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Abstract

This document summarizes the results from a level 3 milestone study within the CASL
VUQ effort. It demonstrates the capability to perform adjoint-based a posteriori error esti-
mation within Drekar::CFD. The a posteriori error estimates require the solution of a (linear)
adjoint problem in a higher order approximation space with data chosen based on the quantity
of interest. The a posteriori error estimates are verified using an analytical solution to a laminar
flow problem. Finally, the framework is demonstrated on the TH-M Test Case #2 involving a
3-dimensional axisymmetric sudden expansion with a moderate Reynolds numbers ( 5000).
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1 Background

A posteriori error estimates have become a common means to quantify the reliability of predictions
from numerical simulations. This methodology has been developed for a large number of methods
and is widely accepted in the analysis of discretization error for partial differential equations [1,
9, 10]. The adjoint-based (dual-weighted residual) method, is motivated by the observation that
oftentimes the goal of a simulation is to compute a small number of linear functionals of the
solution, such as the average value in a region or the drag on an object, rather than controlling the
error in a global norm. This method has been successfully extended to estimate numerical errors
due to operator splittings [11] and operator decomposition for multiscale/multiphysics applications
[6, 15, 16]. adaptive sampling algorithms [13, 14], stochastic approximations [20, 4], and inverse
sensitivity analysis [3, 5].

Despite their wide applicability and attractive features, adjoints have not become common in
production software packages. In large part, this is due to the computational cost required to set
up and solving the adjoint problem. This is especially problematic for nonlinear time-dependent
problems. The goal of this milestone is to demonstrate the ability to define and solve adjoint prob-
lems in Drekar::CFD and produce accurate a posteriori error estimates for a variety of quantities
of interest. We focus on steady-state solutions to the Navier-Stokes equations discretized using
stabilized continuous Galerkin finite elements. Future work will build upon the capabilities devel-
oped in this effort and will extend the capabilities in Drekar::CFD to address/mitigate some of the
challenges in adjoint simulations.
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2 Adjoint Based Error Analysis

2.1 General Nonlinear Problem and Notation

We consider the following system of partial differential equations,

FFF(zzz) = 000, (1)

defined on Ω ⊂Rd , d = 2,3, a polygonal (polyhedral) domain (open, bounded, and connected set)
with boundary ∂Ω. Specific examples of FFF and zzz will be given in subsequent sections. We assume
that sufficient boundary conditions are provided so that (1) is well-posed. We present the definition
of the adjoint problem and the a posteriori error analysis using the general problem formulation
(1). In section 2.5, we provide specific formulations for the Navier Stokes equations as an example.
We remark that our general approach can also be used for RANS models, LES models, and thermal
hydraulics, but these specific formulations are omitted for the sake of brevity.

2.2 Strong Form Adjoint Operators

The goal in adjoint-based error analysis is to relate a linear (or linearized) functional of the error
to a computable weighted residual. The linear adjoint operator in strong form can be defined via
the duality relation

(L vvv,www) = (vvv,L ∗www) (2)

where L is a linear operator. For a general nonlinear PDE one approach to define the linear
operator L is to assume FFF is convex and use the Integral Mean Value Theorem yielding

FFF ′(zzz)eee = FFF(zzz)−FFF(zzzh)

where zzz lies on the line connecting zzz and zzzh, and eee = zzz− zzzh. In practice, zzz is unknown so we
linearize around zzzh giving,

L eee = FFF ′(zzzh)eee = FFF(zzz)−FFF(zzzh)+h.o.t.

Notice that the operator L is the same linear operator used in computing the step in Newton’s
method. This fact is often exploited to ease construction of the discrete adjoint operator.

For the linear functional denoted by the duality pairing (ψψψ, ·) the error can be represented using
the definition of the adjoint. We follow the standard approach and neglect the higher order terms
in the error representation, see e.g. [2, 1, 12, 16], giving

(ψψψ,eee) = (ψψψ,L −1(FFF(zzz)−FFF(zzzh)) = (φφφ ,FFF(zzz)−FFF(zzzh)) (3)

where φφφ is defined by the adjoint problem

L ∗
φφφ = ψψψ. (4)
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2.3 Variational Formulation

We assume that (1) has an equivalent variational formulation seeking zzz ∈VVV such that,

fff (zzz,www) = 000, ∀www ∈VVV . (5)

Note that fff is assumed to be linear www. Specific examples of fff and VVV will be given in subsequent
sections. The discrete problem is defined by choosing VVV h ⊂VVV to be a discrete subspace associated
with the partition, Th, and letting zzzh ∈VVV h satisfy,

fff (zzzh,www) = 000, ∀www ∈VVV h. (6)

This statement combined with the linearity in www is equivalent to Galerkin orthogonality, and in
what follows we will refer to these interchangeably.

Deriving the adjoint of the variational formulation follows the same pattern as the strong-form
operator. To define the error representation the Integral Mean Value Theorem is again applied
giving

fff ′(zzz;eee,www) = fff (zzz,www)− fff (zzzh,www) (7)

where

aaa(zzz;vvv,www) =
∂

∂ε
fff (zzz+ εvvv,www)

∣∣∣
ε=0

= fff ′(zzz;vvv,www). (8)

Again linearizing about zzzh and neglecting high order terms, the error in a linear functional defined
by the duality pairing (ψψψ, ·) can be written as

(ψψψ,eee) = aaa(zzzh;eee,φφφ) =− fff (zzzh,φφφ) (9)

where φφφ is the solution to the adjoint problem

aaa(zzzh;www,φφφ) = (ψψψ,www), ∀www ∈VVV . (10)

Given φφφ the error representation Eq. 9 is easily evaluated. However, usually the solution to the
adjoint problem Eq. 10 is not given explicitly and we must approximate the solution using an
appropriate discretization. In Drekar::CFD, we solve the adjoint problem using a finite element
method with a higher-order approximation than we use for the forward problem. We remark that
the same finite element space is often used for both the forward and adjoint problems [2, 1]. This
approach requires the adjoint solution to be enriched via projection into a higher-order space. In
general, it is difficult to prove that enriching the adjoint solution results in a more accurate approxi-
mation. It is generally accepted that solving the adjoint problem using a higher-order discretization
results in more accurate error estimates.

2.4 Stabilized Formulations

We assume that the variational formulation (6) is sufficiently difficult to solve due to the structure of
the operator itself or due to the choice of discrete subspace, and requires some form of stabilization
to obtain a stable and accurate solution on practical grids.
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Let Th be a conforming partition of Ω, composed of NT closed convex volumes of maximum
diameter h. An element of the partition Th will be denoted by Ti where hi stands for the diameter of
Ti for i = 1,2, . . . ,NT . We assume that the mesh is regular in the sense of Ciarlet [7]. We assume Th
is a conforming finite element mesh consisting of simplices or parallelopipeds. For convenience,
we will use (·, ·)Th to denote the inner product defined by,

(zzz,www)Th = ∑
Ti∈Th

(zzz,www)Ti.

We define the stabilized weak formulation seeking zzz ∈VVV such that

fff τττ(zzz,www) = 000, ∀www ∈VVV , (11)

where
fff τ(zzz,www) = fff (zzz,www)+(τττ(zzz)FFF(zzz),P(zzz)www)Th

, (12)

and we assume τττ(zzz) is a diagonal matrix that may depend on zzz and may vary between elements but
is typically constant within an element, see e.g. [17, 19, 8]. Note again that the variational residual
fff τ is linear in www. A number of standard stabilization schemes can be defined by an appropriate
choice of P(zzz). The discretized version of (11) seeks zzzh ∈VVV h such that

fff τττ(zzzh,www) = 000, ∀www ∈VVV h (13)

where this statement is equivalent to Galerkin orthogonality.

A derivation similar to the variational form above, can be used to derive the adjoint of the
stabilization, yielding the adjoint problem

aaaτττ(zzzh;www,φφφ τττ) = (ψψψ,www), ∀www ∈VVV (14)

where

aaaτττ(zzz;vvv,www) =
∂

∂ε
fff τττ(zzz+ εvvv,www)|ε=0. (15)

An alternate path to derive an adjoint problem is to stabilize the strong form adjoint operator. This
is beyond the scope of this work, but may be the subject of future investigation.

2.5 Navier-Stokes

We set zzz = (uuu, p)T to maintain the same notation from the previous section. The Navier-Stokes
equations are given by,

FFF(zzz) = 000,

where

FFF(zzz) =
(
−ν∆uuu+uuu ·∇uuu+∇p−ggguuu

∇ ·uuu

)
,
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with appropriate boundary conditions. We assume that ν is sufficiently large so that a steady
solution is expected. Of course, time-dependent approximation are also of interest, but this is
beyond the scope of this paper.

The weak formulation of the Navier Stokes equations seeks zzz ∈VVV = HHH1(Ω)×L2(Ω) such that,

fff (zzz,www) = 000, ∀www ∈VVV , (16)

where www = (vvv,q)T and

fff (zzz,www) = (ν∇uuu,∇vvv)+(uuu ·∇uuu,vvv)− (p,∇ · vvv)+(∇ ·uuu,q)− (ggguuu,vvv).

We consider equal order interpolation for the velocity and the pressure. For simplicity, we
focus on Streamline Upwind Petrov-Galerkin stabilization (SUPG) with the pressure-stabilized
Petrov-Galerkin (PSPG). The corresponding stabilization operator is given by,

P(zzz)www =
(

uuu ·∇vvv+∇q
∇ · vvv

)
. (17)

It is straightforward to include a least-squares stabilization term on the incompressibility constraint
(LSIC) or a discontinuity capturing stabilization (DCO) term.
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3 Drekar Implementation

Drekar::CFD is a massively parallel unstructured fully-implicit (or semi-implicit) finite element
Navier-Stokes solver build upon Trilinos [18]. The automatic differentiation tools allow for rapid
code development and a straightforward implementation of advanced capabilities such as embed-
ded uncertainty quantification and adjoints.

One of the challenges in goal-oriented a posteriori error estimation is the fact that the adjoint
solution needs to be approximated using a finer discretization than was used for the forward prob-
lem. Occasionally we can to use the same approximation for the forward and adjoint problems,
but this requires that the adjoint solution be projected into a finer space. While this is appeal-
ing from a computational perspective, in general it is difficult to define such projection operators
and consequently the error estimate are often inaccurate. The numerical results in this report use
piecewise linear Galerkin finite elements with SUPG stabilization to solve the forward problem
and a higher-order (quadratic) finite element approximation with stabilization to solve the adjoint
problem. Using a higher order approximation to solve the adjoint is generally regarded as the most
robust approach to obtain accurate error estimates. The increase in computational cost associated
with the higher-order basis functions is somewhat mitigated by the fact that the adjoint problem is
linear.

We summarize the initial implementation of the adjoint-based error estimates in Drekar::CFD
in Algorithm 3. We remark that it is possible to modify the above algorithm in a number of ways.
Some of these include:

• Solving the adjoint problem with a low order method and computing a (nontrivial) projec-
tion of the adjoint approximation into a higher order space. Note that this is not the same
projection as was used to compute zzzH .

• Deriving and discretizing a variational adjoint. Experience indicates that this is more robust
than the discrete approach in Algorithm 3, but is more intrusive.

• Linearizing the adjoint around something other than the approximation of the forward prob-
lem. This is especially appealing for time-dependent problems.

• Computing the error representation an a weak residual integrated over the mesh. This is
more useful for adaptive mesh refinement.

The Drekar::CFD implementation has been designed to be flexible enough to allow all of these
modifications in the near future.
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Algorithm 1 Computation of the a posteriori Error Estimate
Given low order and high order approximation spaces: VVV L and VVV H respectively.
Given a low order approximation of the forward solution, zzzL ∈VVV L satisfying

fff τττ(zzzL,vvvL) = 0, ∀vvvL ∈VVV L.

Given a QofI defining adjoint data:

ψψψH = (ψψψ,vvvH) , ∀vvvH ∈VVV H .

Project forward approximation into higher order space (usually trivial):

PzzzL = zzzH .

Compute residual of forward problem in higher order space:

rrrH =− fff τττ(zzzH ,vH), ∀vvvH ∈VVV H .

Compute adjoint of Jacobian in higher order space such that:

JJJT
Hφφφ H = aaaτττ(zzzH ;vvvH ,φφφ H), ∀vvvH ∈VVV H .

Solve the adjoint problem:
JJJT

Hφφφ H = ψψψH .

Compute the error estimate as a weighted residual:

(ψψψ,eee) = (rrrH ,φφφ H) .
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4 Computational Experiments

4.1 Channel Flow

In this section, we present numerical results for a two-dimensional laminar flow in a channel with
an analytical solution. While this problem is rather simplistic, it does provide an opportunity to
verify the adjoint solutions and the a posteriori error estimates. The computational domain is
[0,5]× [0,1]. Along the top and the bottom of the domain we enforce no-slip (uuu = 000) boundary
conditions. The left and right boundaries are inflow and outflow boundaries respectively. We set
uy = 0 along the inflow and the outflow. The flow is driven by a forcing term,

ggguuu =
(

1
0

)
,

which acts as a pressure gradient. This problem has an analytical solution that depends on the
kinematic viscosity. The magnitude of the velocity vector for ν = 1E-3 is shown in Figure 1. The

Figure 1. Magnitude of the forward velocity for the channel ver-
ification problem.

x-velocity follows a parabolic profile, the y-velocity is zero, and the pressure is zero.

To discretize, we partition the computational domain into 2000 uniform quadrilateral (square)
elements. The forward problem is solved using piecewise linear finite elements with SUPG and
PSPG stabilization. The adjoint problem is solved using Algorithm 3 with piecewise quadratic
finite elements. The adjoint data, ψψψ , is determined by the quantity of interest. We use ψψψx, ψψψy, and
ψψψz to denote the x, y, and z components of ψψψ respectively. Since uy and the pressure field can be
represented exactly in the finite element space we are only interested in errors in ux, we consider
the following quantities of interest associated with ux for verification:

14



1. The average value of the x-velocity for which

ψψψx = 1/5.

2. The value of the x-velocity at (4,1/2) for which

ψψψx = δ(4,1/2) ≈
400
π

exp(−400(x−4)2−400(y−1/2)2).

3. The average value of the x-velocity over [3,4]× [0,1] for which

ψψψx = χ[3,4]×[0,1] =

{
1, (x,y) ∈ [3,4]× [0,1],
0, otherwise.

In Table 1, we provide the estimate of the functionals, the a posteriori error estimates, and the
effectivity ratios defined by

Effectivity Ratio =
Estimated Error

True Error
.

We observe that the effectivity ratios are nearly one for all three quantities of interest and both

QofI Re Estimated Value Estimated Error Effectivity Ratio
1 10 8.3125E-1 2.0833E-3 1.000
2 10 1.2385E+0 2.0779E-3 0.997
3 10 8.3125E-1 2.0833E-3 1.000
1 1000 8.3125E+1 2.0833E-1 1.000
2 1000 1.2385E+2 2.0779E-1 0.997
3 1000 8.3125E+1 2.0833E-1 1.000

Table 1. Error estimates and effectivity ratios for the three quan-
tities of interest with Re= 10 and Re=1000.

Reynolds numbers. We note that the functional values and error estimates depend on the viscocity
since the forward solution depends only the viscocity. However, the adjoint solutions may vary
drastically for different Reynolds numbers. For comparison, in Figure 2 we plot the magnitude of
the adjoint velocity corresponding to QofI 2 for Re= 10 (left) and for Re=1000 (right). We see
that for the lower Reynolds number the domain of dependence, indicated by the support of the
adjoint solution, is relatively close to the point (4,1/2). Meanwhile, the domain of dependence for
the higher Reynolds number is mainly along the top, bottom, and inflow boundaries.

For another comparison, in Figure 3 we plot the adjoint pressure corresponding to QofI 1 (left)
and QofI 3 (right) with Re= 10. Despite the fact that the two functional values are the same, the
adjoint solutions are again quite different.

15



Figure 2. Magnitude of the adjoint velocity corresponding to
QofI 2 for Re= 10 (left) and for Re=1000 (right).

Figure 3. The adjoint pressure for Re= 10 corresponding to QofI
1 (left) and to QofI 3 (right).

4.2 Axisymmetric Expansion

In this section, we consider the axisymmetric sudden expansion problem (Benchmark #2 from TH-
M). The computational domain consists of two cylinders of different radii as shown in Figure 4.
The flow is in the z-direction and we do not consider the case with swirl. The mesh has 112,000
elements and 115,539 nodes. We solve the forward problem using a stabilized continuous Galerkin
method with piecewise linear basis functions reulting in 115,539 degrees of freedom per equation.
The adjoint problem uses piecewise quadratic basis functions and thus requires 910,597 degrees of
freedom per equation. The significant increase in degrees of freedom for the adjoint problem did
not pose a problem for the linear solver since the physics based algebraic multigrid preconditioner
performed well in all simulations. The main challenge in solving the adjoint problem was due to
the increased memory requirements to assemble and store the adjoint Jacobian which was much

16



Figure 4. Computational mesh for the axisymmetric sudden ex-
pansion problem.

denser than the Jacobian of the forward problem. Thus, all of the numerical results were obtained
using the Redsky capacity machine at Sandia National Laboratories on 128, 256 or 512 cores.

We solve the steady-state Navier Stokes equations with an inflow velocity and viscocity chosen
so that the Reynolds number is about 500. We define the outflow boundary condition to be stress-
free (natural outflow condition) and we enforce no-slip boundary conditions on the remaining
boundaries. The magnitude of the forward velocity is shown in Figure 5.

Figure 5. Magnitude of the forward velocity corresponding to
Re= 500.

We consider the following quantities of interest:

17



1. The value of the x-velocity near (0,0,0) for which

ψψψx = δ(0,0,0) ≈ 1000exp(−100x2−100y2−100z2).

2. The value of the y-velocity near (0,0,0) for which

ψψψy = δ(0,0,0) ≈ 1000exp(−100x2−100y2−100z2).

3. The average value of the z-velocity over the domain for which

ψψψz = 1/|Ω|.

4. The value of the z-velocity at (0,0,0) for which

ψψψy = δ(0,0,0) ≈ 2500exp(−400x2−400y2−400z2).

5. The value of the z-velocity at (0.03,0,0) for which

ψψψy = δ(0,0,0) ≈ 2500exp(−400(x−0.03)2−400y2−400z2).

The exact solution is unknown, but the steady-state solution is symmetric, so the first two
quantities of interest are zero for the true solution. In Table 2, we provide the estimated value
of each QofI and the corresponding a posteriori error estimates. The accuracy of the a posteriori

QofI Estimated Value Estimated Error
1 -1.04775E-8 1.04799E-8
2 9.42114E-8 -9.41261E-8
3 3.07790E-4 1.05231E-8
4 4.68525E-1 -4.52085E-5
5 -2.34560E-3 1.22767E-6

Table 2. Error estimates for the quantities of interest for the ax-
isymmetric sudden expansion problem.

error estimate for the first two quantities of interest indicates that the adjoint problem and error
estimate have been implemented correctly for this problem. Exact values are not known for the
other quantities of interest, but the error estimates are certainly plausible. In Figures 6, 7, and
8 we plot the adjoint solution for three different quantities of interest. These three examples do
not necessarily correspond to the quantities of interest described above, but were chosen based on
the adjoint solutions. Intuitively, the regions of the domain where the adjoint solution is nonzero
provides an effective domain of dependence for the quantity of interest.

Next, we use a Reynolds Averaged Navier Stokes (RANS) model to approximate a steady so-
lution to the problem described above at a higher Reynolds number. We use a Spalart-Allmaras

18



Figure 6. Magnitude of the adjoint velocity (left) and the adjoint
pressure (right) corresponding to the average x-velocity over the
domain.

Figure 7. Magnitude of the adjoint velocity (left) and the ad-
joint pressure (right) corresponding to the value of the z-velocity
at (0,0,0).

RANS model which requires the solution of a time-dependent advection-diffusion-reaction equa-
tion to approximate the turbulent viscocity. We choose an inflow velocity and kinematic viscosity
to give a Reynolds number around 2500. We integrate the forward problem in time until a steady
state is reached. Then we solve the steady state adjoint and compute an a posteriori error estimate
using Algorithm 3.

Since the SARANS simulations are much more expensive in terms of computational cost than
the Navier Stokes simulations, we only have an error estimate for one of the quantities of interest.
This information is provided in Table 3. As in the previous case, the exact solution is unknown
but the functional values and the error estimates appear plausible. Future work will compare these
error estimates with mesh refinement studies.
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Figure 8. Magnitude of the adjoint velocity (left) and the ad-
joint pressure (right) corresponding to the average value of the z-
velocity over [−0.03,0.03]× [−0.03,0.03]× [0.02,0.03]..

QofI Estimated Value Estimated Error
4 1.96138E-1 -1.53864E-4

Table 3. Error estimates for a quantity of interest using an SA-
RANS approximation of the axisymmetric sudden expansion prob-
lem.
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5 Observations

• Drekar::CFD provides a flexible and extensible computational environment that easily fas-
cilitated the development of a framework for adjoint simulations and a posteriori error esti-
mates.

• The framework developed utilizes the automatic differentiation and multiphysics assembly
tools in Drekar::CFD to compute discrete adjoints for general nonlinear steady-state prob-
lems.

• Sensitivity of the quantity of interest with respect to parameter variations is easily computed
using the same framework. This does not require a higher order approximation of the adjoint.

• The a posteriori error estimates have been verified using an analytical solution.

• A demonstration of these capabilities on a physically relevant problem with a steady-state
model indicate that this approach may be feasible for verification of the CASL test problems
and certainly warrants further investigation.

• Unfortunately, only one of the steady-state simulations using a RANS model is complete
at this time. This is mainly due to difficulties in obtaining steady-state solutions for high
Reynolds number flows and to the memory requirements for the high-order approxima-
tions. Work is in progress to ease these memory requirements using multilevel/multifidelity
Jacobian-free Newton Krylov methods.

• Future work will also include a comparison of these a posteriori error estimates with the
verification exercises performed in other VUQ and TH-M milestones.

• Extension of the adjoint framework to time-dependent nonlinear problems is of interest and
may be pursued in FY13.
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