
SANDIA REPORT
SAND2012-8980
Unlimited Release
Printed October 2012

Field-theoretic Simulations of Block
Copolymers: Design and Solvent
Annealing

Sean Paradiso, Glenn H. Fredrickson, Edward H. Feng, and Amalie L. Frischknecht

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.



Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2



SAND2012-8980
Unlimited Release

Printed October 2012

Field-theoretic Simulations of Block Copolymers:
Design and Solvent Annealing

Sean Paradiso and Glenn H. Fredrickson
Department of Chemical Engineering

University of California, Santa Barbara
Santa Barbara, CA 93106

Edward H. Feng and Amalie L. Frischknecht
Sandia National Laboratories

Livermore, CA 94550 and
Albuquerque, NM 87185

Abstract

We first propose a solution to the inverse design problem for block copolymers that uses self-
consistent field theory (SCFT) with numerical optimization. We apply our design methodology to
both conformationally symmetric and asymmetric diblock copolymer melts. In the latter case, the
parameters are specific to poly(ethylene oxide-b-styrene) block copolymer (PEO-PS), a material
currently being explored as an electrolyte for lithium-ion batteries. The results of this design ap-
proach not only guide the synthesis of block copolymers but also shed light on the polymer physics
of the gyroid phase. Second, we develop an SCFT to isolate and study the dynamical aspects of
micro-phase separation in block copolymer films during the film drying process. Key questions
include whether evaporation rate as a controlled, independent variable can effect a change in micro-
domain orientation, whether a concentration-dependent kinetic mobility is required to explain such
an effect, and working out the consequences for controlling the morphology alignment in copoly-
mer films of varying thicknesses.
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Preface

This report presents work done under the LDRD project, “Triblock Polymers for Nanoporous
Membranes”. The final SAND report for that project can be found as: Joseph G. Cordaro, Nicolas
R. Myllenbeck, Matthew C. George, Michael S. Kent, Amalie L. Frischknecht, Geoffrey Bren-
necka, Greg OBryan, and Edward H. Feng, “Triblock Polymers for Nanoporous Membranes”,
Sandia National Laboratories Report SAND2012-7479 (2012).

In this report, we present results from two computational studies that were done to support
the main experimental work. Both studies use a standard theory for describing the phase behavior
of block copolymer melts, the self-consistent field theory (SCFT) [11]. Chapter 1 presents the
results of an examination of whether optimization methods can be used in conjunction with SCFT
calculations to design a particular desired block copolymer; this was work performed by Edward H.
Feng. Chapter 2 describes work by Sean Paradiso and Glenn H. Fredrickson at U. C. Santa Barbara,
who have developed a new technique for describing solvent annealing within SCFT. They then
apply this method to examine the effects of solvent annealing on ordering in diblock copolymer
thin films.
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Chapter 1

Designing Block Copolymer Materials

1.1 Introduction

Over the last 17 years, the polymer physics community has made great strides in using computa-
tional self-consistent field theory (SCFT) [23, 12, 11] to understand the self- assembly of block
copolymers. For a diblock copolymer with parameters that describe the architecture of the copoly-
mer and interaction between the monomer species, SCFT determines the phase into which this
copolymer will self-assemble. However, an engineer desires to make a material with a particular
structure, such as the bicontinuous structure of the gyroid phase. With this endpoint in mind, the
engineer wants to know which block copolymer to make. If SCFT provides a solution to the for-
ward problem that takes polymer parameters to self-assembled phase, the engineer needs a solution
to the inverse problem that maps phase to polymer parameters. Useful predictions include the mass
of both blocks of the copolymer and the temperature at which to anneal the system.

Researchers in the theoretical community have considered this inverse design problem in other
systems. Stillinger, Torquato and coworkers developed a potential function that makes atoms
crystallize into a desired structure [29, 32]. They use simulated annealing to determine the op-
timal potential for the diamond structure with useful band gap properties. This work inspired
mathematicians to develop a linear programming algorithm to find the potential that optimizes a
zero temperature ground state [6]. Beratan, Yang and coworkers also use optimization to design
molecules with high polarizability [38] as well as protein sequences that fold into a desired struc-
ture [15]. However, to our knowledge, no one has designed block copolymers that self-assemble
into a desired microstructure.

Here, we propose a solution to the inverse design problem for block copolymers that uses SCFT
with numerical optimization. This solution is based on an objective function proportional the free
energy difference between the target and other candidate phases. Optimization of this function
maximizes the thermodynamic driving force towards the target phase. While one could choose
any target phase, we consider the gyroid phase since its bicontinuous structure gives a material
with the properties of both polymers. We apply this design methodology to both conformationally
symmetric and asymmetric diblock copolymer melts. In the latter case, the parameters are specific
to poly(ethylene oxide-b-styrene) block copolymer (PEO-PS), a material currently being explored
as an electrolyte for lithium-ion batteries. The results of this design approach not only guide the
synthesis of block copolymers but also shed light on the polymer physics of the gyroid phase.
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1.2 Methods

Self-consistent field theory (SCFT) [11] uses statistical mechanics to predict the self-assembly of
block copolymers at thermal equilibrium. It accounts for the chemical incompatibility between
different monomer species, the configurational entropy of the polymer chains and the incompress-
ibility of a polymer liquid. One formulates the field theory in terms of the chemical potential fields
conjugate to the monomer densities and then makes a mean field approximation. Computational
methods are used to find the mean field solution for different candidate phases such as lamellae,
hexagonally packed cylinders and gyroid phases.

Many researchers have provided a complete theoretical description of SCFT [23, 11], so we
restrict our attention to those aspects crucial to the design results. Consider a diblock copolymer
melt in the canonical ensemble with n polymers of length N in a volume V at a temperature T . Each
copolymer has blocks of A and B monomers that consume a volume fraction f and 1− f of the
polymer respectively, and the Flory-Huggins parameter χ describes the chemical incompatibility
of the two blocks. The heart of the SCFT calculation solves a modified diffusion equation

∂q(r,s)
∂s

=

{ 1
6NaA∇2q(r,s)−wA(r)q(r,s), s < f N
1
6NaB∇2q(r,s)−wB(r)q(r,s), s > f N

(1.1)

for the propagator q(r,s) with the boundary condition q(r,0) = 1 at the A end of the block copoly-
mer. Here, r is the position in space, and the contour variable s ∈ [0,N] describes the N monomer
volumes v0 along the chain. Moreover, wi(r) and ai are the chemical potential fields and Kuhn
lengths for the i = A, B monomer species respectively. For a set of fields wA(r) and wB(r), solv-
ing the modified diffusion equation leads directly to the inhomogeneous spatial distribution in an
ordered phase,

φA(r) =
1
Q

∫ f N

0
q(r,s)q†(r,s) (1.2)

Here,

Q =
1
V

∫
q(r,N)dr (1.3)

is the dimensionless single chain partition function for a polymer in chemical potential fields wA(r)
and wB(r), and the propagator q†(r,s) arises from solving the modified diffusion equation starting
from the B end of the block copolymer. If one multiplies the left side of Eq. (1.1) by −1, this
propagator satisfies this equation with the boundary condition q†(r,s) = 1. The volume fraction
for the B monomers is similar to Eq. (1.2) except with a change in the limits of integration so the
contour integral includes the B block of the polymer.

With the ability to solve for the densities given the fields, we can find the wA(r) and wB(r) fields
that satisfy a set of mean field equations.[11] If w∗A(r) and w∗B(r) are these mean field solutions,
the free energy in the canonical ensemble with n polymers in a volume V at temperature T is

F [w∗A,w
∗
B]

nkT
=−χN

V

∫
φA(r)φB(r)dr− lnQ (1.4)

in which the Flory-Huggins parameter χ is in units of kT and k is Boltzmanns constant. For a
conformationally symmetric diblock copolymer in which aA = aB, we show this free energy for

12



Figure 1.1. Free energy of three candidate phases as a function of
f at χN = 15 for a conformationally symmetric diblock copolymer.
The arrow shows that the free energy of the gyroid phase is furthest
below the other two phases at f ≈ 0.392, a result determined from
SCFT and optimization. At this optimal point, the lamellar and
hexagonally packed cylinder phase have the same free energy.

the lamellar, gyroid and cylinder phases as a function of f at χN = 15 in Fig. 1.1. The standard
block copolymer phase diagram1 is constructed by finding the phase of lowest free energy at all
values of f and χN.

To design polymeric materials, we assume the target phase is most stable when its free energy
is furthest below the free energy of all other phases. This point in parameter space maximizes the
thermodynamic driving force towards the target phase. For a diblock copolymer melt, this requires
finding the f and χN at this maximum. To formulate this as an optimization problem, let Θ be the
set of parameters for the block copolymer system. For a diblock copolymer melt, Θ = { f ,χN}
but the size of this set grows as monomer and polymer species are added to the system. For
example, a triblock copolymer has 5 independent parameters, a size that already makes calculating
the full phase diagram tedious. Let FT (Θ) be the free energy of the target phase and Fj(Θ) be
the free energy of all other phases j = 1...N. We assume Fj(Θ) and FT (Θ) are continuous and
differentiable with respect to each element of Θ. The curves in Fig. 1.1 support this assumption.
Consider the function

J(Θ) = min
j

(
Fj(Θ)−FT (Θ)

)
, (1.5)

the difference between the free energy of the lowest non-target phases and the target phase. Since
we only desire solutions in which the target phase has the lowest free energy, we seek the solution
to

max
Θ

J(Θ), subject to J(Θ)≥ 0 (1.6)

This optimization scheme is similar to the zero temperature scheme4 that Rechtsman et al. applied
to crystal structures. With the gyroid as the target phase for the diblock copolymer in Fig. 1.1,
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J(Θ) reaches its maximum at f ≈ 0.392. However, this objective function is not differentiable
everywhere. In fact, J(Θ) is not differentiable at its maximum since the identity of the phase
of next lowest free energy changes. This potentially makes it difficult to use optimization codes
employing gradient methods.

We propose an alternative formulation [25] of the problem. Consider the free energy differ-
ences Fj(Θ)−FT (Θ). If these are all greater than some threshold s> 0, then it suffices to maximize
the scalar value s. For the constraints

g j(Θ,s) = Fj(Θ)−FT (Θ)− s (1.7)

we solve

max
Θ,s

subject to
{

g j(Θ,µ)≥ 0, ∀ j
s≥ 0 (1.8)

This optimization problem has a simple objective function and nonlinear constraints. Since we
assumeFj(Θ) is differentiable with respect to each element in Θ for all j, then each constraint
g j(Θ,s) is also differentiable with respect to all its parameters.

To implement this design scheme, we use the SCFT code developed by the Morse group [1].
We consider diblock copolymer melts and adopt the original Matsen-Schick formulation [23] in
which N = 1 and a block copolymer occupies a single monomer volume. Taking the parameters
χ = χN and f as inputs, the SCFT code performs a unit cell calculation based on the symmetries
of the phase by solving Eq. (1.1) in Fourier space. We use a spatial resolution of at least 483
(1175 basis functions) for the gyroid phase, sufficient accuracy [21] for our calculations in which
χN ≤ 30. The design method targets the gyroid phase. From previous work on block copolymer
phase diagrams [23, 35], it suffices to consider only the neighboring lamellar and cylinder phases
in this calculation. The DAKOTA package [2] works with SCFT to find the optimal point in
parameter space. It implements a sequential quadratic programming algorithm [25] through the
NPSOL package, calculates numerical gradients and terminates when the change in the objective
function divided by its magnitude is less than 10−4, the default option in DAKOTA. With sufficient
accuracy in calculating free energy of the gyroid phase, DAKOTA had no problems converging to
the optimal parameters for the systems studied.

1.3 Results

First, we consider a conformationally symmetric diblock copolymer in which the two species have
equal Kuhn lengths aA = aB. To begin, we fix χN = 15 and perform a one dimensional optimization
in the parameter f . Our method gives f = 0.392, a result depicted in Fig. 1.1. At this optimal point,
the free energy of the neighboring lamellar and cylinder phases have the same value. Both of the
inequality constraints in Eq. 1.7 are equalities, or are active, at the optimal point, a feature present
at all optimal parameters in this work. Next, we perform a two dimensional optimization in f and
χN that searches the entire phase diagram of a block copolymer melt. Starting at f = 0.44 and χN
= 15, this calculation converges to f = 0.352 and χN = 23.65. Since the initial point is far away
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from the optimal point, the sequential quadratic programming algorithm appears to have a large
radius of convergence.

Next, we consider a conformationally asymmetric diblock copolymer in which α = aA/aB =
1.44. This parameter choice corresponds to a PEO-PS system14 in which the A block is the more
flexible PEO. When f < 0.5, the optimal parameters are f = 0.414 and χN = 23.71. These results
are consistent with phase diagrams for asymmetric diblocks [21] in which the gyroid phase shifts
to higher values of f as α increases. The flexibility of the minority component alleviates packing
frustration and causes the interface to curve towards the minority phase. For f > 0.5, the optimal
parameters are f = 0.716 and χN = 30.0, a point at the upper limit of χN values in our calculation.
A summary of these results are given in Table 1.1.

Table 1.1. For diblock copolymer melts, these are the optimal
parameters at which the gyroid phase is most stable. Here, α =
aA/aB characterizes the conformational asymmetry of the diblock
copolymer, f is the fraction of the A block, and χN is the product
of the Flory-Huggins parameter and polymer length.

α f χN
1.00 0.352 23.65
1.00 0.648 23.65
1.44 0.414 23.71
1.44 0.716 23.71

To compare these three systems, we plot the free energy difference between the gyroid phase
and the phase with the next highest free energy as a function of χN in Fig. 1.2a. Each datum in
this plot corresponds to an optimization for f at a fixed χN, the same calculation used to find the
optimal f = 0.392 in Fig. 1.1. Larger negative values correspond to a more stable gyroid phase.
At each data point, the lamellar and hexagonal packed cylinder phases have the same free energy.
Hence, each data point corresponds to the metastable cylinder lamellae boundary, and Matsen [21]
calculated the results in Fig. 1.2a for α = 1.5. For the diblock with the more flexible majority
component, there may be a minimum for χN > 30. Calculations with more basis functions for the
gyroid phase could resolve this issue.

1.4 Discussion

Approaching the study of block copolymers from a design perspective can also shed new light on
the self-assembly of complex phases like the gyroid. Previous work has shown that phase selec-
tion, or what phase is most stable at a point in the phase diagram, is a delicate balance between the
interfacial tension and packing frustration [7]. The enthalpic interaction parametrized by χN drives
the formation of interfaces with constant mean curvature. Meanwhile, the entropy loss associated
with chain stretching makes it more difficult for chains to pack efficiently and hence distorts these
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constant curvature interfaces. The gyroid phase is stable in the block copolymer phase diagram be-
cause the shape of its interface lessens the packing frustration compared with other complex phases
such as perforated lamellar and double diamond. Fig. 2a shows that conformational asymmetry
further stabilizes the gyroid phase, since the free energy gap to the next highest phase is larger for
α = 1.44 than α = 1. The more flexible A blocks lessens the packing frustration in this system.
This is not true when the more flexible block composes the majority domain for χN ≥ 30, as this
free energy difference is always larger than other two systems.

To see how these computational results translate into guidelines for polymer synthesis, consider
a PEO-PS block copolymer. With PEO and PS as the minority and majority block respectively,
this system15 corresponds to calculations with α = 1.44 and f < 0.5. To make the connection
with experiments, we use literature values [22] for the Flory-Huggins parameter χ(T ) =−1.73×
10−2+23.7T−1 which depends on the interpretation of N as the number of v0 = 0.1 nm3 monomer
volumes occupied by the diblock copolymer. The appendix shows how to change variables from
our SCFT calculation to this experimental system by rescaling the monomer volume. To predict the
optimal conditions for the self-assembly of the gyroid phase, we have some latitude in choosing
an equilibration temperature T and polymer length N. We choose T = 180◦C, which is lower
than the T = 200◦C at which PS-PEO begins to degrade but high enough to enhance the kinetics
of self-assembly. This gives χ = 0.035, which implies N = 677.4. To transition from monomer
volumes to polymer molecular weight, we need the molecular weight (44 and 104 g/mol) and
monomer volumes (0.069 and 0.179 nm3) of ethylene oxide and styrene respectively. Then the
polymer molecular weight is N fimi(v0/vi) in which fi is the block fraction, mi is the monomer
mass in grams per mole, and vi is the volume occupied by a monomer as i indexes both monomers.
This gives polymer molecular weights of 17.8 and 23.0 kg/mol for PEO and PS respectively; this
diblock copolymer is predicted to optimally self-assemble at T = 180◦C into the gyroid phase.

Often times, domain spacing of the resulting material is of interest. The optimal PEO-PS
diblock gives a domain spacing of 67.5 nm, a straightforward exercise using the change of variables
in the Appendix. If a larger domain spacing is desired, one can still use the optimal solution χN
= 23.71 but change χ and N accordingly. A higher equilibration temperature T = 200◦C implies
a smaller value of χ and hence a larger value of N at χN = 23.71. This implies a domain spacing
of 70.67 nm, a small increase. However, in Fig. 2a, the free energy difference for α = 1.44 and
f ¡ 0.5 is relatively flat as χN increases beyond the optimal value of χN = 23.71. Moreover, Fig.
2b shows that the optimal block fraction stays constant as χN increases. This suggests that longer
PEO-PS block copolymers with f = 0.414 might also readily self-assemble into the gyroid phase.
Preliminary experimental results on this system support this assertion.

In applying this design approach to experiments, the uncertainty in parameters such as χ and
aA,aB will affect the accuracy of the predictions. Experimental values for χ are usually obtained
from analyzing scattering data on blends of two homopolymers with the random phase approx-
imation [22]. Not only can both theory and experiment lead to errors, the analysis also makes
assumptions, such as the independence of χ from the volume fractions of the two polymer species.
Also, values of the Kuhn lengths ai have been reported to vary by 20% [22]. With these uncer-
tainties, we dont always expect quantitative accuracy with our design scheme. Nonetheless, it can
certainly guide materials design better than any trial and error approach.

16



1.5 Outlook

Our method for designing polymeric materials is not limited to diblock copolymer melts. With the
interest in using PEO-PS as a electrolyte for lithium ion batteries [13], one could study how lithium
salts of various molecular volumes changes the phase behavior of PS-PEO. Instead of calculating
entire phase diagrams, our method could be used to optimize the thermodynamic driving force to-
wards the gyroid phase, whose bicontinuous structure is ideal for harnessing both the conductivity
of Li in PEO as well as the mechanical stability of PS. Another topic of interest is blending ho-
mopolymer with diblock copolymers, a method that stabilizes different bicontinuous phases such
as the double diamond [20]. With the inclusion of more candidate phases than the three used here,
one could optimize the block fractions and polymer fractions for these other phases. Also, the
design approach is applicable to multi-block copolymers with more than two blocks. With the
explosion of possible phases that might be stable at any point in parameter space, one should first
employ physical intuition to select candidate phases that might be stable in any particular region.

This work focuses on designing polymeric materials with self-consistent field theory, a well
studied approach for the self-assembly of block copolymers. Within the mean-field approxima-
tion, the calculation gives a precise value for the free energy which leads to continuous and dif-
ferentiable curves as a function of the parameters. Hence, we can use gradient based optimization
methods such as sequential quadratic programming to design materials. However, other methods
for calculating the free energy use stochastic methods, which leads a sampling error in the free
energy estimate. For example, Lennon et al. employed complex langevin sampling to go beyond
the mean-field approximation in field theoretic models of block copolymers [20]. While gradient
based methods may not work, the overall design approach presented here is still useful. In the
presence of sampling error, one can use stochastic programming as a means for optimization and
designing materials.

1.6 Appendix: Rescaling Monomer Volume

We show that the monomer volume, Flory-Huggins parameter, degree of polymerization, and Kuhn
length can be rescaled such that the field-theoretic model of block copolymers remains the same.
Here, we let a denote a Kuhn length, which could arbitrarily be set to the Kuhn length of either
monomer species. Suppose we rescale the monomer volume v̄0 = λv0. Then χ̄ = λχ gives the same
expression for the internal energy associated with chemical incompatibility (see eq. 18 or 21 in the
Fredrickson review article [12]). To ensure the same effective repulsion between chains χ̄N̄ = χN,
we rescale the polymer length N̄ = λ−1N. Finally, the length scale set by the squared end-to-end
distance N̄ā2 = Na2 remains invariant if ā =

√
λa. This implies

ā2

v̄0
=

a2

v0
(1.9)

must hold for the physics to remain invariant.
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To connect the design method results with experiments, let the original and overbar variables
correspond to SCFT and experiments respectively. The optimal χN value depends on an SCFT
calculation in which the monomer volume was equal to the polymer volume, or N = 1. We seek
the corresponding experimental parameters χ̄ and N̄. The Flory-Huggins parameter χ̄� 1 and
Kuhn length ā are dictated by literature values [22]. Then χ̄N̄ = χN and N = 1 imply a large
degree of polymerization N̄ � 1 for the experimental system and λ = 1/

√
N̄ � 1. Hence, the

rescaled monomer volume decreases as expected. To complete the analysis from above, we would
use the literature value ā and set a = ā/

√
λ to make the length scale and domain spacing d̄ = d

the same in simulation and experiment. However, we set a = ā in our simulation, which implies√
Na2 =

√
N̄ā2/

√
λ for the length scale. Hence, d̄ = d/

√
λ.
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Figure 1.2. Results for both conformationally symmetric α =
1.0 and asymmetric α = 1.44 diblock copolymer melts. Part (a)
shows the free energy difference per monomer volume between
the gyroid and the lamellar and hex phases as a function of χN.
The α = 1.0 and α = 1.44with f < 0.5 display a minimum which
corresponds to the optimal point in parameter space. This point
is denoted by the larger symbol. Part (b) shows the optimal block
fraction f as a function of χN.
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Chapter 2

Features of Evaporation-Induced Ordering
in Block Copolymer Thin Films

2.1 Introduction and Background

The propensity for block copolymer materials to form ordered structures on tunable length scales
makes them extremely attractive platforms for nanotechnology applications. In neat diblock copoly-
mers, this micro-phase separation behavior can be successfully mapped to two parameters: the rel-
ative number of monomers comprising one block with respect to the other (block fraction), and the
mean-field segregation strength χN. For sufficiently high segregation strength, sweeping through
block fraction will produce first spherical micelles in a majority matrix, followed by hexagonally
packed cylindrical micelles, a bicontinuous phase, and, finally, a lamellar phase at equal block
fraction [10]. While a great deal of effort has been invested in understanding and leveraging self-
assembly in bulk copolymer materials, recent interest has been growing in thin film materials for
their unique potential for important technological areas such as membrane separations [28, 36],
fuel cell proton-exchange membranes, organic photovoltaics [37], optically active coatings, and
more.

For these reasons, there is great interest in the thin film community in understanding how to
align block copolymer micro-structures with respect to the film surface. For some applications,
such as templating nano-wires, the objective is to form straight lines of perpendicular lamellae
(L⊥) or a single layer of parallel cylinders (C‖). For templating wires that break the plane, nano-
scale posts, or pores for functional membranes, cylinders oriented perpendicular to the plane of the
substrate are required (C⊥). It has been demonstrated repeatedly that neutral free surfaces (∆γ = 0)
promote perpendicular order close to the walls in lamellar systems [8, 30, 31]. For asymmetric,
cylinder-forming systems the surface field is not quite as clear, as enthalpically neutral surfaces
(a condition enforceable only in simulations) lead to parallel cylinder morphologies; a behavior
attributed to the entropic affinity of the minority block for the confining surface [39, 16]. While the
basic nature of these interactions is understood, no theoretical perspective has been proposed that
satisfactorily explains the experimental observations with regard to evaporation rate and surface
effects.

Historically, Self-Consistent Field Theory has enjoyed great success as a predictive tool in
block copolymer melt phase behavior due to the accuracy with which it models chain configura-
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tional entropy and the general applicability of the Flory-Huggins model for the enthalpy of mixing
unlike polymer segments. While equilibrium calculations give us insight into the local minima of
the free energy surface and how the systems might respond to perturbations such as irregularities
in wall profile, polydispersity, etc. they are somewhat limited in their ability to describe processing
effects such as dynamic or non-equilibrium considerations. It is additionally important to recog-
nize that if the details of how films are processed can impact their final structure, then the relevant
ensemble to study is the one comprised of all dynamical tra jectories that connect initial and fi-
nal states - not just considerations of the film at equilibrium. Equilibrium calculations can give
only information about a system that successfully samples all of configuration space, which a film
undergoing evaporation and presumably the glass transition does not.

2.1.1 Morphology Control via Solvent Annealing

The subtle interplay between interactions with the surface and chain conformational entropy makes
the processing windows for preferred structures narrow in many cases. This behavior has led to
numerous experimental and theoretical studies of cylinder-forming copolymer thin films to try and
develop a general strategy for annealing C⊥. Towards this end, Hawker and Russell et al. made
a significant contribution by introducing random copolymer brushes grafted to wafer substrates,
creating a neutral mean-field environment for the copolymer blocks[19]. In fact, the majority of
successful experiments resulting in perpendicular cylinders, with the exception of ultra-thin films,
use this method. A few authors have also indicated that swelling films with solvent and rapidly
drying them will promote perpendicular orientation of cylinder domains[28, 18, 27], and we note
that the majority of experimental results were obtained using this method. Interestingly, Han et
al. reported thermally annealed samples of thick films (∼500nm or ∼14 d0) which exhibited
C⊥, supporting the idea that truly neutral conditions promote perpendicular alignment as well,
although these conditions require great care to achieve[14]. The stability of C⊥ in these results
may be partly explained by a recent study demonstrating that random copolymer brushes actually
enhance the stability of L⊥ over neutral, neat surfaces, a result we expect applies to cylinders as
well[33]. A comprehensive understanding of micro-phase separation requires addressing a broad
range of possible influences, but one of the most puzzling and difficult to test experimentally is
the effect of solvent evaporation rate. No quality, controlled simulation or experimental studies
have been performed with the time or length scales required to study the process from swollen to
ordered, and we believe this represents a gap in the solvent annealing and thin film literature. The
purpose of our program is to isolate and study the dynamical aspects of micro-phase separation
during the film drying process. Key questions include whether evaporation rate as a controlled,
independent variable can effect a change in micro-domain orientation, whether a concentration-
dependent kinetic mobility is required to explain such an effect, and working out the consequences
for controlling the morphology alignment in copolymer films of varying thicknesses.
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2.2 Theoretical Framework

2.2.1 Polymer Model

In choosing a model to study copolymer micro-phase separation, we are not concerned with, nor
terribly interested in, chemistry-specific details that would be built into a complex equation of
state or interaction potential1. It therefore proves most convenient to employ the standard Flory-
Huggins polymer fluid model with finite compressibility for an ensemble of interacting chains and
segment-sized solvent particles. This document focuses on a solvated copolymer system so while
the method is quite general, equations will be derived for this case.

Consider an A− B diblock copolymer immersed in monatomic fluid solvent S, interacting
through local contact potentials:

ui j(ri− r j) = kBT δ(ri− r j)v0χi j

This potential of mean force prescription suffices to describe meso-scale segregation behavior due
to unfavorable contact interactions between unlike polymer or solvent segments. It is convenient
to transition to a more coarse-grained view of space and introduce microscopic density fields:

ρ̂S(r) =
nS

∑
j=1

δ(r− r j)

ρ̂K(r) =
nP

∑
j=1

∫ N

0
δ(r− r j(s))δKsds

Here K indicates block segment types (A or B) and δKs simply filters to count only segments of
type K in the integral. Notice also that the polymer chains are described by a space-curve r j(s)
which gives the location in space of the sth segment in the jth chain. With these definitions, the
total interaction energy of the system can be described as a sum of pairwise interactions and bonded
interactions describing the energetics of chain conformations:

βU [rnS ,r j(s)nP ] =
3

2b2

nP

∑
j=0

∫ N

0

∣∣∣∣dr j(s)
ds

∣∣∣∣2 ds+ ∑
K,K′

v0χKK′

∫
ρ̂K(r)ρ̂K′(r)dr

+ v0
ζ

2

∫
(ρ̂A + ρ̂B + ρ̂S +ρw−ρ0)

2 dr

An additional term proportional to ζ has been appended to enforce finite compressibility of the fluid
through a Helfand harmonic penalty for deviating from the uniform density ρ0. The field ρw is a
place-holder for substrate and free surface profiles that will be used to model preferential surfaces.

1It is worth mentioning, however, that since the density dynamics scheme requires explicit reference to the density
fields in the theory, a species model formulation of the field theory proves most convenient. With this commitment,
requirements that our chosen interaction potential be positive-definite and invertible are relaxed, opening up the op-
portunity to study density dynamics in heterogeneous systems with more complicated interaction potentials
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The canonical partition function for the system follows from standard statistical mechanics as an
integral over all relevant degrees of freedom, summing the Boltzmann weight of each state [5]:

ZC(ns,nP,V,T ) =
1

ns!nP!λ3(ns+nPN)
T

nP

∏
j=1

∫
Dr j(s)

ns

∏
k=1

∫
drk exp

(
−βU [rnS ,r j(s)nP]

)

2.2.2 Field Theory Formulation

In the particle-based model, evaluation of the ensemble partition function requires integrating over
all possible chain configurations and particle positions, calculating the N2 potential energy contri-
butions from all polymer segment and solvent molecule interactions. However, we can decouple
inter-chain interactions by introducing continuous density and auxiliary potential fields through
the Fourier representation of the delta functional, which constrains our continuous fields to agree
with the particle formulation’s microscopic densities at each point in space:

δ[ρ̂−ρ] =
∫

Dwexp
(

i
∫

w(r)(ρ(r)− ρ̂(r))
)

The partition function for the field theory becomes:

ZC(nP,ns,V,T ) = Z0 ∏
i

∫
Dwi

∫
Dρi exp(−βH[{wi},{ρi}]) (2.1)

where H[{wi},{ρi}] is given by:

H[{wi},{ρi}] = ∑
K,K′

v0χKK′

∫
ρK(r)ρK′(r)dr

+ v0
ζ

2

∫
(ρA(r)+ρB(r)+ρS(r)+ρw(r)−ρ0)

2 dr

− i∑
K

∫
ρK(r)wK(r) dr−∑

i
ni logQi[{w}i]

(2.2)

The term proportional to logQ in the Hamiltonian represents the free energy of a single component
(either isolated polymer chain or solvent particle) exposed to the external field(s) {wi} associated
with that component. For example, a copolymer chain experiences two external potentials: wA and
wB for interactions with each segment type. To compute this term, we turn to the chain propagator
formalism described in [11], which provides a convenient platform for computing the single-chain
partition function and related quantities, by deriving a Fokker-Planck equation from the transition
probability rules that define the polymer chain model used. For the continuous Gaussian chain, the
propagator satisfies:

∂sq(r,s) =
Nb2

6
∇

2q(r,s)−w(r)q(r,s) (2.3)

q(r,0) = 1
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Solutions represent the statistical weight of finding the end of a polymer chain of length ‘s’ at
position ‘r’. It can further be shown that the partition function can be written in terms of the chain
propagator as:

Q[w] =
1
V

∫
V

q(r,N)dr (2.4)

Given that Q represents a single-chain partition function acting within an effective chemical po-
tential field, we can use the thermodynamic connection formula from statistical mechanics to write
the expectation value of the segment density in terms of Q and therefore q(r,s):

−nP
δ logQ
δw(r)

= ρ̃(r; [w]) (2.5)

From this we can derive the density operator from equation (2.5) in terms of single chain propaga-
tors:

ρ̃[w] =
nP

V Q[w]

∫ N

0
q(r,s)q†(r,N− s)ds (2.6)

This density operator will enter into the evaluation of the thermodynamic force described in later
sections.

2.2.3 Dynamics

The equations derived in the previous section suffice to study the equilibrium properties of a
swollen polymer film. In order to study the dynamics of solvent evaporation, we turn to a dy-
namical extension of this theory wherein we track the dynamics of the slow, collective density
field variables to which the auxiliary w fields are adiabatically slaved. The general procedure is
to initialize the simulation in an equilibrium thin-film state, then begin to allow solvent to evap-
orate through the air/film interface (details to follow). This perturbation pushes the system out
of equilibrium and we describe its response by the diffusive dynamics below. This method was
first introduced by Fraaije and coworkers who posited a mean-field effective potential acting on
a separate ensemble of ideal gas chains [9]. The minimization criterion used to determine this
mean-field potential yields an equivalent expression as the partial saddle-point approximation to
the Self-Consistent Field Theory employed in this work.

Modeling Evaporation

As indicated previously, we find it convenient to confine our density fields between explicit sub-
strate and free surface phases (see illustration in Figure 2.1). These additional fields simply enforce
an interfacial profile and allow for preferential surfaces to be simulated by choosing suitable sur-
face/substrate interactions. In addition, the free surface profile provides an extended region into
which solvent may diffuse and be removed from the simulation continuously, modeling evapora-
tion. This reproduces the essential aspects of evaporation, while giving us the freedom we need
to specify boundary conditions independent of our choice for evaporation rate. This proves to be
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essential as boundary conditions on the chain propagators in the Self-Consistent Field Theory must
produce density operators with boundary conditions consistent with those imposed on the dynam-
ical density fields. The evaporation model we use is a simple bimolecular reaction mechanism:

−rS(r) = kρS(r)ρw(r)

where solvent is continuously removed from regions of large overlap between solvent and surface
mask. Here the function rS(r) is the rate of solvent removal, which is space-dependent only to
concentrate removal near the free surface. Its integral over z is the evaporative flux; instead of
distributing this loss over a delta function interface, we smear it out over the region of overlap
between the solvent density field and the “air/vapor phase” wall mask. The volume change due to
evaporation is therefore given by

dV
dt

=
∫
(−rS(r))dr

Since evaporation occurs only through the top surface, we can reduce this to an equation of motion
for the film thickness Lz(t):

dLz

dt
=

1
LxLy

∫
kρS(r)ρw(r)dr

This evaporation model allows us the convenient choice of Neumann boundary conditions, which
are simple to apply both to the dynamics and chain propagator equations with consistent results.
Some intuition for how the reaction rate constant translates into the rate of film de-swelling (and,
therefore, evaporation) may be gleaned from Figure 2.2, which shows the film thickness as a func-
tion of simulation time under the range of reaction rates used in this study.

Concentration Dynamics Equations

Polymer concentration dynamics are often written in the form [17, 24]:

∂tρi(r, t) =−∑
j

∫
dr′Mi j(r,r′)

δF
δρ j(r′)

+η(r, t) (2.7)

where Mi j is the mobility matrix, written as a convolution with the non-local nature of polymer
kinetics in mind. Formally, the matrix is given by:

Mi j(r,r′) = n
〈

∂ρ̂i(r)
∂r j(s)

· M̂ ·
∂ρ̂ j(r′)
∂r j(s)

〉
where the average is taken over all possible chain conformations. A common approximation is
to take M̂ to be the identity matrix scaled by an effective diffusivity. This is known as the local
coupling approximation and leads to the following equations of motion [24]:

∂tρi(r, t) = ∇ ·ρi(r, t)∑
j

Λi j∇
δF
δρ j

(2.8)
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Figure 2.1. Typical profile of equilibrated thin film. Copolymer
densities shown along with confining substrate/surface profiles. In
this example f=0.4, χNAB=10 and ζN = 1000.

Including the reaction terms we have:

∂tρi(r, t) = ∇ ·ρi(r, t)∑
j

Λi j∇
δF
δρ j

+ kiρiρw

As solvent leaves the system, the domain will shrink to accommodate the lost volume. This could
be accounted for by solving the equations on a variable grid domain, but a more elegant approach
is to scale out the domain size2 z̄ = z

L(t) , leading to:

∂tρ(r̄, t) = ∂zρ(r, t) ∂t z(t)+∂tρ(r, t)

=
zV ′

V (t)
∂z̄ρ(r̄, t)+

1
V (t)2 ∇ ·ρi(r̄, t)∑

j
Λi j∇

δF
δρ j(r̄)

+ kiρi(r̄, t)ρw(r̄)
(2.9)

We are finally left with a generalized diffusion equation augmented with the transport term we
get from scaling out our time-dependent domain size. The only factor that must still be explained
is the thermodynamic force driving our dynamics δF

δρ
.

2Notice we have tacitly assumed here that grid spacing, and hence compression of the film, occurs linearly over
the domain by our choice of map z→ z̄. Different choices for how the grid changes with time (i.e. z(t)) will result in
different forms of the transport term.
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Figure 2.2. Left: Film thickness as a function of simulation time
(semi-log) for various evaporation rates k=-1 (top), -2, -3, -4, and
-5 (bottom). The behavior at intermediate times is observed to
be approximately exponential. Right: A linear fit to this region
yields an exponential decay rate which is plotted vs the reaction
rate parameter k. The film deswelling rate is then found to be
related to the reaction rate parameter k as L(t;k)≈ L0 exp(.0007k).

Evaluating the Thermodynamic Force

Recalling the standard thermodynamic connection formula along with our field theory partition
function:

βA =� logZ = A0� log

(
∏

i

∫
Dwi

∫
Dρi exp(�βH[{wi},{ρi}])

)
Now the purpose of this analysis is to isolate the free energy of a given density configuration so
that the thermodynamic force may be resolved as the first variation with respect to perturbations in
this imposed density field. The reduced partition function under this constraint may be written:

βA[{ρi}] = A0� log

(
∏

i

∫
Dwi exp(�βH[{wi},{ρi}])

)
Employing the saddle-point approximation, we can take the density free energy functional to be
simply the mean-field Hamiltonian:

βA[{ρi}] = A0 +βH[{ρi},{w∗i }]

Taking the functional derivative with respect to the density field ρ j we obtain an effective chemical
potential field experienced by component j:

βµ j =
δβA[{ρi}]

δρ j
≈ βH[{ρi},{wi}]

δρ j

∣∣∣∣
{w∗i }

(2.10)
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Here, the Hamiltonian and its derivatives are evaluated at a set of fields {w∗i } which satisfy the
following set of optimization conditions:

δH[{wi},{ρi}]
δw j

∣∣∣∣
w∗j

=−n
δ logQ

δw j

∣∣∣∣
w∗j

−ρ j = 0 (2.11)

The first term in this equation is the density operator described previously. This condition, there-
fore, implies that the external fields we seek are those for which the equilibrium density distribu-
tion under the influence of these external fields matches the current dynamical densities. A more
physically intuitive way of thinking about this is that the internal stresses in the polymer fluid
are indicated by the forces one must impose on the system in order to make the current density
distribution the equilibrium one.

2.2.4 Summary of Equations for the Current System

In this work we focus on an AB diblock copolymer mixed with a small molecule, monatomic fluid
solvent. While the nature of the external potential for polymer species is complex and non-local,
there is a closed form solution for the solvent species owing to its simple configuration integral.
The density operator for a monatomic fluid is given by the following expression:

ρ̃S(r;wS) =
nS

V Q[wS]
exp(−wS)

We always have the freedom to choose Q when searching for the auxiliary potentials, since the
volume average value of w does not impact the density operator - it simply increases the normal-
ization factor (Q), so we take Q[w]=1.0 for simplicity. Therefore, we can invert this expression
directly to solve for wS:

wS =− log
(

V ρ̃S(r;wS)

nS

)
Plugging this expression in for wS in the solvent flux equation, evaluating the functional derivative
with (2.2), and recognizing that the optimization condition mentioned above implies ρ̃S(r;wS) =
ρS(r, t), we get:

JS(r, t) =−ρS(r, t)ΛSS∇
δH

δρS(r, t)

=−ρS(r, t)ΛSS

(
∑

j
χS j∇ρ j(r, t)+ζ

(
∑

j
∇ρ j(r, t)

)
+∇ log

(
V ρS(r, t)

nS

))

=−ρS(r, t)ΛSS

(
∑

j
χS j∇ρ j(r, t)+ζ

(
∑

j
∇ρ j(r, t)

)
+

∇ρS(r, t)
ρS(r, t)

)

Here it is clear that the factor of density in our kinetic mobility acts to cancel the 1
ρS

term from
taking a derivative of the log, leading to the Fick’s law behavior we expect for the solvent diffu-
sion. Plugging this result into the continuity equation, including the transport term and reduced
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dimensions, we get our solvent concentration dynamics:

∂tρS(r̄, t) =−∇ · JS(r̄, t)+
zV ′

V (t)
∂z̄ρS(r̄, t)+ kρS(r̄, t)ρw(r̄)

=
1

V (t)2

(
∇ ·ρS(r̄, t)ΛSS

(
∑

j
χS j∇ρ j(r̄, t)+ζ

(
∑

j
∇ρ j(r̄, t)

))
+∇

2
ρS(r̄, t)

)

+
zV ′

V (t)
∂z̄ρS(r̄, t)+ kρS(r̄, t)ρw(r̄)

(2.12)

The polymer equations follow more directly from (2.9) as:

∂tρA(r̄, t) =
1

V (t)2

(
∇ ·ρA(r̄, t)ΛAA

(
∑

j
χA j∇ρ j(r̄, t)+ζ

(
∑

j
∇ρ j(r̄, t)

))
−∇wA(r̄, t)

)

+
zV ′

V (t)
∂z̄ρA(r̄, t)

(2.13)

∂tρB(r̄, t) =
1

V (t)2

(
∇ ·ρB(r̄, t)ΛBB

(
∑

j
χB j∇ρ j(r̄, t)+ζ

(
∑

j
∇ρ j(r̄, t)

))
−∇wB(r̄, t)

)

+
zV ′

V (t)
∂z̄ρB(r̄, t)

(2.14)

2.3 Numerical Solution

2.3.1 Discretized Dynamics Equations

We follow the method described in [3] and develop a semi-implicit scheme to integrate our equa-
tions of motion with a variable (density-dependent) mobility3. Notice that the form of our flux cor-
responds to Fick’s law so that monatomic fluid solvents will have no w-field contribution. Instead,
a term ∇2ρ is added to solvent-species equations. Starting from a discretized form of equation
(2.9):

ρ
t+1
i = ρ

t
i +∆t ∑

j

(
1

V t

)2

∇ ·ρt
iΛij∇µ j +Sij

(
1

V t+1

)2

∇
2
ρ

t+1
j

+∆t
zV ′

V t ∂z̄ρ
t
i

+∆t ki ρ
t
i ρw

3To avoid confusion regarding the mixture of direct and inner products in the equations, I have opted to index the
components explicitly using summation notation. Indices therefore run over all components in the theory (typically 3:
Copolymer blocks A and B, and solvent S)
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where

µ j =
δH
δρ j

Si j = 0 i 6= j
= 1 i = j and i is a solvent type

Spatial derivatives are left in operator form since they will be solved in reciprocal space using the
appropriate Fourier transforms for the imposed boundary conditions. The chemical potential field
includes the auxiliary potentials wi which, for polymer species, is non-linear in the density fields.
However, by expanding the fields in a perturbation from a homogeneous state to first order in the
density we can extract the portion of the chemical potential field contribution which is linear in
the density. Adding and subtracting this term at the future and present times respectively treats the
linear part of the thermodynamic force implicitly and dramatically enhances numerical stability.
This weak-inhomogeneity expansion procedure is described in reference [11] and results in the
following semi-implicit scheme4:

ρ
t+1
i = ρ

t
i +∆t ∑

j

(
1

V t

)2

∇ ·ρt
iΛij∇µ j +Sij

(
1

V t+1

)2

∇
2
ρ

t+1
j

+∆t
max(ρi)

2 ∑
j

Λij∇
2

((
1

V t+1

)2

(µlin)
t+1
i j ∗ρ

t+1
j −

(
1

V t

)2

(µlin)
t
i j ∗ρ

t
j

)

+∆t
zV ′

V t ∂z̄ρ
t
i

+∆t ki ρ
t
i ρw

(2.15)

The form that Wlin takes is a convolution with the density field, indicated by ’∗’ above. This
will become a multiplication when solved in Fourier space. Fourier-space representations will be
indicated by f̂ . The matrices above are defined as:

µi = ∑
j

(
χi j +ζi j

)
ρ j−ζρ0−w j

(µlin)i j = χi j +ζi j− (Wlin)i j

Ŵlin =



−
ĝ−1

BCP
NφBCP

0

0
− 1

αNφHPĝ
0

0 − 1
φSolv


, ĝBCP =

(
ĝA ĝAB
ĝAB ĝB

)

4The reference treats the weak inhomogeneity expansion for a homopolymer. However, the extension to block
copolymers is somewhat trivial and has therefore been omitted for brevity. The only additional consideration is in
performing the integral over contour position s, since the w-fields are now s-dependent. This leads to the introduction
of cross-terms which appear as the off-diagonal elements in the

(
Ŵlin

)
00

block matrix above.
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The Ŵlin matrix is given as an example for a block copolymer, homopolymer, monatomic fluid
system. The system considered in this work, however, includes no homopolymer component and
our choice of mobility leads us to neglect the linear part of the solvent field (neglect, in fact,
the w field altogether). The ĝ functions indicated above are the Fourier transforms of the Debye
scattering functions for block copolymers defined by[4]:

ĝA(k) = 2
k4

(
f k2 + exp

(
−k2 f

)
−1.0

)
(2.16)

ĝB(k) = 2
k4

(
(1.0− f )k2 + exp

(
−k2(1.0− f )

)
−1.0

)
(2.17)

ĝAB(k) = 1
k4

(
1.0− exp

(
−k2 f

))(
1.0− exp

(
−k2(1.0− f )

))
(2.18)

Numerical Solution

These equations are solved in a straight-forward way, first securing forms of each equation that
are local in k-space and then updating each mode individually. Expanding each side of (2.15) in a
Fourier series (cosine series in z):

ρ̂
t+1
i = ρ̂

t
i +∆t ∑

j

(
1

V t

)2
̂∇ ·ρt

iΛij∇µ j−Sij

(
1

V t+1

)2

k2
ρ̂

t+1
j

−∆t
max(ρi)

2 ∑
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Λijk2
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1

V t+1

)2

(µ̂lin)
t+1
i j ρ̂

t+1
j −

(
1

V t

)2

(µ̂lin)
t
i j ρ̂

t
j

)

+∆t
ẑV ′

V t ∂z̄ρ
t
i

+∆t ki ρ̂t
i ρw

The equation of motion for volume discretizes simply with a forward Euler method in time:

V t+1 =V t +∆t ∑
j

∫
k jρ

t
jρw

Notice we now have a set of n equations (where n is the number of density fields), each local in k
but coupled amongst each other by interaction terms. We can therefore solve these equations by
solving the nxn system for each Fourier mode k:

ρ̂i
t+1 = ∑

jk

(
A−1)

ik Bk jρ̂ j
t

+∆t ∑
jk

(
A−1)

i j

(
1

V t

)2
̂∇ ·ρt

jΛjk∇µk

+
̂zV ′
V t ∂z̄ρ

t
j

+ kj ρ̂t
j ρw

(2.19)
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where

A =

(
I+∆t k2

(
1

V t+1

)2

Λ ·
(

S+
max(ρ)

2
µt+1

lin

))

B =

(
I+∆t k2 max(ρ)

2

(
1

V t

)2

Λ ·µt
lin

)

Our solution procedure is now complete, provided we can compute the spatially varying ther-
modynamic potentials µi. Following from equation (2.11), we employ the following steepest de-
scent pseudo-dynamics to the w fields. This equation of motion is integrated in “time” until a
stationary point converges:

dw j

dt
=

δH
δw j

= ρ̃ j[w j]−ρ j (2.20)

Equation (2.19) is written essentially how it is solved in actual implementation, although the linear
algebra is performed using an open source library (Eigen). First, the explicit vectors are evaluated
by spectral evaluation of the gradient, subsequent real-space multiplication, divergence operation,
and finally a Discrete Fourier Transform to solve for the Fourier coefficients. Similarly, the reaction
and transport fields are computed. Then, for each k-mode, the A−1 and B matrices are computed,
the right hand side evaluated, and the density fields are updated.

2.3.2 Simulation Details

In this section, details concerning the setup and execution of the density dynamics simulations will
be described, along with an illustration of the method and typical features. By including these
illustrations, I simply hope to communicate the tendencies and quirks that exist in our model that
wouldn’t be appropriate to include in the results.

Size Considerations: Polymers and Point Particles

One feature worth discussing is the fact that the coarse-grained nature of our model makes incor-
porating realistic separations of scale difficult. There is an inherent length scale associated with
the copolymers that is absent in the physics of monatomic fluids in the theory. Fully appreciating
the difference in effective volume of the two species would require a more physical treatment of
the air/film and substrate/film interfaces and lead to unnecessarily expensive simulations. This is
entirely a consequence of simulating large systems which have, in the physical system, extremely
sharp features (at the film/air interface) all in a continuum, mesoscale description. This isn’t an
issue, however, so long as we respect the limitations it places on the parameters we can realistically
use. Practically speaking, this problem occurs when trying to confine the film between two masks.
If the interactions with the surface are taken to be small, both density fields will naturally flow
into the masked region, violating incompressibility. The harmonic pressure penalty acts equally
on both the solvent and polymer, so the two responses differ only by the additional translational
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Figure 2.3. Typical polymer (top) and solvent (bottom) density
profiles over the course of a simulation at standard, neutral con-
ditions: χNASub = χNBSub = χNASur f = χNBSur f = 1.0, χNSSur f =
χNSSub = 3.0 and k=-1.0 (A) and k=-7.0 (B). Profiles may be com-
pared with the molecular dynamics result in reference [34] (C).

entropy lost due to confinement. For the large polymer, this entropy effect is damped by a 1
N scal-

ing. For this reason, the polymer component density is driven near zero, while the solvent density
remains finite (typically ∼10�1). We are then left with a continuum polymer density that feels a
persistent enthalpic pressure to vacate regions of space where its volume fraction is∼10�3. Practi-
cal experience shows that any but the most microscopic time steps will lead to driving this density
negative during the simulation with disastrous consequences. For this reason, our copolymers are
taken to be larger than the solvent species by only a factor of ∼10 (NBCP=10). This choice leads
to manageable wall interactions while including the difference in translational entropy of the two
components in the model.

Choosing Thin Film Parameters

Counting every degree of freedom available to the simulation would yield an unwieldy number of
searchable axes, which would simply serve to obscure the physically relevant parameters. For this
reason, a number of judicious choices were made with regard to base-line surface and substrate
interactions (χNASub,χNBSub,χNSSub,χNASur f ,χNBSur f , and χNSSur f ), copolymer size NBCP, and
substrate/free surface wall profiles. These choices were made for computational convenience and
to reproduce the expected density profiles during evaporation as observed in molecular dynamics
simulations by Grest and coworkers[34] which track the average 1D polymer and solvent density
profiles during evaporation (Figure 2.3). Since our dynamics is essentially a density functional
theory, we are concerned with reproducing reasonable density fields in the region of interest (the
bulk) while remaining somewhat agnostic about the behavior in the masked regions. The gradients
in solvent concentration over the z-domain, for example, is a feature of the dynamics that must be
resolved appropriately while the decay of solvent into the masked region is entirely insignificant.
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2.4 Results

2.4.1 Evaporation-Induced Ordering Fronts: Symmetric Copolymer Case

In block copolymer thin films, introducing a vapor phase with good solvents for both blocks will
result in the diffusion of solvent into the material. Since the interaction potential is described by
a local contact potential which is proportional to the local segment density, the effective order-
ing strength is reduced by simple dilution of the polymer concentration in the film, suppressing
micro-phase separation. Upon exposing the film to a dry environment, solvent will begin to leave
through the exposed surfaces, setting up concentration gradients of solvent (and therefore effective
segregation strength) within the film. The first region of the material to micro-phase separate will
therefore be the uppermost region of the film and the order will subsequently propagate into the
film from the surface.

Non-Local Effects Due to Bonded Interactions

The thermodynamic potential that governs micro-phase separation in our model accounts for block
connectivity through the chain propagator formalism, leading to a coupling between the ordering
of one block and the subsequent ordering of the connected block. This behavior sets up a decay-
ing wave of density correlations from ordered regions into neighboring disordered regions. This
is to be contrasted from phase separation in simple fluids where there is generally no strong cou-
pling between the phases (hydrodynamic effects neglected) and phase separation can occur with a
clean, sharp interface between ordered and disordered regions. This may prove to have significant
consequences for the dynamics of micro-phase separation in block copolymer materials.

When an ordered phase develops at the free surface of a thin film, this seed can be thought of as
a chemical pattern near the surface that the fluid below “sees” and responds to. As a result of this
observation, the current prevailing wisdom suggests the following strategy: nucleate an ordering
front with the preferred orientation and this will grow as a single grain into the film, leading to
perfect structures following the seeded template. Figure 2.4 is a representative 2D result which
demonstrates how non-local effects complicate the notion of a clean ordering front propagating
into the bulk as a single grain. Instead, we observe periodic half-period shifts in the morphology
which lead to bi-continuous structures in 3D simulations (not shown). We can begin to understand
this phenomenon by thinking about the behavior of the nominally disordered fluid in the region
just below the ordering front.

When an ordered lamellar morphology develops and impinges on a disordered region, the
stripes have to terminate and join the bulk fluid. Typically we think of lamellae as made up of
stretched polymer coils oriented perpendicular to the direction of the stripe, but in the terminal
end-caps there will be dangling chains that now extend along the stripe. This is illustrated in figure
2.5, implying a chemical pattern directly below the ordering front that is actually the inverse of the
lamellar pattern since it is comprised of the non-partitioned block. Hence, a slight checkerboard
pattern is formed as a small layer beneath the ordering front. Notice also that there are two options
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Figure 2.4. Typical ordering front in a symmetric
(f=0.5) block copolymer thin film initially swollen with
φS(0)=

1
V (0)

∫
ρS(r,0)dr=0.6, which corresponds to a disordered

state. Strength of AB interactions and evaporation rate constant
are provided in the titles of each subfigure. An L⊥ front is seen
to form near the free surface and extend into the film. Periodi-
cally, a splitting event is observed which is tentatively attributed to
the non-local nature of the thermodynamic forces, discussed in the
text.

for the growth of the morphology as this pattern develops, indicated by the left and right arrows in
the figure. The left arrow implies shifting the capping chains up in a zipper-like motion to extend
the lamellae, allowing additional chains to insert and re-form the cap. The right arrow shows the
splitting phenomenon whereby the “linear response” chains simple stretch slightly to either side
and form a new ordering front with a half-period shift. This new front now has the same properties
as the old and is again susceptible to splitting. In simulations, we observe both of these occurring
simultaneously (the ordering front continues to grow while splitting occurs).

In order to separate potential non-equilibrium effects from the equilibrium behavior, additional
simulations were performed that directly imposed an interface between ordered and disordered
fluid by enforcing a static neutral solvent density profile to occupy half of the box in the z-direction.
The top film region is seeded with a lamellar morphology and the saddle-point solution is con-
verged to determine the mean-field response of the disordered region near the interface. The results
are shown in figure 2.6. Although not mentioned explicitly in the text, this phenomenon can also
be observed in results by Muthukumar and coworkers [26]. In this paper, a chemical mask was
imposed at one surface and the width of the pre-pattern was varied from commensurate with the
periodicity of bulk lamellae to strongly stretched. This chemical pattern behaves exactly as our or-
dering front and sets up the same sort of checkerboard layer just beneath the pattern. The authors
dismissed the effect as a consequence of unrealistic SCFT kinetics, but our diffusive dynamics
scheme consistently produces these paths so the effect is observed both as a stable saddle-point in
the mean-field approximation and as a probably kinetic event.
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Figure 2.5. Illustration of how the copolymer fluid orders at the
interface between an L⊥ front and the disordered bulk film. The
inset zooms in on this region, where the linear fluid response is
indicated by dashed chains which orient to match the tails protrud-
ing from the caps of the lamellae. Essentially, blue stripes have
red tails, attracting red tails from the disordered fluid, resulting in
slight enrichment of blue tails just below that. Neighboring stripes
exhibit analogous, inverted behavior (red-blue-red) which sets up
a checker board layer below the ordering front.

2.4.2 Evaporation-Induced Ordering Fronts: Asymmetric Copolymer Case

Previous studies have elucidated a subtle effect of hard walls on the thermodynamics of copoly-
mer melts due to bias in chain conformation statistics induced by the presence of an impermeable
wall. It has been demonstrated, for example by Monte Carlo simulation [39], that the end-to-end
distribution function in the direction perpendicular to the wall is compressed, implying that the
chains tend to flatten along the wall which, for symmetric copolymers, leads to a very slight en-
tropic preference for forming perpendicular lamellae. All dynamical simulations of ordering in
symmetric copolymer systems we have performed corroborate this result: perpendicular lamellae
spontaneously form near hard walls. The story is quite different for asymmetric copolymers, how-
ever. The broken symmetry leads to a slight entropic surface preference for the minority block.
Interactions between A and B segments then tend to exclude the majority mid-segments from the
surface region. This makes identifying neutral surface conditions extremely difficult, as the sur-
faces are no longer neutral when there are no enthalpic interactions between polymer segments
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Figure 2.6. Saddle-point solutions converged using standard
Self-Consistent Field Theory methods. The disordered region in
the bottom half of the cell is maintained by masking the bottom
region to maintain the total polymer density ρA(z < 10)+ρB(z <
10)=0.5 while ρA(z ≥ 10)+ ρB(z ≥ 10)=1.0. In the dilution ap-
proximation, this leaves χNe f f =10 (left) and χNe f f =10.5 (right).
At the ODT, the half-period shifted region is seen to extend to the
rest of the cell, while below the ODT (left) the checkerboard pat-
tern is observed in the viscinity ∼2Rg of the interface.

and the wall. Instead, the surfaces are minority-block preferential unless exactly cancelled by an
imposed surface field that neutralizes this effect. Since the nature of this preferential behavior is
non-local, there is no guarantee that a local χ parameter is sufficient to exactly cancel the effect.
Instead, a linear combination of solvent selectivity and surface contact interactions is used.

Sweeping for Neutral Surface Conditions

Ultimately, it is essential to identify conditions that effectively neutralize the free surface for
cylinder-forming copolymer systems. Broad parameter sweeps are simply untenable due to com-
putational complexity in 3D, and there is no direct analogue in 2D to the problem. However, notice
the entire problem is introduced by asymmetry in the block fraction, not anything specific to the
cylindrical morphology itself. I have therefore studied what I believe to be the analogous problem
of aligning lamellae in slightly asymmetric copolymer systems perpendicular to the plane of the
substrate. The slight asymmetry (f=0.45 in this study) does, in practice, lead to a parallel morphol-
ogy for enthalpically neutral surfaces. In searching for neutral conditions, the solvent selectivity
∆χNS = χNAS� χNBS and surface interactions χNASur f were varied from neutral to strongly mi-
nority block selective in solvent and majority block selective in surface. In order to quantify the
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Figure 2.7. Heat maps showing the value of a perpendicular or-
der parameter at the end of each simulation (when the remaining
solvent fraction was less than 0.05). Perpendicular order is given
as the sum of any contributing modes in the Fourier transform of
the final morphology with kx 6= 0 where x denotes the axis running
parallel to the substrate, ie. ψ = ∑kx 6=0 ρ̂(k). Notice that the re-
gion of perpendicular order grows between k=-2.5 and k=-3.5, but
shows no further improvement with increasing evaporation rate.
The surface disappears completely for evaporation rates below k=-
2.0, indicating a minimum required evaporation rate to initiate a
perpendicular ordering front.

result to map on a phase diagram, the sum of perpendicular periodic frequencies in the final density
field’s Fourier transform was calculated. This serves as a coarse estimate of perpendicular order,
effectively only useful to distinguish between films with some degree of perpendicular order and
films with none. In practice, this is perfectly adequate as the vast majority of results exhibiting
parallel morphologies are unambiguous with no perpendicular order whatsoever. The results of
this study are shown in figure 2.7.

Evaporation Rate Effects

In the previous section, we determined that there existed conditions which were amenable to initiat-
ing a perpendicular ordering front in asymmetric copolymer systems provided the evaporation rate
were large enough. The results showed a dependence on both evaporation rate and effective surface
conditions - essentially degree of enthalpic surface preference for the minority block. Figure 2.8
provides snapshots from simulations at the same surface conditions, but where one simulation at
a high evaporation rate resulted in a perpendicular ordering front while the other, at a lower evap-
oration rate, did not. This is an essential result of our simulation effort which demonstrates that
the evaporation rate can explain the generation of a sustained perpendicular ordering front as an
independently controlled parameter. The two simulations were run with identical starting configu-
rations and system parameters, with the obvious exception of evaporation rate. One theory for why
perpendicular fronts would form under rapid evaporation conditions hinges on the idea that there
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is a polymer mobility gradient through the film due to the solvent concentration profile[27]. While
technically ρ-dependent, our polymer mobilities are very weakly spatially dependent compared to
the typical exponential models used in the paper. It is of course necessary to acknowledge that this
is only significant provided our results transfer to the 3D cylinder-forming systems as expected.
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Figure 2.8. Comparison between successful nucleation of a per-
pendicular ordering front and a simulation whose conditions were
outside the region of perpendicular order indicated in figure 2.7.
Both simulations exhibit a slight L‖ wave from the surface along
with slight “post” formation at the surface. In the failed (bottom)
trajectory, the preferentiality of the surface succeeded in damping
the post formation, leading to parallel morphology. Time increases
left→right, successful trajectory is in row 1, unsuccessful trajec-
tory (k=-2.5) in row 2.
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