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Abstract 

We developed an algorithm to perform simulations of a supply network for crude oil 
and refined products in order to estimate the consequences of disruptions to 
components of the network. Components include oil fields, import terminals, 
refineries, transmission pipelines, tank farms, and distribution terminals. The physical 
system is represented as network connections, capacities, and inventories.  

The governing equations describe mass balance in a non-linear diffusive system in 
which flows in the network are along gradients in a potential field.  Each node in the 
network has a defined storage capacity and desired storage amount. The potential at 
each node is a function of the difference between the actual and desired amount of 
fluid stored. The potential can be thought of as the balance between the desire to 
increase inflows to maintain the desired storage level and the willingness to provide 
fluid for consumption or outflow to downstream nodes. 
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INTRODUCTION 


Our objective in developing this algorithm is to perform simulations of a supply network for 
crude oil and refined products in order to estimate the consequences of disruptions to 
components of the network. Individual components of this network represented by the algorithm 
include oil fields, petroleum (crude oil and refined products) import terminals, refineries, 
transmission pipelines, tank farms, and distribution terminals. 

Three high-level requirements for the algorithm are: 

Flows of petroleum over the network are driven by the demand to consume refined products 
aggregated at distribution terminals. 

The algorithm strives to provide the amount of fuel normally consumed at distribution 
terminals. Shortages of fuel occur if fuel is physically limited. 

Flows of petroleum are constrained by the capacities of network components. 

Network components that have capacities include crude oil production from oilfields, 
transmission pipelines, refineries, tank farms, and terminals for water-borne shipments of 
petroleum.  Reduced capacity of any of these components could contribute to fuel 
shortages at distribution terminals. 

Flows of petroleum adapt to minimize the impacts of disruptions to network components. 

The simulated response to a disruption to any component includes dynamic rerouting of 
shipments, drawdowns of inventory, and using surge capacity in refining, pipeline 
shipments, and petroleum imports to mitigate the impacts of a disruption. 

The ability of an actual petroleum network to respond to disruptions depends on both the 
capacity of the engineered system and human business and operational decisions.  Selecting an 
approach to best simulate this mixed human- physical system for the intended use is challenging. 

Given that engineering models of petroleum infrastructures that solve fluid dynamic equations 
are readily available, it is tempting to use these models to represent the physical part of the 
mixed system.  Our experience is that this approach is problematic for three reasons.  First, it is 
not practical to build models of large networks (for example, the entire U.S.) because the 
engineering details of system components are not available outside of the private companies that 
own and operate them. Second, if such a model could be constructed it would be overly 
complicated and expensive.  The third reason is that an engineering model of a petroleum 
network would have to be “operated” by an analyst or an algorithm.  For example, if a business 
decision is made to increase flow in a pipeline, an engineering decision must be made to adjust a 
pump rate to accomplish the flow increase.  The instruction to adjust the pump rate would have 
to be provided to the simulation.  For disruption analyses, we find more value in simulating 
business decisions than engineering operations because the business decisions drive the 
operations. Consequently, this algorithm represents the physical system as network connections, 
capacities, and inventories rather than engineering descriptions of components. Flows on the 
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network are driven by simple business rules that can be adjusted to represent different 
assumptions about operations or policies.  

The basic assumption of the business rules is that the system, through market behavior and 
common business practices, will use all available capacity to minimize fuel shortages to 
customers. Therefore simulated fuel shortages (defined as consumption less than during 
undisturbed conditions) indicate that the simulated network is constrained in some way such that 
it cannot provide all of the fuel normally consumed at that location. In this sense the simulation 
predicts the best plausible outcome. 

The governing equations describe mass balance in a non-linear diffusive system in which flows 
in the network are along gradients in a potential field.  Each node in the network has a defined 
storage capacity and desired storage amount. The potential at each node is a function of the 
difference between the actual and desired amount of petroleum stored.  The potential can be 
thought of as the balance between the desire to increase inflows to maintain the desired storage 
level and the willingness to provide fluid for consumption or outflow to downstream nodes. 

Flows on links are a nonlinear function of the potential difference across the link and link 
capacity. The function assures that flow approaches zero at very small gradients of potential and 
approaches the maximum capacity at large gradients.  This function assures that flows on the 
network are constrained by capacity. 

Consumption at each distribution terminal is a function of the potential at that node.  That is, 
consumption is a potential-dependent flow on the network boundary.  It is a proxy for the effect 
of price on demand. Consumption declines as storage at the distribution terminals falls below its 
desired level. Inflows to the network are represented as fixed potential boundary conditions 
connected to the network by a link with fixed maximum capacity.  This combination of boundary 
conditions assures that flow in the network will be driven by demand for consumption. 

Finally, the consequence of a disruption should include the time it takes for the system to 
replenish inventories of petroleum after the disruption ends. Defining the potential at each node 
as a function of the difference between the actual and desired amount of petroleum stored assures 
that the simulated system will return to its pre-disruption condition at some time after the 
disrupted component is repaired. 
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NETWORK FLOW EQUATIONS 


Network flow is described by a diffusion equation with non-linearities introduced to model 
capacity limits in the system.  The system state is defined by a potential function {si(t)} defined 
at the network nodes i. A link connecting nodes i and j allows flow between the nodes from the 
node with higher potential to the node with lower potential. Flow rates are limited by a (directed) 
capacity associated with each link, cij. Assuming si > sj, the flow from node i to node j is given 
by: 

    (1)  

where uij  is a utilization parameter and the function f(x) models linear resistance as x->0 and 
enforces the capacity limit for large x:

    (2)  

Figure 1. Graph of Equation 2. 

Flow through the network is driven by a set of specified withdrawal rates and a set of source 
nodes with constraints on their inflow rate. Source behavior at a node k is modeled as a fixed 
potential  connected to node k through a capacity-limited link.  Source flow into node k is 
then simply given by equation (1): 

     (3)  

The fixed potential  may be the same for all sources in the model, or may be specified 
separately for each source.  In either case, the actual flow rate from the source into node k can be 
adjusted by changing the utilization factor . 
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 ݀ is characterized by a desired flow rate lDemand at a sink node . In general we assume that the 
baseline system capacities can satisfy the set of demands, so that there is a feasible solution to 
the set of equations for node potentials. In equilibrium, the net flow at each node i is 0: 

െ ݀௦ ∑ݍݍ  

ሽ is obtained by solving equations (1-4). 

ൌ 0 ݅    (4) 
  

̂ݏሼThe equilibrium solution 

 ݀When the network is disrupted, the baseline demand flows  may not be achievable. The 
system should allow for demand flows to be reduced as stress in the system increases. We do this 
by replacing the fixed-flow demands with fixed potentials in the form of (1) whose parameters 
are derived to satisfy the baseline demands. Each demand node l has an associated relative surge 
consumption ߳  0 and a demand utilization ݑௗ. The capacity of the new demand link is then 

 ݀Because the flow rate is (by definition) .,ሻ1  ߳ሺ݀
must satisfy: ,ௗݏ

, the fixed potential for the demand node, 

݀ ൌ ݀ሺ1  ߳ሻ ݂ሺሺ̂ݏ െ ௗሻݑௗሻݏ     (5)  

Using (2) for the relationship between potential difference and relative flow, 

ൌ ݏௗݏ̂ െ ଵ ଵ
ଵൗଶ

ቂ ቃ
௨ ሺଵାఢሻమିଵ

     (6) 
  

Each node has some capacity to store fluid, and the stored volume vj adjusts to transient 
imbalances in flow induced by changes in the system structure or in external stress.  Transient 
equations for {si(t)} reflect the following assumptions: 

 ̂ݏThe equilibrium state 

fraction ߚof the node’s storage capacity ݒ
் . This fraction can vary across nodes but will 

generally be specified as a global constant. 

 Small variations in si(t) reflect changes in stored volume proportional to the node’s 
capacity. 

 Stored volume at a node can never be less than 0 and never be greater than the node’s 
capacity. 

The first two assumptions suggest a linear relationship between si and vj near equilibrium, while 
the last shows that nonlinearities are needed to deal with limiting conditions. The properties of 
the required function are sketched below: 


  is associated with a stored volume equal to some specified 
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Figure 2. Dependence of stored node volume on state variable ࢙. 
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A simple function honoring the desired constraints is: 

ೞషೌ
௩ሺ௧ሻ ൌ ଵ ್

௩ ଶ
ሼ1  భ/మ ሽ    (7)  

 ቂଵାሺೞషೌ ቃ
್ 
ሻమ

Where a and b can be expressed in terms of the target fraction ߚ and the storativity ߛ 

ܾ ൌ  ଵ ሾ1 െ  ሺ2ߚ െ 1ሻଶሿଵ/ଶ      (8)  
ଶఊ 

ଵ/ଶሺଶఉିଵሻమ ቃെ ܾ ̂ܽݏ ൌ  ቂ      (9)  
ଵିሺଶఉିଵሻమ

Parameters ߚ and ߛ do not figure in the equilibrium solution, and may be assigned 
independently from the basic network definition. This separation permits alternative policies for 
baseline inventory and willingness to release inventory to be evaluated without having to repeat 
derivation of the baseline potentials. 
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In the transient case, net inflow into a node results in the accumulation of stored fluid, and the 
dynamic equations for the state variables can be derived from mass conservation: 

െ ݀௦ ∑ݍݍ  

Equation 10 along with (1-3) define the transient equations for s. 

 ିଷ/ଶ ௗ௦ൌ ௗ௩ ൌ ௗ௩


 ௗ௦   ቂ1  ሺ௦ି ቃ 

ௗ௧ ௗ௦ ௗ௧
ൌ
௩

ଶ 
ሻଶ

ௗ௧
݅ (10) 
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INPUTS AND OUTPUTS 

The algorithm requires the network properties defined below.  Some are used in the equilibrium 
solution, others in the transient solution. Some properties may have the same value for all 
network elements and so be specified globally. 

Table 1. Node Properties 

Name Description Transient Only Other 
Constraints 

Optional 
Global 
Default 

ݏ Source potential Source 
nodes 

Yes 

௦ܿ Source capacity Source 
nodes 

 ௦ Source utilization Sourceݑ
nodes 

Yes 

݀ Sink (demand) rate Sink nodes 

߳ Sink relative surge 
consumption 

 Sink nodes Yes 

 ௗ Sink utilization Sink nodes Yesݑ

ݒ
் Storage capacity Yes 

  Storage targetߚ
fraction 

Yes Yes 

  Storativity Yes Yesߛ
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Table 2. Link properties 

Name Description Optional 
Global 
Default 

ܿ Link capacity 

  Link utilization Yesݑ

Transient behavior is induced by changing the properties of one or more network elements. 
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NUMERICAL IMPLEMENTATION 

The equations for the steady-state and transient flows can be readily formulated for solution by 
one of the standard numerical methods libraries such as the Apache commons math library 
(http://commons.apache.org/math/). However the nonlinearities in the resistance term (Equation 
2) and storage term (Equation 7) complicate the solution of the flow equations. As link flows 

changes in potential. At small flow rates, 

approach their capacities, for example, flow rates become decreasingly sensitive to small 
ௗ 

,ൌ 0.95  ሻݔሺ ݂, however where՜ 1
ௗ௫ 

ௗ

ௗ௫ 
ൌ 0.05. Such 

large contrasts in coefficients tend to make the flow equation matrix poorly conditioned, making 
convergence slow and subject to large local balance errors. There are several strategies for 
improving solution performance, such as local linearization of the flow equations around the 
current estimate for the solution, accelerating convergence by using local mass balance errors 
and approximations of the governing equations to find locally-valid analytical solutions, and by 
inflating link capacities to obtain an initial solution, which is iteratively used to seed a solution 
with capacities that approach the actual values. Direction-dependence of link capacities can 
potentially lead to instabilities in solution of the steady-state equations, especially if the 
capacities are updated between iterations on the basis of changes in apparent flow directions. We 
do not have enough experience to judge how often this might occur in practice, however 
establishing flow directions at the beginning of a solution cycle, and checking for consistency 
once convergence has been achieved, seems a reasonable precaution. 
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