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Abstract 

 
The existence of impacts in mechanical systems inherently makes these systems 
nonlinear in nature.  As a result, these systems can be difficult to thoroughly 
characterize.  Furthermore, the results obtained through the analysis of these systems 
can be highly dependent on the models used to describe the contact during an impact 
event.  Due to the inherent difficulties in the analysis of systems with impacts, more 
efficient methods are desired to carry out these analyses and compare the results 
obtained from different contact models.  This report proposes numerical continuation 
as an efficient method for the analysis of impact systems and presents the results of 
an analysis of a single degree of freedom impact oscillator.  Also, recommendations 
are given for future improvements to this method in order to make it practical for the 
analysis of complex systems. 
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1.  INTRODUCTION 
 
Countless mechanical systems contain components that experience impact behavior.  This 
behavior, sometimes intentionally designed for, often introduces undesirable dynamics, such as 
wear and premature failure.  In other cases, such as the case of impact dampers used to reduce 
vibrations in large buildings, impacts are a necessary behavior for the proper functioning of a 
system.  The area of impact dynamics is an important field of research for any applications 
involving contact between bodies. 
 
Mechanical impact is an inherently nonlinear phenomenon, which can have dramatic effects on 
their responses.  The responses predicted by mathematical analyses can vary significantly with 
the methods used to model the contact experienced during impact [1].  In an effort to deal with 
the computational difficulties associated with the modeling of mechanical systems with impacts 
(impact systems), an efficient method is sought to simulate these systems and compare results 
using several different contact models.  This report details the progress made during the author’s 
summer internship period toward the implementation of such a method for the analysis of forced 
oscillating impact systems. 
 
The information and quantities to be obtained through these simulations consisted of the 
following: 1) frequency response diagrams of position amplitude and contact velocity, 2) 
Lyapunov exponents to determine stability, 3) wear work rates to determine the degree of 
damage to a system caused by impact, and 4) phase portraits and Poincaré sections to visualize 
responses.  Calculation of all of these items requires the discovery of periodic solutions of the 
equations of motion of the system being analyzed.  The method used in this project to obtain 
these periodic solutions is a numerical continuation algorithm. 
 
The remainder of this report is structured as follows:  In Section 2, the numerical continuation 
method is introduced and explained.  Four different numerical continuation toolboxes are 
considered in this study.  Three open source toolboxes are detailed in Section 3, and the fourth, 
which is used throughout the rest of this study, is described in Section 4.  This method is based 
on a toolbox developed at the University of Wisconsin and is specifically developed to analyze 
forced systems (unlike the three methods detailed in Section 3).  An impact oscillator is analyzed 
with the toolbox in Section 5, and Section 6 presents recommendations for future work and the 
continuation of this project.  Finally, Section 7 presents conclusions about the project.   
  



8 

 
 



9 

2. NUMERICAL CONTINUATION 
 
In order to investigate the frequency response, bifurcations, stability, and wear work of an impact 
system, it is necessary to obtain periodic solutions to the equations of motion over a range of 
forcing frequencies.  From these periodic solutions, all items necessary to determine the desired 
quantities can be extracted. 
 
A simple way to obtain a series of periodic solutions would be to carry out time integration for 
each forcing frequency in the desired range.  However, this method is extremely inefficient for 
the following reasons: 1) Impact systems usually have long transients; therefore, a very long time 
span is usually needed to find a periodic response.  Consequently, to integrate the equations of 
motion over very long time spans for a large number of forcing frequencies is computationally 
expensive and time consuming.  2) Unstable periodic responses can be extremely difficult to 
detect with time integration.  This is because there may be very few sets of initial conditions that 
give rise to these unstable solutions, so their discovery usually occurs by chance.  For these 
reasons, a long series of time integrations is not the most suitable method for the analysis of 
impact systems.   
 
Numerical continuation is a method that provides a more efficient way to find a large set of 
solutions to a system’s equations of motion.  Given an initial solution (usually obtained via time 
integration), numerical continuation algorithms can quickly find entire branches of solutions, 
using information derived from the initial solution and equations of motion and a predictor-
corrector method.  Numerical continuation also has the ability to find unstable solutions. 
 
 
2.1. Method 
 
For the toolboxes used in this study, a similar method of numerical continuation is used in each 
case.  The application of a numerical continuation method begins by first finding an initial 
solution.  This initial solution is then perturbed as the control parameters (such as excitation 
frequency), and the change in system dynamics is calculated, from which the system’s Jacobian 
about the previous solution is derived.  This Jacobian is then used to predict a set of initial 
conditions and/or system parameters that give rise to another solution.  Next, an iterative method 
(usually Newton-Raphson iterations) is used to correct the initial conditions and system 
parameters until convergence criteria are satisfied.  This process is repeated, using the new 
solution obtained from the Jacobian analysis as an initial solution for the algorithm.  For more 
information about numerical continuation techniques, see [2]. 
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3. OPEN SOURCE CONTINUATION TOOLBOXES 
 
Three open source numerical continuation toolboxes (AUTO [3], MATCONT [4], and COCO 
[5]) are commonly used for numerical continuation.  In what follows, the suitability of these 
toolboxes is discussed in terms of their ability to be applied to analyze impact systems. 
 
 
3.1. Toolbox Capabilities 
 
The capabilities of the three open source numerical continuation toolboxes are summarized 
below. 
 
 
3.1.1. AUTO 
 
AUTO can be run by using either Python or Unix commands.  It has the ability to analyze 
systems of ordinary differential equations of the form  
 

  

  
  (   ) 

 
where   is a vector of state variables and   represents all free parameters.  It can compute 
solution curves to these systems subject to general nonlinear boundary conditions and integral 
constraints, and can determine folds and branch points along families of these solutions.  AUTO 
can also compute families of periodic solutions and the Floquet multipliers that determine their 
stability, as well as the locations of folds, branch points, period doubling bifurcations, and 
bifurcations to tori along those families.  Auto also has many other bifurcation detection and 
continuation abilities; these abilities are summarized below in Table 1.  It should also be noted 
that AUTO has the ability to analyze algebraic systems and parabolic partial differential 
equations, though these features are not necessary for the analysis of impact systems. 
 
 
3.1.2. MATCONT 
 
MATCONT is written in Matlab and is controlled by a convenient graphical user interface 
(though a command line based version does exist), and has the ability to analyze systems of 
ordinary differential equations of the same form as AUTO.  It can perform time integration for 
any set of initial conditions and free parameters to locate equilibrium points and limit cycles.  
Once these equilibrium points and limit cycles are located, MATCONT can continue them with 
respect to one or two parameters and detect many types of bifurcations.  It can also compute 
curves of many types of bifurcation points.  These and other abilities are summarized below in 
Table 1. 
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Table 1.  Summary of Abilities of AUTO and MATCONT 

 
Toolbox Capability AUTO MATCONT 

Time Integration  + 
Computation of solutions of boundary value problems +  
Poincaré maps  + 
Monitoring user functions along curves computed by 
continuation 

+ + 

Continuation of equilibria + + 
Detection of branch points and codimension-1 bifurcations of 
equilibria 

+ + 

Computation of normal forms for codimension-1 bifurcations 
of equilibria 

 + 

Continuation of codimension-1 bifurcations of equilibria + + 
Detection of codimenion-2 bifurcations of equilibria  + 
Computation of normal forms for codimension-2 bifurcations 
of equilibria 

 + 

Continuation of limit cycles + + 
Computation of phase response curves and their derivatives  + 
Detection of branch points and codimension-1 bifurcations of 
cycles 

+ + 

Continuation of codimension-1 bifurcations of cycles + + 
Branch switching at equilibrium and cycle bifurcations + + 
Continuation of branch points of equilibria of cycles  + 
Computation of normal forms for codimension-1 bifurcations 
of cycles 

 + 

Detection of codimension-2 bifurcations of cycles  + 
Continuation of orbits homoclinic to equilibria + + 
Locate extrema of an integral objective functional along a 
family of periodic solutions and continue such extrema in 
other parameters 

+  

 
 
 
3.1.3. COCO 
 
COCO is written in Matlab and appears to be in early stages of development.  Very little 
documentation detailing its use is provided.  While COCO appears to be a potentially powerful 
continuation toolbox, it would not be practical to attempt to learn all of its functionality in the 
time frame of a summer internship.  It is possible that COCO will become a very powerful and 
useful toolbox at some point in the future. 
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3.2. Results and Conclusions 
 
AUTO is not compatible with Matlab, and the contact force models currently exist only as 
Matlab functions.  More importantly, there is no evidence that AUTO can perform continuation 
on forced response systems [3].  Therefore, while AUTO is a very powerful toolbox, it is not 
suitable for use in this project. 
 
As mentioned above, COCO has very little documentation detailing its capabilities or method of 
use.  For this reason, COCO is not suitable for use in this project, especially given the time 
constraints in place. 
 
While MATCONT is Matlab-based, easy to use, and has a wealth of documentation available, 
there is no evidence that it can perform continuation of forced systems, with or without impact 
[3].  After much investigation, it is concluded that MATCONT is unsuitable for this project. 
 
Because none of the three open source tool boxes tested are deemed suitable for the continuation 
of forced response systems with impacts, another toolbox with the necessary capabilities is 
necessary. 
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4. FORCED SYSTEM CONTINUATION CODE 
 
A set of codes (termed WisCont) with the ability to perform continuation on forced systems is 
provided by the University of Wisconsin with the permission of Professor Matthew Allen.  These 
codes are not written for use with impact systems, so some modifications are necessary.  
Information about the mathematical theory behind this code is given in [3]. 
 
 
4.1. Modifications to the Continuation Code 
 
Modifications made to WisCont to enable the continuation of impact systems are described 
below. 
 
 
4.1.1. Variable Response Period 
 
The first change made to WisCont is to allow the code to search for periodic responses that are 
integer multiples of the forcing frequency.  The original version of WisCont uses the assumption 
that after the transients decay, the period of the system response is equal to the period of the 
forcing function.  While this is true for most periodically forced systems, it is not necessarily true 
for those with impacts.  In impact systems, the response period is an integer multiple of the 
forcing period. 
 
 
4.1.2. Frequency Response Plotting 
 
Response parameters of interest that are particular to impact systems include impact velocities 
and impact times.  The new version of the code now includes functions that are designed to 
locate both the local extrema and contact velocities encountered during one period of the system 
response.  Additional code also is used to plot these values as functions of forcing frequency.  
Therefore, frequency response diagrams for both position amplitude and contact velocity can be 
plotted (the user may choose one or both frequency responses in the initialization parameters).  
 
 
4.1.3. Additional Storage for Post-Processing 
 
In order to provide more information about the system dynamics and response, the continuation 
script now generates more output data (local extrema, contact velocities, response periods, and 
full time histories for each solution) to be stored for the calculation of wear work rates and 
Lyapunov exponents and the re-plotting of the frequency response(s) with color coding during 
post-processing. 
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4.1.4. Wear Work Rates and Lyapunov Exponents 
 
Wear work rates and finite time Lyapunov exponents, quantities specifically developed for 
impact systems, are now calculated by the code during the post-processing phase.  More 
information about the computation of wear work rates can be found in [1].  The Lyapunov 
exponents are calculated using the finite time method [4], though other, Jacobian based methods 
exist. 
 
 
4.1.5. Color-Coding of Frequency Response(s) 
 
The frequency response plots are color-coded in order to denote stable responses and unstable 
responses based off of marker color.  The stabilities are determined by the signs of the Lyapunov 
exponents corresponding to each response (stable responses have non-positive Lyapunov 
exponents, and unstable responses have positive Lyapunov exponents).  
 
 
4.2. Method of Use 
 
This section documents how the modified version of WisCont is used to analyze an impact 
system. 
 
 
4.2.1. Main File 
 
Most of the variables needed for the analysis of impact systems are generated or stored by a main 
file, which performs the computations outlined below: 
 
 
 Initialization 

 
First, the main file selects a contact model and calls scripts that initialize the parameters 
needed for that model.  Parameters for the continuation (such as predictor and Jacobian step 
sizes and error tolerances for the integrators and correction steps) are also initialized. 
 
In order to produce a full frequency response diagram with as few gaps between points as 
possible, the continuation must be run multiple times, starting with an initial solution 
corresponding to a different forcing frequency each time.  For this reason, a vector of starting 
forcing frequencies (in Hertz) is specified. 
 
Finally, a function containing the equations of motion is identified. 
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 Initial Solution 

 
A function is called that finds a set of initial conditions leading to an immediately periodic 
solution (one with virtually no transient response) corresponding to the first forcing 
frequency specified in the vector mentioned above. The function accomplishes this by 
integrating the equations of motion over many periods of the forcing function (this number of 
periods may be changed, but is usually around 50), and extracting a state vector at a time at 
or near the end of the time history corresponding to a zero of the forcing function.  A time 
history is then calculated and plotted using the new initial conditions. 

 
 
 Continuation and Frequency Response 

 
A loop is initiated that performs the continuation process, using the equations of motion, 
initial conditions, initial forcing period, and continuation parameters as inputs for the 
continuation code.  During each instance of the loop, the continuation code calculates and 
plots a specified number of new solutions and outputs the following quantities: local extrema 
of the positions of the responses, contact velocities of the responses, initial state vector for 
each solution, periods of the forcing function and response for each solution, and a full time 
history for each solution.  These quantities are all stored in a structure by the main file for 
post-processing (however, the reciprocals of the forcing periods are stored instead of the 
periods themselves to obtain a set of forcing frequencies). 
 
For every instance of the loop except the first, a new set of initial conditions leading to an 
immediately periodic solution is calculated using the next starting forcing frequency in the 
vector specified during initialization. 

 
 
 Wear Work Rates 

 
After the continuation loop is completed, post-processing begins.  The stored time histories 
are used (along with a function that calculates contact force, normally used in the equations 
of motion), to calculate the average wear work rate over one period of forcing for each 
solution.  These wear work rates are plotted as a function of forcing frequency. 

 
 
 Lyapunov Exponents 

 
The stored initial state vectors and forcing frequencies are used as inputs to a function that 
computes the Lyapunov exponent for each solution.  The Lyapunov exponents are also 
plotted as a function of forcing frequency. 
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 Color-Coded Frequency Response 

 
The last step is a loop that re-plots each point on the frequency response diagram(s), using 
the Lyapunov exponents calculated earlier to determine stability (different colors are used for 
stable and unstable responses). 

 
 
4.2.2. Phase Portraits and Poincaré Sections 
 
After the main file is run and frequency response plots are examined, it may be useful to plot 
phase portraits and Poincaré sections to verify results and explore them further (for example, it 
may be desirable to look at the response behavior before, during, and after bifurcation points).  
Phase portraits and Poincaré sections can be generated by a script separate from the main file.  
The computations performed by this script are outlined as follows. 
 
 
 Initialization 

 
The contact parameters and integrator options must be initialized in the same way as in the 
main file.  The integrator options exist in the same file as the rest of the continuation 
parameters, so it is sufficient to simply initialize them as in the main file.  Also, the forcing 
frequency of interest must be specified. 

 
 
 Initial Point 

 
The same function that found the initial conditions leading to an immediately periodic 
solution for the primary analysis is used to find an initial point.  By finding this specific 
initial point, the clutter in the phase portrait that would be caused by a transient is eliminated, 
and only a single periodic orbit will appear (in the case of unstable solutions, the orbit might 
not be truly periodic, but the initial transient will still be eliminated). 

 
 
 Time Integration 

 
A time integration of the equations of motion is performed for a time span specified by the 
user (usually at least five forcing periods). 

 
 
 Plotting 

 
A loop is initiated that plots each point in the generated time history in the phase plane.  The 
Poincaré section for the specified frequency is generated by plotting specially marked points 
at time intervals equal to the period of the forcing function (this is accomplished by plotting 
special points for the times that are sufficiently near zeroes of a sinusoidal curve whose 
period is twice the forcing period). 
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In the next Section, this new code is applied to an impact system in order to further illustrate its 
capabilities. 
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5. RESULTS 
 
An analysis of a simple impact oscillator consisting of a mass and a linear spring, with contact 
occurring at the equilibrium position of the spring (the contact force is applied in the negative 
direction any time the position is positive), is presented in what follows.  A sinusoidal forcing 
function is applied to the mass.  The mass and stiffness are chosen such that the natural 
frequency of the oscillator is 10 Hz.  Details about this system, including equations of motion, 
are shown in Appendix A.   
 
 
5.1. Frequency Response of Position Amplitude 
 
The frequency response of the position amplitude is shown in Figure 1.  The plot shows the 
absolute values of all local minima (because the mass is out of contact for all points where the 
position is negative) of the position vs. time curve present in one period of the response.  This 
plot is color coded to show stability, with the local minima of stable solutions shown in blue and 
the local minima of unstable solutions shown in red. 
 

 
Figure 1.  Position Amplitude Frequency Response 

 
Figure 1.  Position Amplitude Frequency Response shows very high amplitudes near the natural 
frequency of 10 Hz, and very small amplitudes at high frequencies.  At very low frequencies, the 
response develops several local minima for each forcing frequency.  Two bifurcations occur 
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between 20 and 30 Hz; between these bifurcations, the system has multiple attractors: one with 
two apparent local minima that changes stability at about 27 Hz, and one with one apparent local 
minimum that is unstable everywhere between the two bifurcations.  In this case, unstable does 
not mean an unbounded response, but rather one that is likely to shift to a different equilibrium 
provided a small perturbation.  Unstable, thus, indicates a local maximum in the system’s 
potential energy function while stable indicates a local minimum. 
 
 
5.2. Frequency Response of Contact Velocity 
 
The frequency response of the contact velocity is shown in Figure 2.  The plot shows the 
velocities at which the mass enters contact during one period of each solution.  Like the position 
amplitude frequency response plot, this plot is also color coded for stability. 
 

 
Figure 2.  Contact Velocity Frequency Response 

 
This frequency response exhibits very similar characteristics to that of the position amplitude; 
the response is large near the natural frequency and small at high frequencies.  Also, in a manner 
much like the previous plot, there are several contact velocities at low frequencies.  The two 
bifurcations between 20 and 30 Hz are also shown clearly.  Note that over the region between the 
bifurcation points, the magnitude of the impact velocity is less than the period one solutions for 
the same region. 
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5.3. Wear Work Rates 
 
A plot of wear work rates (averaged per forcing period) as a function of forcing frequency is 
shown in Figure 3. 
 

 
Figure 3.  Wear Work Rates 

 
The results of this plot are consistent with the frequency response plots.  The highest wear work 
rates occur at the same frequencies as the highest contact velocities; this is expected because the 
wear work is computed as a time integral of the absolute value of the product of the forces and 
velocities experienced during contact.  Consequently, the higher period responses exhibit lower 
wear work rates than adjacent period one responses. 
 
 
5.4. Lyapunov Exponents 
 
A plot of Lyapunov Exponents for each response is shown in Figure 4. 
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Figure 4.  Lyapunov Exponents 

 
As expected, the Lyapunov exponents are negative for nearly all solutions outside the region 
between the two bifurcation points.  Inside that region, there are some positive Lyapunov 
exponents corresponding to the unstable responses shown in the frequency response plots, as 
well as negative ones corresponding to the stable responses; it is clear that multiple attractors are 
present.  The positive values of Lyapunov exponents, in this case, confirm that small 
perturbations of the solution will cause it to move away from the unstable manifold.  This is not 
indicative of a chaotic response (characterized by a broad band of responses in the frequency 
response plot), but rather the presence of an unstable manifold  It should be noted that the values 
of the Lyapunov exponents are dependent on the manner in which they are calculated, so one 
method may produce a different plot than another.  However, the qualitative behaviors should be 
similar. 
 
 
5.5. Phase Portraits and Poincaré Sections 
 
Phase portraits and Poincaré sections are particularly useful for the analysis and visualization of 
the system’s response at or near bifurcation points especially for assessing the unstable responses 
(unstable equilibriums, aperiodic solutions, or chaotic responses).  Figure 5 shows phase portraits 
(blue dots) and Poincaré sections at zero phase (magenta asterisks) for the impact oscillator 
system at a series of frequencies around and between the bifurcations. 
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(a) 

 
  

(b) 
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(c) 

 
  

(d) 
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(e) 

 
  

(f) 

 
Figure 5.  Phase Portraits and Poincaré Sections near Bifurcations 
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Figure 5 presents the evolution of the system’s response across the bifurcated region:  In Figure 5 
(a), the phase portrait shows one contact initiation point (the sharp corner point near the top of 
the curve), and the Poincaré section only shows one distinct point, indicating that there is one 
period of forcing per period of the response.  As the frequency is increased slightly from 22 Hz 
to 23.5 Hz in Figure 5 (b), a period doubling bifurcation occurs and there are two contact 
initiation points and two distinct points in the Poincaré section; there are now two periods of 
forcing per period of the response.  The two coexisting solutions at 27 Hz are shown in Figure 5 
(c)-(d).  First the stable solution is presented in Figure 5 (c); note that the two loops appearing in 
the response are now quite different in size, as this response is approximately half way between 
the two bifurcation points.  Second, Figure 5 (d) shows an unstable response at a forcing 
frequency of 27 Hz; the defining characteristic of this response is that the state vector never 
returns to its exact initial state.  Finally, Figure 5 (e)-(f) show the transition during the second 
bifurcation point (between 30 and 32 Hz) to a response similar to that of the first bifurcation 
point. 
 
It should be noted that other attractors may exist between the bifurcation points.  Due to the 
difficulty and inconsistencies in calculating the Lyapunov exponents, any other attractors that 
exist might be difficult to distinguish and independently characterize.  
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6. FUTURE CONSIDERATIONS 
 
There are several areas of future work for this project.  Recommendations for improvement of 
the codes in order to make them of greater use are presented in what follows. 
 
 
6.1. Improve Computation Time 
 
While the code can perform analyses using the piecewise linear contact force model within a 
reasonable timespan, the use of more complicated contact force models can be prohibitively 
slow.  This is due to that fact that these models require a very high degree of accuracy in time 
integration in order for the corrector steps in the continuation code to converge to a solution.  
When using one of Matlab’s built-in integrators (i.e. ode 45, ode113, etc.), the relative and 
absolute error tolerances need to be set to a value of approximately 10-12 for the continuation 
code to find solutions. 
 
In order to solve this problem, it may be worthwhile to develop an integrator with more speed at 
high accuracies than the ones built in to Matlab.  This might be accomplished by using an 
implicit or implicit-explicit (IMEX) method, or an improved time step selection method. 
 
However, care must be taken because some of the computations performed in the continuation 
code rely on Matlab’s deval function, which acts on a structure and is produced by Matlab’s 
integrators, but usually not by others.  If a custom integrator could not produce a structure 
compatible with the deval function, extra modifications would need to be made to the 
continuation code. 
 
 
6.2. Improve Coefficient of Restitution Model Analysis 
 
The coefficient of restitution model is unique in that it requires instantaneous changes in velocity 
to be made during time integration.  This requires that special time integration techniques be 
used.  Currently, little success has been seen using this model, but this is likely because the 
integration scheme used had 1st order error and was therefore probably not accurate enough for 
the continuation code’s corrector steps to converge to new solutions. 
 
The use of a more accurate integration scheme with the ability to produce instantaneous velocity 
changes could solve this problem. 
 
 
6.3. Improve Period Finding Code 
 
The section of code that finds the integer ratio between the response period and the forcing 
period sometimes returns an integer that is itself an integer multiple of the true ratio.  For 
example, a plot may indicate a response period of three times the forcing period, but the code 
may return a ratio of six, which is twice the ratio desired.  While this issue is unlikely to inhibit 
the continuation code from finding new periodic solutions, it slows computation.  This is because 
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the continuation code performs many time integrations over the response periods determined by 
the period ratios (a shorter period makes for shorter time integration). 
 
 
6.4. Generalize Code for More Degrees of Freedom 
 
While the analysis presented here was performed on a single degree-of-freedom system, it will 
later be necessary to allow for more degrees of freedom in order to analyze more complicated 
systems, such as impact dampers.  Implementation of this change would not be difficult; the 
continuation code already supports multiple degrees of freedom, and most of the other codes 
could be modified through fairly simple changes. 
 
 
6.5. Reorganize and Repackage Code 
 
After working out computational issues, it would be worthwhile to package the codes in a more 
professional way (similar to the open source toolboxes), making them more amenable to use by 
others.  Another possible change might be the addition of a graphical user interface (GUI); use of 
a GUI would dramatically decrease the time needed for new users to learn how to perform 
analyses. 
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7. CONCLUSIONS 
 
This project developed an efficient method for the analysis of impact systems with forced 
oscillations.  Numerical continuation is used as a means to efficiently obtain periodic solutions of 
a system’s equations of motion.  The three major open source numerical continuation toolboxes 
are assessed, and it is found that none of the three toolboxes are suitable for use in this project.  
Instead, a set of codes with the ability to perform continuation on forced systems developed by 
the University of Wisconsin is used.  Several modifications are present in the final code that 
allow for the continuation of systems with impacts. 
 
The capabilities of the current set of codes are the following: 
 

 Perform numerical continuation to obtain a set of periodic solutions to the equations of 
motion of an impact system with one degree of freedom. 

 Detect and plot the local extrema of the responses as a function of forcing frequency. 
 Detect and plot the contact velocities experienced in the response as a function of forcing 

frequency. 
 Compute and plot the average wear work rates associated with each response experienced 

during one forcing period. 
 Compute and plot the Lyapunov exponents associated with each response. 
 Re-plot frequency response curves of amplitude and contact velocity using color coding 

to indicate stability based on the signs of the Lyapunov exponents. 
 Plot phase portraits and Poincaré sections to visualize the responses at any chosen forcing 

frequencies. 
 
This code is applied in Section 5 to analyze a single degree-of-freedom impact oscillator.  
Finally, a set of suggestions for the continuation of this project and improvement of the codes are 
made: 
 

 Improve computational efficiency by implementing a new temporal integrator. 
 Improve the analysis of systems with a coefficient of restitution contact model by 

implementing a new integrator with the ability to account for instantaneous changes in 
velocity. 

 Decrease integration time by increasing the accuracy of the sections of code that find the 
ratio of the response period to the forcing period. 

 Generalize the codes to allow for the analysis of systems with more than one degree of 
freedom. 

 Make the code more amenable to use by others by reorganizing it and repackaging it in a 
more logical and more professional way. 
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APPENDIX A - IMPACT OSCILLATOR SYSTEM 
 
 
A.1  System Definition 
 
The single degree of freedom system used in the analysis consists of a spring and mass 
connected in series.  A sinusoidal forcing function acts on the mass.  Contact is initiated 
whenever the position x is greater than the offset x0.  A diagram of the system is shown in  
Figure 6  Impact Oscillator System Diagram below. 
 

   
 

Figure 6  Impact Oscillator System Diagram 

 
 
A.2  Equations of Motion 
 
The equations of motion for the system in state space form are 
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In general, the contact force    is a function of the position and velocity of the mass relative to 

the point of contact.  For this system, the point of contact is defined to be at x = 0. 
 
The contact force is modeled as a piecewise linear constitutive relationship for this analysis;  that 
is, the introduction of the new force during contact is equivalent to introducing a Kelvin-Voight 
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type element in parallel with the system stiffness.  In general, any arbitrary contact force model 
may be used in place of this piecewise linear model, as long as it is only a function of relative 
position and velocity. 
 
 
A.3  Parameters Used 
 
The parameters that are used in the analysis in arbitrary (but consistent) units, are given in 
Error! Reference source not found.. 
 

Table 2 System Parameters  

 
Parameter Value 

Mass,   1 
System Stiffness,   3947.84 
Forcing Amplitude,   1000 
Piecewise Linear Stiffness 1 X 104 
Piecewise Linear Damping 100 

 
Note that the natural frequency of the system,     √  ⁄ , is equal to 62.832 radians/sec, or 
approximately 10 Hz. 
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