unique Pages
Memory Usage

(a) Rank 0

 0

 20

 40

 60

 80

 100

0 60 120 180 240 300 360 420 480 540
 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

P
e

rc
e

n
ta

g
e

 o
f

m
e

m
o

ry
 p

a
g

e
s

T
h

o
u

s
a

n
d

s
 o

f
4

k
B

 m
e

m
o

ry
 p

a
g

e
s

Application Time (seconds)

Duplicate Pages
Similar Pages
Zero Pages

Unique Pages
Memory Usage

(b) NUMA

Figure 9. Page categorization in CTH as a function of
application time.

26

 0

 20

 40

 60

 80

 100

0 60 120 180 240 300 360 420 480 540 600
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50
P

e
rc

e
n

ta
g

e
 o

f
m

e
m

o
ry

 p
a

g
e

s

T
h

o
u

s
a

n
d

s
 o

f
4

k
B

 m
e

m
o

ry
 p

a
g

e
s

Application Time (seconds)

Duplicate Pages
Similar Pages
Zero Pages

Unique Pages
Memory Usage

(a) Rank 0

 0

 20

 40

 60

 80

 100

0 60 120 180 240 300 360 420 480 540 600
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

P
e

rc
e

n
ta

g
e

 o
f

m
e

m
o

ry
 p

a
g

e
s

T
h

o
u

s
a

n
d

s
 o

f
4

k
B

 m
e

m
o

ry
 p

a
g

e
s

Application Time (seconds)

Duplicate Pages
Similar Pages
Zero Pages

Unique Pages
Memory Usage

(b) NUMA

Figure 10. Page categorization in IRS as a function of
application time.

 0

 20

 40

 60

 80

 100

0 60 120 180 240 300 360 420 480 540 600
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

P
e

rc
e

n
ta

g
e

 o
f

m
e

m
o

ry
 p

a
g

e
s

T
h

o
u

s
a

n
d

s
 o

f
4

k
B

 m
e

m
o

ry
 p

a
g

e
s

Application Time (seconds)

Duplicate Pages
Similar Pages
Zero Pages

Unique Pages
Memory Usage

(a) Rank 0

 0

 20

 40

 60

 80

 100

0 60 120 180 240 300 360 420 480 540 600
 0

 50

 100

 150

 200

 250

 300

 350

P
e

rc
e

n
ta

g
e

 o
f

m
e

m
o

ry
 p

a
g

e
s

T
h

o
u

s
a

n
d

s
 o

f
4

k
B

 m
e

m
o

ry
 p

a
g

e
s

Application Time (seconds)

Duplicate Pages
Similar Pages
Zero Pages

Unique Pages
Memory Usage

(b) NUMA

Figure 11. Page categorization in LAMMPS as a function
of application time.

27

 0

 20

 40

 60

 80

 100

0 60 120 180 240 300 360 420 480
 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11
P

e
rc

e
n

ta
g

e
 o

f
m

e
m

o
ry

 p
a

g
e

s

T
h

o
u

s
a

n
d

s
 o

f
4

k
B

 m
e

m
o

ry
 p

a
g

e
s

Application Time (seconds)

Duplicate Pages
Similar Pages
Zero Pages

Unique Pages
Memory Usage

(a) Rank 0

 0

 20

 40

 60

 80

 100

0 60 120 180 240 300 360 420 480
 0

 5

 10

 15

 20

 25

 30

 35

 40

P
e

rc
e

n
ta

g
e

 o
f

m
e

m
o

ry
 p

a
g

e
s

T
h

o
u

s
a

n
d

s
 o

f
4

k
B

 m
e

m
o

ry
 p

a
g

e
s

Application Time (seconds)

Duplicate Pages
Similar Pages
Zero Pages

Unique Pages
Memory Usage

(b) NUMA

Figure 12. Page categorization in SAMRAI as a function
of application time.

 0

 20

 40

 60

 80

 100

0 60 120 180 240 300 360 420
 0

 50

 100

 150

 200

 250

P
e

rc
e

n
ta

g
e

 o
f

m
e

m
o

ry
 p

a
g

e
s

T
h

o
u

s
a

n
d

s
 o

f
4

k
B

 m
e

m
o

ry
 p

a
g

e
s

Application Time (seconds)

Duplicate Pages
Similar Pages
Zero Pages

Unique Pages
Memory Usage

(a) Rank 0

 0

 20

 40

 60

 80

 100

0 60 120 180 240 300 360 420
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

P
e

rc
e

n
ta

g
e

 o
f

m
e

m
o

ry
 p

a
g

e
s

T
h

o
u

s
a

n
d

s
 o

f
4

k
B

 m
e

m
o

ry
 p

a
g

e
s

Application Time (seconds)

Duplicate Pages
Similar Pages
Zero Pages

Unique Pages
Memory Usage

(b) NUMA

Figure 13. Page categorization in HPCCG as a function
of application time.

28

 0

 20

 40

 60

 80

 100

0 60 120 180 240 300 360 420 480
 0

 10

 20

 30

 40

 50

 60

 70

 80
P

e
rc

e
n

ta
g

e
 o

f
m

e
m

o
ry

 p
a

g
e

s

T
h

o
u

s
a

n
d

s
 o

f
4

k
B

 m
e

m
o

ry
 p

a
g

e
s

Application Time (seconds)

Duplicate Pages
Similar Pages
Zero Pages

Unique Pages
Memory Usage

(a) Rank 0

 0

 20

 40

 60

 80

 100

0 60 120 180 240 300 360 420 480
 0

 50

 100

 150

 200

 250

 300

 350

P
e

rc
e

n
ta

g
e

 o
f

m
e

m
o

ry
 p

a
g

e
s

T
h

o
u

s
a

n
d

s
 o

f
4

k
B

 m
e

m
o

ry
 p

a
g

e
s

Application Time (seconds)

Duplicate Pages
Similar Pages
Zero Pages

Unique Pages
Memory Usage

(b) NUMA

Figure 14. Page categorization in phdMesh as a function
of application time.

 0

 20

 40

 60

 80

 100

0 60 120 180 240 300 360 420
 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

P
e

rc
e

n
ta

g
e

 o
f

m
e

m
o

ry
 p

a
g

e
s

T
h

o
u

s
a

n
d

s
 o

f
4

k
B

 m
e

m
o

ry
 p

a
g

e
s

Application Time (seconds)

Duplicate Pages
Similar Pages
Zero Pages

Unique Pages
Memory Usage

(a) Rank 0

 0

 20

 40

 60

 80

 100

0 60 120 180 240 300 360 420
 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

P
e

rc
e

n
ta

g
e

 o
f

m
e

m
o

ry
 p

a
g

e
s

T
h

o
u

s
a

n
d

s
 o

f
4

k
B

 m
e

m
o

ry
 p

a
g

e
s

Application Time (seconds)

Duplicate Pages
Similar Pages
Zero Pages

Unique Pages
Memory Usage

(b) NUMA

Figure 15. Page categorization in Sweep3D as a function
of application time.

29

Heat Maps

This section includes heatmaps indicating both similarity and modification frequency for
each of the eight applications that we considered.

0 120 240 360

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(a) Single Rank Heat Map

0 120 240 360

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(b) NUMA Domain Heat Map

0 120 240 360

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 changed
 pages

100 %
 changed
 pages

(c) Change Map

Figure 16. Address space behavior of AMG2006 as a func-
tion of application time.

30

0 120 240 360 480

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(a) Single Rank Heat Map

0 120 240 360 480

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(b) NUMA Domain Heat Map

0 120 240 360 480

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 changed
 pages

100 %
 changed
 pages

(c) Change Map

Figure 17. Address space behavior of CTH as a function
of application time.

31

0 120 240 360 480 600

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(a) Single Rank Heat Map

0 120 240 360 480 600

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(b) NUMA Domain Heat Map

0 120 240 360 480 600

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 changed
 pages

100 %
 changed
 pages

(c) Change Map

Figure 18. Address space behavior of IRS as a function of
application time.

32

0 120 240 360 480 600

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(a) Single Rank Heat Map

0 120 240 360 480 600

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(b) NUMA Domain Heat Map

0 120 240 360 480 600

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 changed
 pages

100 %
 changed
 pages

(c) Change Map

Figure 19. Address space behavior of LAMMPS as a func-
tion of application time.

33

0 120 240 360 480

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(a) Single Rank Heat Map

0 120 240 360 480

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(b) NUMA Domain Heat Map

0 120 240 360 480

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 changed
 pages

100 %
 changed
 pages

(c) Change Map

Figure 20. Address space behavior of SAMRAI as a func-
tion of application time.

34

0 120 240 360

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(a) Single Rank Heat Map

0 120 240 360

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(b) NUMA Domain Heat Map

0 120 240 360

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 changed
 pages

100 %
 changed
 pages

(c) Change Map

Figure 21. Address space behavior of Rank 0 running
HPCCG as a function of application time.

35

0 120 240 360

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(a) Single Rank Heat Map

0 120 240 360

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(b) NUMA Domain Heat Map

0 120 240 360

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 changed
 pages

100 %
 changed
 pages

(c) Change Map

Figure 22. Address space behavior of Rank 1 running
HPCCG as a function of application time.

36

0 120 240 360 480

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(a) Single Rank Heat Map

0 120 240 360 480

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(b) NUMA Domain Heat Map

0 120 240 360 480

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 changed
 pages

100 %
 changed
 pages

(c) Change Map

Figure 23. Address space behavior of phdMesh as a func-
tion of application time.

37

0 120 240 360 480

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(a) Single Rank Heat Map

0 120 240 360 480

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 similarity

100 %
 similarity

(b) NUMA Domain Heat Map

0 120 240 360 480

V
ir
tu

a
l
A

d
d

re
s
s
 S

p
a

c
e

Application Time (seconds)

unmapped

0 %
 changed
 pages

100 %
 changed
 pages

(c) Change Map

Figure 24. Address space behavior of Sweep3d as a func-
tion of application time.

38

Patch Size Distribution & Metadata Costs

This section includes plots illustrating the patch size distribution in the memory of Rank
0 and the associated metadata costs as a function of the size of application memory for
each application over its lifetime. The metadata costs are computed based on the memory
snapshot, excluding the initialization and finalization snapshots, of each application that
contains the smallest fraction of similar and duplicate pages.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 60 120 180 240 300 360

F
ra

c
ti
o

n
 o

f
m

e
m

o
ry

 p
a

g
e

s

Application Time (seconds)

Patch 1-127 bytes
Patch 128-255 bytes
Patch 256-511 bytes

Patch 512-1023 bytes
Patch 1024-2047 bytes
Patch 2048-4095 bytes

(a) Patch Size Distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.05 0.1 0.15 0.2 0.25 0.3

F
ra

c
ti
o

n
 S

im
ila

r
Metadata Size (fraction of application memory)

< 2048 byte patch
< 1024 byte patch

< 512 byte patch
< 128 byte patch

(b) Metadata Costs

Figure 25. Patch size data for AMG as a function of ap-
plication time.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

0 60 120 180 240 300 360 420 480 540

F
ra

c
ti
o

n
 o

f
m

e
m

o
ry

 p
a

g
e

s

Application Time (seconds)

Patch 1-127 bytes
Patch 128-255 bytes
Patch 256-511 bytes

Patch 512-1023 bytes
Patch 1024-2047 bytes
Patch 2048-4095 bytes

(a) Patch Size Distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.05 0.1 0.15 0.2 0.25 0.3

F
ra

c
ti
o

n
 S

im
ila

r

Metadata Size (fraction of application memory)

< 2048 byte patch
< 1024 byte patch

< 512 byte patch
< 128 byte patch

(b) Metadata Costs

Figure 26. Patch size data for CTH as a function of appli-
cation time.

39

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 60 120 180 240 300 360 420 480 540 600

F
ra

c
ti
o

n
 o

f
m

e
m

o
ry

 p
a

g
e

s

Application Time (seconds)

Patch 1-127 bytes
Patch 128-255 bytes
Patch 256-511 bytes

Patch 512-1023 bytes
Patch 1024-2047 bytes
Patch 2048-4095 bytes

(a) Patch Size Distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.05 0.1 0.15 0.2 0.25 0.3

F
ra

c
ti
o

n
 S

im
ila

r

Metadata Size (fraction of application memory)

< 2048 byte patch
< 1024 byte patch

< 512 byte patch
< 128 byte patch

(b) Metadata Costs

Figure 27. Patch size data for IRS as a function of appli-
cation time.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0 60 120 180 240 300 360 420 480 540 600

F
ra

c
ti
o

n
 o

f
m

e
m

o
ry

 p
a

g
e

s

Application Time (seconds)

Patch 1-127 bytes
Patch 128-255 bytes
Patch 256-511 bytes

Patch 512-1023 bytes
Patch 1024-2047 bytes
Patch 2048-4095 bytes

(a) Patch Size Distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.05 0.1 0.15 0.2 0.25 0.3

F
ra

c
ti
o

n
 S

im
ila

r

Metadata Size (fraction of application memory)

< 2048 byte patch
< 1024 byte patch

< 512 byte patch
< 128 byte patch

(b) Metadata Costs

Figure 28. Patch size data for LAMMPS as a function of
application time.

40

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0 60 120 180 240 300 360 420 480

F
ra

c
ti
o

n
 o

f
m

e
m

o
ry

 p
a

g
e

s

Application Time (seconds)

Patch 1-127 bytes
Patch 128-255 bytes
Patch 256-511 bytes

Patch 512-1023 bytes
Patch 1024-2047 bytes
Patch 2048-4095 bytes

(a) Patch Size Distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.05 0.1 0.15 0.2 0.25 0.3

F
ra

c
ti
o

n
 S

im
ila

r

Metadata Size (fraction of application memory)

< 2048 byte patch
< 1024 byte patch

< 512 byte patch
< 128 byte patch

(b) Metadata Costs

Figure 29. Patch size data for SAMRAI as a function of
application time.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

0 60 120 180 240 300 360 420

F
ra

c
ti
o

n
 o

f
m

e
m

o
ry

 p
a

g
e

s

Application Time (seconds)

Patch 1-127 bytes
Patch 128-255 bytes
Patch 256-511 bytes

Patch 512-1023 bytes
Patch 1024-2047 bytes
Patch 2048-4095 bytes

(a) Patch Size Distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.05 0.1 0.15 0.2 0.25 0.3

F
ra

c
ti
o

n
 S

im
ila

r

Metadata Size (fraction of application memory)

< 2048 byte patch
< 1024 byte patch

< 512 byte patch
< 128 byte patch

(b) Metadata Costs

Figure 30. Patch size data for HPCCG as a function of
application time.

41

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 60 120 180 240 300 360 420 480

F
ra

c
ti
o

n
 o

f
m

e
m

o
ry

 p
a

g
e

s

Application Time (seconds)

Patch 1-127 bytes
Patch 128-255 bytes
Patch 256-511 bytes

Patch 512-1023 bytes
Patch 1024-2047 bytes
Patch 2048-4095 bytes

(a) Patch Size Distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.05 0.1 0.15 0.2 0.25 0.3

F
ra

c
ti
o

n
 S

im
ila

r

Metadata Size (fraction of application memory)

< 2048 byte patch
< 1024 byte patch

< 512 byte patch
< 128 byte patch

(b) Metadata Costs

Figure 31. Patch size data for phdMesh as a function of
application time.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 60 120 180 240 300 360 420

F
ra

c
ti
o

n
 o

f
m

e
m

o
ry

 p
a

g
e

s

Application Time (seconds)

Patch 1-127 bytes
Patch 128-255 bytes
Patch 256-511 bytes

Patch 512-1023 bytes
Patch 1024-2047 bytes
Patch 2048-4095 bytes

(a) Patch Size Distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.05 0.1 0.15 0.2 0.25 0.3

F
ra

c
ti
o

n
 S

im
ila

r

Metadata Size (fraction of application memory)

< 2048 byte patch
< 1024 byte patch

< 512 byte patch
< 128 byte patch

(b) Metadata Costs

Figure 32. Patch size data for Sweep3D as a function of
application time.

42

References

[1] Arcangeli, A., Eidus, I., and Wright, C. Increasing memory density by using
KSM. In Proceedings of the Linux Symposium, 2009, Montreal, Quebec (2009), pp. 19–
28.

[2] Biswas, S., Supinski, B. R. d., Schulz, M., Franklin, D., Sherwood, T.,
and Chong, F. T. Exploiting data similarity to reduce memory footprints. In Pro-
ceedings of the 2011 IEEE International Parallel & Distributed Processing Symposium
(Washington, DC, USA, 2011), IPDPS ’11, IEEE Computer Society, pp. 152–163.

[3] Bugnion, E., Devine, S., Govil, K., and Rosenblum, M. Disco: running com-
modity operating systems on scalable multiprocessors. ACM Trans. Comput. Syst. 15,
4 (Nov. 1997), 412–447.

[4] Gupta, D., Lee, S., Vrable, M., Savage, S., Snoeren, A. C., Varghese,
G., Voelker, G. M., and Vahdat, A. Difference Engine: Harnessing memory
redundancy in virtual machines. Commun. ACM 53, 10 (Oct. 2010), 85–93.

[5] Henson, V., and Yang, U. BoomerAMG: A parallel algebraic multigrid solver and
preconditioner. Applied Numerical Mathematics 41, 1 (2002), 155–177.

[6] Heroux, M. A., Doerfler, D. W., Crozier, P. S., Willenbring, J. M., Ed-
wards, H. C., Williams, A., Rajan, M., Keiter, E. R., Thornquist, H. K.,
and Numrich, R. W. Improving performance via mini-applications. Tech. Rep.
SAND2009-5574, Sandia National Laboratory, 2009.

[7] Lawrence Livermore National Laboratories. IRS: Implicit Radiation Solver
1.4 Build Notes. https://asc.llnl.gov/computing_resources/purple/archive/

benchmarks/irs/irs.readme.html.

[8] Lawrence Livermore National Laboratories. SAMRAI. https://

computation.llnl.gov/casc/SAMRAI/index.html.

[9] Lawrence Livermore National Laboratories. ASC Sequoia Benchmark Codes.
https://asc.llnl.gov/sequoia/benchmarks, August 2009.

[10] Los Alamos National Laboratories. Sweep3d. http://www.c3.lanl.gov/pal/

software/sweep3d/sweep3d_readme.html, 1999.

[11] McGlaun, J., Thompson, S., and Elrick, M. CTH: a three-dimensional shock
wave physics code. International Journal of Impact Engineering 10, 1 (1990), 351–360.

43

[12] Quinlan, S., and Dorward, S. Venti: a new approach to archival storage. In
Proceedings of the FAST 2002 Conference on File and Storage Technologies (2002),
vol. 4.

[13] Sandia National Laboratories. Mantevo. http://software.sandia.gov/

mantevo.

[14] Sandia National Laboratories. The LAMMPS molecular dynamics simulator.
http://lammps.sandia.gov, April 2010.

[15] Tuininga, A. cx bsdiff. http://starship.python.net/crew/atuining/cx_bsdiff/
index.html, February 2006.

[16] Vaughan, C., Rajan, M., Barrett, R., Doerfler, D., and Pedretti, K.
Investigating the impact of the cielo cray xe6 architecture on scientific application codes.
In Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011
IEEE International Symposium on (2011), IEEE, pp. 1831–1837.

[17] Waldspurger, C. A. Memory resource management in VMware ESX server. SIGOPS
Oper. Syst. Rev. 36, SI (Dec. 2002), 181–194.

[18] Xia, L., and Dinda, P. A. A case for tracking and exploiting inter-node and intra-
node memory content sharing in virtualized large-scale parallel systems. In Proceedings
of the 6th international workshop on Virtualization Technologies in Distributed Com-
puting (New York, NY, USA, 2012), VTDC ’12, ACM, pp. 11–18.

[19] Yang, T., Jiang, H., Feng, D., Niu, Z., Zhou, K., and Wan, Y. DEBAR:
A scalable high-performance de-duplication storage system for backup and archiving.
In Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on
(2010), IEEE, pp. 1–12.

[20] Zhu, B., Li, K., and Patterson, H. Avoiding the disk bottleneck in the data
domain deduplication file system. In Proceedings of the 6th USENIX Conference on File
and Storage Technologies (Berkeley, CA, USA, 2008), FAST’08, USENIX Association,
pp. 18:1–18:14.

44

DISTRIBUTION:

1 MS 1319 Kurt Ferreira, 1423

1 MS 1319 Scott Levy, 1423

1 MS 1322 Aidan Thompson, 1425

1 MS 1318 Christian Trott, 1426

1 MS 0899 Technical Library, 9536 (electronic copy)

1 MS 0359 D. Chavez, LDRD Office, 1911

45

46

v1.37

(rJ ij Sandia National Laboratories

