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Abstract 
 
Nuclear waste reprocessing and nonproliferation models are needed to support the renaissance in 
nuclear energy. This report summarizes an LDRD project to develop predictive capabilities to 
aid the next-generation nuclear fuel reprocessing, in SIERRA Mechanics, Sandia’s high 
performance computing multiphysics code suite and Cantera, an open source software product 
for thermodynamics and kinetic modeling.  
 
Much of the focus of the project has been to develop a moving conformal decomposition finite 
element method (CDFEM) method applicable to mass transport at the water/oil droplet interface 
that occurs in the turbulent emulsion of droplets within the contactor. Contactor-scale models 
were developed using SIERRA Mechanics turbulence modeling capability. Unit operations occur 
at the column-scale where many contactors are connected in series. Population balance models 
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were developed to investigate placements and coupling of contactors at this scale. 
Thermodynamics models of the separation were developed in Cantera to allow for the prediction 
of distribution coefficients for various concentrations of surfactant and acid. Droplet-scale 
modeling was conducted in a microfluidic device and for verification of the algorithm. Extensive 
validation and discovery experiments were performed at the droplet and contactor-scales for both 
fluid dynamics and mass transport. 
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DOE Department of Energy 

SNL Sandia National Laboratories 

nt  Time step for the time during the time step n. (s). 

,
,

A n
k sn  Number of moles of species k in phase A at the time step n for the 

interfacial control volume, s. units (kmol). 

,
,

B n
k sn  Number of moles of species k in phase B at the time step n for the 

interfacial control volume, s. units (kmol). 

,S n
su  Interfacial Velocity (units m s-1) 

,A n
su  Velocity of Phase A at the interface at time step n (m s-1). 

,B n
su  Velocity of Phase B at the interface at time step n (m s -1). 

,
*
A nu  mass averaged velocity of Phase A at the A*, the edge of A’s * 

control volume. (units m s-1) 

,
*
B nu  mass averaged velocity of Phase B at the B*, the edge of B’s * control 

volume. (units m s-1) 

,A n
BULKu  mass averaged velocity of Phase A at the bulk conditions of phase A, 

which is defined as the edge of the boundary layer at time step n (m s 
-1). 

,B n
BULKu  mass averaged velocity of Phase B at the bulk conditions of phase B, 

which is defined as the edge of the boundary layer. at time step n (m s 
-1). 

,
,

A n
k sX  Mole fraction of species k in phase A at time step n at the interface 

between phases A and B. 

,
,

B n
k sX  Mole fraction of species k in phase B at time step n at the interface 

between phases A and B. 
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,
,

A n
k sc  Molar Concentration of species k in phase A at time step n at the 

interface between phases A and B. (kmol m-3) 

,
,

B n
k sc  Molar Concentration of species k in phase B at time step n at the 

interface between phases A and B. (kmol m-3) 

,
,
A n
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between phases A and B 
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A and B. (m3 kmol-1) 

A
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B
sT  Temperature of phase B at the interface s (Kelvin) 

,A n
sP  Pressure of Phase A at the interface s at time step n (Pascal) 

,B n
sP  Pressure of Phase B at the interface s at time step n (Pascal) 

,A n
BULKP  Pressure of Phase A at bulk conditions  at time step n (Pascal) 

,B n
BULKP  Pressure of Phase B at bulk conditions at time step n (Pascal) 

A
BLL  Boundary layer thickness on the A side of the interface at time step n 

(m). 

B
BLL   Boundary layer thickness on the B side of the interface at time step n 

(m). 

An  Normal vector to the interface s pointing out of the A phase and into 

the B phase. 

A  Density of the A phase (kmol m-3). 

AM  Molecular Weight of species A. 

,
S
A kS  Source term for the production of species k in phase A due to the 

interfacial reaction occurring on interface S. (kmol m-2 s-1) 

,A ST  Stress tensor for phase A at the interface S. 
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H  Curvature of the interface at the current position 

  Surface tension of the interface 

*,
A

kj  Mass diffusive flux of species k in phase A relative to the mass 

averaged velocity, at the control volume boundary in phase A. (kg m-
2 s-1) 

*,
B

kj  mass diffusive flux of species k in phase B relative to the mass 

averaged velocity, at the control volume boundary. 

*,
A

kJ  Molar diffusive flux of species k in phase A relative to the mass 

averaged velocity, at the control volume boundary in phase A. (kmol 
m-2 s-1) 

*,
B

kJ  Molar diffusive flux of species k in phase B relative to the mass 

averaged velocity, at the control volume boundary in phase B. (kmol 
m-2 s-1) 
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1 INTRODUCTION  
 

 Background for Nuclear Waste Reprocessing 1.1
 
Nuclear waste reprocessing and nonproliferation models are needed to support the renaissance in 
nuclear energy. Our aim is to develop predictive capabilities targeting the design and monitoring 
of a next-generation nuclear fuel cycle to enable economic large-scale reprocessing with accurate 
material balances.  Figure 1 shows an example of the front-end of a typical nuclear waste 
reprocessing based on wet chemical separation such as those in France at La Hague. 
 
 

 

 
Figure 1. An example of the front‐end of a nuclear waste reprocessing plant. 

 
 
The spent fuel rod is 95% uranium, with the remaining constituents being daughter products that 
act to poison energy production in the nuclear reactor. If the spent fuel rod is reprocessed, e.g. 
separated from the fission products, the resulting material, a mix of uranium and plutonium, can 
be reused as nuclear fuel. The process begins by shearing the spent fuel rods to make them 
smaller and easier to dissolve in acid. Next these pieces are solubilized in acid as shown in 
Figure 2. 
 

 
 
Figure 2. Spent fuel rods are dissolved in nitric acid solution to begin the separation 
process.  
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The heart of reprocessing is the PUREX process, where the acid solution from the dissolver, 
containing ions of uranium and plutonium oxide in solution, is mixed with organic phase (often 
dodecane mixed with tributyl phosphate (TBP), a surfactant that increases the selectivity of the 
separation) in a centrifugal contactor (Figure 3 shows the contactor experiment developed for 
this project). Production-scale contactors must be small (8cm diameter), and contact-times short, 
to address criticality issues for the radioactive materials. In order to achieve the desired 
separation, many contactors are connected in series with the product of one contactor being 
funneled to the next in line. In the example above, 42 contactors are connected to create the 
separation. 
 

 
 

Figure 3. An example of an annular centrifugal contactor with organic and aqueous feeds. 
Here an acrylic housing is used to help visualize the free surface and the dispersed droplets 
and bubbles. A gas phase is always present in the contactor as the inflow and spin‐rate of 
the rotor, sets the outflow. 

 
In Figure 3, we can see that a head space filled with gas is always present during normal 
operation since the inflow rates and spin-rate of the rotor, set the outflow rate. Thus, two 
dispersed phases exist in the contactor: gas bubbles and emulsion droplets. If we blow up the 
image in Figure 3, we can see the two dispersed phases (Figure 4). 
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Figure 4. Blow‐up of liquid region in the centrifugal contactor shows air bubbles and liquid 
droplets, which are hard to distinguish. The mass transport occurs at the interface between 
the droplet and the continuous phase. 

 
The separation occurs when the uranium and plutonium ions moves from the acid phase to the 
organic phase. Mass transport occurs at the interface between the droplet and the continuous 
phase. Thus, understanding droplet-scale mass transport is fundamental to predicting contactor-
scale mass transport.  
 
The goal of this project was to develop a uranium separation model in SIERRA Mechanics, 
Sandia’s high performance computing multiphysics code suite and Cantera, an open source 
software product for thermodynamics and kinetic modeling. Originally we sought to develop 
modeling capabilities from the plant-scale to the droplet-scale.  Unfortunately, our work to 
develop models at the plant-scale leveraged a DOE Advanced Scientific Computing Research 
(ASCR) project to develop a novel, scalable network models to be used to create processing 
plant “flow sheets.” When the lead for this project was reassigned to work at Oak Ridge National 
Laboratory on another project, we redirected our work to include more experiments at the droplet 
and contactor-scales and shifted the focus to modeling at these scales. Therefore, this work will 
be the focus of the report. 
 
Much of the focus of the project has been to develop a moving conformal decomposition finite 
element method (CDFEM) method applicable to mass transport at the water/oil droplet interface 
that occurs in the turbulent emulsion of droplets within the contactor. Models are being 
developed contactor-scale using SIERRA Mechanics turbulence modeling capability with the 
classic level-set method. Unit operations occur at the column-scale where many contactors are 
connected in series. Population balance models were developed to investigate placements and 
coupling of contactors at this scale. Thermodynamics models of the uranium separation were 
developed in Cantera to allow for the prediction of distribution coefficients for variation 
concentrations of surfactant and acid. 
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 Organization of Report and Research Highlights 1.2
 
The purpose of this report is to summarize the work from a three-year LDRD project. In this 
project, we have tried to focus on documenting our work through presentation, proceeding 
articles, journal articles and SAND reports. The project has produced thirteen presentations, 
seven seminars, two proceeding papers, and a SAND report. In addition, we have published two 
journal articles and one e-book chapter, have two more journal articles accepted for publication, 
and have submitted two other journal articles, and have four journal articles that are almost 
finalized. Thus, where possible we reference other documents instead of reproducing the work 
here. All other documents are either available from the open literature or from the PI, if the 
publication process is not yet complete. Some highlights from the project are shown in Figure 5. 
 
The report is organized in the following manner. We begin by giving an overview of our 
numerical methods, namely CDFEM as implemented in SIERRA Mechanics. We discuss the 
theory and some of the verification efforts. In addition, to allow for turbulent flow modeling a 
hybrid CDFEM/Control Volume Finite Element Method (CVFEM) was developed and 
implemented in SIERRA. Laminar results from CDFEM are given at the droplet-scale including 
some preliminary mass transport work. Next, we summarize our microfluidic experiments to 
help elucidate mass transport and mixing phenomena at the droplet-scale and reference the two 
papers resulting from this effort. A contactor-scale model was developed for a single-phase 
material and is discussed in Chapter 5. Chapter 6 summarizes the centrifugal contactor 
experiments and references the paper produced from this work. Thermodynamic modeling is 
included as Chapter 7 including a summary of the results and references to the SAND report and 
journal article published on this work. Chapter 8 explains our population balance work to 
understand droplet-size evolution in the contactor, including mass transport, and references 
papers and presentations. In Chapter 9, we show how to put together individual contactors to 
make a column-scale model to predict mass transport at the unit-operations level. In Chapter 10, 
we summarize our accomplishments and discuss our plans for future work. 
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Figure 5. Selected Highlights from the project including experiments to understand droplet‐
scale and contactor‐scale mass transport, new modeling capabilities for free‐surface flows 
using CDFEM and thermodynamic modeling of PUREX in Cantera, and a new break‐up 
kernel for population balance modeling. 
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2   NUMERICAL METHOD AND VERIFICATION PROBLEMS 
 
In this section, we discuss the theoretical underpinnings of our numerical work and demonstrate 
verification of the algorithm. Much of this work will be published as a journal article targeted 
toward the Journal of Computational Physics [Noble et al., 2012]. The publication of this paper 
has been somewhat delayed by efforts to improve the algorithm, so multiple algorithms exist. For 
the focus of this chapter, we will concentrate on the unconstrained CDFEM algorithm, though 
constrained versions also exist and perform well. 
 

2.1. Conformal Decomposition Finite Element Method 
 
2.1.1 Introduction  
 
The simulation of capillary hydrodynamics is challenging due to the combination of strong 
interfacial physics and moving interfaces with dynamic topology. The interfacial physics include 
the effects of surface tension as well as discontinuities in both density and viscosity. This physics 
can lead to a combination of strong and weak discontinuities in the pressure and velocity fields. 
Standard finite element shape functions cannot adequately capture these discontinuities. The 
moving interfaces with dynamic topology complicate simulations by requiring an approach that 
can describe this arbitrary interfacial motion. Interface tracking methods typically are not able to 
handle dynamic topologies.  
 
In the finite element context, these requirements logically lead to the development of interface 
capturing methods with enriched finite element methods. Interface capturing methods, including 
volume of fluid (VOF) and level set (LS) methods, are able to describe the arbitrary topological 
evolution. Enriched finite elements are able to describe the interfacial physics and resulting 
discontinuities. In eXtended Finite Element Methods (XFEM), elements that span an interface 
are enriched with a combination of weakly and strongly discontinuous shape functions in order 
to describe the discontinuities. A study of XFEM for two-phase and free surface flows by 
Sauerland and Fries [Sauerland and Fries, 2011] contains a review of XFEM methods for this 
class of problems.  
 
In this work, an alternate method of enrichment is employed. A background, non-conformal 
mesh is decomposed into elements that conform to the boundaries of the fluid domains, which 
are described in terms of one or more level set fields. Enrichment takes place by adding nodes 
where the edges of the background mesh intersect the level sets. The method is termed the 
conformal decomposition finite element method (CDFEM). By dynamically adding nodes and 
associated degrees of freedom on the moving interfaces, weak and strong discontinuities are 
described with standard finite element shape functions. See Figure 6 for a cartoon describing the 
algorithm. 
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Figure 6. The CDFEM algorithm begins with a base mesh and then creates mesh on the 
interface location, as defined by the level set. As the interface moves, the old CDFEM mesh 
is deleted and new interface mesh is added. A meshed interface allows for easy application 
of discontinuities and interfacial physics. 

 
 
The method is essentially a generalization of the finite element method using a Cartesian grid 
with added nodes (FEMCGAN) [Li, Lin, and Wu, 2003] to unstructured meshes of triangles and 
tetrahedra. The method is also closely related to the immersed-boundary finite element method 
[Ilinca and Hétu, 2011A, 2011B], but in that approach the added velocity degrees of freedom on 
the interfaces are eliminated using Dirichlet boundary conditions, and the pressure is 
discontinuous across faces and edges that are cut by the interfaces. A similar method is also 
developed by Li and Shopple [2011] for solidification and solvation applications. The method 
also shares some features with the fixed mesh arbitrary Lagrangian Eulerian (FM-ALE) method, 
which does not modify the mesh as the solution evolves, but instead projects the moving mesh 
solution back onto a fixed mesh [Codina et al., 2009]. 
 
In previous work, CDFEM was developed for stationary fluid interfaces [Noble, Newren, and 
Lechman, 2010]. A primary goal of that work was to quantify the accuracy of CDFEM. This is a 
concern because the level set surface cuts arbitrarily through the background mesh, and the 
quality of the resulting conformal elements may be quite poor. The accuracy of the method was 
quantified for multiple fluid problems using numerical examples. In all cases, optimal 
convergence rates for the piecewise linear elements were obtained both on the volumes and the 
surfaces containing the discontinuities. It was also argued that the discrete space introduced in 
CDFEM contains the space used in XFEM with Heaviside enrichment, since the XFEM space 
can be recovered by adding constraints on the nodes added in the conformal decomposition. 
According to Li et al., [Li, Lin, and Wu, 2003], this property guarantees that the CDFEM 
accuracy is no less than that afforded by XFEM with Heaviside enrichment. In this regard, 
CDFEM provides an alternative to XFEM, with the additional benefit of providing a layer of 
encapsulation separating all consideration of enrichment from the element assembly operations. 
The level set fields are used to decompose the mesh, thus enriching the finite element 
description. This decomposition produces a standard set of elements which are then assembled 
using standard finite element shape functions and quadrature. This is in contrast to XFEM where 
interpolation and quadrature must be significantly modified to accommodate the enrichment.  
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In the current work, a dynamic CDFEM method is developed for capillary hydrodynamics. 
Building on the static CDFEM work described previously, a dynamic CDFEM method is 
described and consideration is given to the time stepping method. Multiple enrichment schemes 
are explored in which the degrees of continuity in the level set, velocity, and pressure fields are 
varied. The method is verified by comparison against exact solutions and previous computational 
results in two and three dimensions. 
 
2.1.2 Equations 
 

2.1.2.1 Fluid Equations 

Consider a computational domain, , which consists of two immiscible fluids in + and - 
separated by a moving interface , with normal, n as shown in Figure 7.  

 

 
 

Figure 7. Computational domain, , for two immiscible fluid +
 and ‐

 separated by a 

moving interface . The normal, n, is defined with respect to the interface. 

 

 

The fluid velocity and pressure are described by the incompressible Navier-Stokes equations:  
 

 
u

u u g
t

   
     


  (1) 

 
 0u    (2) 
 

with the stress tensor  given by,  

  tpI u u        (3) 

where  is the Newtonian viscosity and I is the identity tensor. Along the interface  the value 
of the velocity is continuous while surface tension produces a discontinuity in the stress:  
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 [ ]n n   . (4) 

Here n is the surface normal,  is the surface tension coefficient,  is the curvature of the 
interface, and [f] defines the jump in f across the interface. 

 
2.1.2.2 Level Set Equations 

An interface capturing method, specifically a level set method, is used to describe the interface 
. In this approach a scalar level set field is used to approximate the signed distance to the 
interfaces. That is, the magnitude is equal to the distance to the nearest point on the interface and 
the sign is dependent on which fluid the point lies within. The zero level set of the level set field, 
, represents the interface. This field is evolved via an advection equation:  

 

 0u
t

 
  


  . (5) 

This equation correctly evolves the zero level set, but does not preserve the signed-distance 
property. Consequently, the level set field must be periodically reinitialized. In this work, this is 
accomplished by recomputing the distance to the reconstructed interface that is developed as part 
of the conformal decomposition described below. 

 
2.1.3 Conformal Decomposition 
 

In CDFEM, enrichment takes place by decomposing the finite elements that span the zero level 
set into elements that conform to the original element as well as the zero level set surface or 
surfaces. In this work, the level set field is assumed to consist of a piecewise linear field on 
triangular or tetrahedral elements. Thus the interface consists of line segments in two-
dimensions, and polygons in three-dimensions. The decomposition algorithms in both two and 
three dimensions, including degeneracy handling, are described in [Noble, Newren, and 
Lechman, 2010]. The result of the decomposition is a fully connected mesh of triangular 
elements in 2D or tetrahedral elements in 3D, which conform to the instantaneous locations of 
the immiscible fluids and their interfaces. For the dynamic case, mesh is both added and 
removed as the interface moves. 

 
2.1.3.1 Dynamic Discretization via Interface Node Prolongation 

 
The conformal decomposition process is much like the element refinement done in non-
conformal adaptivity. The elements are subdivided into new elements and nodes are added in the 
process. Unlike non-conformal adaptivity, the new elements conform to the fluid domains, and 
the added nodes lie on the interfaces between the fluids. Just as in non-conformal adaptivity, the 
added nodes are populated with field data, or prolonged, based on existing field data.  
 
Linear interpolation is commonly used in non-conformal adaptivity for prolongation. For fields 
that are C1 continuous (continuous value and gradient), linear interpolation is a reasonable 
method for prolonging the field onto the added nodes. However, fields that contain weak or 
strong discontinuities across the interface (C0 and C-1 fields, respectively) might require a 
different prolongation method that accounts for these discontinuities. Or, one of the other 
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methods described below may be more appropriate. In the extreme case, a field might be defined 
on only a subset of the fluids, and interpolation makes no sense since the field may be present on 
only a subset of the nodes of the element being decomposed. Also, due to the motion of the 
interfaces, some nodes will change material, or fluid, during the decomposition. Since, the nodes 
of the background, non-conformal mesh do not move during the conformal decomposition, these 
nodes change material as the interface passes over them. For C1 fields, nothing needs to be done 
for these nodes, but otherwise the fields at such a node may need to be re-populated for the 
change in material. 

 
2.1.3.2 Dynamic Discretization via Subdomain Integration 

 

Another method for handling both new nodes and nodes that have changed material is to 
carefully form the assembly integrals and time derivatives in a way that conforms to the evolving 
subdomains. This is the approach recently taken in the context of XFEM [Fries and Zilian, 2009] 
and immersed boundary methods [Ilinca and Hetu, 2011B]. For example, using such an approach 
to assemble the Galerkin residual contribution for the time derivative for a scalar field, , the 

integral over the entire domain is split into subdomains ++ (within + at both old and new 

time), -+ (within - at old time and + at new time), +- (within + at old time and - at new 

time), and -- (within - at both old and new time). This results in integration over 4 possible 
subdomains within elements:  

 

 i i i i iw d w d w d w d w d
t t t t t

    

    

    
     

           (6) 

 

To evaluate this contribution the elements that span the interface must be decomposed into sub 
elements that conform to both the new and old locations of the interface. This method removes 
the need for prolongation by forming gradients and time derivatives using domain specific nodal 
values only at the times when the nodes lie within the given domain. 

 
2.1.3.3 Dynamic Discretization via Moving Mesh 

 
Fries and Zillian [2009] note that ALE methods also provide methods for handling time-
dependent geometry and shape functions, employing an interface velocity in the formulation. 
However, they leave the idea of using such an approach for methods with dynamic enrichment as 
an open issue. A recent CDFEM work sought to expand on such an approach, and this is further 
developed here. One major advantage of this moving mesh approach is that the integration can 
be performed over subdomains that conform only to the new geometry.  
 
In the moving mesh approach for handling the evolving discretization, the newly created nodes 
and nodes that have changed material are considered have moved to their current location from a 
previous location where all of the needed fields were already defined. The remaining nodes are 
taken to be stationary. The mesh motion is accounted for via a mesh velocity correction in the 
advection terms of the governing equations. For a moving node, the time derivative of a quantity, 
, following the node can be expanded by the chain rule:  
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 | | | |x x x x

x
x

t t t t 
      

     
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    (7) 

 

Thus the time derivative at a fixed location in space can be evaluated using this Lagrangian time 

derivative, the mesh velocity, x , and the gradient:  
 

 | |x xx
t t 
   

  
 

   (8) 

 

This form conveniently provides the time derivative of any field with a dynamic discretization by 
integrating over the new configuration, accounting for the change in discretization using the 
mesh velocity. For the time derivative of a scalar, this yields the Galerkin residual contribution,  

 

 ( ) ( )| |i i iw d x w d x w d
t t t 
   

  
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       

         (9) 

The only remaining issue is the definition of the mesh motion and the associated mesh velocity. 
In ALE, the interface is a material surface and interfacial nodes move with the discontinuity. 
Elsewhere, the mesh moves in an arbitrary manner. An example of an ALE implementation can 
be found in [Sackinger, Schunk and Rao, 1996] for 2D and extended to 3D by [Cairncross et al., 
2000]. This nodal mesh velocity is defined by differentiating the position of the nodes with 
respect to time. Using a backward difference, this gives,  

 

 

1n n
i j

i

x x
x

t

 



   (10) 

 
with i=j for the moving node. In CDFEM, however, the nodes of the parent element are fixed, 
and the interfacial nodes are placed at the instantaneous intersection between the parent element 
edges and the zero level set surface. As the level set traverses an element the interfacial nodes 
appear to move along the edges of the parent element. This observation motivates the current 

algorithm for the mesh motion. For node i with current location, x
n+1
i , the previous location is x

n
j , 

where the node j is the node that existed on the same edge at time n. When the edge was 
previously uncut, the node j is selected from the set of interfacial nodes at time n such that the 

length |x
n+1
i -x

n
j | is minimized. 

 
In this way, CDFEM exactly recovers an ALE method as the level set traverses an edge. That is, 
the node is considered to move along the edge. However, when a new edge is intersected by the 
level set, the new node is considered to have moved to its current location from the nearest node 
on the old interface. 
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Clearly other definitions of the mesh motion are possible. For example, it may be desirable to 
minimize the length of the relative mesh velocity, which is defined as the difference between the 
mesh velocity and the fluid velocity. The chosen algorithm is shown to perform well, however, 
for a patch test involving the advection of a weak discontinuity. 

 
2.1.4  Finite Element Spaces 
 

2.1.4.1 Surface Tension 
 

Following the work of Cairncross in the context of ALE [2000], and the implicit surface tension 
work of Hysing [2000] the effect of surface tension is included without explicitly calculating the 
curvature using the surface integral,  

 

 i i inw d w d t u w d  
  

             (11) 

 

where f=f- ( )nf n. The second term in this implicit surface tension model is a stabilizing 
term that is motivated by the loose coupling between the momentum and level set equations. 

 
2.1.4.2  Level Set Discretization 

As mentioned earlier, the specific issues of the dynamic discretization depend on the continuity 
of the fields across the interface. In the next few subsections, the continuity of the level set, 
pressure, and velocity fields are considered. In possibly all published level set methods involving 
finite elements, the level set field is considered to be C

1
 continuous across the level set interface, 

even if it is only C
0
 across element boundaries. Even in XFEM simulations, where gradient or 

value enrichment could be performed, the level set field is not considered for enrichment. In 
CDFEM, however, where nodes are added along the interface, the natural space for the level set 
field is only C

0
 across the interface, just like any other element boundary. The consequence of 

this reduced continuity is explored in the level set advection test below. These experiments show 
that the stability of the level set advection is adversely affected. To produce stable results, C

1
 

continuity must be maintained across the level set interface. In other words, for the linear triangle 
and tetrahedral elements used here, the level set field should be piecewise linear on the parent 
elements, not just on the conformal child elements. To maintain this continuity requires 
constraining the level set field on the interface nodes. This is accomplished in a way that is very 
similar to the hanging node constraints, which are generated in non-conformal adaptivity and can 
be removed from the system matrix using a variety of techniques such as static condensation. 
The interface nodes are constrained by the linear interpolant of the parent values on the edge.  

 
2.1.4.3 Pressure Discretization 

Enrichment strategies that allow for either weak or strong discontinuities have been explored in 
the context of XFEM for flows with and without surface tension (see Sauerland and Fries [2011] 
and references therein). Here the pressure is allowed to have a discontinuous value across the 
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interface in order to capture the effects of surface tension and discontinuous viscosity. This is 
easily accomplished in CDFEM by defining two pressure fields p

+
 and p

-
 in the subdomains 

+

and 
-
, respectively. Both fields are present on the interfacial nodes. For an implementation on 

problems without surface tension, we reduce the algorithm to a single pressure approach. 

 
2.1.4.4 Velocity Discretization 

The optimal enrichment strategy for velocity is less clear. A weak discontinuity in the velocity is 
produced by the viscosity difference between the fluids. For this reason enrichment of the 
velocity gradient has been considered [Sauerland and Fries, 2011; Rasthofer et al., 2011]. 
Sauerland and Fries found that velocity enrichment to be problematic, however. The enrichment 
led to a more accurate approximation when a stable solution could be obtained, but the method 
was not sufficiently stable and robust. Meanwhile, Rasthofer et al. [2011] successfully enriched 
the velocity gradient in the context of quasi-static enrichment.  

 

Numerical experiments performed using CDFEM have shown robustness issues when the 
velocity gradient is allowed to be discontinuous across the interface. One possible explanation 
for this lack of robustness is that the space requirements of the velocity are related to the space of 
the level set field. As discussed earlier, the level set field is typically piecewise continuous on an 
element, and, therefore, C

1
 across the level set interface.  

 
2.1.5 Finite element equations 
 

We discretize the equations with the basic Galerkin approach, but use pressure stabilization on 
the continuity equation and streamline upwinding on advections terms. The momentum equation 
is weighted with the shape function, and second order terms are integrated by parts. All time 
derivatives are first order and discretized with a backward-Euler finite difference method. 
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For the continuity equation, pressure stabilization adds extra terms that circumvent the LBB 
equation allowing for equal order interpolation.  
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The level set equation is also stabilized with a streamline-upwinding Petrov-Galerkin (SUPG)  
term that creates upwinding for this advection dominated equation. (We have also used Taylor-
Galerkin upwinding).   
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 Verification of CDFEM 2.2

 
Verification of the CDFEM algorithm was carried out on several problems addressed in the 
literature such as two-dimensional droplet/bubble rise and the two-dimensional Rayleigh-Taylor 
instability. Here we choose to focus on the unconstrained version of the algorithm where all 
fields are allowed to vary at the child level and are not constrained to the parent mesh as some of 
our other algorithms, which will be discussed later. All two-dimensional simulations are carried 
out of triangular element meshes with Q1 interpolation of all variables, and pressure-stabilized-
Petrov-Galerkin (PSPG)-type stabilization to circumvent the LBB condition [Hughes, 2000]. 
First order time integration is used with SUPG on all advection terms. 
 
2.2.1 Droplet/Bubble Rise a la Hysing 
 
The first set of problems are drop and bubble rise problems in 2D from Hysing et al., [2009] 
where they present results from several different codes.  Important dimensionless groups are the 
Reynolds number and the Eotvos number, and property ratios for the two fluids. The values for 
these two problems, indicated by Test 1 and Test 2 respectively, are given in Figure 8. 
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Figure 8. Two‐Dimensional droplet and bubble rise problems from Hysing et al., 2009. 

 
Test 1 deforms smoothly from the initial circular configuration and gives a smooth profile after 
3.0, producing a cap-like shape. All methods seem to do well on this problem including a diffuse 
interface method (Figure 9). The density and viscosity ratios are 10, Re=35 and Eo=10. 
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Figure 9. Results from Test 1.  Left shows the published results from Hysing et al., 2009, 
middle gives the diffuse interface results, and right shows the CDFEM results. Results are 
given for the coarsest mesh (1/40). 

 
 
We can examine the results from Test 1 as a function of mesh refinement. Here three mesh 
resolutions are examine R0=1/40, R1=1/80 and R2=1/160. Following Hysing et al. [2009], we 
examine three metrics from the simulation: the circularity, center of mass, and rise velocity. The 
circularity is a measure of how close the drop compared to circular.  
 

 
perimeter of area-equivalent circle

circularity = 
perimeter of bubble

a

b

d

P


   (15) 

 
The center of mass is defined as the x-moment of the drop divided by the droplet area. 
 

 center of mass
1

A

A
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  (16) 

 
The rise velocity is defined as the integral of the velocity over the droplet divided by the droplet 
area, which can also be an evolving quantity. 
 

 rise velocity
1

x

A

A
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dxdy




  (17) 

Here, we can test whether they are convergent with mesh refinement. The results from this study 
are shown in Figure 10. This shows good convergence as the mesh is refined, with the results 
from R1 and R2 lying almost on top of each. 
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Figure 10. For problem Test 1, CDFEM shows good convergence with mesh refinement for 
circularity, center of mass, and rise velocity metrics. 
 

 
Mass conservation is always an issue for level set methods. Here we examine the maximum 
deviation from the initial mass as a measure of the error in the simulations. This is shown in 
Figure 11. 
 
 

 
Figure 11. Error in mass conservation as a function of mesh refinement (h=1/40, h=1/80, 
and h=1/160). Unconstrained CDFEM shows roughly first order accuracy on a smooth 
problem such as Test 1.  

 
Thus the unconstrained CDFEM demonstrates itself to be a convergent method, accurate to first 
order on smooth problems. 
 
Test 2 serves as a more stringent test of the algorithm, at a density ratio of 1000 and viscosity 
ratios of 100, (Re=35 and Eo=125). Fine trailing structures form below the drop as it rises in the 
fluid. The shape of these structures is different for the varying algorithms, as seen from Figure 
12. 
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Figure 12. Figure 1 from Hysing et al., 2009 showing results for Test 2 from various codes. 
The diffuse interface methods produced from CFX, COMSOL and Fluent look different from 
the sharp interface method (TP2d) and the ALE moving mesh code (MooNMD). 

 
Here we have results for CDFEM on Test 2 from the unconstrained algorithm, using frequent 
renormalization, and local normals (see Figure 13 ). 
 

 
Figure 13. Unconstrained CDFEM results for Test 2 showing convergence with mesh 
refinement for gross features, but loss of fine features such as trailing tails or satellite 
drops. 

 
The results show convergence in the gross features on all three meshes. On the coarser meshes 
(h=1/40 and h=1/80), we find that satellite drops form but then are small enough compared to the 
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grid size that they disappear. This is true even though overall mass conservation is quite good. 
The satellite drops contain very little of the problem mass. 
 
We have also examined the rise velocity as a function of mesh refinement in Figure 14. 
 

 
Figure 14. Rise Velocity as a function of time and mesh refinement for unconstrained 
CDFEM on Test 2. 

 
Here we can see that the results for all three meshes lie almost on top of each other, except in the 
area where we start losing the satellite drops at roughly time=2s. Still R1 and R2 show good 
convergence throughout. 
 
2.2.2 Rayleigh-Taylor Instability 
 
A classic test for a moving boundary algorithm is the Rayleigh-Taylor instability, where a 
simulation begins with an unstable stratification of heavy fluid over light fluid. Here we set up 
the problem in an identical manner to the Rayleigh-Taylor instability from Smolianski [2005]. 
The initial conditions, boundary conditions, and material properties are show in Figure 15. Initial 
condition for the shape of the interface affects wave number and symmetry of instability. Here 
we perturb the interface with a symmetric deformation. 
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Figure 15. Problem set up for 2D Rayleigh‐Taylor instability including physical properties for 
both phases, and boundary conditions. The interface is perturbed with a symmetric 
function to excite a symmetric instability. 

 
 
Results are given from Smolianski in Figure 16 on a coarse mesh (h=1/40) and a large time step. 
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Figure 16. Rayleigh‐Taylor instability with zero surface tension on h=1/40 and t=2h from 
Smolianski [2005]. 

 
Results are given for zero surface tension, where a single pressure is used in our CDFEM 
formulation. Because there is larger deformation than in the case with surface tension, this is a 
stringent test. Fine features are formed, which should stretch without breaking. When they do 
break, it is a numerical effect since the simulation is two-dimensional and there is no surface 
tension. Figure 17 shows CDFEM results for four different meshes at four different time planes. 
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Figure 17. CDFEM Rayleigh‐Taylor instability results for four different meshes at four 
different time planes (t=1.96, 2.6, 3.3, 4.0). Also included is an error measure, the 

maximum mass loss before 4.0s. The time step is based on the element size, t=h/3.0. 
Standard renormalization occurs at every 0.05s for each mesh. 

 
From Figure 17 we can see that the algorithm is convergent. On the coarsest mesh (h=1/20), the 
solution is very diffusive and does not contain any fine features. As we refine the mesh, we begin 
to see the fine features but obtain a filament that breaks for h=1/40. As we go to the finer meshes 
(h=1/80 and h=160), we see nearly identical results where a fine filament is formed at the last 
time plane and able to maintain itself while thinning. 
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We can look at a quantitative error metric, which is the maximum area loss in the first 4s from an 
initial area is 2.0 (see Figure 18). 
 
 

 
Figure 18. Mass error as a function of mesh refinement for Rayleigh‐Taylor 

 
Convergence looks slightly higher than first order (though not shown here, the constrained 
CDFEM is lower than first order). The plot is not monotonic, and shows a change of slope from 
h=1/40 to h=1/80, with the finer meshes showing a higher convergence rate. For this problem, 
filament breakage/topology change may be the cause of the non-monotonic error curve. 
 
 
2.2.3 3D Droplet in Shear Verification 
 
Many of the verification problems in the literature are two-dimensional such as the droplet rising 
and Rayleigh-Taylor instabilities we included in the previous sections. Unfortunately, most of 
the problems that we are interested in are three-dimensional. To that end, we have investigated a 
three dimensional verification problem of a droplet flow in shear flow. The drop begins as a 
sphere and then deforms due to the flow into a capsule-like shape. We look at three different 
mesh resolutions (50,000 nodes, 100,000 nodes and 200,000 nodes) for meshes of tetrahedra. 
CDFEM mesh refinement is much more complicated in three-dimensions, and this test case was 
able to highlight several bugs in the code that had to be fixed in order to achieve results. 
 
Results for a 3D drop in shear flow are given in Figure 19. Surface tension is included and the 
physical properties are identical for the both phases, though they are immiscible and have a jump 
in pressure across the interface due to surface tension. Constrained renormalization is used 
periodically as the level set diverges from being a distant function.  
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Figure 19. 3D drop in shear flow for three different meshes.  

 
From this example problem, we can see that the shape of the drop is quite consistent for all three 
meshes at the final time of 20s. Figure 20 shows the maximum mass loss normalized by the 
initial mass for the three different meshes plotted as a function of h, a linear measure of the mesh 
size. 
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Figure 20. Mass error as a function of mesh refinement for 3D drop in shear flow. 

 
Mass conservation does improve as the mesh is refined, though mass loss continues to be an 
issue for problems with low capillary number. From Figure 20, we can see that the error 
decreases in a first-order fashion with mesh size. 
 
2.2.4 Constrained Algorithm CDFEM Unconstrained CDFEM 
 
Many different version of the CDFEM algorithm were investigated, and only two proved 
unconditionally stable. The unconstrained CDFEM, where all variables were mapped to the child 
space allowing for jumps in velocity gradient and discontinuous pressure, was stable. The fully-
constrained CDFEM, where all variables were mapped to the parent space, except for pressure, 
which was allowed to be discontinuous as necessary for problems with capillarity, was also 
stable. Variations in between these cases were all unstable. 
 
An example of the results for the Hysing bubble rise problem with the two stable algorithms is 
given in Figure 21. 
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Figure 21. Unconstrained CDFEM algorithm for Hysing problem 2 on the most refined mesh 
as compared to a constrained CDFEM for the same mesh. Hysing result is shown from his 
paper for comparison. 

 
The constrained algorithm seems to be somewhat better at mainraining small features such as the 
satellite drops that form as the bubble rises. Loss is higher for the mass in the satellite drops for 
the unconstrained algorithm, though overall mass conservation is similar for both methods since 
very little of the problem mass is contained in the satellite drops. 
 

 Mass Transport with CDFEM 2.3
 
One of the natural strengths of the CDFEM algorithm is that the interface between the two fluids 
has a meshed interface, upon which we can apply boundary conditions, jumps in material 
properties, and discontinuous variables. In liquid-liquid extraction, interfacial mass transport is 
crucial to the separation process. A cartoon of this process is given in Figure 22 where mass 
moves from phase A into phase B, and also in the reverse direction, in an equilibrium process. 
The concentration is discontinuous across the phase boundaries.  
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Figure 22. A schematic of the interfacial mass transport where material goes from phase A 
to phase B in equilibrium. A concentration jump occurs at the interface between phase A 
and B. 

 
We can write a transport equation for each phase: 
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When we apply the Galerkin finite element method, a shape function representation of the 
concentration variables is formed based on the nodal variables. This is then substituted into the 
differential equation for transport. It is then weighted by the shape function itself, and second 
derivatives are integrated by parts. Here we write the equation for the generic concentration 
variable, but it is applicable to both phases: 
 

 ( ( ) ) 0mass
i i i

V S

c
R N u c N D c dV n D cdS

t


       
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The surface integral in equation (19) is the natural boundary condition that occurs on all 
interfaces and boundaries. At the interface, this term is balanced by the interfacial mass transport 
equation written for concentration variables, c0 and c1: 
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We test this formulation for the problem of a quiescent 2D drop with the properties given in 
equation (21). 
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  (21) 

 
 
The results are shown in Figure 23. Here we see the species of interest starts off contained inside 
the drop. It then slowly leaches out into the external fluid. This fluid starts off with a zero 
concentration of this species. 
 



45 

 
 

Figure 23. Interfacial mass transport from a quiescent drop in 2D where Y0 is the species in 
the droplet phase and Y1 is its counterpart in the continuous phase. Time evolves from top 
to bottom. 

 
For this problem, no flow occurs so mass transport occurs only by diffusion and interfacial mass 
transport. A short time, the mass transport is fast compared to diffusion and a boundary layer is 
formed in the drop that is depleted of species 0. Since the mass transport rate depends on the 
concentration of species 0, it slows over time and allows diffusion to catch up. At late time, the 
material diffuses away from the drop in phase B creating a halo effects. 
 
We can also couple the mass transport to flow for the deforming bubble from Test 2 shown 
previously. This result is shown in Figure 24, with the same properties as the previous example 
but including the effects of convective mass transport. 
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Figure 24. Test 2 with interfacial mass transport. The top left figure is the initial time plane, 
and time evolves from left to right. The bottom left is the fifth time plane. 

 
Here we can see that the motion of the drop leaves a wake of species 1 in the phase B, enhancing 
mass transport compared to diffusion alone. For this problem, the drop remains well-mixed since 
only the first 3s were examined. 
 
A 3D version of this algorithm is also available in Sierra Mechanics, though we currently have a 
parallel bug that constrains us to run on a single processor, which greatly hampering our ability 
to run realistic drops. 
 

 CDFEM Coupling to Control Volume Finite Element Method  2.4
 
The goal for this component of the project was to have the capability to run a multi-phase flow 
wedge calculation of a contactor at the highest Reynolds number possible and to achieve the 
highest performance possible within available computational resources. The Conformal 
Decomposition Finite Element Method (CDFEM) is utilized in order to represent droplet 
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surfaces as sharp, moving interfaces. To maximize computational performance, the Control 
Volume Finite Element Method (CVFEM) with an approximate projection scheme was chosen 
since CVFEM is robust for high Reynolds number flows and the segregated pressure approach 
should be more efficient for large scale computations. The code development effort has been to 
combine these three elements to work congruently within the SIERRA/Aria framework.  
 
The following code modifications have been put in place to allow for CDFEM mesh 
decomposition to link with CVFEM:  

(1) CVFEM now functions with triangles/tetrahedral elements since CDFEM mesh 
decomposition is implemented for only these element types.  

(2) Changes have been made to the CVFEM level set equation to include a conformal 
decomposition utility and expression save-off utilities have been updated to allow for CDFEM 
mesh motion.  

(3) The nodal control volume now gets properly updated for CDFEM mesh motion, in 
addition to ALE mesh motion.  

(4) Additionally, there are two formulations of the CVFEM equations for continuity and 
momentum available in Aria, both of which require source terms proportional to the mesh 
velocity (or mesh velocity relative to the fluid velocity) as well as interfacial flux boundary 
conditions that must be included to account for a density jump across the interface within a 
control volume. The first formulation is: 
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where v is the fluid velocity and x


 is the mesh velocity. The second formulation is: 
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The second terms are the source terms mentioned above and the third terms are the additional 
boundary terms. 
 
Both of these forms have been tested and are correct to machine precision for a convecting drop 
with a density ratio of 1:1000. Two regression tests have been added to the Aria test repository: 
(1) an interface drop convection problem with a high density ratio and (2) a rising droplet 
problem (due to gravity and density ratio) that includes surface tension and double-valued 
pressure. 
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Figure 25. The CVFEM/CDFEM rising droplet test problem for 3 different surface tensions. 
Drop rises due to gravity force and density ratio between drop and external fluid. Double‐
valued pressures are used to capture the interfacial pressure jump. A fully coupled solve is 
utilized here. 

 

The use of double-valued pressures to represent sharp interfacial pressure jumps that occur when 
surface tension is non-negligible has been investigated. The following code modifications have 
been made to allow for double-valued pressure with CVFEM and a projection method: (1) 
Indices are included to tag the continuity equation and the pressure, which gets passed into the 
mass flux vector and CVFEM utilities. This index also gets added to utilities that require 
pressure. (2) A pressure jump contact flux interfacial boundary condition has been added such 
that the average between the current and opposite surface terms is used.  (3) Steps have been 
taken to ensure that the projection step is consistent with the momentum equation at the 
interface. Once the code was set up to handle double-valued pressure with a segregated pressure 
solve, it was determined that this combination does not appear to provide satisfactory 
convergence. It is possible that instead a single pressure segregated solve with a level set balance 
force approach may prove to be a better option, however this approach negates a fraction of the 
benefits of CDFEM’s sharp interfacial representation. At the large scale of the problem, 
computational performance is more necessary than well-defined droplet boundary conditions. 
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3  PARTICLE-SCALE AND DROPLET-SCALE MODELS 
 
In this section, we discuss modeling results for CDFEM. When we first began using CDFEM for 
problems with moving boundaries, many issues came up as compared to the steady case [Noble, 
Newren, and Lechman, 2010].  For that reason, we decided to step back and clarify the algorithm 
for the simpler case of a solid-particle with a prescribed velocity. This work resulted in a journal 
publication [Lechman, Noble, and Nemer, 2012]. Thus, only a short summary is given here 
along with an update of the work. In the other sections, we discuss droplet-scale modeling using 
CDFEM in a flow-focusing device. Other applications of CDFEM are also highlighted to show 
the versatility of the algorithm for capillary hydrodynamics and two-phase flows. 
 

 Particle-scale modeling with CDFEM 3.1
 
Particle suspensions play an important role in many engineering applications, yet their behavior 
in a number of respects remains poorly understood. In conjunction with careful experiments, 
modeling and simulation of these systems can provide key insight into their complex behavior. 
However, these two-phase systems pose the challenge of simultaneously, accurately, and 
efficiently capturing the complex geometric structure, kinematics, and dynamics of the 
particulate discrete phase and the discontinuities it introduces into the variables (e.g., velocity, 
pressure, density) of the continuous phase. To this end, a new conformal decomposition finite 
element method (CDFEM) is introduced for solid particles in a viscous fluid. The method is 
verified in several simple test problems that are representative of aspects of particle suspension 
behavior. In all cases, we find the CDFEM to perform accurately and efficiently leading to the 
conclusion that it forms a prime candidate for application to the full direct numerical simulation 
of particle suspensions. 
 
We have presented the results of several problems involving rigid discrete particles in an 
incompressible, Newtonian continuum fluid. The problems are simple but prototypical of aspects 
of the behavior of particulate suspensions. We have been able to verify the efficacy of the 
CDFEM as applied to these types of problems. Specifically, we have shown that the method 
performs quite well in the quasi-static limit with dynamic interfaces and coupling to a particle 
dynamics solver. Additionally, when the elements of the decomposition become ‘extreme’, as in 
the case of surfaces in close contact, CDFEM performs at least as well as other methods. In some 
sense, perhaps, it performs better as the lubrication forces are stronger but not singular at contact. 
In cases where full 3D transient flows with dynamic interfaces are relevant, CDFEM shows 
accuracy as good as an ALE method. Hence, CDFEM allows for efficient, accurate introduction 
of discontinuities to the continuum fields, which makes it very well suited for simulations of 
particle suspensions. Figure 26 shows an example of a CDFEM particle from the paper. 
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Figure 26. Typical flow field produced by sphere driven by constant force. Colors indicate 
magnitude of fluid velocity and vectors indicate direction. 

 
In particular, sedimentation of a cloud of particles or flows with free surfaces can be handled 
with this approach. One final note is on the application of this type of approach to suspension 
behavior. Although the method may be limited in length and timescales that are achievable given 
current computational resources, it certainly can play a role in constitutive model development in 
representative volume element-type simulations. This is due to the fact that it captures the 
relevant physics of suspension flows, namely, the complex geometric structure and dynamics of 
the particulate discrete phase and the discontinuities it introduces into the field variables of the 
continuous phase. 
 
The work has been extended to 3D multi-particle flows as seen from Figure 27. 
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Figure 27: Four spherical particles settling in a cylindrical container. 

 
We are currently working to extend the method to many more particles for problems such as 
mixing of powders into fluids. 
 
 

 Simulation of Droplet Formation in a Microfluidic Droplet 3.2
Generator  

 
The microfluidic droplet generator is a device designed to produce large quantities of uniformly-
sized droplets within a carrier liquid.  A typical droplet generator geometry (illustrated in Figure 
28) consists of an intersection of three liquid streams that pass through a constriction.   
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Figure 28. Microfluidic experiment from Chapter 3 and Robert et al., 2012. 

 
By varying the geometry, liquid properties, and liquid flow rates, droplets of various sizes can be 
produced.  The generator was simulated using the CDFEM.  This technique allows for the 
definition of interface properties and captures physical properties that are not continuous across 
the interface (e.g.  pressure when surface tension is nonzero).  A more in depth discussion of 
CDFEM is provided in the previous section. 
 
3.2.1 2D Simulations 
 
To get started with the microfluidic simulations, we began with a 2D approach where we only 
looked at the flow in plane.  This was to allow us to debug the input decks and get started with 
the simulations. The results look surprisingly similar to the experimental work discussed in the 
following.  
 
The system we worked to model had dodecane as the droplet phase with a density 0.74 g/cm3 
and a kinematic viscosity of 1.8 cSt. To make drops, the flow rate was 0.01 ml/hr. The 
continuous phase was water with a density of 1.0 g/cm3 and a kinematic viscosity of 1.0 cSt. The 
water flow rate was 0.5 ml/hr. The surface tension between water and dodecane was measured to 
be 52 mN/m. The dimensions of the microfluidic chip are: 
 

2a = 200 microns 
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 Wc = 200 microns 
 Lor = 110 microns 
 Wor = 120 microns  
 Wout = 500 microns 
 

 
 

Figure 29. Droplet generator for two different flow rates. Experiments are on the left and 
simulations on the right. 

 
We can examine the drop as it forms and then view it as the dodecane starts to neck and release 
the drop. 
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Figure 30. The stream necks as the drop is released from the microfluidic droplet generator. 
Two different flow rates are shown. The left shows the experiments, the right is the 
simulations. 

 
Again, given that these simulations are missing a dimension and are therefore physically 
unrealistic, we are surprised at how similar the simulations are to the experiments implying that 
in-plane surface tension and flow may be important to the dynamics of droplet breakup in the 
microfocusing device.  
 
3.2.2 3D Simulations  
 
We have also investigated 3D CDFEM simulations of the microfocusing device as shown in 
Figure 31. Compared to the 2D simulations presented in the previous chapter, this simulation 
becomes much more complex due to a number of factors. This includes applying the appropriate 
boundary conditions on the top and bottom plate, where it is essential to apply a Navier slip 
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condition, instead of no slip, so the drop does not get trapped in the device. Adequate mesh 
refinement is also much easier to achieve in 2D than 3D and without this mass loss becomes 
more of an issue.  
 

 

Figure 31: Microfluidic droplet generator geometry used for simulation including the mesh. 
 

Initially, the interface of the droplet fluid slowly creeps down the channel.  As it approaches the 
constriction, the velocity increases and a long strand of liquid is formed.  The strand narrows and 
breaks resulting in a droplet.  The droplet then flows down the channel entrained in the carrier 
liquid. An in-plane slice is shown in Figure 32. 
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Figure 32. Cross section of the droplet formation process in the droplet generator. The first 
time plane is on the left. 

 

Figure 34 illustrates the same simulation in three dimensions.  In this figure, the pinching of the 
liquid strand is apparent in both the x and z directions.  Since the simulation is performed in 
three dimensions, the breaking of the liquid strand is a physical phenomenon as opposed to a 
numerical phenomenon that would occur in a simulation with only two dimensions. 

 

Figure 33. Droplet generation in three dimensions. The first time plane is on the left. 
 

Overall, this simulation illustrates complex flow phenomena (droplet formation) between two 
immiscible liquids in a microfluidic device.  The purpose of this simulation was to evaluate new 
capabilities within Aria (CDFEM) and qualitatively compare the results with the droplet 
generator experiments described elsewhere in this report.  This new Aria capability was able to 
successfully capture the behavior of the microfluidic droplet generator for large capillary number 
scenarios.  Future work will focus on making the CDFEM capability in Aria more robust and 
able to handle the more challenging case of small capillary number flows, which are more 
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relevant to the actual process.  Additionally, mass transfer will be included to simulate the rate of 
mass transfer between the two liquids.  
 

 Confined Droplet in a Rectangular Channel 3.3
 
We have examined the flow of a large drop (with low capillary number) generated from the 
microfluidic device discussed in the previous section using CDFEM.  This drop is larger than the 
channel depth and will move down the channel with the outer flow, but at a net velocity much 
slower than the maximum channel velocity, due to its large size.  To simplify the simulation, we 
do not capture the breakup of the drop from the orifice.  Instead, the drop is initialized as a 
cylinder, so the necessary volume is there but the material does not touch the walls, and then 
allowed to reach its pseudo-steady-state shape.  This allows us to examine the short-time 
transient response of the drop relaxing to its final shape, including oscillatory behavior.  Here we 
start with a drop that would be 1.2 times the channel depth if it were spherical. Results showing 
drop shape as a function of time are given in Figure 34. 
 
 

 
 
Figure 34. 3D Simulation of a confined droplet in between rectangular plates.  Drop radius 
is 1.2 times the gap width if it was a sphere and initialized as a cylinder. 

 
 
At early times, the drop is released and begins to flow downstream. The initial cylindrical shape 
becomes smooth, due to surface tension and flow, creating an elastic instability that damps out 
quickly. At later times, a capsule shape is achieved and the drop advects downstream. Figure 35 
shows the velocity profile inside the drop once it has achieved its final shape.  
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Figure 35. Velocity profile inside the confined drop. Here  the velocity is shown in the 
reference frame of the drop. Qualitatively, the results look similar to the experiment but 
are noisy possibly due to parasitic currents. 

 
From this figure, we can see the recirculation of the fluid inside the drop and the sharp gradients 
near the top and bottom plate. In addition, we can see that the velocity vectors are noisy due to 
parasitic currents created by the numerical discretization of surface tension. 
 

 Bottle Filling using CDFEM  3.4
 
One of our application areas of interest at Sandia is in mold filling and bottle filling, where fluids 
with non-Newtonian rheology are injected into molds with complex geometries. To this end, we 
examined how well CDFEM would perform for filling of a bottle with a complex shape. Figure 
show results for bottle-filling of a Carreau fluid.  
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Figure 36: Bottle filling of a non‐Newtonian fluid using a Carreau model and the CDFEM 
free surface algorithm 

 
CDFEM is able to capture the buckling instability that occurs at early times as well as capturing 
the complex flow behavior as the fluid hits the bottom of the container and spreads. Thus, we 
forecast that CDFEM will perform well for problems such as mold and bottle filling, where 
surface tension is less important than microfluidics. This may be an area to focus on for the 
future. 
 
3.4.1 Conclusions 
 
We have used the CDFEM algorithm for several problems in capillary hydrodynamics. We have 
shown good results, but still have issues with mass loss and spurious currents for problems with 
low capillary numbers. The algorithm works better for moderate capillary number flow such as 
mold filling of foams. 
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4 MICROFLUIDIC EXPERIMENTS 

 
As discussed in chapter 1, all mass transfer in a centrifugal contactor occurs at the interface 
between the droplet phase and the continuous phase. Thus, understanding the nuances of mass 
transport at the droplet scale in a detailed sense can help us build full-scale models of contactors. 
To this end, we focused on single drop experiments in a microfluidic device first to understand 
the drop making process and then to understand the mass transport. Three journal articles arose 
from this work. The first one on droplet generation on wetting and non-wetting surfaces was 
published in Laboratory on a Chip [Roberts et al., 2012A], the second paper on the detailed fluid 
dynamics at the droplet-scale examined with experiments and finite element simulations will be 
submitted to Physics of Fluids [Roberts et al., 2012B], and the third on mass transport, using the 
microfluidic device and scaled-up to the centrifugal contactor will be submitted to Chemical 
Engineering Science [Roberts et al., 2012C]. The mass transport in the contactor is discussed in 
the contactor experimental chapter, while the base neodymium mass transport in the microfluidic 
device is summarized here. 
 

 Droplet Generator 4.1
 
A thin flow-focusing microfluidic channel was first evaluated for generating monodisperse liquid 
droplets.  In a flow-focusing channel, a liquid stream, jacketed by a second, co-flowing 
immiscible liquid becomes unstable as it passes through a constricting orifice (Figure 29).  
Droplet sizes range from the orifice size to a fraction of the orifice size, and can be controlled by 
altering flow conditions. [Anna, Bontoux, and Stone, 2003; Nie et al. 2008; Tan et al, 2008; Tan, 
Cristini and Lee, 2006]  Typically, produced emulsions can have droplet size poly-dispersities 
less than 5%.  Thin channels were of interest specifically for producing a more two-dimensional 
flow field that could be more easily imaged. 
 
The production of both oil in water and water in oil emulsions were studied in a thin channel 
microfluidic chip.  The microfluidic device was used in its native state, which is hydrophilic, or 
treated with octadecyltrichlorosilane (OTS) to make it hydrophobic.  Having both hydrophilic 
and hydrophobic surfaces allowed for a large parameter study of viscosity ratios (droplet 
fluid/continuous fluid ranging from 0.05 to 96 and flow rate ratios (droplet fluid/continuous 
fluid) ranging from 0.01 to 2 in one geometry.   
 
Figure 37 shows the production of droplets using a variety of flow rates, orifice sizes, and fluids.  
Here, a high speed camera was used to capture various stages of drop breakup.  The appearance 
of the breakup is qualitatively comparable to two and three dimensional finite element 
simulations discussed previously in Chapter 3. 
 
The hydrophilic chip provided a partially-wetting surface (contact angle less than 90°) for the 
inner fluid.  This surface, combined with the unusually thin channel height, promotes a flow 
regime normally not observed in flow focusing devices where the inner fluid wets the top and 
bottom of the channel in the orifice and a stable jet was formed.  Through confocal microscopy, 
this fluid stabilization was shown to be highly influenced by the contact angle of the liquids in 
the channel.  Non-wetting jets undergo breakup and produce jets when the jet is comparable to or 
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smaller than the channel thickness.  In contrast, partially-wetting jets undergo breakup only when 
they are much smaller than the channel thickness.   
 
Drop sizes were found to scale with a modified capillary number based on the total flow rate, 
regardless of wetting behavior.  The modified capillary number used the reciprocal-averaged 
viscosity of the two fluids.  By defining the capillary number in this way, both oil-in-water and 
water-in-oil droplet sizes were found to collapse onto one common relationship.  The 
effectiveness of this new capillary number indicates that both fluids are important to defining the 
stress balance in the orifice during the necking of the droplet fluid. 
 
Although thin (25μm) flow-focusing devices were shown to produce monodisperse droplets of 
predictable size, the droplets tended to become stuck in the channel when the droplet diameter 
was much larger than the channel thickness.  Therefore, a conventional flow-focusing device 
(100 μm thick) was used for mass transfer and flow experiments.  
 
A more detailed description of the work that is summarized here was published in Lab on a Chip 
[Roberts et al. 2012A]. Since we have a journal article on the subject, here we will just 
summarize the results. 
 
 

 
 

Figure 37.  Production of oil‐in‐water and water‐in‐oil emulsions in a flow‐focusing 
microfluidic device.  The orifice width (Wor) as well as the flow rates of the inner and outer 
fluids (in mL/hr) is defined for each case. 
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  Droplet dynamics 4.2
 
This is the summary of a paper which will soon be submitted to Physics of Fluids [Roberts et al., 
2012B]. The PI has a copy of the entire submitted article. 
 
4.2.1 Background 
 
Mass transfer in a liquid-liquid extraction system is driven by both convection and diffusion.  
Therefore, it is important to fully characterize the flow inside and outside of the droplets at 
various flow rates and with varying droplet sizes.   
 
In the case of droplets moving in Poiseuille flow, circulation within the drop is driven by a 
mismatch between the velocity of the droplet and the velocity of the continuous fluid.  Nadim 
and Stone [1991] and others modeled the velocity of a drop in Poiseuille flow for droplet 
diameters less than the channel depth [Chan and Leal, 1979; Nadim and Stone, 1991; Hudson, 
2009]. A small droplet moving along the centerline of the channel has a velocity that 
approximately matches the maximum velocity of the continuous fluid.  As the droplet grows, it is 
influenced by a greater cross section of the flow, including the slower fluid near the walls.  The 
large droplet therefore moves more slowly than the continuous fluid at the centerline of the 
channel. Thus, a large droplet in Poiseuille flow experiences shear from the faster moving 
continuous fluid at the centerline of the channel, and also shear imposed by both channel walls.  
This drives a circulation pattern within the drop.   
 
The expected pattern of flow inside of a small droplet moving in a rectangular channel has been 
modeled [Nadim and Stone, 1991; Hudson, 2009].  Two pairs of vortices are expected.  The first 
is driven by the drag of the top and bottom of the channel.  In the reference frame of the droplet, 
the channel moves opposite the droplet motion, dragging the aqueous fluid with it.  Conservation 
of mass dictates that this fluid must return to the front of the droplet in a path down the droplet 
center towards the front of the drop.  This creates a fountain flow appearance in the vertical zx 
plane (see Figure 41).   
 
If the channel geometry is a wide Hele Shaw slit, simulations predict that vortexes are only 
apparent in the vertical zx plane.  However, in a unique case, Lee et al. observed recirculation 
patterns in a droplet containing surfactant that was anchored to be stationary in a Hele-Shaw cell 
[Lee, Gallaire, and Baroud, 2012]. In this case, they observed a vortex in the horizontal xy plane 
that scaled linearly with the velocity of the continuous liquid.  This vortex is driven by the 
continuous fluid flowing around the outside of the drop.  A horizontal xy plate vortex is also 
apparent if the channel cross section is square, due to the drag from the side walls.  Researchers 
have used particle image velocimetry and other methods to image the described pattern in the 
specialized case of slug flow, where the droplet completely fills the channel [King, Walsh, and 
Grimes, 2007; Kashid et al., 2011; Fries and von Rohr, 2009; Sarrazin et al., 2008]. Simulations 
of confined cases have also been performed [King, Walsh, and Grimes, 2007; Kashid et al., 
2011; Fries and von Rohr, 2009; Sarrazin et al., 2008]. 
 
When accurate fluid flow models are available for droplets in a channel, it has been shown that 
microfluidic devices can be used to characterize parameters in liquid-liquid systems.  For 
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example, microfluidic devices have been used to probe the effects of surfactant on droplet 
interfaces by observing the interior flow to the droplet [Hudson et al. 2005; Schwalbe 2011].  
Information pertaining to the slip at the liquid-liquid interface and Marangoni stresses can be 
elucidated.  
 
Using the flow-focusing channel geometry that was chosen for mass transport studies, drops are 
produced that have large diameters with respect to the channel depth.  In certain cases, the 
droplets overfill the channel, with diameters that are larger than the channel depth.  Therefore, it 
is important to understand the expected velocity of such droplets in the channel, as well as the 
fluid circulation pattern that is driven in the droplet fluid.  In this section, these parameters are 
measured for various flow rates and droplet sizes.  A finite element ALE model is also produced 
in order to understand the flow inside and outside of the droplet.  Finally, surface active tri-n-
butyl phosphate (TBP) is added to the continuous fluid in order to determine whether it affects 
the flow within the droplet in a measurable way. 
 
4.2.2 Experimental Methods 
 

4.2.2.1  Drop production and flow visualization 
 
Homogeneous droplets were produced in a flow-focusing microfluidic device shown in Figure 1.  
Glass chips were purchased from Translume (Ann Arbor, MI), and were made hydrophobic 
using a 2 vol% octadecyltrichlorosilane (OTS) (Sigma-Aldrich, St. Louis, MO, > 90% pure) in 
hexadecane (Sigma-Aldrich, St. Louis, MO, >90%) wash.  Chip orifice widths were 50 μm and 
100 μm, and the chip depth was always 100 μm.   
 

In droplet flow visualization experiments, the droplet fluid is water that is purified using a Milli-
Q purification system.  A small amount (0.015 vol%) of 1 μm diameter red polystyrene particles 
(Fluoro-max, Thermo Scientific, Waltham, MA) are added as tracer particles.  The continuous 
fluid is dodecane (Sigma-Aldrich, St. Louis, MO, >99% pure).  Flow rates are specified using 
syringe pumps (Harvard Apparatus, PhD 22/2000, Holliston, MA), which were calibrated 
gravimetrically using a balance (Mettler Toledo, XS1003S, Columbus, OH).  Droplet production 
in a similar system was discussed previously, including control of size and frequency of droplets 
[Roberts et al. 2012].  
 
Flow is visualized using an inverted microscope (Leica DM IRB, Germany), and recorded using 
a high speed CCD camera (Phantom v 9.1, Vision Research, Wayne, NJ), with frame rates as 
high as 5000 frames per second.  Distances are calibrated using Klarmann Rulings, Inc 
(Litchfield, NH) KR-868 reticules.  Trajectories of the tracer particles are inferred using a 
particle tracking routine adapted by Blair and Dufresne for MATLAB [Blair and Dufresne, 
2008]. Using this setup and technique, two-dimensional flow in a 15 μm thick horizontal plane 
of the chip can be visualized.  By changing the focal plane, a picture of the three-dimensional 
flow can be created. 
 



64 

 

Figure 38. Flow focusing geometry, showing aqueous drops (dark) being produced in 
dodecane. Orifice sizes are 50 μm and 100 μm, with all other dimensions being equal.  The 
channel depth is 100 μm 

 

4.2.2.2 Finite Element Model 
 
Two-phase flow of droplets in a rectangular channel is simulated using an arbitrary Lagrangian-
Eulerian (ALE) method in Sierra/Aria [Notz et al., 2007].  A pressure gradient is applied down 
the channel, causing a Poiseuille flow to set up through the channel, moving the drop.  In order 
to simulate a moving drop using an ALE method without significant mesh deformation, a 
change-of-reference is necessary. We would like to work in the reference frame of the drop, such 
that the drop is stationary and the walls move backwards.   
 
An Aria user plugin was written to implement a proportional–integral–derivative (PID) 
controller that measures the drop velocity and displacement, and then calculates the wall velocity 
that is necessary to keep the drop stationary.  This controller leads to the oscillatory behavior 
seen in Figure 39 and requires tuning parameters for expedient convergence.  Standard control 
theory is used to set these parameters.  

 
Figure 39: Example transient simulation of a drop flowing down a channel.  The drop 
diameter is 90% of the channel depth. 

 
4.2.3 Droplet Velocity  
 

Using particle tracking, the continuous fluid streamlines were confirmed to be consistent with 
Poiseuille flow through a rectangular channel [White, 1991]. Experimentally observed droplet 
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velocities matched the Nadim and Stone [1991] predictions well for droplet diameters ranging 
from 0.5-0.8 times the channel height (Figure 40).   
 
Because the Nadim and Stone [1991] solution is a simple asymptotic solution that neglects any 
wall effects or any deviations from spherical of the drop, it does not accurately predict the 
velocity of large droplets in rectangular channels.  Therefore, a full ALE finite element model 
was created in Aria/Sierra to model the droplet motion as well as the circulation within the drop.  
Since the FEM solution does capture the flow of the continuous fluid between the drop and the 
wall as the drops get large, it was more accurate in predicting the drop velocities for larger drops 
up to diameter to height ratios of 97% (Figure 40). 
 

 

Figure 40: Normalized drop velocity in Poiseuille flow with respect to normalized droplet 
size, d/h.  Symbols correspond to experimental observations (.), Nadim and Stone model (‐‐
), and ALE FEM simulation (∆). 

 

Droplets were also experimentally made which fill or overfill the channel.  In this case, only a 
small lubrication layer of continuous fluid separates the drop from the channel walls, creating 
substantial drag on the droplet.  Figure 40  shows how this additional drag drastically slows 
droplets with diameters equal to or greater than the channel height.  When the droplet diameters 
are 1.5 – 2 times the channel height, the velocity asymptotes to a value that is approximately half 
of the average continuous fluid velocity.   
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4.2.4 Droplet Circulation 
 
Because the continuous fluid is faster than the drop and the drop is also being sheared by the 
walls of the channel, a circulation pattern develops within the drop. This circulation pattern was 
modeled using ALE FEM for water drops in dodecane and is shown in Figure 41.  The expected 
fountain flow circulation pattern modeled by others for a droplet in a Hele Shaw channel is 
found.  Here, one pair of vortexes is evident in the x-z plane. This circulation pattern was 
predicted for drop diameters up to 97% of the channel depth by ALE FEM simulations and by 
other researchers for even larger droplets [Sarrazin et al., 2008].  The Poiseuille flow in the outer 
fluid is also perturbed by the drop.  Because the flow is constricted near the wall and also around 
the drop sides, the outer fluid velocity increases to flow around the drop.   
 

 

Figure 41: Streamlines for the final steady state of an ALE FEM simulation for a water drop 
in dodecane.  The drop diameter is 80% of the channel depth, and the velocities are drawn 
relative to the net drop velocity.  Both x‐y and x‐z planes are drawn. 

 

The experimental setup allows only motion in the x-y plane to be imaged.  When the droplets are 
small (d/h ≈ 0.5), the expected circulation pattern is observed, where all streamlines flow 
towards the front of the drop.  The velocity of this fluid is less than is predicted through 
simulations, perhaps because of slip at the liquid-liquid interface due to surfactant introduced 
with the latex particles used to track the fluid. Unfortunately, the liquid-liquid interface interferes 
with the visualization of the particles at the edges of the drop in order to verify that this slip 
exists.  The thickness of this interference varies with the focal plane. 

When the drops become larger than 0.6 times the channel depth, a vortex is observed in the x-y 
horizontal plane.  Figure 42 shows streamlines in three different planes ranging from near the 
wall to the center in the reference frame of the drop.  Close to the wall, streamlines are 
dominated by shear from the top of the channel and all tracer particles move opposite the 
direction of the drop movement.  In the plane near the droplet center, the continuous fluid is 
much faster than the drop.  This fluid drags the droplet fluid at the liquid-liquid interface 
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forward, in the direction of the droplet motion.  The fluid returns down the droplet center.  The 
three-dimensional fountain flow is drawn in a schematic in Figure 43. 
 
Because the observed droplets have large diameters with respect to the chip depth they move 
slowly and the continuous fluid exerts a more substantial shear on the droplet, approaching the 
anchored drop case of Lee et al. [2012]. In fact, in most of the cases that were investigated, the 
difference between the drop speed (Vd) and the maximum speed of the continuous fluid (Vmax) 
was greater than the difference between the drop speed and the wall (0).  Therefore, it is 
unsurprising that a vortex is imaged in the x-y plane, the plane that experiences the greatest 
shear.  The consequence is that in large droplets the x-y plane does experience a fountain flow, 
and the direction of the flow at the drop center is towards the back instead of the front of the 
drop.  If there is a vertical plane vortex, its existence cannot be determined using the current 
experimental setup. 

 

Figure 42: Streamlines within the drop A) at the wall, B) halfway between the wall and the 
droplet center C) near the droplet center.  Color indicates the velocity of the streamline in 
the x direction.  Streamlines are drawn with respect to the reference of the drop center in 
the xy plane.  Drops are 0.6 mm in diameter with h/d=0.6. 

 
 

 

Figure 43: Three dimensional schematic of observed flow in large droplets and in the 
continuous fluid, drawn in reference plane of drop 

 
 

The strength of the xy circulation can be described by the mean centerline velocity (Vc) in a 
plane near the droplet center.  The centerline velocity is plotted with respect to the maximum 
velocity of the continuous fluid in Figure 44.  Both velocities are measured with respect to the 
drop.  There is a linear relationship between these two quantities, confirming that the horizontal 
vortex pattern is driven by shear from the faster moving continuous fluid.  Scatter in the data is 



68 

due to inaccuracies in locating the exact center of the drop, as well as from capturing particles 
throughout the entire thickness of the finite focal plane. 
 
Circulation patterns were measured for aqueous droplets in dodecane and also aqueous droplets 
in dodecane containing 0.1 M TBP and 0.2 M HTTA.  The droplet size was approximately 0.8 
mm, and the continuous fluid was 2 and 4 mL/hr.  The observed circulation velocities for the two 
cases are shown in Figure 44.  No noticeable difference was seen in the droplet flow or droplet 
velocities, indicating that within the ability of the technique to measure their effects, TBP and 
HTTA are not substantially influencing the interface.   
 

 

Figure 44: Observed X‐Y circulation strength versus the relative velocity of the drop with 
respect to the maximum velocity in the channel.  Cases containing 0.1 M TBP and 0.2 M 
HTTA are shown in red. 

 
The presence of circulation will affect the relevant length scales for mass transfer.  For mass 
transfer experiments, a drop diameter/channel depth ratio of 0.8 was targeted.  Drops of this size 
are approximately spherical in the channel and possess strong x-y and z-x vortexes.  This is an 
advantage, since in the presence of circulation, diffusion must occur across streamlines to the 
center of the vortex, whereas without circulation the relevant diffusion length is the longer drop 
radius.  A larger droplet also moves slowly with respect to the continuous fluid, which suggests 
that the concentration of the continuous fluid is continuously renewed and will be approximately 
constant.  
 
 

 Liquid-Liquid Extraction in Microfluidic Devices 4.3
 
4.3.1 Background 
 
Centrifugal contactors are used for specialized liquid-liquid extraction processes in the chemical, 
nuclear, and biotechnology industries.  In nuclear waste reprocessing, they are uniquely suited 
for liquid-liquid extraction of uranium and plutonium isotopes from other rare earth elements 
using the TRUEX process.  For example, because centrifugal contactors are comparatively small 
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relative to other liquid-liquid extraction unit operations there is less of a chance to achieve 
critical mass of radioactive material.   
 
In a centrifugal contactor, two immiscible fluids are mixed at high speeds using a rotor, which 
creates a fine dispersion of droplets of one fluid in the other.  High shear rates and large 
interfacial area between the two liquids creates an efficient environment for mass transfer of 
species from one fluid to another.  The rotor also acts as a centrifuge, so that the oil and aqueous 
phases are separated from each other into two outlet streams.   
 
Significant progress has been made to understand the centrifugal contactor through modeling 
Vedantam et al. 2012; Deshpande and Zimmerman 2006; Wardle and Lee, 2011] and laboratory 
scale experiments [Kadam et al. 2009; Calabrese, Wang, and Bryner 1986; C. Y. Wang and 
Calabrese 1986; Leonard et al. 1993; Cauwenberg, Degrève, and Slater 1997].  In order to fully 
understand such studies, however, fundamental parameters are necessary such as the droplet size 
and distribution, mass transfer coefficients, diffusion coefficients, and partition coefficients.  
Established methods exist for obtaining diffusion coefficients, for example by using a side-by-
side diffusion cell [Sanni and Hutchison 1973; Chang and Wilke 1954].  Partition coefficients 
can also be measured with accuracy [Farbu, Alstad, and Augustson, 1974]. However, mass 
transfer greatly depends on mixing speeds, interfacial area, and the existence of boundary layers, 
making its measurement nontrivial.  To obtain mass transfer coefficients that are relevant for the 
centrifugal contactor, it is best to use a model environment that also experiences high shear.   
 
Microfluidic devices have proved useful for observing mass transfer quantitatively on a single 
drop basis [Nichols et al., 2011; Mary, Studer, and Tabeling, 2008; Xu et al. 2008; Kumemura 
and Korenaga, 2006]. Microfluidic devices are ideal model environments since they can produce 
high mixing speeds with known interfacial areas [Nichols et al., 2011]. Reliable production of 
monodisperse oil in water and water in oil droplets has been well documented for a variety of 
channel geometries [Cristini and Tan, 2004; Gunther and Jensen, 2006; Teh et al., 2008]. Unlike 
falling droplet experiments where motion is driven by gravity [Kronig and Brink, 1951; Johns 
and Beckmann, 1966], residence and reaction times for droplets in microfluidic channels are on 
the order of those observed for centrifugal contactors.  
 
Here, a system that mimics the TRUEX liquid-liquid extraction process is studied for a 
laboratory scale contactor. Parameters including diffusion and distribution coefficients are 
obtained to better understand the contactor behavior.  A flow focusing microfluidic channel is 
used to observe mass transfer and measure mass transfer coefficients on a single drop basis.  
Droplet size distributions have also been collected experimentally and are discussed elsewhere 
[Wyatt et al., 2012].  The effects of these parameters on the contactor experiments are discussed. 
 

4.3.2 Experimental Methods 
 

4.3.2.1 Diffusion Coefficients 
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Diffusion constants were measured in the aqueous and organic phases using a side-by-side 
diffusion cell (PermeGear, Hellertown, PA, model #5G-00-00-15-07) [(Sanni and Hutchison, 
1973, Chang and Wilke, 1954]. In this technique, a membrane is placed between two 7mL glass 
cells.  With both cells filled with solvent, a small volume of solvent is removed from one of the 
cells, which is then replaced with the same volume of a dilute solution of the solute of interest.  
The concentration in one of the cells (usually the unadulterated cell) is then monitored by 
continuous UV-VIS spectroscopy using an Ocean Optics spectrometer (QE6000) and a light 
source (Halogen Dolan Jenner, LED Dolan Jenner LMI-6000).  Flow through the membrane is 
sensitive to pressure differences in the cells, thus the cells are left open for approximately an 
hour to equalize pressure and then gently taped closed with a piece of scotch tape to prevent 
evaporation.  The membrane is calibrated by performing the measurement using a compound 
with a well-known diffusion constant.   A calibration run was performed prior to and at the end 
of our measurement sequence to ensure that the membrane constant remained the same over 
time. 
 
In the aqueous diffusion experiments an acrylic-nylon membrane (Gelman Pall Versapor-800, 
0.8 μm, 47 mm diameter, PN 66401) was used to separate the two half cells.  Rhodamine B 
(Sigma-Aldrich), 500μL of 13.4 μM was added to the 7mL half-cell as the membrane-calibration 
solute, as it has a strong absorption in the visible range at very low concentrations and its 
diffusion constant has been determined to be 4.2 ± 0.3 x 10-10 m2/sec at pH 2 to 9.5, I < 0.1 M, 
and C < 10 μM (Gendron, et al. 2008).  The solvent for the membrane-calibration was 0.008 M 
KHP buffer set to a pH of 5.75; the absorbance, diffusion, and complexation of Rhodamine B, 
Fluorescein and xylenol orange are sensitive to pH.  As a calibration check we performed 
diffusion experiments using Fluorescein (Fluka), 500 μL of 400 μM added to the 7mL half-cell, 
in 0.008 M KHP buffer which gave results 3.9 ± 0.6 x 10-10 m2/sec consistent with experiments 
by Perale et al. (2011) but below other literature values 4.2 – 6.4 x 10-10 m2/sec [Casalini, et 
al.,2011; Galambos, 1998].  With nearly all of the compounds of interest we observed anomalous 
absorbance trends over long periods of time (weeks), which we attribute to slow degradation of 
the organic dyes, and/or aggregation [Casalini, et al., 2011].  
 
For the organic diffusion experiments, a Polytetrafluoroethylene (PFTE) membrane (Pall 
Zelfluor, 0.5 μm, 47 mm diameter, PN P5PQ047) with the cellulose backing material removed 
was used to separate the two half cells.  Dimethyl yellow was used as the membrane-calibration 
solute [Yoo, et al., 2008; Park and Chang, 2000].  A 1500 μL aliquot of 100 μM dimethyl yellow 
was added to the high side cell, absorbance was taken at 416.91 nm. 
 

4.3.2.2 Partition Coefficients 
 
Partition coefficients were determined by placing volumes of the organic and aqueous phase in 
contact in bottles that were gently shaken on a shaker table for at least one hour.  The aqueous 
phase was then separated and sampled by inductively coupled plasma atomic emission 
spectroscopy (ICP-OES) analysis.  In the organic phase we combined dodecane (Sigma-Aldrich), 
HTTA (Sigma-Aldrich, St. Louis, MO), and TBP (Sigma-Aldrich).  In the aqueous phase, we 
used two recipes corresponding to the chip experiments and the contactor experiments 
respectively.   
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4.3.2.3 Mass Transfer to Droplets   
 
The extraction of neodymium (Nd3+) from aqueous droplets to dodecane using the complexant 
thenoyltrifluoroacetone (HTTA, Sigma-Aldrich, St. Louis, MO) and ligand tri-n-butyl phosphate 
(TBP, Sigma-Aldrich, St. Louis, MO) was chosen as a model mass transfer system.  This is a 
nonradioactive system that has behavior similar to uranium or plutonium extraction. The aqueous 
phase also included xylenol orange (XO, Sigma-Aldrich, St. Louis, MO) as an indicator for 
Nd3+.  The reaction was found for an analogous system using carbon tetrachloride as the organic 
phase to be as follows [Farbu, Alstad, and Augustson, 1974]:  
 
 Nd(XO)(aq) + 3 HTTA(o) + 2 TBP(o) ↔ Nd(TTA)3(TBP)2(o) + 3 H+

(aq) + XO(aq)     
  
In all cases, the aqueous droplet fluid is 3.2 mM NdNO3 (Sigma Aldrich, St. Louis, MO), 0.01 M 
xylenol orange, and is buffered at pH = 5.5 using 0.2M potassium hydrogen phthalate (KHP, 
Acros Organics, NJ).   The continuous oil phase has varying concentrations of TBP and HTTA 
as specified.  Solution concentrations are verified using inductively coupled plasma mass 
spectrometry. 
 
Uncomplexed xylenol orange absorbs light at 430 nm, whereas the XO-Nd complex absorbs at 
590 nm (Figure 45).  Therefore, by illuminating the microfluidic chip only at 590 nm using a 70 
mW LED (M590L2, Thor Labs, Newton, NJ), the intensity of the resulting image can be 
correlated with the XO-Nd concentration.  Light intensity is captured using the Phantom camera 
at 2000 fps as well as a photodiode (APD110A, Thor Labs, Newton, NJ).  The photodiode signal 
is recorded with a National Instruments multifunctional data acquisition device (NI-USB-6366) 
and LabVIEW Signal Express software at 10-6 Hz (National Instruments, Austin, TX). 
Calibration curves relating the light intensity to the XO-Nd complex concentration are created by 
imaging droplets of six different concentrations ranging from 0 – 3.2 mM Nd-XO through pure 
dodecane.  Calibration curves are linear, with R2 values of 0.986 (photodiode) and 0.995 
(camera). 
 
To obtain the change of concentration in a drop with time, images are taken throughout the 
length of the microfluidic chip.  Image locations are known through use of a motorized stage 
(ProScan, Prior Scientific, Cambridge, UK).  Droplet velocities and sizes are measured from the 
images obtained through the Phantom camera.  The average concentration in the drops is 
reported using more than 2x106 measurements using the photodiode (Figure 45).  Figure 46 
shows an example of mass transport in the flow-focusing device demonstrating the color change 
in the droplet as they move towards the exit. 
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Figure 45: Light absorption by aqueous solutions of Nd3+.  Various amounts of Nd3+ have 
been complexed with xylenol orange.  The microfluidic chip was illuminated with 590 nm 
light so that the intensity of the light passing through the channel was correlated with the 
Nd‐XO concentration  
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Figure 46. An example of droplet formation and mass transport in the microfocusing device 
showing the color change as the droplets move downstream. 
 

 

4.3.3 Results and Discussion 
 

4.3.3.1 Diffusion Coefficients 
 
The diffusion coefficients in the aqueous phase are given below in Table 1.  The diffusion 
constants for Nd(XO)aq and the H3XOaq were determined in 0.2 M KHP buffer.  For the bare 
Nd3+ ion, this was not possible as Nd3+ tends to form a solid phase with KHP in the absence of 
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the XO complexant, hence a lower-concentration sodium-acetate buffer was used.  The pH in 
these measurements matches the pH used in the mass-transport experiments. 
 

Table 1: Aqueous Diffusion coefficients 

Species Medium Diffusion Coefficient (m2/s) 
Nd(XO)aq 0.2 M KHP Buffer at pH 5.5 2.3 ± 0.2 x 10-10  
H3XO 0.2 M KHP Buffer at pH 5.5 3.0 ± 0.2 x 10-10  
Nd3+ 0.01M NaAc Buffer at pH 5.5 7.0 ± 0.7 x 10-10  

 

4.3.3.2 Partition Coefficients 
 
Partition data is shown below in Table 2 for the microfluidic chip experimental concentrations.  
We also calculate a distribution value D as the total concentration of neodymium in the organic 
phase divided by the total concentration of neodymium in the aqueous phase.  Note that this is 
not a true thermodynamic value, since most of the Nd remaining in the aqueous phase is 
complexed with xylenol orange. 
 

Table 2.  Partition data for the microfluidic‐chip relevant experiments.  Here the initial 
[Nd(XO)]aq = 3.2 mM, the xylenol orange concentration was 0.01 M and the matrix 
solution was 0.2 M KHP buffer pH = 5.45. 

 
[HTTA]O initial (M) [TBP]o initial (M) [NdT]aq final (M)  D = [Nd]o/[NdT]aq 
0.2 0.3 6.5 x 10-7 4.8 x 103 
0.2 0.3 5.7 x 10-7 5.6 x 103 
0.2 0.01 1.9 x 10-5 1.7 x 102 
0.2 0.01 1.9 x 10-5 1.7 x 102 

0.2 0.1 1.0 x 10-5 3.0 x 102 
0.004 0.0025 4.4 x 10-4 6.2 x 10-1 
0.002 0.0025 1.4 x 10-3 1.3 x 10-1 
0.002 0.01 7.1 x 10-4 3.5 x 10-1

 

0.002 0.005 8.6 x 10-4 2.7 x 10-1 
 

4.3.3.3 Droplet Concentration and Mass Transfer Coefficients 
 
The concentration of Nd-XO complex in the droplets was recorded as the droplets traveled down 
the chip outlet channel for various continuous fluid flow rates and TBP and HTTA 
concentration.  All mass transfer experiments were performed for a droplet size/channel height 
ratio of 0.8 – 0.85.  
 
When the HTTA concentration in the continuous phase was less than 0.004 M, the mass transfer 
at the droplet surface was slow compared to the diffusion of the species in the droplet.  Assuming 
that the droplet is well mixed and the concentration of Nd3+ is constant in the outer fluid, a 
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simple mass transfer balance for the concentration of Nd3+, C, at time t can be written for a 
droplet of surface area, A, and volume, V: 
 

 ( )eff cont

dC
k A C HC V

dt
     (23) 

 

Since the flow rate of continuous fluid is always greater than 100 times that of the droplet fluid, 
the quantity HCcont, the partition coefficient times the Nd3+ concentration in the dodecane, is 
approximated to be zero.  Upon integrating this equation and simplifying the area to volume ratio 
of a sphere, an expression for the effective mass transfer coefficient keff can be found: 
 

 
3

ln( )
2eff

i

C d
k

C t
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Here, Ci is the initial concentration of Nd3+ in a drop with diameter d. The effective mass transfer 
coefficient combines the mass transfer rate at the liquid-liquid interface as well as the mass 
transfer rate across any concentration gradients in the fluid.   
 
Using this simplified model, keff was found for a range of TBP and HTTA concentrations.  
Figure 47 displays representative data for four separate cases.  In all cases, a plot of ln(C/Ci) 
versus t/d was linear.  Values of R2 corresponding to the linear fit used to find keff are reported.  
The continuous fluid flow rate (Qc) also did not impact the mass transfer rate.  Both of these 
observations are consistent with a kinetically limited process.  It was found that the mass transfer 
rate was first order with HTTA concentration and was only weakly dependent on the TBP 
concentration.   
 
Also reported in Table 3 is the Reynolds number defined for the continuous fluid flow through 
the outlet channel with width w, Re = ρcQc/wμc, showing that the flow is always laminar.  The 
drop velocity Vd, and the relative velocity of the drop with respect to the maximum velocity of 
the fluid Vrel are also cited.  The Peclet number, Pe, is defined for the drop as Pe = Vrel d/(4D), 
where the diffusion coefficient for Nd-XO in the aqueous buffer solution, D, is that found 
previously using the Taylor diffusion cell.  Here the length scale for diffusive transport is 
assumed to be ¼ of the drop diameter, d, or approximately the distance to the center of the vortex 
observed in Figure 42.  The Peclet number is always on the order of 100, confirming that 
convection in the droplet is much faster than diffusion across streamlines. 
 
The assumption that the droplets are well-mixed can be tested by calculating the mass transfer 
Biot number, defined as Bi = keffd/4D.  The value of Bi for all cases is greater than one, 
indicating that the kinetic transport to the drop is slightly faster than the diffusive transport 
within the drop.  The Biot number does not take into account effects of Taylor dispersion, which 
would increase the diffusion rate within the drop due to shear.  Regardless, for rigorous 
determination of the mass transfer coefficient a mixed kinetic-diffusion model may be more 
appropriate. 
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Figure 47: Concentration as a function of time for (●) 0.0025 M TBP, 0.002 M HTTA, Qc = 2 
mL/hr; () 0.0025 M TBP, 0.002 M HTTA, Qc = 2 mL/hr; (●) 0.0025 M TBP, 0.004 M HTTA, 
Qc = 2 mL/hr, (●)  0.005 M TBP, 0.002 M HTTA, Qc = 2 mL/hr.   

 
Table 3: Parameters obtained for reaction limited mass transfer experiments  

 

When the HTTA concentration is increased to 0.2 M in the dodecane, the kinetics at the drop 
interface become faster and the mass transfer clearly becomes diffusion limited.  Figure 48 
shows the fraction of Nd3+ extracted from a drop versus time, nondimensionalized by a 
characteristic time for diffusion, τ = 4Dt/d2.  The mass transfer of all cases is equivalent, 
irrespective of the HTTA and TBP concentrations in the dodecane.  For comparison, the Kronig-
Brink solution for mass transfer from a perfectly circulating sphere translating through a 

Continuous Fluid            

M TBP M HTTA 
Qc 

(mL/hr) 
Vd 

(mm/s) 
Vrel 

(mm/s) 
keff 

(mm/s) R² Re Pe Bi 

0.0025 0.002 2 15 -4.3 0.035 0.88 0.62 392 3.19 

0.0025 0.002 4 33 -5.7 0.036 0.93 1.24 514 3.22 

0.0025 0.004 2 16 -3.1 0.082 0.99 0.62 283 7.48 

0.0025 0.004 4 34 -4.4 0.066 0.97 1.24 382 5.77 

0.005 0.002 2 14 -5.1 0.050 0.97 0.62 465 4.56 

0.005 0.002 4 31 -7.7 0.053 0.95 1.24 694 4.80 

0.01 0.002 4 33 -5.6 0.048 0.93 1.24 505 4.29 

0.01 0.002 2 15 -4.5 0.048 0.99 0.62 415 4.41 
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quiescent fluid is also included [Clift, Grace, and Weber, 1978; Kronig and Brink, 1951]. The 
Kronig-Brink solution assumes a perfectly symmetrical flow pattern within the drop, much like 
the square channel flow pattern described earlier.  Since the Kronig-Brink solution contains more 
circulation than the observed flow, the observed mass transfer is slower. 
 
The observation that the TBP concentration did not influence the mass transfer in the diffusion 
limited regime is more evidence that TBP does not affect the mobility of the liquid-liquid 
interface significantly.  If TBP caused slip at the dodecane-water interface, the circulation pattern 
within the droplet would have been altered and the relevant diffusion length would have changed 
[Schwalbe et al., 2011].  Within the experimental capabilities, this was not observed. 
 

 

Figure 48: Fraction of Nd3+ transferred versus dimensionless time for diffusion limited 
experimental cases (symbols).  The Kronig‐Brink solution for a perfectly circulating sphere 
in plug flow is shown for comparison (‐‐). 

 
 

4.3.3.4 Coalescence and Mass Transport 
 
Because of the versatility of our microfluidic chip, we are able to examine a number of flow 
regimes from single separate drops to drops that are formed close enough together to coalesce. In 
Figure 49, we show false color plots of mass transport in the thin (25 μm channel) microfocusing 
device.  
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Figure 49. Mass transport in the thin microfocusing device shows high concentrations of Nd 
in the inflow stream, that leaches out as the droplet moves down the chip. Droplet 
coalescence occurs directly out of the generator and a second time downstream. Drops are 
approximately 100 μm in diameter.  The continuous flow is 1.5 mL/hr of 0.2 M HTTA, 10‐2 M 
TBP in dodecane, and the droplet fluid is 3.62 mM Nd3+, 0.01 M Xylenol orange, and 0.2 M 
KHP in water.  

 
Figure 49 shows that the highest concentration of Nd occurs in the inflow stream as 
demonstrated by the orange colors. As the drops move down the channel, the Nd leaches from 
the drop into the continuous phase, losing intensity. The effect of the circulation pattern, 
discussed in Section 4.2.4, can be seen in the image.  In the first frame, two pockets of high 
concentration (yellow) can be seen in the drop.  These areas are the center of the horizontal 
vortex that was imaged using particle tracking.  The centerline of the drop is nearly the same 
concentration as close to the interface.  Thus, the circulation decreases the distance that diffusion 
must occur over to only ¼ of the drop diameter.  Since this circulation pattern can be seen 
clearly, the diffusion speed of Nd is much slower than the reaction speed at the interface.  This 
confirms the classification of a similar case (0.2 M HTTA, 10-2 M TBP in dodecane, 100 μm 
deep channel) as diffusion limited, losing intensity.  
 
For this system, two droplets are formed close together and coalesce almost immediately. Once 
these larger drops move down the chip, a second coalescence event occurs. These coalescence 
events lead to larger drops, which decreases mass transport rates by decreasing surface area, 
while also increases mixing, which could lead to enhanced mass transport. Quantitatively, we see 
that coalescence decreases mass transport and leads to lower separation rates [Figure 50].  Here, 
the error bars represent the standard deviation of the concentration values that are found in the 
2D representation of the drop.  In the case of no coalescence, the drops become homogeneous 
more quickly as compared to the case of coalescence, where the drops retain more of a 
concentration variation for a greater period of time.  The variation in the average concentration in 
the drop also increases as the drops move down the channel.  
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Figure 50.The left plot shows a system without coalescence while the right plot shows a 
system with coalescence. The flow rates for the outer and inner fluids are defined on the 
figure. 

 
Knowing the effect of coalescence on mass transport could help us optimize the choice of 
rotation rates for the centrifugal contactors, since coalescence increases at the highest RPMs. 
 

 

4.3.4 Conclusions 
 
The flow-focusing microfluidic channel is a unique, controlled environment that allows many of 
the phenomena observed in centrifugal contactors to be explored.  Flow-focusing channels 
produce monodisperse oil-in-water or water-in-oil emulsions with drop sizes that are on the order 
of those that are produced in contactors.  Large droplets, with diameters approaching the channel 
depth, move in Poiseuille flow and experience a large amount of shear.  This shear drives a 
circulation pattern in the droplet that increases the rate of mass transfer to the droplet.  The 
circulation speed largely depends on the relative velocity of the drop with the channel wall and 
also with the continuous fluid.  This shear is highly dependent on drop size, which is shown both 
experimentally and with an ALE FEM model.  Unexpectedly, the concentrations of the surface 
active species HTTA and TBP do not affect the circulation pattern within the droplet in a 
measurable way. 
 
Mass transfer coefficients were measured in the microfluidic chip for various concentrations of 
TBP and HTTA.  The mass transfer was found to be first order in HTTA concentration, with 
only a weak dependence on TBP.  Very similar results were also observed in the centrifugal 
contactor, as will be discussed in the next section.  A diffusion limited regime was also observed, 
where the kinetics of the mass transfer were so fast at the droplet interface that the concentration 
of species in dodecane did not affect the rate constant significantly.  This regime was also 
observed in the contactor experiments. 
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5 CONTACTOR MODELS 
 
The annular centrifugal contactor is a unit operation designed to maximize mass transfer between 
two immiscible liquids.  The contactor (cross section illustrated in Figure 51) consists of internal 
rotor that turns at a high velocity producing a mixing region of high shear and a separation 
region.  In the mixing region, the shear breaks up both liquids to maximize the contact area and 
the flow is turbulent in nature.  In the separation region, a centrifugal force causes the two liquids 
to then separate via buoyancy into two distinct phases.   
 

 

Figure 51: Cross‐sectional view of an annular centrifugal contactor.  The movement of the 
liquids through the device is illustrated by the red arrows.  Within the mixing region, the 
liquids exist as an emulsion.  The rotor rotates about the dashed black line. 

 

 
 Single Phase Models  5.1

 
As a first approximation to the flow within the mixing region, a single liquid (water) is 
considered and modeled using a Large Eddy Simulation (LES) using Sierra/Aria [Notz et al., 
2007]. The mesh of the geometry of interest is illustrated in Figure 52. 
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Figure 52: Mesh used for simulating the mixing region within the annular centrifugal 
contactor. 

 

Figure 53 illustrates the cross section of the mixing region where the color represents the 
magnitude of the liquid.  Initially, the liquid is stationary everywhere except near the rotor.  As 
time progresses, eddies begin to form in the vertical sections where large shear exist.  In the real 
system, the large shear regions help break up the two liquids to form an emulsion with small 
droplets.  Over long times, eddies within the high shear region fluctuate in vertical position, but 
these fluctuations have a small influence on the overall flow profile. 
 

             

Figure 53: Cross section of the mixing region over time.  The colors represent the 
magnitude of the velocity within the region 

 

Figure 54 illustrates a plane within the lower portion of the mixing region.  In this image, the 
colors represent the magnitude of the velocity, the lines represent the velocity vectors and the 
location of the mixing vanes is apparent.  This image visualizes the influence the mixing vanes 
have on the flow profile.  Between the mixing vanes, large eddies form to better enhance the 
mixing of the liquid in the region.   
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Figure 54: Bottom of the mixing region.  Color represents the magnitude of the velocity and 
the lines represent the velocity vectors 

 

Overall, this simulation illustrates the complex flow profile within the mixing region of the 
annular contactor.  This region exhibits turbulence with regions of high shear.  The purpose of 
this simulation was twofold.  The first goal was to determine the capabilities of Aria on a 
complex geometry with a challenging turbulent flow profile.  This goal was successfully met and 
is the largest turbulent flow simulation Aria has performed to date (>1 million unknowns).  The 
second goal was to learn about the behavior of the flow within the contactor unit operation and 
how it changes over time.  Future work will be able to build off these results by incorporating 
more sophisticated liquids that are more representative of the liquid used in the process.   
Additionally, the flow profile results can be used to help predict the amount of mass transfer that 
occurs with the end goal of helping design future annular contactors. 
 

 
 Multiphase Models  5.2

 
We have run the CVFEM/diffuse interface level set model on the centrifugal contactor in the 
previous section. (We were not yet able to get the CVFEM/CDFEM implementation to work for 
this complex of a flow.) Results from this two-phase flow, with properties for dodecane and 
water, are given in Figure 55. This is a result without surface tension but with density and 
viscosity differences between the aqueous and organic phases. 
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Figure 55. Two‐phase simulations of flow in the centrifugal contactor using the CVFEM 
algorithm coupled to a diffuse interface level set method. The color bar shows the density 
of the fluids. 

 
We start the simulation with an unfavorable stratification of the heavier fluid over the lighter 
fluid. As the simulation runs, heavy fluid drops into the mixing zone near the vanes. At long 
time, an oscillatory flow field is achieved that looks periodic in time. This is somewhat similar to 
what is seen in the real system, where the fluid-gas interface moves in a sinusoidal fashion with 
time. 
 
 
5.2.1 Conclusions 
 
Simplified models of centrifugal contactors were investigated in Sierra Mechanics. Here we have 
completed single phase models of flow in the contactor with turbulence, but without an inflow or 
outflow. We have also carried out two-phase flows in this contactor, again without an inflow or 
outflow. For future work, we would like to run a more refined version of this problem including 
surface tension and turbulence and eventually allowing for a full CVFEM/CDFEM coupling. 
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6 CONTACTOR EXPERIMENTS 
 
 

 Droplet Size Distribution and Spatial Distributions in Annular 6.1
Centrifugal Contactors 

 
Below find a summary of the paper to be submitted to AIChE Journal [Wyatt, O’Hern, Shelden, 
2012]. For a copy of the full paper you can contact the PI.  
 
6.1.1 Introduction 
 
Annular centrifugal contactors have been developed as a single, compact unit utilized to transfer 
a desired species between two immiscible fluid phases.  Critical to understanding the mass 
transfer characteristics associated with the complex flows in the annular mixing region is a clear 
picture of the distribution of droplet sizes of the various phases involved.  To date, very little 
experimental data appears in the literature.  We begin to fill that void by using laser fluorescence 
and optical methods to directly observe and measure drop size distributions for a silicone 
oil/water system in a centrifugal contactor.  The shape and characteristics of the lognormal 
distributions, including the Sauter mean diameter and distribution means, are elucidated in terms 
of rotor speed (power consumption) and organic phase fraction.  Further, the size distribution of 
entrained air bubbles is also examined.  The results presented here will be invaluable in 
validating and expanding the predictive capacity of the many models that have been developed to 
describe the flow within these devices. 
 
Accurately measuring the drop sizes in a centrifugal contactor is not trivial.  The turbulent flow 
and entrained air bubbles make direct imaging using conventional techniques difficult.  Further, 
the high rotor speeds at which contactors are often operated (> 3000 rpm) add to the difficulty of 
obtaining clear images of the multi-phase flow.  Recently, several studies have been published in 
which researchers have successfully measured the characteristics of the multi-phase flow using 
various methods.  Using a chemical method suggested by Doraiswami and Sharma [1984], 
Kadam et al. [2009] measured the effective interfacial area in three centrifugal contactors of 
varying diameter and levels of power consumption.  From the measured power consumption and 
interfacial area, they were able to estimate Sauter mean diameters of 10 – 50 µm for various 
aqueous/organic systems.  Later, Tamhane et al. [2011] used a phase Doppler particle analyzer to 
measure drop sizes in the mixing zone for three different organic phases with water and report 
average drop sizes in the range of 30 – 200 µm depending on power consumption.  Most recently 
Schuur et al. [2012] used focused beam reflectance measurements to measure drop size 
distributions based on measurement of reflectance which is converted to chord size distributions 
using a correction factor.  Using this technique, they report Sauter mean diameters that range 
from 150 m to over 600 m based on varying organic flow rates for a 1,2-dichloroethane/water 
system.  
 
Here we present a more direct approach at experimental drop size distributions in an annular 
centrifugal contactor.  Using laser-based fluorescence, clear optical images of the flow are 
attainable that can then be analyzed to directly determine sizes and distributions of droplets in 
the mixing zone.  We examine the effect of rotor speed (power consumption) on the 
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distributions, average drop sizes, and Sauter mean diameter for a system of polydimethylsiloxane 
and water. 
   
6.1.2 Materials and Methods 
 
All of the experiments described here were performed using a CINC-V2 annular centrifugal 
available from CINC Industries, Inc. (Carson City, NV).  The stainless steel contactor housing 
was replaced with a clear acrylic housing available from the manufacturer to enable optical 
measurements to be made with the contactor running (Figure 56).   
 

 

Figure 56: An image of the apparatus including the index‐matched fluid bath needed to 
decrease distortion from the clear walls of the contactor 

 
 
The inner diameter of the housing is 2.5 inches and the rotor has a diameter of 2 inches leaving a 
0.25 inch gap in the annular region.  The bottom vane plate used consists of 8 curved vanes 
having a tip-to-tip diameter of 2 3/16 inches.  As such, the mixing vanes extend into the annular 
gap, but do not extend all the way to the housing wall.  Tap water with no further purification 
was used for the aqueous phase while polydimethylsiloxane (PDMS) with a viscosity of 5 cSt 
(Clearco Products Co., Inc., Bensalem, PA) was used as the organic phase.  For visualization, 
Nile red dye (Sigma-Aldrich, St. Louis, MO) was dissolved into the PDMS.  The Nile red dye 
absorbs light in the range of 532 nm and fluoresces in the range near 600 nm.  Images of the flow 
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in the contactor were obtained using a Phantom v9.1 high speed camera (Vision Research, 
Wayne, NJ) using a 10X magnification microscope objective (Figure 57).  The lens was focused 
approximately 1mm away from the inner wall of the housing.  Illumination was provided by 
shaping a Continuum Minilite PIV Nd:YAG laser beam (Continuum, Santa Clara, CA) into a 
light sheet with a 5 nanosecond pulse width.  The camera was synchronized with the laser so that 
one laser pulse was emitted during each image acquired.  The synchronization of the laser and 
camera provides crisp images by effectively freezing the droplet motion with the 5 ns pulse.  
Using this setup, we are able to visualize droplets ranging in size from 40 microns to 1 mm in 
diameter. 
 
 

 

Figure 57. Schematic representation of the experimental apparatus (top view). 
 
Three-phase flow in the contactor is shown in Figure 58, where a large head space exists filled 
with air. The liquid region is actually an emulsion of water and oil, with a large volume fraction 
of air bubbles. 
 



87 

 
 
Figure 58. An image of the centrifugal contactor filled with water, oil and air. 

 
Images were analyzed using the public domain image processing software ImageJ.  Droplets 
were fit with circles whose diameters were then calculated.  All but the largest droplets were 
spherical in shape.  The diameters of droplets that were deformed in the flow were approximated 
by a circle having an area equal to the distorted droplet.  An image of an object of known 
dimensions enabled scaling to real dimensions.  For each distribution, at least 1000 droplets were 
used in the analysis. 
 
6.1.3 Results and Discussion 
 

6.1.3.1 Effect of Rotor Speed 
 
The organic phase droplet size distribution was measured over a range of rotor speeds spanning 
from 1100 rpm to 3000 rpm (Figure 59).  Each droplet size distribution was fit with a lognormal 
distribution function with good results.  The lognormal shape of the distribution is consistent 
with what is expected for scenarios in which droplet breakup is important [Siegel and Sugihara, 
1983].  At the lowest rotor speed, the distribution of drop sizes is very broad.  As the rotor speed 
(or power consumption) increases, the peak of the distribution shifts to lower values and the 
distribution narrows meaning that the droplets in the contactor achieve a more uniform size than 
at low rotor speeds.  Physically, as the rotor speed increases, the additional shear stress 
encountered by the fluid in the mixing zone is sufficient to break up the largest droplets in the 
two phase mixture which causes the distribution to both shift to lower droplet diameters, and to 
become narrower around the mean.   
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Figure 59. Organic phase droplet size distributions for several rotor speeds.  Points indicate 
the experimental data while the solids lines show fits of the lognormal distribution 
function to the experimental data.  Aqueous to organic feed ratio is 3:1 and total flow rate 
through the contactor is 5 mL/s. 

 

The Sauter mean diameter and the mean of the distribution decrease in a power law fashion with 
increasing rotor speed (Figure 60).  Further, the effective interfacial area increases 
logarithmically with increasing rotor speed.  These results are both quantitatively and 
qualitatively similar to those reported for mixtures of 1,2-dichloroethane and water [Schurr et al., 
2012] and roughly one order of magnitude larger than those reported for silicone oil and 
glycerine [Kadam et al., 2009].  The discrepancy between the results presented here and those 
obtained by Kadam et al. is likely due to the differences in physical properties of the aqueous 
phase chosen and, more importantly, the higher power consumptions studied, which would 
produce smaller droplets.  At high rotor speeds, the average drop diameter and Sauter mean 
diameter become less dependent on the rotor speed.  The decrease in dependence on the rotor 
speed is due to a developing dynamic equilibrium between the processes of drop coalescence and 
drop breakup.   
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Figure 60. Effect of rotor speed on average droplet diameter, Sauter mean diameter, and 
interfacial area.  Lines are guides to the eye.  Error bars represent the standard deviation of 
the distribution.  Aqueous to organic feed ratio is 3:1. 

 

6.1.3.2 Spatial Evolution of Drop Size Distribution 
 
The evolution of the organic phase drop size distribution as the mixture proceeds through the 
mixing zone was measured.  Measurements were taken at three vertical locations in the mixing 
zone corresponding to normalized heights of 0.07, 0.30, and 0.65.  The total liquid height in the 
mixing zone varies with rotor speed and total flow rate so the locations of the measurements are 
reported as normalized distances based on the total liquid height.  In all cases, the drop size 
distributions are lognormal.  Near the surface of the mixing zone, the drop size distribution is 
very broad indicating the presence of a significant number of large droplets (Figure 61).  In this 
location, the aqueous and organic phases are just beginning to mix and there is a significant 
amount of air entrainment.  As the mixture proceeds down through the mixing zone, the 
distribution becomes much narrower as the largest droplets break up under the stresses of the 
turbulent flow (Figure 61). 
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Figure 61. Drop size distributions as a function of vertical distance in the mixing zone for a 
rotor speed of 1300 rpm.  For clarity, data at an intermediate vertical location was omitted 
from the figure. 

 
The Sauter mean diameter, distribution mean, and effective interfacial area exhibit linear 
relationships with normalized height in the mixing zone (Figure 62).  The Sauter mean diameter 
and distribution mean decrease linearly as the mixture moves from the entrance of the mixing 
zone to the vane region while the associated effective interfacial area increases linearly over the 
same distance.  Further, the width of the distribution (shown here by the error bars representing 
the standard deviation of the distribution) decreases as the mixture approaches the vane region 
indicating that the distribution becomes more uniform as more and more of the largest droplets 
are broken up under the stresses of the turbulent annular flow. 
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Figure 62. Average droplet diameter, Sauter mean diameter, and interfacial area as a 
function of the normalized vertical distance in the mixing zone for a rotor speed of 1300 
rpm.  Error bars represent one standard deviation of the data. 

 
 
6.1.4 Conclusions 
 
 
Effective liquid-liquid extraction is highly dependent on the surface area between the liquids 
involved in the mass transfer.  To this end, we have characterized the drop size distributions 
obtained under various conditions of rotor speed, phase ratio, and vertical location in the mixing 
zone of an annular centrifugal contactor.  The data presented here will be invaluable for 
validation of models developed to describe both the flow and mass transfer characteristics in 
centrifugal contactors as well as increasing the fundamental understanding of these systems. 
 
The drop size distribution is well described by the lognormal distribution function.  The 
distribution narrows and shifts to lower droplet diameters with increasing rotor speed as the 
largest droplets break up under the increased shear stresses in the turbulent flow.  The aqueous to 
organic flow phase ratio has a weak effect on the Sauter mean diameter, distribution mean, and 
effective interfacial area for a constant flow rate.  In the mixing zone, the distribution begins as a 
normal distribution near the free surface and evolves to be a relatively narrow lognormal 
distribution in the vane region.   
 
 

 Mass transport 6.2
 
Mass transport experiments were conducted in a CINC V2 contactor, operated at 3200 rpm, 
using a diluted version of the recipe used for the microfluidic experiments.  The aqueous phase 
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consisted of 1.8 x 10-4 M Nd + 3.6 x 10-4 M xylenol orange in 0.1 M KHP buffer set to pH = 5.5.  
The organic phase consisted of 0.1 M HTTA + 0.1 M HTBP in dodecane (anhydrous 99%, 
Sigma Aldrich) diluted with various amounts of dodecane.  The flow rates of the aqueous and 
organic phases through the contactor were 3 ml/min and 1 ml/min respectively.  Flow rates were 
verified using a stop watch and a graduated cylinder.  The aqueous outlet of the contactor was 
sampled periodically for later analysis by ICP-OES.  The aqueous inlet of the contactor was 
continuously monitored spectrophotometrically using an Ocean Optics UV-VIS spectrometer 
which collected 400-700 nm spectra at 1 second intervals.  The aqueous phase was recycled 
through the contactor to obtain kinetic data, while the organic phase was discarded after one pass 
through the contactor. 
 
We used the same contactor set-up to examine mass transport in the contactor as we did to 
determine droplet-size distribution in the previous section. To avoid crazing the acrylic housing, 
we used the stainless-steel contactor since visual inspection on the system was unnecessary 
(Figure 63).  
 
 

 
Figure 63. Stainless steel housing used for mass transport experiments. 

  
Here we use the same Nd/TTA/TBP system as we used for the microfluidic mass transport 
experiments (see section 4.3). 

 
We measure concentration in real-time using an ultraviolet visualization (UV-Vis) spectrometer 
as seen in Figure 64. We also periodically sampling effluent and analyze it using inductively 
coupled plasma mass spectrometry (ICP-MS). 
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Figure 64. Real‐time UV‐Vis sampling of the effluent 
 

 
 

Table 4.  Partition data for the contactor relevant experiments.  Here the initial [Nd(XO)]aq 
= 1.8 x 10‐4 M, the xylenol orange concentration was 3.6 x 10‐4 M, and the matrix solution 
was 0.1M KHP buffer pH = 5.45. 

[HTTA]O initial 
(M) [TBP]o initial (M) [NdT]aq final (M) D = [Nd]o/[NdT]aq 
0.1 0.1 1.5 x 10-6 1.2 x 102 
0.1 0.1 1.3 x 10-6 1.4 x 102 
0.02 0.02 2.1 x 10-6 8.3 x 101 

0.02 0.02 2.0 x 10-6 8.9 x 101 

0.01 0.01 8.7 x 10-6 2.0 x 101 

0.01 0.01 8.7 x 10-6 2.0 x 101 
0.009 0.009 1.3 x 10-5 1.3 x 101 

0.009 0.009 1.3 x 10-5 1.3 x 101 

0.009 0.009 4.5 x 10-5 3.0 x 100 

0.005 0.005 1.0 x 10-4 6.9 x 10-1 
0.003 0.003 1.2 x 10-4 5.7 x 10-1 

 

 
The concentration of [Nd]aq at the exit of the contactor is shown in Figure 65 for two different 
concentrations of HTTA and TBP.  The outlet Nd concentration is linear with time when plotted 
in the form of equation (23). At concentrations of 0.003 M HTTA and TBP and above, the 
curves collapse, which may indicate diffusion control dominates chemical kinetics.  
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Figure 65. Aqueous Nd concentration versus time on the outlet of the contactor for various 
concentrations of HTTA and TBP 

 

Table 5 gives the slopes of the curves from Figure 65 providing effective mass transfer rates 
from the contactor experiments. The mass transfer coefficients are not constant, but show 
dependence on the concentrations of HTTA and TBP. 
 

Table 5.  Effective mass transfer rate from the contactor experiments 

HTTA  
(M) 

TBP  
(M) 

keff 

(mm/s) 

Standard  
Deviation 
(mm/s) 

Standard  
Error  
(mm/s) 

0.008 0.008 1.3 x 10-3 2 x 10-5 2 x 10-5 
0.005 0.005 1.64 x  10-3 2 x 10-4 2 x 10-4 
0.003 0.003 1.48 x 10-3 2 x 10-4 9 x 10-5 
0.0015 0.0015 6.50 x 10-4 9 x 10-5 6 x 10-5 
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7 THERMODYNAMIC MODELING 
 
Below we have included an excerpt from the paper submitted to the journal Solvent Extraction 
and Ion Exchange [Jove-Colon et al., 2012A]. A preprint of the journal article is available from 
the PI along with a short proceedings paper [Jove-Colon et al., 2011]. In addition, many of the 
implementation details are available from a SAND report that will be published simultaneously 
to this one [Jove-Colon, et al, 2012B]. Both these documents include extensive literature reviews 
of some of the data available for uranium separations from fission products. The current 
approach makes use of a Gibbs energy minimization (GEM) method to compute chemical 
equilibria for a multiphase multicomponent system using the open-source object-oriented 
Cantera* (http://code.google.com/p/cantera/ ) code suite for constitutive modeling [Moffat and 
Jove-Colon, 2009]. 
 

 Cantera Models of Uranium Extraction 7.1
 
Liquid-liquid extraction (LLE) is a widely used separation method for an extensive range of 
metals including actinides.  The Gibbs energy minimization (GEM) method was used to compute 
the complex chemical equilibria for the LLE system HNO3-H2O-UO2(NO3)2-TBP plus diluent at 
25°C. The nonelectrolyte phase is treated as an ideal mixture defined by eight TBP complexes 
plus the inert diluent. The reactions included in the analysis are given in Figure 66. 
 

 
 
Figure 66. Reactions included in this study 

 
The chemical equilibria model developed in this study using the Cantera code suite is used to 
evaluate LLE for TBP metal extraction data in the system TBP-HNO3-UO2(NO3)2-H2O-diluent.  
This compositional system was selected given the relatively large amount of extraction data 
available for a radionuclide LLE process such as PUREX.  Our approach is somewhat similar in 
concept to others in treating the equilibria based on chemical reactions between electrolyte and 
nonelectrolyte phases as presented by Chaiko and Vandegrift [1988], and Moyer et al. [2001].   
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The Pitzer method is used to capture non-idealities in the concentrated electrolyte phase.  The 
generated extraction isotherms are in very good agreement with reported experimental data for 
various TBP loadings and electrolyte concentrations demonstrating the adequacy of this 
approach to analyze complex multiphase multicomponent systems.  The model is robust and yet 
flexible allowing for expansion to other LLE systems and coupling with computational tools for 
parameter analysis and optimization. Figure 67 shows the results from the analysis. From the 
two-phase Cantera model we were above to predict the distribution of uranyl nitrate from the 
aqueous to the organic phase for various concentrations of TBP. The data of Davis et al. [1970] 
are shown for comparison. 
 

 

Figure 67. Comparison of calculated extractions isotherms (this study) using Cantera and 
reported data for UO2(NO3)2 extraction by TBP – AMSCO diluent mixture [Davis et al, 1970] . 

 
 

 Implementation plan for Thermodynamics into ARIA 7.2
 
 
7.2.1 Introduction 

This note will describe the implementation of interfacial transport formulations within aqueous 
and organic liquids. 

There are existing treatments for the interface mass transfer between aqueous and organic liquids 
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across an interface. For example, Danesi and Chiarizia (1980), Nitsch and Schuster (1983), and 
Nitsch and Van Schoor (1983) describe a treatment that involves the specification of boundary 
layer thicknesses on both the brine liquid and the organic side of the interfaces. See section 
7.2.5.1 (model 1) for a test case of this implementation to the system TBP-NO3-UO2-H2O and 
hexane diluent. The following sections will describe an implementation of these thin film 
treatments within an application environment based on Cantera that has been used previously to 
build subgrid Electrode Models for battery simulations (Muller et al, 2012). The method involves 
a subgrid model that incorporates its own state variables. This means that complexities with the 
interface can be confined to the subgrid model. It also means that time constants associated with 
those interfacial degrees of freedom may become rate limiting in the problem. Unless added to 
the global state variable, there is no other way to do this. 

 
7.2.2 Implementation of Boundary Conditions on Discontinuous Variable Interfaces 

Let’s understand how the boundary conditions at a discontinuous variables interface are currently 
constructed in a detailed manner. The treatment will be taken from Goma. Then in the next 
section we will describe an alternative treatment. 

 
7.2.2.1 Fluid Motion 

 
We will assume that the densities may not be constant within each domain and also that the 
densities may have a jump discontinuity at the interface. We will derive two example cases: the 
momentum continuity equations and the species continuity equations. We will consider an 
interface between two materials, named “A” and “B”. At that interface, we will assume that all 
variables are discontinuous unless stated otherwise. Thus, the velocity will have a different value 
on the “A” side of the interface versus the “B” side of the interface. These different values will 
be denoted by Au  and Bu , respectively. The outward facing normal on the “A” side of the 
interface will be denoted by An , while the outward facing normal on the “B” side of the interface 
will be denoted by Bn . Note, A B n n . Interfacial mass transfer is occurring across the 
interface. However we will assume no net accumulation of mass at the interface here, but add in 
the capability later. 

First, we will assume that the pressure fields are discontinuous across the interface. This has very 
important implications and is a prerequisite to the phase conservation property. The first is that 
the total continuity equation for phase A and phase B must be applied separately, Eqn. (24),  and 
that means that phase continuity may be assured as well given suitable properties for the 
discretization method. In Eqn. (24) AP  is determined from the first equation, while BP is 
determined from the second equation. The connection between AP  and BP  is determined from 
the traction condition on the momentum equation.  

 0
A

A
C A A A i
i P

d
R d

dt

  



  
     

  
 u  (24) 
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B
C B B B i
i P

d
R d

dt

  



  
     

  
 u  

The weighted residuals of the momentum equations on the “A” side of the interface, representing 
a continuity equation for the momentum in the “B” material domain, are given in Eqn. (25). 

   0
A

M A A A A i A i A A i
i

d
R f d d d

dt
   

  

  
          

  
  

u
u u T n T    (25) 

The stress tensor may be quite complicated. However, for a Newtonian stress tensor assumption, 
the following holds. 

       2
3

TA AP          T u + u u δ  (26) 

On the “B” side of the interface the momentum boundary condition is represented by the 
condition in Eqn. (27).  

   0
B

M B B B B i B i B B i
i

d
R f d d d

dt
   

  

  
          

  
  

u
u u T n T    (27) 

Note, in order to obtain Eqn.’s (25) and (27), we have subtracted out the total continuity 
equations for the two materials, Eqn.’s (28) and (29). 

   0
A

A
C A A A A A i
i

d
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dt

   



 
       

 
 u u   (28) 
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C B B B B B i
i

d
R d

dt

   






 
       

 
 u u   (29) 

We write the total continuity equations separately for the “A” and the “B” side of the interfaces 
to reflect the fact that the two material balances are truly separate. We also use a separate symbol 
for the pressure basis function than for the velocity basis function. The pressure, on each side of 
the interface, which is the unknown corresponding to each of the continuity equations, Eqn. (28) 
and Eqn. (29), will exhibit a discontinuity at the boundary. There will be multiple pressure 
unknowns at boundary nodes, if the pressure unknowns are located at nodes. Indeed, there must 
be if Eqn’s (28) and (29) are to be separate residuals. If they are not separate residuals, i.e., the 
pressure residual at node i is created from a sum of Eqns. (28) and (29), then each phase would 
forego having a separate total mass balance.  

A common boundary condition applied at the interface is to apply the capillary boundary 
condition to the normal component of the normal stress. This provides a relationship between the 
normal stresses on either side of the interface: 
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  2B B A A B
sH   n T n T n   (30) 

This capillary boundary condition may be applied at the interface between two materials as one 
of the boundary conditions. Note, however, that more boundary conditions are needed to specify 
the relationship between the velocities and pressures at the interface. For example, there are 6 
velocity unknowns at the interface in a three dimensional problem. The capillarity condition only 
supplies three boundary conditions, due to the fact that it is a “vector” boundary condition. The 
other three boundary conditions for the velocities typically come from a strongly integrated 
boundary condition directly relating the total mass fluxes on either side of the interface, 
combined with closure for the interfacial mass flux of the last species in a multicomponent 
species mechanism.  

Applying the capillary boundary condition with another set of boundary conditions would seem 
to be a hard task. However, a natural answer to this problem is to apply the capillary boundary 
condition by combining the momentum residuals for both sides of the interface, Eqns. (25) and 
(27), by summing them together. Then, the capillary boundary condition, Eqn. (30), can be 
applied directly to eliminate the two surface integral terms. The strongly integrated boundary 
condition gets applied to the other velocity residual equation. 

        2B B i A A i B i i
sd d H d d     



            n T n T n   (31) 

Using the fact that  0M A
iR   should be true, we can formulate an expression that completely 

eliminates the surface integral of the stress at the interface, Eqn. (32) below. 
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 (32) 

Plugging this back in yields Eqn. (33) for the residual for the velocity unknowns corresponding 
to the “B” side of the interface.  
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   (33) 

What this means in practice for discontinuous variable interpolations is that the volumetric 
contributions for the momentum continuity equation for the “A” side of the interface are added 
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to the equation for the “B” side of the interface. This is quite a complication in terms of doing the 
indexing. 

The capillary boundary condition that is described above should have a special boundary 
condition label attached to it. Let’s call these types of boundary conditions Discontinuous-
Variable Volumetric-Surface Integral Galerkin (DVVSIG) boundary conditions. These boundary 
conditions are ones in which a surface integral along one side of a boundary is replaced by a 
volumetric integral on the other side of the integral as well as possibly another surface integral 
along the boundary. This is accomplished by formulating the residual equation for a conserved 
quantity on the other side of interface (e.g., Eqn. (25)), plugging in the defining boundary 
condition into that residual equation (e.g., Eqn. (32)), and then substituting the resulting 
expression into the residual equation for the first side of the boundary (e.g., Eqn. (27)). The final 
result (e.g., Eqn. (33)) is a residual expression that includes volumetric integral contributions 
from both sides of the interface, combined with an additional surface integral representing the 
difference in the original integrated-by-parts surface integrals of the interfacial fluxes of the 
conserved quantities. 

Note that these boundary conditions may be applied equally as well at interfaces at which there is 
not a discontinuity in the dependent variable. In other words, if  A Bu u in the case above.   Let 
us call these cases as Volumetric-Surface Integral Galerkin (i.e., VSIG) boundary conditions to 
distinguish these cases from their discontinuous variables counterparts. In this case, no further 
boundary conditions on the velocities are needed to specify the velocity at the interface. Also, 
there would be no confusion concerning which equation number to apply the residual equation 
to, as there is only one set of velocity unknowns. However, in the discontinuous variables case, 
there are two or more sets of velocities at the interface. Though it makes no difference in the 
actual solution up to round off error, a convention as to which equation to apply the DVVSIG  bc 
to must be adopted. Also, an additional boundary condition must be supplied to account for the 
additional degrees of freedom. This boundary condition is described in the next paragraph. 

 
At discontinuous variable interfaces, these DVSIG boundary conditions must be combined with 
boundary conditions prescribing the discontinuity in value of the variables on either side of the 
interface. Currently the boundary conditions so described are these Tie boundary conditions. 
Typically, these boundary conditions would come from thermodynamics and kinetics. Within the 
code they are applied mainly as strongly integrated Dirichlet conditions. Therefore, let’s give 
these boundary conditions the acronym SIDTIE boundary conditions, i.e., strongly integrated 
Dirichlet boundary conditions. An example of this type of condition is the VELO_NORMAL_DISC 
boundary condition, Eqn. (34). This boundary condition is a statement of conservation of mass 
from reactions on the “A” side of the interface. Su  is the interfacial velocity of the interface. S

AS  
is the molar source rate for production of phase A from interfacial reactions, while AM  is the 
average molecular weight of phase A. This equation is a specification of the Stefan-flux at the 
interface, which may be moving and should be applied on the A side. 
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   A A A S S i
A A uM S d 



 
   

 
 n u u    (34) 

In the above treatment, we have introduced the interfacial velocity Su .  Therefore, one additional 
equation is needed to close the equation description. This is the KINEMATIC_DISC boundary 
condition, which establishes mass continuity at an interface between two phases which exchange 
mass. It is applied on the mesh displacement equations at an interface between two phases as a 
strongly integrated Dirichlet condition. The interfacial velocity may be expressed in terms of the 
motion of the mesh, which deforms according to the movement of the interface.  The mesh 
displacement is continuous across the interface. I believe the boundary condition, Eqn. (35), is 
evaluated by collecting each integral from their respective sides of the boundary. Thus, an 
integral contribution is needed from both sides of the boundary. When doing the element 
contributions for elements on the A side of the interface the first integral in Eqn.  (35) is 
evaluated. Then, the second integral is evaluated when in elements corresponding to the “B” side 
of the interface. In The boundary condition may be applied on interfaces which have either one 
or two solved-for materials on them (i.e., either an internal or an external side set). 

       0
s

B B B S i A A A S i
u u

d
d d

dt
   

 

 
       

 
 n u u n u u   (35) 

The VELO_NORMAL_DISC boundary condition employs Eqn. (35) as well, but then is applied to 
the velocity boundary conditions. It is a SIDTIE condition, so it is applied on the second degree 
of freedom of the normal velocity at each applicable node, say for example the “B” side of the 
interface. Thus, when in elements corresponding to the “A” side of the interface, the boundary 
condition gets applied onto the residual for a degree of freedom,

 

Bu  , which isn’t the 
interpolating degree of freedom, but involves integration of the interpolating degree of freedom, 

Au , across the element boundary. In elements on the “B” side of the interface, the residual is 
applied to the interpolating degree of freedom,

 

Bu .  

 
7.2.3         Boundary Conditions for Mass Transfer in Non-Dilute Systems  
 

In the previous section, we described the boundary conditions necessary for two single-species 
phases which can interchange mass. An example of this of course would be melting or 
sublimation problems. In this section, we now add multiple species to the mix. We retain all of 
the equations described so far and then add an additional set. For non-dilute mass transfer, 
additional boundary conditions must be specified, and the linkage with boundary conditions for 
momentum and the total mass flux must be understood. 

The interface velocity equation, i.e., the time derivative of the mesh displacement unknown 
when the mesh follows the interface, is specified by the interfacial total mass conservation 
equation repeated here with additional terms, Eqn. (36). This boundary condition is frequently 
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called a KINEMATIC_DISC boundary condition within Goma, when the surface phase is 
trivialized. 

    
S

B B B S A A A S d

dt
  

   n u u n u u   (36) 

Here  is the density of the surface phase per area, having units of kg m-2. Because we will be 
accounting for mass at the interface,   cannot be ignored. 

The fundamental equation for the boundary condition at a moving interface for species k in phase 
A is given by Eqn. (37), which is a statement of conservation of species k. 

   , , 0A A A A S S S
k A k A A kY M S     n u u j  (37) 

In this equation An is the outward facing normal to phase A, A
kY is the mass fraction of species k 

in phase A at the interface, Au  is the mass-averaged velocity of phase A at the interface. Su  is 
the interfacial velocity. A

kj  is the diffusional flux of species k on a mass-averaged basis. ,
S
A kS  is 

the molar source rate of species k at the interface due to interfacial reactions. There are only N-1 
independent mass fraction unknowns. The solvent mass fraction unknown is usually dropped in 
lieu of the sum of mass fractions condition. 

 
1

0A
k

k

Y


     (38) 

Equation (38) may be replaced with equivalent closure relations when alternative independent 
variables, such as the species concentration, A

kc  ,  are used such as the following condition, Eqn. 
(39), based on the equation of state for phase A. 

  
1

, ,
N

A A A
k k

k

c c T P X


    (39) 

At the interface the Stefan-flux condition, Eqn. (40), specifies the interfacial velocity of phase A 
relative to the interfacial velocity. 

   ,
1

0
AN

A A A S S
A A k

k

M S


     n u u  (40) 

Inclusion of N species equations along with the total continuity equation leads to a degeneracy in 
the equation system. Therefore, one of the species equations must be discarded in the 
implementation. Care must always be taken in ensuring that the discarded species equation may 
be reproduced in the discrete equation system (by addition and subtraction of the other equation 
systems) to be identical to the species equations that are included in the system.  

To add the species equation, we may start with the residual equation, Eqn. (41), where ,
A

A A kM S  is 
the homogeneous source term and A

kj  is the diffusive mass flux term for species A with respect 
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to the mass averaged velocity. Then, we plug Eqn. (37) into Eqn. (41) to generate a balance for 
species k in phase A. Balances for species k in phase B, Eqn. (42), follow analogously.  

   0
k

A
A A A A A i A i A A i

k k kY a a

dY
R Y S d d d

dt
   

  

  
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  
  u j n j    (41) 
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k k kY b a

dY
R Y S d d d
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  

  
          

  
  u j n j    (42) 

Note, that there are only 1AN   linearly independent equations for Eqn. (41).  A closure equation 
of the type Eqn. (38) must be used for the last species equation in each phase.  It can be shown 
that an equivalent residual equation for the last species to Eqn. (41) may be formulated by linear 
combinations of other residual equations.  
 
7.2.4 Alternative Approach 

Frequently, resolution of the boundary layer within a flow simulation isn’t a productive pursuit 
due to length scale issues. This is especially the case for turbulent liquid systems where the 
diffusion rate constants are small and where turbulent diffusive transport is used to intermix the 
bulk regions leaving small laminar boundary layer regions near interfaces. In that case it would 
be better to have an alternative code solve for the laminar boundary layer. Then, we may use the 
sub-problem to supply the flux conditions specified in the previous section.   

Phase A and phase B have momentum conservation equations and total conservation equations 
associated with them that are valid through the boundary layers on either side. The total 
continuity equation for phase A is given by Eqn. (43). 

   0
A

A Ad

dt

  u    (43) 

The momentum equation for phase A is   

   0
A A

A A A Ad
P

dt

    
u

u T   (44)  

We will be assuming that the flow parallel to the boundary may be decoupled from solution of 
interfacial mass transport perpendicular to the boundary. Therefore, these equations may be 
solved only in the direction aligned with the boundary (which we take as the x direction) and 
velocities in the y and z direction are taken as solenoidal. Note the solenoidal assumption doesn’t 
hold for some important cases such as an expanding bubble, and the equation would have to be 
modified. However, assuming solenoidal, the total continuity equation reduces to Eqn. (45). 



104 
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A A
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d d
u

dt dx

      (45) 

The total momentum equation becomes Eqn. (46). 
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 (46) 

We may implement an interfacial kinetics object at the interface. It has internal variables 
consisting of the species defined at the interface (and perhaps other variables such as residual 
stresses), which are expressed in terms of site fractions. The conservation equation for surface 
species k is given by Eqn. (47). 

 , 0
S

S Sk
S k

d
C S

dt


     (47) 

Putting these equations into a discretization scheme involves adding diffusion through a laminar 
boundary layer on both sides of the interface. We will attempt to do this in a one cell distance. 

Additionally, a velocity reference frame must be chosen to solve the equation system in.  The 
simplest method to solve these equations is by using the interfacial velocity reference frame. In 
this reference frame the domain is convected with a velocity equal to the interfacial velocity. 
Other choices can be made, however, such as setting the velocity at the edge of the A boundary 
layer to zero.  

We will discretize the equations using a two control volume cell approximation over each of the 
A and B domains. Below the subscript s will refer to quantities defined at the interface. * will 
refer to quantities defined at the middle of the boundary layer. Figure 68 provides a depiction of 
the model. This is a general object that is derived from work on electrode objects. They are 
meant to be used as detailed subgrid models within a larger code. They are meant to be used for 
processes which have piecewise continuous source terms within them. Therefore, they are able to 
handle discontinuous time events by solving for the time at which discontinuities occur. Note, 
this may occur for interfacial mass transport systems when interfacial layers are birthed or 
deathed.  This occurs frequently in mass transport systems such as passive layers in corrosion 
systems or for interfacial transport across cell membranes. These surface films are frequently the 
dominant rate limiting steps for mass transport at room temperature. But, their proper treatment 
has lagged due to lack of the software infrastructure.  These objects have state variables 
associated with them. The state variables are not part of the global solution vector. 

 
7.2.5 Interfacial Mass Transport Models 
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Figure 68. A schematic depiction of Boundary Layer Approximation. This picture is used for 
Model 2 and additional models beyond that model. 

  
7.2.5.1 Model 1 

In this model we assume that the mass transfer to the surface is fast, or that mass transport to the 
surface is handled by the enclosing application. Therefore, the boundary layer for phase A and B 
are considered to be infinitely thin, and the interfacial mole fractions of species in phases A and 
B are the same as those in the bulk. Note, in practical terms for liquid systems this is frequently 
not the case that mass transport is fast, and under current experimental conditions this is 
apparently not the case either. 

We will also assume that the interface is in a pseudo-steady-state approximation.  However, for 
future work this doesn’t necessarily have to be the case and the software is constructed, i.e., the 
have state variables associated with them, so that it doesn’t have to be the case. If it were not the 
case, then the extra degrees of freedom for interfacial quantities such as surface species 
concentrations could be hidden from the surrounding application, and could be at the same time 
rate limiting within the application. This concept is exercised more fully for electrode objects 
which use the same structure as the InterfacialMassTransport object, is explained more 
fully in Muller et al., [2012]. 
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The object is called imtPSS_NoSurf(). It inherits from InterfacialMassTransfer_PseudoSS, 
which in turn inherits from from InterfacialMassTransfer_interface() and then the base 
class from InterfacialMassTransfer(). 

Using these approximations, the actual residual calculations used within the object become 
trivial. They consist of the following trivial equation, Eqn. (48), for the single unknown n

calct . 

 
n
calct   : 0n n

calct t     (48) 

However, behind the scenes a pseudo steady-state approximation for the interfacial site fractions 
is being solved for at every time step. 
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dt
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      (49) 

Within the pseudo steady-state calculation, just about all terms are boundary conditions. ,,A A n
s sT P  

and ,
,

A n
k sX  are considered boundary conditions and specified by their values at ,,A A n

BULK BULKT P , and 
,

,
A n
k BULKX . Then, the object will calculates the surface creation rates of all species in phases A and 

B. From the Stefan flux relations the interfacial Stefan velocities of phase A and B are then 
calculated. 

An aspect of this model can be envisioned by specifying thickness to the boundary layers for 
phases A and B and assigning reaction rates to a set of interfacial reactions.  The system TBP-
NO3-UO2-H2O and hexane diluent has been chose as a test case of this implementation based on 
the uranium coextraction study by Nitsch and Van Schoor (1983).  The selected reaction set with 
species in phases A and B is given in Table 6.  Note that a thermodynamic description of this 
system has been assessed in previous sections of this report.  That is, the bulk thermodynamic 
properties of species in phases A and B in the model are represented by those assessed in this 
report to describe liquid-liquid extraction equilibria for this system.  This reaction set composed 
of seven reactions between electrolyte and nonelectrolyte phase components accounts for the 
transfer of UO2(NO3)2, HNO3, and H2O as well as TBP solubility into the aqueous phase.  The 
forward reaction rates for TBP complexation with H2O and that for the TBP(aq) were set 
arbitrarily.  It should be noted that forward rates for these TBP- H2O and TBP(aq) reactions do 
not significantly affect the mass transfer kinetics but were included for completeness.  On the 
other hand, TBPHNO3 and (TBP)2UO2(NO3)2 reaction rates strongly affect the resulting mass 
transfer rate profile.  These reactions rates were adjusted to fit the coextraction rate data given by 
Nitsch and Van Schoor (1983).  The boundary layer thickness for both phase A and B is equally 
set arbitrarily to 0.001 meters for the base case; this case refers to the one with the lowest 
transport coefficient for uranium as given by the authors.  Initial uranium and nitric acid 
concentrations are 0.5 and 1.1 moles/L, respectively.  Figure 69 shows the UO2(NO3)2 and HNO3 
extraction data and predictions from the models given by Nitsch and Van Schoor (1983) and that 
described in this section.  Notice the “spike” in HNO3 concentration at early times and 
subsequent attenuation to an apparent steady state value.  The model given by Nitsch and Van 
Schoor (1983) provides a reasonable prediction of the observed trend for HNO3 extraction 
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whereas the current model deviates at early times but it is reasonable agreement at later times.  
The fact that such a “spike” is not reflected in the UO2(NO3)2 concentration is a bit contradictory 
to the expected mass transfer behavior from NO3 speciation in the organic phase.  The current 
model predictions for uranium are in good agreement with the experimental data.  To test the 
effect of boundary layer thickness, experimental extraction data, also from Nitsch and Van 
Schoor (1983), was used to fit thicknesses at various stirring speeds.  The boundary layer 
thickness values that closely represent the experimental data are 0.00020, 0.00010, 0.000065, 
and 0.000050 meters for stirring speeds of 150, 200, 250, and 300 min-1.  The results are depicted 
in Figure 70 showing overall agreement between model predictions and experimental data.  It 
should be recognized that the boundary layer thicknesses were obtained only by adjusting the 
thickness values to the experimental rate data and without any changes to base case reaction rate 
parameter data.  The model provides good conformance to existing extraction data capturing the 
dependence on boundary layer thickness. 

 

Table 6.  Effective reaction set and forward rates used in the model test case 

Reaction Forward Rate (kf) (1/seconds) 

TBPH2O(org) [=] H2O + TBP(org) 1.00E-03 

(TBP)2 (H2O)2(org) [=] 2H2O + 2TBP(org) 1.00E-03 

(TBP)3 (H2O)6(org) [=] 3TBP(org) + 6H2O 1.00E-03 

TBP(org) [=]  TBP(aq) 1.00E+02 

TBPHNO3(org) [=] NO3
- + H+ + TBP(org) 1.00E+02 

(TBP)2HNO3(org) [=] NO3
- + H+ + 2TBP(org) 1.00E-01 

(TBP)2UO2(NO3)2(org) [=]  UO2
++ + 2NO3

- + 2TBP(org) 1.00E-01 
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Figure 69. Cantera interfacial mass transfer model predictions and coextraction 
experimental data for uranium and nitric acid (see text). 

 

 
Figure 70. Cantera interfacial mass transfer model predictions and coextraction 
experimental data for uranium as a function of stirring speed (see text).  The fitted 
boundary layer thickness values are 0.00020, 0.00010, 0.000065, and 0.000050 meters 
corresponding to stirring speeds of 150, 200, 250, and 300 min‐1 
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7.2.5.2 Model 2 

 
Model 2 doesn’t employ a pressure unknown. Therefore, the axial momentum equation is not 
used.  Instead the axial velocity unknowns are associated with the total continuity equation. In 
this model we calculate everything relative to the mass averaged velocity at the edge of the Phase 
A control volume, ,

* 0A nu  . Then the total continuity equation for the phase A control volume is 
used as the equation for the interfacial velocity, ,s n

su . Also, the total continuity equation for the 
phase B control volume is used as the equation for the velocity at the edge of the phase B control 
volume, ,

*
B nu . 

All control volumes are convected relative to the interface velocity. Therefore, all boundary layer 
thicknesses are constant through the time step n. This means that there is a Lagrangian velocity 
component for unknowns identified with the * boundaries; these terms are identified by the refu  
term. 

We use the species mole numbers as the independent unknowns. The closure relation is handled 
by a variation of Eqn. (39). We use the following equation set with associated independent 
variables defined to the left of the equation. Eqns. (51) to (54) refer to the control volume over 
the A phase. 

n
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calct t      (50) 
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The B phase control volumes are represented by Eqns. (55) to (57). 
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Note this is a DAE system, as the velocities don’t have time derivatives. A compressible 
formulation would have to be introduced to alleviate this potential problem. This is outlined in 
Model 3 in the next section. 

We then set ref
su u . In other words we make sure that the control volumes stay tracked with 

the interface velocity. We also note that: 
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With this in mind the full equation set becomes Eqns. (58) to (65). 
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The B phase control volumes are represented by Eqns. (63) to (65). 
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We have assigned the relative velocity of zero to the left of the A control volume. 

Let us take a look at Eqn. (59). A
blL  is the boundary layer thickness on the A side of the 

interface. A
blL

 
is assumed to be constant. The Eqn. (59) is an expression of the mass balance in 

the ½ of that adjacent to the interface.
 

,A n
s  is the density of phase A at the interface. ,

*
A n  is the 

density of phase A ½ through the boundary layer. ,
A
x su  is the velocity of phase A at the interface.  

We apply a first order upwinding scheme for the value of ,A n
s  and all other variables of that 

kind at the control volume interfaces: 

  
, , ,

, *
* , , ,

*

; 0

; 0

A n S n A n
A n s s

A n S n A n
BULK s

u u

u u





  

 
 

 (66) 

A similar expression is done for phase B control volume quantities 
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 (67) 

Model 2 has been used to create simulations of the kinetic relaxation of the organic TBP and 
aqueous brine system as a function of pH using a continuous stirred tank reactor (CSTR) 
approximation for the bulk constituents.  

 
7.2.5.3 Model 3 

 

In Model 3, we add back the axial momentum equation. Doing this, we add in the pressure 
unknowns and change the associations of independent variables with conservation equations. 
With this in mind the full equation set becomes Eqns. (68) to (79). This model has not been 
implemented yet, as there doesn’t seem to be a programmatic driver yet; Model 2 is sufficient 
and robust for the cases that we have carried out on the aqueous brine, TBP system.  
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We also have the following tie condition, which associates the pressures on each side of the 
interface; they are not independent. 

B
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A A A A H n T n n T n     (79) 
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7.2.6 Conclusions 
 
Several models have been presented for incorporating thermodynamic models from Cantera into 
a computational fluid dynamics framework. 
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8 POPULATION BALANCE MODELING OF DROPLET SIZE 
DISTRIBUTION IN A CENTRIFUGAL CONTACTOR 

 
A theoretical study was developed for the evolution of a drop size distribution in an emulsion 
under conditions where drop breakup dominates drop coalescence. Previous experiments and 
numerical simulations demonstrate that the size of daughter drops produced by breakup in a 
particular fluctuation, scale with the critical size drop for the fluctuation. The volume of the 
parent drop only determines the number of daughter drops produced by the breakup event. A 
simplified population balance model predicated on this observation was developed. The essential 
simplification involves the replacement of the usual two-variable daughter-drop distribution 
function by a single-variable distribution that describes the volume of daughter drop relative to 
the critical size drop. The resulting model equations were analyzed and a long-time similarity 
formulation was derived. Analytical formulas were derived for certain limiting cases and a 
complete set of numerical results were obtained for a wide range of parameter values. 
Experiments in the literature strongly support our new drop breakup model. In our first section, 
we only summarize this work as a proceedings paper was published [Loewenberg and Rao, 
2011] and a journal article has been submitted to Chemical Engineering Science [Loewenberg 
and Rao, 2012]. 
 
In the next section, we discuss how knowledge of droplet-size distribution can be used to predict 
separation efficiencies in a centrifugal contactor. 
 

 Droplet size distributions 8.1
 
8.1.1 Introduction 
 
Population balance modeling is used to describe the evolution of dispersed-phase particles in a 
wide range of engineering applications including liquid-liquid extraction, emulsification, 
polymer blending, emulsion polymerization, grinding and pulverizing operations, crystallization, 
and aerosols. Typically, particles of the dispersed phase grow by coalescence or flocculation or 
diminish in size by breakup. 
 
In some situations, such as in grinding operations, particle breakage inherently dominates 
particle aggregation regardless of the dispersed-phase volume fraction. In other situations, 
particle growth dominates breakage, such as the growth of Brownian particles by flocculation 
under quiescent conditions. 
 
In fluid-fluid systems, weak flows favor drop coalescence, whereas strong flows favor breakup. 
This is because drop deformation is necessary for breakup but deformation strongly hinders drop 
coalescence. Some processes involve both weak and strong flow regions that are physically 
separated with drop growth by coalescence occurring in the weak-flow region and breakup 
occurring in the strong-flow region. For example, in liquid-liquid extraction two fluid phases are 
emulsified together in a strong flow to enhance mass transport, and then subjected to a gentle 
flow that promotes drop coalescence and thus phase separation [Mohanty, 2000]. Centrifugal 
contactors have a high-shear “mixing zone” in the gap formed between the rotor and the housing 
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where drop breakup dominates and a “separation zone” inside of the rotor where rigid-body 
rotation drives buoyancy-driven drop coalescence [Leonard, 1988; Wardle et al., 2006]. 
 
In our study, we considered the evolution of a drop size distribution by breakup under strong-
flow conditions (e.g. mixing zone of a centrifugal contactor) where drop coalescence has a 
negligible impact on the evolution. Under these conditions, the drop size distribution evolves 
according to the Smoluchowski-type population balance equation, 
 

  , ( , ) ( ) ( , )n v t p v t r v n v t
x




    (80) 

 
where terms describing drop coalescence have been omitted. Here, n(v, t) is the number density 
of drops with volume v at time t, r(v) is the breakup rate, and p(v, t) is the drop production rate 
defined by 
 

 1 1 1 1( , ) ( , ) ( ) ( , )
v

p v t G v v r v n v t dv


    (81) 

 
The daughter-drop distribution function G(v, v1) gives the number of daughter drops with volume 
v produced by the breakup of a parent drop with volume v1. An initial drop size distribution is 
needed to fully specify the problem. 
 
Equations (75-76) define a well-posed (linear) initial value problem for n(v, t) that relies on 
models on models for the drop breakup rate, r(v), and daughter drop distribution function. A 
power-law is commonly used to describe the breakup rate under the assumption of scale 
invariance. This is a reasonable assumption in the absence of an intrinsic length scale that sets 
the minimum attainable drop size.  
 
However, a much more significant challenge lies in the determination of reliable models for the 
daughter drop distribution function. The development of models to describe the daughter drop 
distribution function is intrinsically challenging because of its dependence on both the parent and 
daughter drop volumes. Various coarse-grain models have been formulated based on a simplified 
picture of the drop breakup microphysics [Vankova et al., 2007; Raikar et al., 2007], and various 
procedures have been proposed for solving the inverse problem of deriving the daughter drop 
distribution from experimental data [Kostoglou and Karabelas, 2005; Raikar et al., 2006, 
Sathyagal et al.,1995]. However, the coarse-grain models are inevitably over-simplified and ad 
hoc assumptions are required to regularize the otherwise, ill-posed inverse problem. Despite 
considerable effort, reliable models for the daughter drop distribution function are unavailable. 
 
A persistent feature of the previously proposed models for the daughter drop distribution 
function is the assumption that the volume of daughter drops produced by a breakup event scale 
with the volume of the parent drop, as illustrated by the sketch in Figure 71b. In our study, we 
developed a new model for the drop production rate, p(v, t), based on the observation that the 
size of daughter drops produced by breakup in a given fluctuation scale with the “critical-size” 
drop– the largest drop that can survive the fluctuation without breaking. The sketch in Figure 71b 
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illustrates the idea. Accordingly, the volume of a parent drop determines the number of daughter 
drops but not their volumes (or distribution of their volumes). This scaling is supported by 
classical experimental studies on drop breakup in turbulent flows [Pilch and Edrman, 1978], and 
by more recent experiments and simulations on drop breakup [Cristini et al., 2003]. 
 

 
Figure 71. Scaling of daughter drops; (a) proportional to the parent drop: larger parent drop 
produces the same number of proportionally larger daughters; (b) proportional to the 
critical size drop (dashed curve): larger parent drop produces proportionally more 
daughters with the same size. 

 
 
8.1.2 Simplified Formulation 
 
In our analysis, we showed that the proposed daughter drop scaling described above and 
illustrated in Figure 71b leads to the new daughter drop production term, 
 

 
1

1
1

0

( / )
( , ) ( ) ( / , )

dr v s
p v t v g s M v s t ds

dv
   , (82) 
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in the original population balance equation (80). Here, g(s) is the rescaled daughter drop 
distribution function that describes the distribution of daughter drops with volume sv∗ (0 < s ≤ 
1), where v∗ is the critical drop volume for a given fluctuation. 
 
The derivative of the breakup rate in equation (82), dr(v/s)/dv, is the frequency of fluctuations 
corresponding to a critical drop volume v/s, and the quantity M1(v/s, t) represents the dispersed-
phase volume associated with drops that have volume v′ ≥ v/s. A fluctuation corresponding to a 
critical size v/s will break any drop with volume v′ ≥ v/s to produce daughters with volume v. 
 
The simplified drop production term (82) involves a much simpler one-variable daughter drop 
distribution function in place of the two-variable distribution function that enters the usual drop 
production term (81). 
 
8.1.3 Evolution of the Drop Size Distribution 
 
According to the simplified model described above, the evolution of the drop size distribution is 
described by equations (80) and (82), and an initial drop size distribution. 
 
We consider the case of a power-law breakup rate, 
 
 0( ) ar v k v   (83) 

 
where the pre-factor k0 and exponent a > 0 are arbitrary constants. The existence of a minimum 
attainable drop size is ignored, at least on the time scale of interest [Lam, 1996]. 
 
Numerical results were obtained by discretizing equations (1) and (3) using logarithmically 
spaced points vi (i = 1, 2, … ,N) to yield a system of ordinary differential equations for ni(t) = 
n(vi, t) (i = 1, 2, …,N) that were integrated in time starting from a prescribed initial distribution. 
A piecewise linear representation of n(v, t) was used to evaluate the volume integral in equation 
(83). An example from our numerical results is presented below. 
 
8.1.4 Long-time similarity formulation 
 
At long times compared to the time required for decay of the initial drop size distribution, we 
show that the drop size distribution attains a universal self-similar form (i.e., independent of the 
initial conditions) in terms of the variables, 
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k v t
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


  (84) 

 
where V0 is the volume of the dispersed phase fluid 
 
The universal distribution is governed by an integral equation that is derived by recasting 
equations (80) and (82) in terms of the similarity variables (84). Numerical results were obtained 
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by solving the resulting integral equation using a piecewise linear representation of h() and 
solving the discretized linear equations. 
 
8.1.5 Analytical results for a monodisperse daughter drop distribution 
 
We obtained analytical results for the case of a monodisperse daughter drop distribution, 
 
 ( ) ( ),    0<b 1.g s s b     (85) 
 
Under these conditions, the daughter drops produced by a breakup event are a fixed fraction b of 
the critical size drop for a given fluctuation. 
 
We obtained a complete, exact solution for the special case where the daughter drops are exactly 
equal to the critical size drop, i.e., b = 1. The resulting formula demonstrates that the exact 
solution relaxes to a long-time, self-similar distribution on the time scale required for decay of 
the initial drop size distribution. 
 
We showed that the long-time drop size distribution depends only on the combined parameter, c 
= b−a, and we obtained an asymptotic solution of the long-time self-similar distribution for c ≫ 1. 
 
 
8.1.6 Numerical results 
 
The predictions of our new model were parametrically explored. An example of our numerical 
simulations is presented in Figure 72. The figures show the cumulative fraction of the dispersed 
phase fluid. This shows that the long-time regime is quickly attained on the time scale for the 
decay of the initial drop size distribution, i.e., the long-time similarity solution accurately 
describes the drop size distribution when the similarity variable is greater than 4. 
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Figure 72. Evolution of drop size distributions for monodisperse (dashed line), trimodal 
(dotted line), and uniform daughter distribution (solid line). 

 
Figure 73 shows a rescaled version of Figure 72 that shows how the solution collapses to one 
curve when plotted with respect to the similarity variable, . 
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Figure 73. Same as previous figure but rescaled in terms of similarity variables; similarity 
solution corresponding to each daughter drop distribution function (thick curves). 

 
 
8.1.7 Comparison to experimental measurements 
 
The experiments of Lam et. al. [1996] provide an ideal test of the simplified model that we 
propose. Their experiments were performed under conditions where drop breakup dominates 
coalescence and the system was observed for very long times, as seen in Figure 74a. 
Their results attain the predicted self-similar form. Solutions of the long-time formulation, agree 
closely with the experimental results, supporting the simplified model. However, the results are 
insensitive to the detailed daughter drop distribution function, g(s), as demonstrated by the 
results depicted in parts (b) and (c) of Figure 74, where monodisperse and bidisperse daughter 
drop distributions are seen to describe the data equally well. This finding suggests that the 
inverse problem of determining the daughter drop distribution function from experimental data 
on drop-size distribution is badly posed and must be determined some other way.  
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Figure 74. Experimental drop size distributions for 0.6% benzene‐carbontetrachloride in 
water emulsion from Lam et. al. [1996] in unscaled variables corresponding to time as 
indicated in hours (a) and in similarity variables using power‐law exponent a = 2.1 (b) and 
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(c); similarity solutions (solid curves) for monodisperse daughter drop distribution and 
bidisperse drop size distribution, respectively. 

 
 
8.1.8 Conclusions 
 
A simplified population balance model has been developed for the evolution of the drop size 
distribution in a liquid-liquid system by drop breakup. The new model is based on the 
observation that the size of daughter drops produced during a breakup event depends primarily 
on the strength of the fluctuation in the flow that causes the event. Daughter drops thus scale 
with the critical size drop for the fluctuation. Ultimately, this observation allows the two-variable 
daughter drop size distribution in the classical formulation of the problem to be approximately 
replaced by a one-variable distribution function that relates the size of daughter drops produced 
by a breakup event to the critical size drop for that fluctuation. Given the difficulty of developing 
reliable models for the two-variable distribution function, this simplification should advance 
efforts to model the evolution of the drop size distribution in liquid-liquid systems. 
 
The resulting model equations were analyzed and a long-time similarity formulation was 
derived. Analytical formulas were derived for the case where the daughter drops produced by 
breakup are a fixed fraction of the critical size drop for a particular fluctuation and numerical 
results were obtained for a wide range of parameter values. Experiments in the literature strongly 
support our new drop breakup model. Good agreement between the model predictions and 
experiments is obtained but the predictions are insensitive to the details of the daughter drop 
distribution function. Therefore, the inverse problem of using experiments to determine the 
daughter drop distribution function is badly posed. 
 

 Mass transport 8.2
 
In the previous section, we developed a new population balance model for the evolution of a 
drop size distribution by breakup under strong-flow conditions, i.e., in the mixing zone of a 
centrifugal contactor, where drop coalescence has a negligible impact on the evolution. Our new 
model for the drop production rate is based on the observation that the size of daughter drops 
produced by breakup in a given fluctuation scale with the “critical-size” drop– the largest drop 
that can survive the fluctuation without breaking, rather than the size of the breaking parent drop 
as assumed in all previously proposed models. Accordingly, the volume of a parent drop 
determines the number of daughter drops but not their volumes. This scaling is supported by 
experimental studies and numerical simulations. Here, we describe a new population balance 
model to describe mass transport in the mixing zone of a liquid-liquid contactor. 
 
8.2.1 Evolution of solute distribution 
 
We propose a one-way coupling whereby solute transport is affected by the evolution of the drop 
size distribution but solute transport does not affect the evolution of the drop size distribution 
which is governed by the equations presented in the previous section. Accordingly, the 
population balance equation for the evolution of solute among the dispersed phase drops at 
steady-state is given by 
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z c

 
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 
 , (86) 

 

where n(v, c, z) is the number density of drops with volume v and volume averaged solute 
concentration c at position z in the mixing zone. Here, z = 0 corresponds to the inlet of the 
mixing zone, z = L is the end of the mixing zone, and <uz> is the mean velocity of the two-phase 
mixture in the z-direction. The mean velocity is related the total volume flow through the 
contactor divided by the cross-sectional area of the mixing zone, (Ro

2−Ri
2), where Ro and Ri 

are, respectively, the outer and inner radii of the device. 
 
Mass transport in the coalescence-dominated separation zone of the contactor is neglected. The 
drop production term p(v, c, t) in equation (80) is given by the quantity M1(v/s, c, t), which 
represents the dispersed-phase volume associated with drops that have volume v′≥ v/s and 
average solute concentration c. 
 
The term j(c,C) in equation (86) represents the solute flux from the bulk phase to a drop with 
solute concentration c. The quantity A(v) = d0 v

−1/3
 is the area/volume for a drop of volume v 

where d0  is a constant which we shall take as d0 = (36)1/3
 by considering spherical drops. A 

reasonable constitutive model for the flux is given by: 
 
 ( , ) ( )j c C k HC c    (87) 
 
where C(z) is the average solute concentration in the bulk phase, H is the equilibrium partition 
coefficient for the solute between the two phases, and k is the effective mass transport 
coefficient. 
 
The average bulk-phase solute concentration that enters the drop flux model (87) is obtained by 
the conservation constraint 
 
 (1 ) ( ) ( ) (1 ) o oC z c z C c          (88) 

 
where  is the dispersed-phase volume fraction, C0 and c0 are, respectively, the solute 
concentrations in the bulk and dispersed phases entering the contactor, and <c>(z) is the average 
solute concentration in the dispersed phase at a location z in the mixing zone of the contactor, 
 

 
0 0

( ) [ ( , , ) ]c z n v c z cdc vdv
 

    . (89) 

 
8.2.2 Contactor performance 
 
The total mass transfer, J, in the contactor is given by 
 
 ( ( ) )oJ c L c   , (90) 
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where <c>(L) is the average solute concentration in the dispersed phase at the exit of the mixing 
zone of the contactor. Under the assumption that negligible mass transfer occurs in the separation 
zone of the contactor, <c>(L) is approximately equal to the solute concentration in the dispersed 
phase fluid flowing out of the contactor. 
 
The maximum possible mass transfer, J0, in a contactor is associated with thermodynamic 
equilibrium, i.e., <c>(L) = HC(L). When inserted into equation (90), we obtain 
 

 
(1 )

( )
1 ( 1)o o oJ HC c

H

 



 
 

  (91) 

 
We thus define the stage efficiency of a centrifugal contactor as 
 

 
( )1 ( 1)

1
o

o o o

c L cJ H
e

J HC c




 
 

 
  (92) 

 
8.2.3 Approximate Model 
 
Here we present an approximate model that accounts for the evolution of interfacial area in the 
system but neglects the solute concentration history resulting from formation of drops with 
volume v and solute concentration c by the breakup of larger drops with volume v′ > v and c′ = c. 
Accordingly, we write the approximate macroscopic equation describing interphase mass 
transport in the system 
 

 ( ) '( )( ( ) ( ))
d

u c z kA z C z c z
dx

    (93) 

 
where A’ is the specific interfacial area (area per unit volume) in the system. 
 
In the simplest case, we estimate the average interfacial area in the mixing zone as a constant 
value, 
 
 1/3'( ) 'o o oA z A d v     (94) 

 
where v0 is a characteristic drop volume, e.g., average size in the mixing zone of the contactor. A 
more detailed model that takes account of the evolving interfacial area is given by 
 

 1/33
'( ) ' [ ] ( )

1 3

a
ao o

o
z

k v za
A z A f h

a u



  (95) 

where k0 and a are the rate parameters Here, f [h] is an integral of the long-time self-similar drop 
size distribution, which depends on the rescaled daughter drop distribution and the power-law a; 
e.g., for critical size daughter drops, f [h] = (1 − 1/3a). 
 
Integrating equation (93) with the constraint (88), we obtain 
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1/31 ( 1)

1 exp( )
1

o
o

z

kLvH
e d

u




 
  


  (96) 

 
using the constant interfacial area estimate (94). The result predicts exponential efficiency with 
respect to the length of the mixing zone, L. Using the evolving interfacial area (95), we find 
 

 
1/3

1/31 ( 1)
1 exp( ( ) )

1
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ao o o

o
z z

kLv k v LH
e d

u u
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
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
  (97) 

 
which indicates a stronger, super-exponential dependence of the contactor efficiency on the 
length of the mixing zone. 
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9 ANALYSIS OF A CASCADE OF CENTRIFUGAL CONTACTORS 
 
Banks of centrifugal contactors are used for nuclear waste reprocessing, with each contactor 
representing a “stage” in the separation. Contact times are short and contactor sizes are small to 
keep the material from going critical. Here, the performance of a cascade of centrifugal 
contactors is analyzed. It is shown that the evolving interfacial area developed in the previous 
chapter can be incorporated by using an appropriate average. The unrecovered solute diminishes 
exponentially with the number of stages used in the cascade with an exponent that depends on 
the residence time of the contactors. 
 
Here, we analyze the performance of a cascade of centrifugal contactors using our predictions for 
the evolution of the drop size distribution in the mixing zone of a contactor. 
 

 Formulation 9.1
 
The mass flows of the aqueous and solvent phases are denoted F and S respectively. In our 
analysis, these two fluids are assumed to be immiscible. Solute concentrations are given in terms 
of mass ratios, i.e., mass of solute per mass of solute-free aqueous phase, X, and mass of solute 
per mass of solute-free solvent, S. Accordingly, the solute balance on the nth  contactor in a 
cascade of contactors (n = 1, 2, … , N) is given by: 
 
 ( 1) ( 1) ( ) ( )n n n nFX SY FX SY      (98) 
 
The flows into and out of a single contactor are shown schematically in Figure 75. 
 
 

 
Figure 75. 1. The nth stage (n = 1, 2, ∙ ∙ ∙ ,N) of an N‐contactor cascade showing the aqueous 
F and solvent S flows into and out of the stage and solute mass ratios in each of the 
streams. 
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9.1.1 Stage-wise calculations: Interphase mass transport 
 

We consider the mass transport within a contactor for two limiting cases of the conditions in the 
mixing zone of the contactor:(1) well mixed conditions where the elapsed time spent by a 
differential volume of the two-phase mixture in the mixing zone is uncorrelated with its position 
(i.e., stirred tank conditions), and (2) the case where the elapsed time spent by a differential 
volume of the two-phase mixture in the mixing zone is determined by its position. (i.e., plug flow 
conditions). Case (1) describes the conditions in a well stirred vessel whereas case (2) may be is 
a reasonable description for a narrow-gap centrifugal contactor because mixing along the length 
of the narrow annular region is suppressed. 
 
As shown below, we obtain 
 

 ( ) ( 1) ( 1)1 '
( ) ( 1 ( )) ( ( ))

1 1
n n nH

Y T E T Y T X
E E

     
 

 , (99) 

 
 

 ( ) ( 1) ( 1)1 1
( ) ( ( )) (1 ( ))

' 1 1
n n nE

X T T Y E E T X
H E E

     
 

 , (100) 

 

where ( )T  is the regime-dependent stage efficiency function: 

 ( ) ,   stirred tank regime 
1

T
T

T
 


  (101) 

and  
 

 ( ) 1 ,   plug flow regime.TT e     (102) 
 
The extraction factor, E, is defined as 
 
 ' /E H S F  , (103) 
 
where H′ is the equilibrium partition coefficient for the solute defined in terms of mass ratios. T  
is the dimensionless residence time of the mixing zone in each contactor, 
 

 0(1 )T E kA T   , (104) 

 
Where k is the interphase mass transport coefficient and A0 is the volume-averaged interfacial 
area between the aqueous and solvent phases per unit volume of the two-phase mixture. 
 
The stage efficiency, , is defined by the fractional approach to an equilibrium solute distribution 
between the aqueous and solvent phases at the outlet of each contactor, i.e., 
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 
  (105) 

 
Where is the solute concentration in the solvent phase at the outlet of an equilibrium stage. In 
general, stage efficiencies lie in the range 0 ≤  ≤ 1 where the limiting values correspond, 
respectively, to short and long residence times, i.e.,  (0) = 0 and  (∞) = 1, consistent with 
formulas (102)-(103), for the stirred-tank and plug-flow regimes, respectively. According to 
equations (100)-(101), an equilibrium distribution of solute is attained for long residence times, 
lim →1 Y (n)/X(n) = H′, and no solute exchange occurs between the aqueous and solvent 
phases (i.e., Y (n) = Y (n+1) ,X(n) = X(n−1) ) for  → 0. 
 

9.1.1.1 Stirred-tank regime 
 
In this regime, interphase mass transport is described by the stirred tank equation 
 
 ( ) ( 1) ( ) ( )

0 [ ' ]n n n nY Y kA T H X Y    , (106) 

Solving equations (99) and (108), we obtain the solution (100)-(101) with stage efficiency 
function (102).  
 
 

9.1.1.2 Plug-flow regime 
 
In the plug-flow regime, interphase mass transport is described by the evolution equation, 
 

 ( ) ( ) ( )( ) '( )[ ' ( ) ( )]n n nd
Y t kA t H X t Y t

dt
   , (107) 

where k is the mass transport coefficient, H′ is the equilibrium partition coefficient for the solute 
defined in terms of mass ratios, and A′(t) is the evolving interfacial area between the aqueous 
and solvent phases per unit volume. Here, t is time in the mixing zone of the contactor with t = 0 
corresponding to entry into the mixing zone of the contactor with initial conditions, 
 
 ( ) ( 1) ( ) ( 1)(0) ,   (0)n n n nY Y X X     (108) 
 
The quantity A(t) in equation (109) is the evolving interfacial area between the aqueous and 
solvent phases per unit volume. 
 
Integrating the initial value problem (99), (109)-(110), we obtain 
 

 ( ) ( 1) ( 1)1 '
( ) [ 1 ( )] ( )

1 1
n n nH

Y t E t Y t X
E E

     
 

  (109) 

 
and 
 



129 

 ( ) ( 1) ( 1)1 1
( ) ( ) [1 ( )] ,

' 1 1
n n nE

X t t Y E E t X
H E E

     
 

  (110) 

 
where 

 
0

( ) 1 exp[ (1 ) '( ) ']
t

t E k A t dt       . (111) 

 
The compositions at the outlet of the contactor, corresponding to X(n)(T) and Y (n)(T), are given 
by equations (100)-(101) with stage efficiency function (103). In this case, the average interfacial 
area A0 used to define the mean residence time in equation (104) is given by the time-averaged 
quantity, 
 

 0

0

1
'( )

T

A A t dt
T

    (112) 

Given the assumption of plug flow, the time- and volume-averaged interfacial areas are 
equal. Thus, the outlet compositions depend only on the average interfacial area per unit 
volume, A0, not the details of its evolution. 
 
The exit from the contactor corresponds to t = T where T = V/(F +S) is the residence time of the 
mixing zone in the contactor, and V is the volume of the mixing zone. Accordingly, the 
compositions of the streams leaving the contactor shown in figure 1 correspond to X(n)(T) and 
Y(n) (T). 
 
 

 Results for Cascade 9.2
 
Combining equations (100)-(101) provide a system of 2N difference equations for the solute 
concentrations in the aqueous and solvent streams in a cascade of N identical contactors. Pure 
solvent enters stage N, i.e., Y (N+1) = 0, and the composition, X(0), of the aqueous stream entering 
stage 1 is prescribed.  
 
Rearranging equations (100)-(101) we obtain a decoupled second-order difference equation for 
the solute concentrations, X(n), in the aqueous phase streams 
 

 ( 2) ( 1) ( )2 1
( 1)  for 2 n N.

1 1
n n nE

X E X X
E E E E

 
 

   
    

   
  (113) 

 
Given that Y(N+1) = 0, we have 
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
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   
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  (114) 

 
according to equation (101). We can then solve equation (115) recursively for n = N −2,N − 3, . . 
. 0, obtaining 
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  (115) 

 
which we can re-express in terms of the prescribed solute concentration, X(0), of the aqueous 
stream entering the cascade, 
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  (116) 

 
From equations (100)-(101) we find 
 

 ( ) ( 1) ( 2)'
[( 1) (1 ) ] ,n n nH

Y E X E E X
E




        (117) 

which relates the solute concentrations in the solvent streams to the solute concentrations in the 
aqueous streams. Inserting equation (116) into (117), we have 
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  (118) 

 
This provides a complete solution to the system. 
 
The fractional recovery R is defined by 
 

 
(1) ( )

(0) (0)
1

NS Y X
R

F X X
     (119) 

Using equation (118), we thus obtain 
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We note that 
 
 1 1( , , ) ( , , ) .R E N E R E N     (121) 
For large N, equation (121) reduces to 
 
 

 1 1 1 1
1 ( , , ) 1 ( , , )   ,   N 1, E>1

1
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 
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   (122) 

 
indicating that for E > 1, the unrecovered solute fraction, 1−R, tends exponentially to zero with 
N, and that for E < 1, the recovered solute fraction tends exponentially to the limiting value R = 
E. For long residence times,  → 1, formula (122) reduces to the classical result for equilibrium 
stages, 
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1
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
  (123) 

 
Results for E = 2 (and for E = 1/2 by relation (123)) are shown in Figure 76 . The large N 
approximation (124) accurately captures the behavior for even a modest number of stages. 
Incomplete stage-wise solute equilibration between the aqueous and solvent phases, associated 
with lower stage efficiencies (i.e., shorter mixing zone residence times), are seen to reduce solute 
recovery. For a given residence time,T , greater solute recovery is always attained under plug-
flow, rather than stirred-tank conditions, according to formulas (102)-(103). 
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Figure 76. Decay of unrecovered solute fraction, 1−R, as funcƟon of contactor stages, N; 

extraction factor E = 2, residence time function = 1 − 2−k for k as indicated in plot. Exact 
solution (dots), and limiting form for large N (lines). 
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10 CONCLUSIONS AND FUTURE WORK 
 

 Technical Accomplishments 10.1
 
We have made improvements to Sierra Mechanics, the engineering production code for the 
complex, for solid-fluid interactions and multiphase flows using our novel moving boundary 
algorithm termed conformal decomposition finite element method (CDFEM). One paper has 
been published on mesoscale particle dynamics in viscous fluids and another one is being 
completed on using CDFEM for capillary hydrodynamics. We have developed advanced 
thermodynamic methods in Cantera for uranyl transport from acid solution to the organic phase, 
which can predict distribution coefficients for various acid and tributyl phosphate concentrations. 
This work was published as a conference proceedings and SAND report and has just been 
accepted as a journal article. Novel centrifugal contactor experiments with quantitative 
measurement of three phases (water, organic drops, and air bubbles) have been developed, 
leading to a journal publication and collaboration with Argonne National Lab. We have 
developed microfluidic experiments to understand droplet-formation and internal flows for an 
aqueous-organic system. This resulted in one publication, and one journal article in preparation. 
We have developed a non-radioactive model system, based on neodymium and xylenol orange, 
with a new spectrophotometer to give quantitative mass transport data for the validation study. 
This system is used to study mass transport in both the droplet-scale microfluidic experiments 
and for contactor-scale experiments.  Another journal article is being finalized on this work. A 
novel population balance kernel for drop break up has been developed and a publication is 
underway. Two other publications of related work were produced: one on drop coalescence and 
another on mold filling. Contactor models have been carried out for single phase turbulent flow 
and for two-phase flow without turbulence using a CVFEM/level-set. We have added 
experimental capabilities (high speed particle tracking in microfluidic devices, concentration 
determination with the spectrophotometer, high speed droplet size determination) that can be 
used to generate new projects. 
 
We have produced 13 presentations, two invited posters, and seven invited seminars externally: 
 

1. RR Rao, DR Noble et al, “Predicting Interfacial Mass Transport Using the Conformal 
Decomposition Finite Element Method ,” Finite Elements in Fluids, March, 2011 

2. Invited Talk RR Rao et al, “Multiscale Models of Nuclear Waste Reprocessing,” 
Engineering Science External Panel Review, Sandia National Laboratories, Albuquerque, 
NM, April, 2011 

3. RR Rao, DR Noble, MB Nemer, CR Roberts, HK Moffat, “Mass Transfer from a 
Buoyant Droplet Using the Conformal Decomposition Finite Element Method,” 
USNCCM11, July, 2011 

4. DR Noble & MB Nemer, “A Dynamic Conformal Decomposition Finite Element Method 
(CDFEM) for Capillary Hydrodynamics,” USNCCM11, July, 2011 

5. Keynote, M Loewenberg, RR Rao, 27th Annual Meeting of PPS, Morocco, May, 2011 
6. CC Robert et al, “A microfocusing device for microscale mass transport studies,” AIChE 

Annual Meeting, Minneapolis MN, October, 2011 



134 

7. M Loewenberg & RR Rao, “A simplified model for the evolution of the drop size 
distribution and solute extraction in an emulsion under strong-flow conditions,” AIChE 
Annual Meeting, Minneapolis MN, October, 2011 

8. TJ O’Hern, N. Wyatt, B. Shelden, “Determination of droplet and bubble size distribution 
in a centrifugal contactor,” AIChE Annual Meeting, Minneapolis MN, October, 2011 

9. CC Robert et al, “Monodisperse droplet generation for microscale mass transport 
studies,” APS Division of Fluid Dynamics, Baltimore MD, November, 2011 

10. SA Roberts, DR Noble, JB Lechman, “Spreading and wetting of impacting drops: Three-
dimensional simulations using CDFEM,” APS Division of Fluid Dynamics, Baltimore 
MD, November, 2011 

11. Invited Talk, RR Rao and DR Noble, “CDFEM modeling of microfluidic flows,” World 
Congress of Computational Mechanics, São Paulo, Brazil, Brazil, July 2012. 

12. Wyatt et al., “Bubble and droplet size distributions in a centrifugal contactor,” AIChE 
Annual Meeting, Pittsburgh, PA, October 2012  

13. CC Roberts et al., “Drop Circulation and Liquid-Liquid Extraction in Hele Shaw Flow,” 
AIChE Annual Meeting, Pittsburgh, PA, October 2012 (Poster) 

14. M Loewenberg & RR Rao, “Population balance modeling of drop breakup in centrifugal 
contactors,” AIChE Annual Meeting, Pittsburgh, PA, October 2012 

 
Other project metrics: 

 Invited Posters:  
• LDRD Day, Albuquerque, NM, 2010;   
• NNSA TriLAB LDRD Symposium, Washington, DC 2011 

 Invited seminars: Los Alamos National Laboratory (Rao, Noble); Proctor and Gamble 
(Rao), University of Maryland, University of New Mexico, Purdue, Tennessee Tech  
(Loewenberg) 

 
Proceeding papers and journal articles that have been completed and submitted are listed below. 
We have two proceedings papers, two journal articles, one e-book chapter, and four papers 
submitted to journals. 
 

• M Loewenberg, RR Rao, “A simplified model for the evolution of the drop size 
distribution in an emulsion under strong-flow conditions,” Proceedings of the 27th 
Annual Meeting of the PPS, Morocco, May, 2011 

• CF Jove-Colon, HK Moffat, RR Rao, “Thermodynamic modeling of liquid-liquid 
extraction for the system TBP-HNO3-UO2(NO3)2-H2O-Diluent, Proceeding of the 
International High-Level Radioactive Waste Management Conference, Albuquerque, 
USA, April, 2011 

• Featured Project, NNSA News, June 2011 
• JB Lechman, MB Nemer, DR Noble, “Application of Conformal-Decomposition 

Finite Elements to Particle Suspensions,” International Journal of Numerical 
Methods in Fluids, 2012 

• CR Roberts, RR Rao, M Loewenberg , CF Brooks, P. Galambos, AM Grillet, MB 
Nemer, “Comparison of monodisperse droplet generation from a flow-focusing 
device with hydrophilic or hydrophobic surfaces,” Lab on a Chip, 2012 
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• R.R. Rao, L.A. Mondy, T.A. Baer, D.R. Noble, C. F. Brooks, and M.M. Hopkins, 
“3D Numerical Modelling of Mold Filling,” Invited eBook Chapter in “Numerical 
Modelling”, InTech - Open Access Publisher, Rijeka, Croatia, 2012. 

• CF Jove-Colon, HK Moffat, RR Rao, “Thermodynamic Modeling of Liquid-Liquid 
Extraction (LLE) Equilibria for the System TBP-HNO3-UO2-H2O-Diluent: 
Applications of the Gibbs Energy Minimization (GEM) Approach to Complex LLE 
Systems,” SAND2012-9235, Sandia National Laboratories, Albuquerque, NM, 
October 2012 

• M. B. Nemer, P. Santoro, X. Chen, J. B Blawzdziewicz, M. Loewenberg, 
“Coalescence of drops with mobile interfaces in a quiescent fluid,” accepted, Journal 
of Fluid Mechanics 

• CF Jove-Colon, HK Moffat, RR Rao, “Thermodynamic modeling of liquid-liquid 
extraction,” accepted, Solvent Extraction and Ion Exchange, 2012. 

• M. Loewenberg and RR Rao, “A new breakage kernel for population balance 
modeling of emulsions,” submitted, Chemical Engineering Science, 2012 

• TJ O’Hern, N. Wyatt, B. Shelden, “Determination of droplet and bubble size 
distribution in a centrifugal contactor,” submitted, AIChE, 2012 

In addition, we are working to complete four or more manuscripts: 
 

• CR Roberts, AM Grillet, MB Nemer, “A flow-focusing device for mass transport 
studies of rare earth complexes,” AIChE,  in preparation, 2012 

• CR Roberts, SA Roberts, “Understanding internal flow for confined droplets: 
Experiments and modeling,” Physics of Fluids,  in preparation, 2012 

• DR Noble, RR Rao, MB Nemer, “A dynamic conformal decomposition finite element 
model for capillary hydrodynamics, “ J Comp. Phys, in preparation, 2012 

• DR Noble, RR Rao, C.M. Brotherton, “Mass transport with the CDFEM method” J 
Comp. Phys, in preparation, 2012 

 
 Programmatic Accomplishment 10.2

 
In addition, our project sponsored two Minisymposia on CFD for Moving Boundary Problems 
(USNCCM11, FEF11), initiating a special issue of Computers & Fluids and finalizing a special 
issue of IJNMF, from a previous Minisymposium. This work supported Rekha Rao’s nomination 
for the Asian-American Engineer of the Year Award, which she received in March, 2012. We 
have also established collaborations with Marianne Francois (LANL) for and Kent Wardle 
(ANL). 
 

 Conclusions and Future Work 10.3
 
We have developed and implemented novel computational methods in Sierra Mechanics our 
production engineering code. A new thermodynamics framework for separations was developed 
in Cantera. We have new experimental capabilities for microfluidics and separations. We have 
made scientific contributions to the literature and created environments for collaboration and 
advancements in CFD for moving boundary problems through our Minisymposia organization. 
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The nuclear weapons’ program at SNL will benefit the most with new computational methods to 
help understand manufacturing processes, performance, and abnormal environments. Some 
applications that will benefit from this work include foam manufacturing, explosive property 
prediction, melting/decomposition in abnormal environments, and thermal batteries performance. 
For future work, we plan to continue our development of the CDFEM method for turbulent, two-
phase flow with mass transport. Scalability is always an issue as we try to run realistic problems 
with millions of unknowns.  
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