
Printed October 2012

SANDIA REPORT
SAND2012-8720
Unlimited Release

Verification of J-integral capability in
Sierra Mechanics

Yuki Ohashi, James W. Foulk III, Alex J. Lindblad

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release ; further dissemination unlimited.

(119 Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAN D20 12-8720
U nlimi (ed Hdeasc

Printed October 2012

Verification of .I-integral capability in Sierra lVlechanics

Yuki Ohashi, James 'vV. Foulk III: Alex J. Lindblad

Abstract

A finite-defornwtion. rnassivc1y parallel. domain J-integral has been developed in Sierra Me­
clWIlics \vitll specific ernphasis on pressurized loadings. \Ve review the developrnent. of the
dCluwin integral and tile inclusion of terms to correct for boundary tractions. \Ve note the
syntax employed in Sierra a.nd illustral,e the choice of weight function. Details arc provided
regarding domain selection., crack direction, and the const.ruction of the test function. Be­
cause qual ity meshes are required to obtain accurate mC,L'iures of the driving force, methods
were developed in Cubit for creating element boundaries orthogonal to the crack front. We
briefly review the new cdpabilities and provicle guidance for mesh construction. A compre­

hensive set of examples illustrate the current implementation in Sierra. Exalnples include
straight crack fronts, cur\'(~d crack fronLs. and lion-planar crack faces. \Ve iUVl'stigate elastic
nnd elasti(:-pl ,btic CHses. The inclusion of boundary tractiolls is verified through a pressur­
i!'(:d c]jip~uid()l flaw. \-VhCll j>us::;iblc, the calcttl<l{.cd drivillg forces arc compared t.o analytical
sollitions. Although the .I-integral is available ill llWllY commercial cocles, the f1.nite defor­
Illation illlpll'lllcm.atioll ill Siena will enable analysts to examine detailed cornponent level
IlH)deis etnd iwludc frarturc mechanics ns a Looi in tIle Sandia clesigll process.

Acknowledgment

We would like to acknowledge the patience of Mike Chiesa. He continued support for this
work through Physics & Engineering Models (P&EM) was instrumental. The Sierra code
team was also both patient and supportive. Nathan Crane and Ben Spencer worked on early
stories. Although the bulk of the code was implemented by author Alex Lindblad, Mike
Veilleux also contributed through excellent ideas and bug fixes in the pressure correction.
Martin Heinstein and Joe Jung have supported this work and we hope to continue this
collaboration through future improvements. We would be remiss if we did not also thank
our customers. Brian Somerday, Chris San Marchi, Dorian Balch, and Paul Spence have not
only been effective advocates, but have also provided continued funding for follow-on efforts.
We would also like to acknowledge the important contributions of reviewer Shawn English.
A more polished and honest document results from his good work.

4

Contents

1 Introduction 11

2 Background 13

2.1 Technique for Computing J . 14

3 Sierra implementation 19

3.1 Input Commands . 19

3.2 Output . 21

3.3 Sierra methodology for calculating q . 23

3.3.1 Computing Necessary Crack Tip Information During Initialization . . . 23

3.3.2 Computing J During an Output Request . 26

Specification of qI for JK . 26

Special treatment at the A+
0 and A−0 boundaries 27

Specification of a Global q . 27

Computing J . 28

4 Required discretization in CUBIT 31

4.1 Ellipsoidal flaw . 31

5 Case Studies 35

5.1 Infinite Crack . 36

5.2 Penny Flaw . 37

5.2.1 Penny Flaw Results: Radial Convergence in J . 38

5.2.2 Penny Flaw Results: J versus Load . 39

5

5.3 Cone Crack . 41

5.3.1 Cone Crack Results: Bulk Behavior . 43

5.3.2 Cone Crack Results: Radial Convergence in J . 43

5.3.3 Cone Crack Results: J versus Load . 43

5.4 Flat Plate with Embedded Elliptical Flaw . 44

5.4.1 Embedded Ellipse Results: Radial Convergence in J 45

5.4.2 Embedded Ellipse Results: J Along Crack Front 46

5.5 C-shaped Compact Tension Specimen . 48

5.5.1 C-specimen Results: Bulk Behavior . 49

5.5.2 C-specimen Results: Radial Convergence in J . 50

5.5.3 C-specimen Results: J Along Crack Front . 50

6 Conclusion 57

References 58

6

List of Figures

2.1 A domain integral over Ω0 having boundary Γ0 that surrounds a thumbnail
defect. The crack front tangent, crack front normal, and crack face normal
are SCF , NCF , and T CF , respectively. 17

3.1 Example weight functions for a J -integral integration domain. Weight func-
tions shown for domain 5. 21

3.2 How the crack front direction is determined, pictorially. 24

3.3 Scheme to more accurately calculate the driving force at the first interior node.
This methodology will mitigate spikes in the driving force associated with an
erroneous pressure correction. 28

3.4 The weight function q corresponding to Javg for all nodes along the crack
front. The weight function is automatically calculated to be normal to the
crack front. 29

3.5 The magnitude of the weight function qK corresponding to JK for node K
along the crack front. Note that node K is the first node interior from the
boundary and the weight function is a plateau “tent” function that is 1 along
the normal emanating from node K. The weight function is automatically
calculated for each node K along the crack front. The entire body is shown
to clearly illustrate that ‖q‖ = 0 for nodes outside the search width swK 30

4.1 Screenshots of Cubit that illustrate the new snap to normal command. Through
two snap to normal operations, the mesh is adjusted to be orthogonal to curve
57. 33

5.1 Discretization employed for a crack in an infinite body. A K-field displacement
boundary condition is applied to the exterior of the body. 37

5.2 Penny flaw graphic and finite element mesh. 39

5.3 Elements in red are included in the contour over which J is calculated for the
penny flaw model: (a) first contour increasing to (e) fifth contour. 39

5.4 Normalized J versus contour for penny flaw model at various loads. Values
approaching an asymptote indicate that radial convegence been achieved at
this load. 40

7

5.5 J versus load for pennyflaw model with original mesh refinement using three
Sierra weight functions and the analytical solution. 41

5.6 Percent error of J for the 30◦ pennyflaw model with the original and the
refined mesh for three Sierra weight functions. The results indicate that we
have attained mesh convergence. 42

5.7 Graphical representation of cone crack problem. Quarter symmetry is used
for the finite element model. The conical crack is embedded in a 30 inch cube. 43

5.8 Domain 10 of cone crack model. Elements in red are included in the J -integral
calculation. 44

5.9 J versus contour of cone crack specimen at various loads. 45

5.10 J (in-lb/in2) versus load P calculated for cone crack model. 46

5.11 Embedded elliptical crack in flat plate with pressure P applied on the crack
faces. 47

5.12 Mesh of embedded elliptical crack in flat plate. 48

5.13 L2 error in J versus contour for the embedded ellipse model with applied crack
face pressure loading. 49

5.14 J calculated from domain 9 at each node along the crack front for the em-
bedded elliptical flaw problem with applied crack face pressure. Symmetry
surface values have unresolved spikes in value. φ = 0 aligns with the major
axis of the ellipse. 51

5.15 C-specimen (a) dimensions and (b) mesh. Displacement is applied at the
nodeset in the center of the plug. The crack front nodes are highlighted along
the bottom surface of the mesh. 52

5.16 Domain 10 for C-specimen model as calculated by (a) Abaqus and (b) Sierra
for an identical mesh. Elements in red are included in the domain. 52

5.17 Load versus load line opening results from Abaqus and Sierra for C-specimen. 53

5.18 J at the center of the C-specimen plotted against the contour for Abaqus cal-
culation and three weight functions in Sierra. The weight function in Abaqus
mirrors the plateau weight function. Note that the results from the two codes
cannot be directly compared at highest load shown. 53

5.19 J at the surface of the C-specimen plotted against contour for Abaqus calcu-
lation and three weight functions in Sierra. The weight function in Abaqus
mirrors the plateau weight function. Note that the results from the two codes
cannot be directly compared at highest load shown. 54

8

5.20 Domain region and equivalent plastic strain at free surface of C-specimen at
various loads calculated in Sierra. We correlate the fact that the calculated J
is not converged with the observation that the plastic zone is not encompassed
within the contour regions (a). Large radii are necessary to investigate the
radial convergence of J . 55

5.21 J -integral through the thickness of the C-specimen. The driving forces for the
Abaqus and Sierra are comparable. The weight function in Abaqus mirrors
the plateau weight function. Note that the results from the two codes cannot
be directly compared at highest load shown. The J-integral is sampled from
the contour 10. 56

9

List of Tables

3.1 Global Variables for J -integral . 22

3.2 Nodal Variables for J -integral . 22

3.3 Element Variables for J -integral . 22

5.1 Summary of Case Studies for J -integral . 35

5.2 Percent error in the J-integral with respect to domain, weight function, sub-
domain, and mesh size. 38

10

Chapter 1

Introduction

A J -integral capability for Sandia codes previously consisted of a multi-step, highly user-
input dependent and error-prone process that calculated the J -integral values as a post-
processing step on the output exodus database. An effort within the Hydrogen Failure
project (under Physics & Engineering Models) was initiated to add a domain integral and
streamline the procedure. As a result, all calculations now occur within the Sierra codes
and the analyst need only specify the crack front and crack face and algorithms within
Sierra mechanics will determine the regions, weight functions, and the J -integral values
automatically. Multiple weight functions have been implemented. The user has the choice
to calculate J using a linear, plateau, or hybrid plateau-ramp function. Results from all
three of these methods will be discussed.

Abaqus calculations were run using version 6.7.1 on the server Spurr using one or two
processors. Unless otherwise noted, Sierra calculations were run on Sandia’s compute server
Redsky using the version of the day (VOTD) executable. Sierra 4.26 will be the first release
version to contain a bug-free pressure correction. Any example shown in this document can
be replicated using Sierra 4.26.

This report is broken into sections that make the material more accessible to the reader.
Chapter 2 provides the reader with information needed to calculate the J-integral via a
domain (volume) integral. Chapter 3 details the implementation and syntax employed in
Sierra Mechanics. Methodologies for selecting domains and the weight function are covered.
The next chapter, Chapter 4, clearly illustrates the additional steps in Cubit that are required
to ensure orthogonal meshes. Details are also given with regard to mesh construction. The
bulk of the document resides in Chapter 5. Cases for straight crack fronts, curved crack
fronts, and non-planar crack faces are presented. An elastic-plastic case is also provided.
Finally, we conclude and motivate future work in Chapter 6.

It is our hope that a robust methodology for calculating the J-integral for innumerable
geometries and loadings can enable Sandia analysts to employ fracture mechanics without
undue burden. We will continue to strive to generalize the methodology. In addition, we will
seek to include both pre-processing and post-processing tools to ensure a rapid turnaround
in analysis time. Finally, we stress that this document is not a primer on how to apply the J-
integral to elastic-plastic fracture mechanics. The successful application of the J-integral as
a criteria for crack extension in inelastic bodies is beyond the scope of the current document.

11

12

Chapter 2

Background

J is analogous to the energy release rate G from linear elastic fracture mechanics. For a
body with potential energy π having a crack of length a, Irwin [6], Eshelby [3], and Rice [12]
define the applied energy release rate or driving force to be G = J = −δπ/δa. We term J
the driving force because J is a configurational force. In the seminal work of [3], Eshelby
muses

The negative gradient of the total energy with respect to the position of an imperfection
may conveniently be called the force on it. This force, in a sense fictitious, in introduced to
give a picturesque description of energy changes, and must not be confused with the ordinary
surface and body forces acting on the material.

Crack propagation occurs when J(a) = R(a), where R(a) is the material resistance.
For constant R, the resistance is often referred to as the critical energy release rate Jc. In
mode I, the critical energy release rate is termed JIc. For a review of the J-integral and
its application for infinitesimal deformations, please refer to oft-referenced texts on fracture
mechanics [2, 7, 1].

In the reference configuration, the vectorial form of the J-integral in finite deformation
[11] is

J =

∫
Γ0

ΣNdA (2.1)

where Σ = WI −F TP is referred to as the Eshelby energy-momentum tensor [4] and N is
the normal to surface Γ0 in the reference configuration. W is the stored energy density in the
reference configuration and F and P are the deformation gradient and first Piola-Kirchhoff
stress, respectively. Rice [12] realized that because Σ is divergence-free in the absence of
body forces, one can examine J in the direction of the defect L (unit vector) and obtain a
path-independent integral for traction-free crack faces. J can be written as

J =

∫
Γ0

L ·ΣNdA (2.2)

and interpreted as a path-independent driving force in the direction of the defect. We note
that one can also express Σ in terms of Σ̄, where Σ̄ = WI − HTP and H = Gradu.
Although Σ is symmetric and Σ̄ is not symmetric, they are equivalent when integrated
over the body (DivP = 0). In fact, differences in the energy-momentum tensor stem from

13

the functional dependence of the stored energy function W . Σ and Σ̄ derive from W (F)
and W (H), respectively. When integrated, both collapse to the familiar 2-D relation for
infinitesimal deformations.

J =

∫
Γ

e1 ·Σnds =

∫
Γ

(Wn1 − ui,1σijnj)ds (2.3)

The above formulation for the J-integral does not account for surface tractions or tem-
perature gradients. If the issue at hand involves both pressure loadings (on the crack faces)
and/or gradients in temperature, the J-integral will no longer be path independent without
modification. This will be discussed briefly in the next section, Section 2.1.

2.1 Technique for Computing J

J is often expressed as a line (2D) or surface (3D) integral surrounding the crack tip. Defining
a surface over which to compute this integral and performing projections of the required field
values onto that surface presents a number of difficulties in the context of a finite element
code.

To compute the J-integral in a finite element code, it is more convenient to perform
a volume integral over a domain surrounding the crack tip. We can then leverage the
information at integration points rather than rely on less accurate projections. To do this,
we follow the method described in [10]. We replace the crack direction L with a smooth
function q. On the inner contour of the domain Γ0, q = L. On the outer contour of the
domain C0, q = 0. Because the outer normal of the domain M is equal and opposite of
the normal N on Γ0, there is a change of sign. For traction-free surfaces, we can apply the
divergence theorem, enforce DivΣ = 0, and find that the energy per unit length J̄ is

J̄ = −
∫

Ω0

Σ : Grad q dV. (2.4)

We note that the all the field quantities are given via simulation and we choose to define q
on the nodes of the domain qI and employ the standard finite element shape functions to
calculate the gradient. We can specify the crack direction L or assume that the crack will
propagate in the direction normal to the crack front NCF . Figure 2.1 attempts to illustrate
a domain Ω0 having a boundary Γ0 with crack front normal NCF . If SCF is is tangent to
the crack front and T CF is normal to the lower crack face, NCF × T CF = SCF . We note
that for non-planar, curving cracks, NCF , T CF , and SCF are functions of the arc length S.
For a crack front S0, we can define the average driving force in terms of energy per unit area
as

Javg =
J̄∫

S0
L ·NCFdS

. (2.5)

While the average driving force is useful for interpreting experimental findings and obtaining
a macroscopic representation of the driving force, we also seek to examine the local driving

14

force J(S). Using the finite element interpolation functions to discretize L through the
smooth function q, we find q = λIqI . For a specific node K, we can define |qK | = 1 and
qI = 0 for all other I 6= K on S0. Note that we still need to specify the function q in
the NCF − T CF plane from the inner contour Γ0 to the outer contour C0. The resulting
expression for the approximate, pointwise driving force at node K on the crack front is

JK =
J̄∫

S0
λKqK ·NCFdS

. (2.6)

Again, we note that if the direction of propagation L is taken in the direction of the normal
to the crack front NCF , the denominator is

∫
S0
λKdS. More information regarding the

pointwise approximation of JK can be found in [13, 5].

One can effectively deal with surface tractions and temperature gradients in the con-
struction of the J-integral. If the tractions on the crack faces, F+

0 + F−0 are non-zero (eg.,
pressure loading), they will contribute the the J-integral and render the methodology path
dependent. This is also true for the “caps” on the domain volume A+

0 +A−0 . We can, however,
“subtract off” their contributions by construction. Referring to Equation 2.2, we employ the
weight function q = L and subtract contributions from the crack faces and end caps to find

J =

∫
Γ0

q ·ΣNdA−
∫
F+
0 +F−0 +A+

0 +A−0

q · F TPNdA. (2.7)

We would then apply the divergence theorem and convert the surface integral into a volume
integral (with stipulations on the weight function). In the prior derivation, we employed
DivΣ = 0. If we would like to include body forces or the dependence of the stored energy
function on temperature, we must include additional terms. For W = W (F , θ), we find the
domain integral J̄ to be

J̄ = −
∫

Ω0

Σ : Grad q dV −
∫

Ω0

∂W

∂θ
Gradθ · q dV −

∫
F+
0 +F−0 +A+

0 +A−0

q · F TPM dA. (2.8)

Moreover, one can also add other terms that affect the free energy in the same manner. For
example, if the concentration of a species γ affects the free energy W = W (F , θ, γ), one
should also include those terms in the domain integral. To be clear, we can also express PN
as the traction in the reference configuration T . We note that this traction will most likely
stem from an applied traction such as a pressure boundary condition and we are required to
“push-back” the applied traction in the current configuration to an applied traction in the
reference configuration. To note this change in notation, we re-express the volume integral
as

J̄ = −
∫

Ω0

Σ : Grad q dV −
∫

Ω0

∂W

∂θ
Gradθ · q dV −

∫
F+
0 +F−0 +A+

0 +A−0

q · F TT dA. (2.9)

To be consistent, we can also view J̄ with regard to Σ̄ and express the volume integral as

J̄ = −
∫

Ω0

Σ̄ : Grad q dV −
∫

Ω0

∂W

∂θ
Gradθ · q dV −

∫
F+
0 +F−0 +A+

0 +A−0

q ·HTT dA. (2.10)

15

Currently, the pressure correction is included within Sierra. We have not, however,
included thermal gradients in the current formulation. We note that the pressure correction
is applied to both the crack faces and the caps of the domain volume.

16

Domain of
integration

Coordinate system
 on crack front

Thumbnail
defect

“Caps” of domain

Surface of
integration

Crack
front

Algorithmic default

crack
face

Figure 2.1. A domain integral over Ω0 having boundary �0

that surrounds a thumbnail defect. The crack front tangent,
crack front normal, and crack face normal are SCF , NCF ,
and TCF , respectively.

17

18

Chapter 3

Sierra implementation

The J -integral can be calculated in Sierra with recently implemented capabilities. One must
only specify the crack front nodes, crack plane, and the number of domains within a crack
front radius. In addition, one can choose between linear, plateau, and plateau-ramp weight
functions to calculate the domain integral.

3.1 Input Commands

A user can request that J -integrals be computed during the analysis by including one or
more J INTEGRAL command blocks in the REGION scope. This block can contain the following
commands:

BEGIN J INTEGRAL <jint_name>

#

integral parameter specification commands

CRACK DIRECTION = <real>dir_x <real>dir_y <real>dir_z

CRACK PLANE SIDE SET = <string list>side_sets

CRACK TIP NODE SET = <string list>node_sets

INTEGRATION RADIUS = <real>int_radius

NUMBER OF DOMAINS = <integer>num_domains

FUNCTION = PLATEAU|PLATEAU_RAMP|LINEAR(PLATEAU)

USE SURFACE FOR EDGE DIRECTION = ON|OFF(ON)

SYMMETRY = OFF|ON(OFF)

DEBUG OUTPUT = OFF|ON(OFF) WITH <integer>num_nodes NODES ON THE CRACK FRONT

#

time period selection commands

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END J INTEGRAL <jint_name>

A set of parameters must be provided to define the crack geometry and the integration
domains used in the calculation of the J -integral. The model must be set up so that there is
a sideset on one surface of the crack plane behind the crack tip and a nodeset containing the

19

nodes on the crack tip. Both the CRACK PLANE SIDE SET and CRACK TIP NODE SET commands
must be used to specify the names of the sideset behind the crack tip and the nodeset on
the crack tip, respectively.

By default, the direction of crack propagation is computed from the geometry of the
crack plane and tip as provided in the crack plane sideset and crack tip nodeset (L = NCF).

The CRACK DIRECTION command can optionally be used to override the direction of crack
propagation L computed from the geometry. This command takes three real numbers that
define the three components of the crack direction vector as arguments.

To fully define the domains used for the domain integrals, the radius of the domains and
the number of domains must also be specified. A series of disc-shaped integration domains are
formed with varying radii going out from the crack tip. The INTEGRATION RADIUS command is
used to specify the radius router of the outermost domain. The number of integration domains
is specified using the NUMBER OF DOMAINS command. The radii of the domains increase linearly
going from the innermost to the outermost domain.

The weight function q used to calculate the J -integral is specified by use of the option
FUNCTION command line. The LINEAR function set the weight function to 1.0 on the crack
front Γ0 and 0.0 at the edge of the domain C0, router away from the crack tip. The PLATEAU

function, which is the default behavior, sets all values of the weight function to 1.0 that lie
within the domain of integration and all values outside of the domain are set to 0.0. This
allows for integration over a single ring of elements at the edge of the domain. The third
option for the FUNCTION command is PLATEAU_RAMP, which for a single domain will take on
the same values as the LINEAR function. However, when there are multiple domains over the
radius router, the nth domain will have weight function values of 1.0 over the inner (n − 1)
domains and will vary from 1.0 to 0.0 over the outer nth ring of the domain. These functions
can be seen graphically in Figure 3.1.

We note that in employing both the PLATEAU and the PLATEAU_RAMP functions, one is
effectively taking a line integral at finite radius (albeit different radii). In contrast, the
LINEAR option can be viewed as taking the lim Γ0 → 0+.

Future sections will describe the calculation of the weight function q. The command USE

SURFACE FOR EDGE DIRECTION indicates whether the element edge or the adjacent geometric
surface is employed to find the crack direction L.

If the model is a half symmetry model with the symmetry plane on the plane of the
crack, the optional SYMMETRY command can be used to specify that the symmetry conditions
be accounted for in the formation of the integration domains and in the evaluation of the
integral. The default behavior is for symmetry to not be used.

The user may optionally specify the time periods during which the J -integral is computed.
The ACTIVE PERIODS and INACTIVE PERIODS command lines are used for this purpose.

20

1 2 3 4 50

0.2

0.4

0.6

0.8

1

1.2

W
ei

gh
t F

un
ct

io
n

Integration Domains

Linear
Plateau
Plateau Ramp

Crack Front

Figure 3.1. Example weight functions for a J -integral in-
tegration domain. Weight functions shown for domain 5.

3.2 Output

A number of variables are generated for output when the computation of the J -integral
is requested. The average value of J for each integration domain is available as a global
variable, as described in Table 3.1. The pointwise value of J at nodes along the crack for
each integration domain is available as a nodal variable, as shown in Table 3.2. Element
variables such as the Eshelby energy-momentum tensor and fields defining the integration
domains are also available, as listed in Table 3.3.

If the DEBUG OUTPUT line command is set to ON, the weight functions, q, will be output
for each node based j value that is calculated. The user must specify the number of nodes
on the crack front via the remainder of the command line, WITH <integer>num_nodes ON

CRACK FRONT. This will result in an extensively large output file due to the fact that every
node in the integration domain will now compute and carry (NumNodeOnCrackFront +
1) ∗ NumDomains weight function vectors around. This will potentially result in memory
errors if there is not a significant number of processors to better distribute the memory
requirements.

21

Table 3.1. Global Variables for J -integral

Variable Name Type Comments
j_average_<jint_name> Real[] Average value of the J -integral over the

crack. Array sized to number of
integration domains and numbered from
inner to outer domain. <jint_name> is
the name of the J INTEGRAL block.

Table 3.2. Nodal Variables for J -integral

Variable Name Type Comments
j_<jint_name> Real[] Pointwise value of J -integral along

crack. Array sized to number of
integration domains and numbered from
inner to outer domain. <jint_name> is
the name of the J INTEGRAL block.

Table 3.3. Element Variables for J -integral

Variable Name Type Comments
energy_momentum_tensor FullTen36 Energy momentum tensor
integration_domains_<jint_

name>

Integer[] Flag indicating elements in integration
domains. Set to 1 if in domain, 0
otherwise. Array sized to number of
domains and numbered from inner to
outer domain. <jint_name> is the name
of the J INTEGRAL block.

22

3.3 Sierra methodology for calculating q

Computing the J-integral within Sierra is a two-phase process which includes initialization
and calculation. We note that the J-integral computation only occurs when application
output is written. Because the J-integral is computed in the reference configuration, Sierra
computes crack front quantities only during initialization. This primarily includes the crack
front direction at each node along the crack front, which is needed to compute the weight
function q. Other quantities computed during initialization include: a per node line length,
a per node search width, neighboring nodes along the crack front, and the vector normal to
the crack front direction. All of these quantities are used during the domain integration to
compute J and are described in more detail in the following sections.

3.3.1 Computing Necessary Crack Tip Information During Ini-
tialization

During program initialization the J-integral routines compute static quantities that are used
during program execution when the J-integral values are calculated. To compute the nodal
q vector for all nodes in the integration domain, a number of crack front node specific data
must be computed. This information is best described via the data structure that is used
within Sierra to store this information:

s t r u c t CrackFrontNodeData {
Vec3d m locat ion ;
Vec3d m di r ec t i on ;
Vec3d m dirNormal ;
Vec3d m tempDirection ;
Real m searchWidth ;
Real m lineLength ;
Int m neighborOne ;
Int m neighborTwo ;
Int m numNeighbors ;

}

To clarify, Vec3d is a class that represents three dimensional vectors, a Real is a double
precision and Int is an integer. m location is the global position of the crack front node,
m direction is the direction of the crack front normal at a particular node, m dirNormal
is the normal to the crack front face, m tempDirection is a temporary direction stored to
handle edge conditions, m searchWidth is the width of the slice used to find nodes within an
integration domain for computing J at a node along the crack front, m lineLength is the dis-
tance along the crack front for computing J at a node, and m neighborOne, m neighborTwo
and m numNeighbors are used to store IDs of node neighbors on the crack front. Using this
data structure allows the code to concisely store information about the crack front globally
across all processors. The following steps are used to fill the above data structure in order to

23

facilitate the computation of q, the integration weight vector, at each node in the integration
domain.

The first step is to compile a parallel consistent list of crack front node locations and
global IDs. This is accomplished by each processor looping over its locally owned1 crack
front nodes and saving the global coordinates of each node and then performing a parallel
gather operation to make this list parallel consistent.

P3

P0 P1

P2

P4

P5

PC1 PC2

d1 d2

d

f1 f2

Pcpp1 Pcpp2

Figure 3.2. How the crack front direction is determined,
pictorially.

From here the code computes the crack front directions based on the surface defined by
the line command CRACK PLANE SIDE SET, which is done over several steps. First, the code
loops over each face in the side set and then over each node of each face. If a face in the
side set contains two nodes that lie on the crack front, which is determined by checking the
face node’s global ID against the parallel consistent list of crack front node IDs, then a crack
front edge normal is computed for that face. The edge normal, di as seen in Figure 3.2, is
the normalized vector that points from the centroid of the face to the closest projected point
on the crack front. The face centroid is computed by averaging the four nodal locations
of the face, P c =

∑n
i=1P i. If we define the following two vectors: v32 = P 2 − P 3 and

v3c = P c − P 3 where v32 is a vector along the crack front and v3c is the vector that points
from a node on the crack front to the centroid of the face, then we can compute the closest
projected points as

P cpp1 = P 3 +

(
v3c ·

v32

||v32||

)
v32

||v32||
(3.1)

Now, the edge direction is computed as d1 = P cpp1 − P c1 with an edge length of l1 =
||v32||. If the node is attached to another face as shown in Figure 3.2, we can find d2 =
P cpp2 − P c2 with an edge length of l2. We could construct the crack front normal through

1Locally owned implies the node object was created and lives on that processor.

24

a mere average of adjacent vectors (d1, d2), or we can construct a more accurate normal
NCF at the node given l1, and l2. First, we assume a convex combination of the normals
and constrain that combination to be parallel to the desired normal NCF through(

αd1 + (1− α)d2

)
×NCF = 0 (3.2)

and solve for the coefficient α analytically for the simplified case of a circular crack with a
sufficient radius to invoke the small angle assumption. The solution for alpha is

α =
l2

l1 + l2
(3.3)

and the desired normal NCF can be defined to be

NCF =
l2d1 + l1d2

||l2d1 + l1d2||
. (3.4)

In addition to looking at circular defects, the algorithm was employed for elliptical crack
fronts in Mathematica. The results were very encouraging. The error was orders of magni-
tude lower than an simple average of d1 and d2.

We note that the current algorithm relies on the element boundaries to be orthogonal to
the crack front. An alternative approach would find the normal to the plane of one facet T 1

T 1 =
(P 2 − P c1)× (P 3 − P c1)

||(P 2 − P c1)× (P 3 − P c1)||
(3.5)

and then find the normal to the crack front

d1 =
T 1 × v32

||T 1 × v32||
. (3.6)

One can then employ the same process for weighting the normals at the faces, d1 and d2, to
find the crack front normal at the node NCF . Although the more accurate representation
of the normal through a cross product has not yet been implemented, the methodology is
straightforward and may be included in a future release.

During the process for finding the crack front normal NCF , we can also compute the
line length ll for each node. The line length is the average of the two adjacent crack front
segment lengths. The search width is the minimum of the two adjacent crack front segment
lengths. The tangent vector SCF can be found by averaging the two line segment vectors
v32 for each node on the crack front. A future release may calculate a more accurate tangent
along the crack front through a cross product. This can be accomplished by using a weighted
value of the facet normal T CF

T CF =
l2T 1 + l1T 2

||l2T 1 + l1T 2||
(3.7)

and then the cross product to find the tangent vector SCF

SCF = NCF × T CF . (3.8)

25

3.3.2 Computing J During an Output Request

J-integral values are only computed when Sierra processes output requests. It firsts com-
putes the discrete nodal J values along the length of the crack front and then computes
the global, or average, J value. It is done in this order so if the user is requesting the in-
tegration domain or weight function q as part of the output, they will receive the domain
and/or weight function for the global q not for an arbitrary node along the crack front.
However, as noted earlier, if the user turns on the debug output via the DEBUG OUTPUT = ON

WITH <integer>num_nodes NODES ON THE CRACK FRONT command line, they will get weight
functions and integration domains for every node along the crack front in addition to the
global domains/weight functions. We do not recommend this as the default output.

There are five steps for computing J within Sierra: compute the weight function q,
compute the integration domain, compute the gradient of the weight function, compute the
length of the crack front to integrate over (line length) and finally compute the J value itself.
The calculation of the weight function is detailed enough to warrant its own sections below
with a discussion of the other steps following. Keeping with the order of execution, the
following section will explain the computation of qI for JK followed by a section describing
how the global q(S) is computed.

Specification of qI for JK

For a given node K along the crack front, the q values for each node I in the integration
domain are computed using the following equation

qI = wpwfN
K
CF , (3.9)

where wp is a weight factor dependent on the search width swK at node K along the crack
front and the distance dp from node I to the closest projected point on a plane defined by
the crack front normal NK

CF and the crack face normal TK
CF . One is essentially searching

with a plane aligned with the direction of propagation that runs perpendicular to the crack
faces. The “radial” weight fractor wf is a weight factor dependent on which type of weight
function we are using, as defined by the FUNCTION command line, and the distance from node
I from to the closest nodal point on the crack front, df . Based on the definition of dp and
the search width for node K, swK , the weight function wp is defined as

wp =

{
0 if dp >= swK

swK − dp if dp < swK .
(3.10)

Since the weight function wf is based on the function the user specified in the input deck,
it can take on three forms which are dependent on the distance df .

For the LINEAR function wf is defined as

wf =

{
0 if df > rd

1− df
router

if df < router.
(3.11)

26

For the PLATEAU function wf is defined as

wf =

{
0 if df > router
1 otherwise.

(3.12)

For the PLATEAU RAMP function wf is dependent on the number of domains requested, nd.
If the current domain of interest is d, the current domain radius is rd and the radius of the
next smallest domain is rd−1, then the wf is defined as

wf =

{
1 if df < rd

1− df−rd−1

rd−rd−1
otherwise.

(3.13)

Special treatment at the A+
0 and A−0 boundaries

Initially the search width swK was set by the maximum of the two adjacent crack front
line segments. This can induce errors at the first interior node if the line segments are not
equivalent. This stems from the fact that q will be non-zero at the boundary and one cannot
integrate past the boundary. Even if one chooses the minimum of the segment lengths, errors
can still occur at the first interior node along the crack front.

For a curved crack front and the current methodology for assigning the q vectors, the q
vectors on nodes behind the crack front on the surface A+

0 , A−0 will be non-zero for the first
interior node. Note that the crack faces are F−0 and F+

0 . While this does incur some error it
can also yield additional errors if tractions are applied on A+

0 , A−0 or F+
0 , F−0 . These cases

often cause “spikes” in the driving force at the first interior node. A methodology to correct
this issue for the first interior node is to set qI = 0 for all surface nodes A+

0 or A−0 . This will
increase the accuracy of the domain integral and ensure that the pressure correction given
in Equation 2.10 is zero.

This methodology is illustrated in Figure 3.3. In setting the q vectors for node K, we need
to determine if node J lives on the boundary A+

0 . This can be accomplished by determining
which crack front node is closest to node J . For this case, the crack front node closest to
node J would be node I. Because we know with certainty that node I is on an edge (it only
has one neighbor on the crack front), we conclude that node J is also on a boundary and we
set qJ = 0. Because q = 0 on the entire surface A+

0 , there will not be a contribution from
the pressure correction term at node K.

Specification of a Global q

The weight function qI for node I in the integration domain for computing the average value
Javg is defined as

qI = wfNCF,c (3.14)

27

boundary front node I

integral for node K, JK

q vector for node J

boundary node I
is closest front
node to node J

I

J

K

qJ = 0

A0
+

crack front

Figure 3.3. Scheme to more accurately calculate the driv-
ing force at the first interior node. This methodology will
mitigate spikes in the driving force associated with an erro-
neous pressure correction.

where wf was previously defined for LINEAR, PLATEAU, and PLATEAU RAMP and NCF,c is the
crack front normal of the closest node on the crack front from node I in the integration
domain.

Computing J

As noted above, once the weight function q is computed, the steps necessary to complete the
calculation of J are: find all elements within the integration domain, compute the gradient
of q, compute the integrated line length along the crack front and compute J . These steps
are fairly straight forward and described below.

Because the domain integral is expressed as a summation over elements, and the gradient
of q is part of that expression, an element is considered to be within the integration domain
if any of its nodal q vector components have a nonzero magnitude. The code loops over
all elements that can potentially be in the domain, checks the magnitude of each node’s q
vector and marks the nodes as in the domain or out of the domain appropriately.

The gradient of q is computed via a set of standard gradient operators for each ele-
ment type. However, the current implementation of the J-integral calculation only supports
uniform gradient hex elements, and as such, this call is hard coded for these elements. Devel-
opment is underway to generalize this method to make all elements available to the J-integral
calculation.

Assuming that the crack propagates in the direction normal to the crack front, we can
find the integrated distance along the crack front l though a sum of discretized line lengths

28

lK for each node K along the crack front. The average driving force calculated along the
crack front as Javg is

Javg =
1

l

n∑
i=0

Σi : Grad qi (3.15)

where n is the number of elements in the integration domain. Σi and Grad qi are the energy
momentum tensor and gradient of the weight function for element i in the integration domain,
respectively. The weight function corresponding to Javg on the crack front is illustrated in
Figure 3.4. For ease of illustration, the weight function is only shown for the nodes along
the crack front. The weight function will decay in the direction of the normal depending on
the choice of weight function (linear, plateau, plateau ramp) and the domain radius.

crack front nodes

Figure 3.4. The weight function q corresponding to Javg
for all nodes along the crack front. The weight function is
automatically calculated to be normal to the crack front.

Although finding Javg can be useful, our ultimate goal is to calculate a spatially-varying
driving force at a node K with a corresponding a set of weight functions qK . To find the
driving force at a particular crack front node, we employ

JK =
1

lK

n∑
i=0

Σi : Grad qKi (3.16)

where qKi now corresponds to a weight function specific to node K. The weight function for
node K is illustrated in Figure 3.5. Note that magnitude of the weight function ‖q‖ = 1

29

is displayed. The entire integration domain is included to illustrate the local nature of the
weight function for node K.

|q| for plateau

crack front
node K

Figure 3.5. The magnitude of the weight function qK

corresponding to JK for node K along the crack front. Note
that node K is the first node interior from the boundary
and the weight function is a plateau “tent” function that is
1 along the normal emanating from node K. The weight
function is automatically calculated for each node K along
the crack front. The entire body is shown to clearly illustrate
that ‖q‖ = 0 for nodes outside the search width swK .

30

Chapter 4

Required discretization in CUBIT

In order to enable mesh quality, the closest point projection to a crack-front node, and the
correct prescription of the test function qI , the hexahedral mesh should be orthogonal to the
crack front. An orthogonal mesh will ensure the elements are not skewed along the crack
front. Because these elements will experience large deformation during crack-tip blunting,
well-formed elements increase the accuracy of the solution. We note that this capability is
not specific to crack front nodes. Any ellipsoidal surface with a constant bias will generate
skewed elements.

In addition, an orthogonal mesh will ensure that the location of a point-wise surface
integral will be a closest point projection from the crack-tip node. Consequently, any surface
integral via a domain integral at a node along the crack front will be most accurate if
the specified radius is a minimum. In addition to increasing the accuracy of point-wise
evaluations of the J-integral, an orthogonal mesh will also ease the search algorithm for
point-wise evaluations. The current algorithm is discussed in Section 3.3.2. A search is
performed along the normal to the crack front. If the mesh is aligned with the normal,
the specification of q is straightforward. Misalignment can result in a “checkboarding” of
the integration domains and there exists the possibility that qI will always be one and the
J-integral will be zero.

Because the methodologies employed in Section 3.3.2 require element edges that are
normal to the crack front, we need to ensure that the crack tip elements are indeed orthogonal.
Future work may generalize the calculation of JK but we are currently limited to hexes. Given
these requirements, we collaborated with the Cubit team to add the capability to generate
meshes that are orthogonal to a surface. The Cubit team implemented the command

adjust boundary surface XX snap_to_normal curve XX

which enables the generated elements along a curve to be “snapped” normal to the curve.
A typical journal file and the resulting mesh is illustrated in the next section.

4.1 Ellipsoidal flaw

We begin with a simple example of an ellipsoidal flaw. A journal file is noted below.

31

#{tn_rad_min = 0.4}
#{tn_rad_maj = 1.5 * tn_rad_min}
#{r_contour= 0.085}
#{cyl_height = tn_rad_maj}

create surface ellipse major radius {tn_rad_maj +r_contour} minor radius {tn_rad_min+r_contour} zplane

#{ellipse_surf = Id("Surface")}
sweep surface {ellipse_surf} perpendicular distance {cyl_height}
#{ellipse_vol = Id("Volume")}

create surface ellipse major radius {tn_rad_maj} minor radius {tn_rad_min} zplane

#{ellipse_surf2= Id("Surface")}
sweep surface {ellipse_surf2} perpendicular distance {cyl_height}
#{ellipse_vol2 = Id("Volume")}

create surface ellipse major radius {tn_rad_maj - r_contour} minor radius {tn_rad_min - r_contour} zplane

#{ellipse_surf3 = Id("Surface")}
sweep surface {ellipse_surf3} perpendicular distance {cyl_height}
#{ellipse_vol3 = Id("Volume")}

webcut volume 1 with sheet extended from surface 5

webcut volume 2 with sheet extended from surface 8

delete volume 3 to 5

webcut volume all with plane xplane noimprint nomerge

webcut volume all with plane yplane noimprint nomerge

delete volume with y_coord < 0 or x_coord < 0

imprint all

merge all

curve 57 interval 32

mesh curve 57

surface 55 63 scheme map

mesh surface 55 63

adjust boundary surface 55 snap_to_normal curve 57

adjust boundary surface 63 snap_to_normal curve 57 fixed curve 57

The results of the included journal file are illustrated in Figure 4.1. Figure 4.1(a) illustrates
the mapped mesh along an ellipsoidal flaw, curve 57. First, surface 55 is adjusted through the
snap to normal command. This will enable the element edges in surface 55 to be orthogonal
to curve 57. The next step involves adjusting surface 63 while fixing the node positions along
curve 57. This will enable continuity in the normal through curve 57. The resulting mesh
is illustrated in Figure 4.1(b). The process of mapping and snapping has been very effective
for the ellipsoidal flaws investigated in this work and is now a supported feature in Cubit
thus ensuring that analysts will be able to obtain accurate assessments of the driving force
with little difficulty in the meshing process.

We note that one can also ensure that the nodes on curve 57 remain unchanged through
the snap to normal command by issuing

node in curve 57 fixed

32

(a) without “snap_to_normal” (b) with “snap_to_normal”

surface 55

surface 63
curve 57

Figure 4.1. Screenshots of Cubit that illustrate the new
snap to normal command. Through two snap to normal op-
erations, the mesh is adjusted to be orthogonal to curve 57.

prior to adjusting the boundary on surface 63. We note that the accuracy of the normal
does depend on a sufficient discretization along crack front. This can be investigated through
studies in mesh refinement.

33

34

Chapter 5

Case Studies

We analyzed five geometries with increasing complexity to fully exercise the J -integral im-
plementation in Sierra. The case studies, summarized in table 5.1, vary in material char-
acteristics, crack front shape, and crack plane shape. Comparisons are made against an
analytical solution, when available, or using code comparison against Abaqus, when an an-
alytical solution does not exist. Unless otherwise noted, Sierra calculations were completed
in Sierra version 4.17.

Table 5.1. Summary of Case Studies for J -integral

Material Crack Front Crack Surface Solution
Infinite Crack Linear Elastic Straight Planar Analytical
Penny Flaw Linear Elastic Curved Planar Analytical
Cone Crack Linear Elastic Curved Conical Code Comparison

Embedded Ellipse Linear Elastic Curved Planar Analytical
C-Specimen Elastic-plastic Straight Planar Code Comparison

The infinite crack case employs linear elastic material properties and has a straight crack
front. The penny flaw and cone crack models also utilize elastic material properties and have
curved crack fronts. While the penny flaw geometry has a planar crack face, the cone crack
model has a non-planar crack face. However, both geometries are axisymmetric in nature
and the calculated J -integrals should be identical at all crack front nodes. The embedded
elliptical flaw also has a curved, planar crack front, but it is not axisymmetric; thus, the J
values should vary along the crack front. The C-shaped compact tension specimen has a
planar, straight crack front, yielding a constant q at all crack front nodes, but the geometry
and loading condition should yield varying J ’s through the specimen thickness. This model
also exercises the J -integral capability using an elastic-plastic material model. To be clear,
elastic in the context of this report is hypoelastic. For small strains, this assumption is
consistent with linear elastic fracture mechanics (LEFM).

For each case, we compare the linear, plateau, and plateau-ramp weight functions. In
all cases, the linear weight function tends to yield lower and more inaccurate driving forces.
This is due to the fact that the linear weight function samples the elements at the crack

35

tip. As noted in Chapter 3, the linear weight function represents the true nature of the J,
lim Γ0 → 0+. Regrettably, the chosen element type struggles to capture the singularity and
the crack tip fields lead to inaccuracies in the driving force. To remedy this issue, the plateau
and plateau-ramp weight functions were implemented. One is effectively evaluating the J-
integral at increasing radii using the plateau weight function. Given the aforementioned
issues at the crack tip and the fact that the J-integral is path independent, larger radii
yield more accurate and convergent representations of the driving force. The default weight
function in Sierra is the plateau weight function. We note that the weight function employed
in Abaqus is aligned with the plateau weight function. Code comparisons with Abaqus should
employ the plateau weight function.

5.1 Infinite Crack

Probably the most straightforward case is the infinite crack. For this particular geometry,
a plane-strain K-field displacement boundary condition is applied at the far-field. Given a
crack tip of location (x0, y0) we can construct both a radius r and an angle θ for each node
on the boundary node set. For an applied stress intensity (KI , KII), we can employ LEFM
solutions [9] for the boundary displacement u where u = u(KI , KII , r, θ). Provided that
we satisfy “small-scale yielding”, we are effectively applying the driving force. The sample
discretization is illustrated in Figure 5.1. Note the the radius r of the of the body is 150 mm
and the applied KI is quite small (∼ 1 MPa

√
m) to guarantee that the region of interest is

small compared to the boundary. For instance, we assume a characteristic strength σc to be
on the order of E/10, 000. Given a Young’s modulus E of 207 GPa and a Poisson’s ratio ν
of 0.3, we can find a characteristic radius rc to be ∼ 40 µm through the relation

rc =
1

2π

K2
I

σ2
c

. (5.1)

We note that because rc � r, we can consider the applied driving force to be the analytic
solution. Although symmetry is illustrated in Figure 5.1, we only employ the upper-half of
the disk and invoke the symmetry option in the J-integral. Elements at the crack tip for the
the two discretizations are h1 = 2.5 µm and h2 = 1.25 µm. Note that the ratio of boundary
radius to the crack-tip element size is 60,000 and 120,000 for h1 = 2.5 µm and h2 = 1.25
µm, respectively.

For an applied KI of 0.89700 MPa
√

m, we find the driving force via Irwin [6], J = G =
K2
I (1−ν2)/E, to be 3.5372 J/mm2 in plane strain. For each domain, we evaluate the driving

force (via the J-integral) for the three weight functions (linear, plateau, plateau-ramp) over
5 sub-domains. Table 5.2 illustrates the percent error for the different weight functions for
varying domain, subdomain, and mesh size.

We note that for the smaller domain radius, r = 25 µm, sub-domain 5 represents 10
elements in h1 and 20 elements in h2. Given the analytical solution, the computational
solution is reasonable with errors less than a percent. Generally, we conclude that the

36

apply K-field boundary displacements

s = 2.5 μm

(u1, u2)

Figure 5.1. Discretization employed for a crack in an in-
finite body. A K-field displacement boundary condition is
applied to the exterior of the body.

plateau function is preferable but it was not the most accurate for all cases tested. Most
codes that evaluate the J-integral employ the plateau function as it represents a surface
integral at a greater radius from the crack tip. We note that because we are currently forced
to employ under-integrated elements with hourglass control at the crack-tip, more detailed
studies would convolute hourglass control with convergence in the driving force. When this
capability is extended to all element types we will again employ this test case.

5.2 Penny Flaw

Our next case study involves a cylindrical specimen with a penny shaped flaw orthogonal
to the direction of loading. Figure 5.2(a) shows a graphical representation of the specimen.
For our analysis, we use a specimen with outer radius, r = 1.0 in, height, h = 1.5 in, and
crack radius, a = 0.1 in. This gives crack ratio, a/w, of 10%. This geometry was chosen due
to its simplicity and existence of an analytical solution. The values of J should be identical
at all crack front nodes for this axisymmetric case.

We take advantage of the symmetric nature of the specimen by modeling half the height
and a 30◦ wedge. Figure 5.2(b) is the mesh used in the analysis. A planar mesh is swept
in the circumferential direction, except for a small plug at the centerline, which is meshed
and swept in the axial direction. This allows us to create a mesh without wedge elements at

37

Table 5.2. Percent error in the J-integral with respect to
domain, weight function, sub-domain, and mesh size.

domain radius weight function sub-domain % Error, h1 % Error, h2

10 mm

linear
1 0.554 0.134
5 0.379 0.0938

plateau
1 0.436 0.108
5 0.254 0.0652

plateau ramp
1 0.554 0.134
5 0.279 0.0697

25 µm
linear 5 0.379 0.427

plateau 5 0.968 0.240
plateau ramp 5 0.279 0.240

the center. The mesh is refined at the crack tip to an element size of approximately 0.005
inches.

We also analyzed a 360◦ mesh to fully exercise the ability of Sierra to correctly calculate
the direction of the q-vectors used in the J -integral calculation. In addition, we completed
a uniform mesh refinement of the 30◦ wedge to confirm mesh convergence. The original
(unrefined) 30◦ wedge has 174,896 elements and took approximately 1 hour to run on 16
processors on the computational cluster Redsky. We requested 5 contours within a contour
radius of 0.075 inches. This radius keeps the domains in the area where the mesh is planar
at each node along the crack front. Results presented in the following sections are for the
30◦ wedge.

5.2.1 Penny Flaw Results: Radial Convergence in J

Contour regions are calculated using a radius from the crack tip, as defined by the user
in the input deck. The contour regions used for the penny flaw analysis can be seen in
Figure 5.3. At larger radii, the contour area includes elements outside the regular shaped
mesh. Note that the fourth contour expands the region to a highly irregular mesh because
the elements are in a transitional region between the refined mesh and the coarser mesh.
This may explain the slight, but marked difference in calculated J -values from the expected
smooth J versus contour curve for the plateau and plateau-ramp function results seen in
Figure 5.4 . Ignoring this anomalous fourth contour value, the plateau and plateau-ramp
functions calculate J results that slightly overshoot the J value and decrease slightly with
increasing contours. This is similar to the results noted (but not illustrated) in the elastic
K-field calculations detailed in Section 5.1.

We claim radial convergence if J asymptotes to a value as the radius over which J is

38

r = 1.0

a = 0.1
h = 3.0

CL

(a) (b)

Figure 5.2. Penny flaw graphic and finite element mesh.

(a) Contour 1 (b) Contour 2 (c) Contour 3 (d) Contour 4 (e) Contour 5

Figure 5.3. Elements in red are included in the contour
over which J is calculated for the penny flaw model: (a) first
contour increasing to (e) fifth contour.

calculated increases. Figure 5.4 shows the normalized J values over increasing contours at
one load. Ignoring the anomalous fourth contour for the plateau and plateau-ramp functions
in Sierra, the plots support the argument that radial convergence in J has been achieved at
this load.

5.2.2 Penny Flaw Results: J versus Load

We compare the expected results from the analytical solution against the values calculated
using the three different weight functions. The analytical solution [14] for a penny flaw cylin-
der under far-field uniform tension is summarized below. Results can be seen in Figure 5.5.

39

J /
 J

an
al

yt
ic

al

Figure 5.4. Normalized J versus contour for penny flaw
model at various loads. Values approaching an asymptote
indicate that radial convegence been achieved at this load.

KI = 2
π
σ
√
πa

where KI = stress intensity,
σ = far field stress, and
a = crack radius.

(5.2)

J =
κ211
E′
,

where E ′ = E
1−ν2 .

(5.3)

A uniform refinement of the 30◦ wedge was made, resulting in a model with 8 times as
many elements as the original mesh. A full mesh refinement study with multiple refinements
and different meshes is needed to claim numerical convergence. However, the results between

40

Figure 5.5. J versus load for pennyflaw model with original
mesh refinement using three Sierra weight functions and the
analytical solution.

the two refinements are comparable, as seen in Figure 5.6, lending credibility to the claim
that we have numerical convergence in our model. The deviation from the analytical solution
for both the original mesh and the refined mesh are below 1% error, with the plateau and
plateau-ramp functions yielding more accurate results than the linear weight function.

5.3 Cone Crack

Our next case study, the cone crack problem, includes a curved crack front, but this case
also includes a non-planar crack face. We used an example from the Abaqus v6.7 Example
Problems manual [5] to compare against results in Sierra. We use elastic material properties,
apply a uniform pressure loading, and compare against the results from Abaqus. We used
the full three dimensional model for Abaqus and ran the mesh and input deck given in the
example problems manual. Abaqus problems are dimensionless; we assume English units for
clarity. A quarter symmetry model is used for both Abaqus and Sierra analyses. The model
is a cube with 30 in. sides, has a conical crack with inner radius of 10 in. and length of 15
in. at a 45◦ angle from the free surface, and has a 10 psi distributed load on the cracked free
face. For each analysis, 10 contour regions are requested within a radius of 5.0 in from the
crack tip. Figure 5.7 shows the graphical representation of the cracked region.

The Abaqus model, SymmConeCrackOrphan.inp, and its associated mesh files were pro-

41

Figure 5.6. Percent error of J for the 30◦ pennyflaw model
with the original and the refined mesh for three Sierra weight
functions. The results indicate that we have attained mesh
convergence.

vided in the Example Problems Manual. Abaqus requires that the normal to the crack plane
be defined at every crack front node. As the crack in this problem is curved, this requires a
rather lengthy and complicated input deck involving the definition of the normal vector at
every crack front node. The Abaqus mesh of the cone crack model, shown in Figure 5.8(a),
has 9,517 elements, and the input deck, excluding the node and element definitions, is ap-
proximately 1,500 lines of code. The Abaqus model takes approximately 10 minutes to run
on 2 processors on Spurr.

Due to the inability to convert the Abaqus mesh to an exodus format usable by Sierra,
the cone crack model was re-created and meshed using Cubit for the Sierra calculation.
The Sierra mesh is more refined than the Abaqus mesh. The mesh size in Sierra does not
stem from a convergence study but was chosen to be ample for the current analysis. The
mesh created for Sierra, shown in Figure 5.8(b), has 431,720 elements, and the input deck
has approximately 150 lines of code. The simplicity of the Sierra input deck is due to the
automated fashion in which the normal to the crack plane at each crack tip node are defined.
These normals must be defined explicitly for Abaqus models, causing an order of magnitude
increase in the length of the input. The Sierra model took approximately 75 hours to run
on 32 processors on Redsky.

42

θ

P

lc
r

P = 10 psi
r = 10 in
θ = 45o
l
c = 15 in

Figure 5.7. Graphical representation of cone crack prob-
lem. Quarter symmetry is used for the finite element model.
The conical crack is embedded in a 30 inch cube.

5.3.1 Cone Crack Results: Bulk Behavior

We compare the overall reaction load to the displacement at the center of the pressure load-
ing. The Abaqus and Sierra results are nearly identical, lending confidence to the assumption
that the geometry and materials are being interpreted similarly by both analysis codes.

5.3.2 Cone Crack Results: Radial Convergence in J

We claim radial convergence in J if the J values asymptote with increasing contour radius
values. As seen in Figure 5.9, the results from Abaqus and from the three weight functions in
Sierra are almost identical at lower loads; at higher loads, the results begin to deviate from
each other. The Abaqus results seem to align with the plateau and plateau-ramp weight
function results. We note that for the Sierra implementation, the driving force initially
increases during the first few contours. With increasing contours, J slightly decreases. In-
finitesimal decreases in the driving force at extended contours are consistent with the K-field
and penny flaw calculations. We note that one cannot observe those decreases in Figure 5.9.
We claim that J has converged at the loads of interest.

5.3.3 Cone Crack Results: J versus Load

The J versus reaction load for Abaqus and Sierra runs are shown in Figure 5.10. The
calculated results are nearly identical for Abaqus and the values of J calculated from all

43

(a) Abaqus Mesh (b) Sierra Mesh

Figure 5.8. Domain 10 of cone crack model. Elements in
red are included in the J -integral calculation.

three weight functions in Sierra. This further verifies the capability within Sierra to calculate
the J -intregral of a crack for specimens with linear elastic material properties.

5.4 Flat Plate with Embedded Elliptical Flaw

Our next case, the fully embedded elliptrical flaw in a flat plate, was chosen to validate the
case where both the weight function and the driving force varies along the crack front. The
embedded elliptical flaw also exercised Sierra’s capability to calculate J for a geometry with
pressure applied to the crack face. This geometry also highlighted the necessity of having
the ability to create mesh lines that are orthogonal to the crack front, and a separate effort
to ensure that Cubit has this orthogonal meshing capability was launched. A discussion of
this effort can be found in Chapter 4.

A fully embedded elliptical flaw that is orthogonal to the applied stress direction is
inserted into a flat plate. Figure 5.11(a) shows a graphical representation of the specimen.
For our analysis, we use a specimen with total height, 2h = 20.0 in, total width, 2W =
20.0 in, and total thickness, t = 2.0 in. The elliptical crack has a minor radius, a = 0.1 in
that aligns with the thickness direction of the plate, and a major radius, c = 0.2 in that
aligns with the width of the plate. Figure 5.11(b) shows the dimensions of the elliptical
crack, as well as the convention for defining the angle, φ, as a measure of location along the
crack front. φ = 0 aligns with the width direction of the plate, or the major axis of the
elliptical crack.

The finite element model includes half the height, half the thickness, and half the width
of the plate (1/4 elliptical crack, or 1/8 of the specimen). The mesh is refined at the crack
tip to an element size of approximately 0.0015 inches. Due to the meshing algorithm used
to ensure mesh lines orthogonal to the crack front, the elements normal to the crack front

44

Figure 5.9. J versus contour of cone crack specimen at
various loads.

are not exactly identical in size. Figure 5.12(a) shows the mesh used in the analysis.

The embedded elliptical flaw mesh has 1 million elements and took approximately 6 hours
to run on 64 processors on the computational cluster Redsky. We requested 10 contours
within a contour radius of 0.035 inches for each model. This model was analyzed in Sierra
version 4.25.

5.4.1 Embedded Ellipse Results: Radial Convergence in J

Contour regions are calculated by Sierra using the user defined radius from the crack tip.
The ninth contour region is used for the following results of the embedded flaw analysis can
be seen in Figure 5.12(b). The results shown in the following section use this contour. We
show results from the ninth contour to utilize the largest possible contour while ensuring
that the elements within the domain remained planar at each location along the crack front.

We claim radial convergence in J if, at a given load, J asymptotes to a value as the
radius over which J is calculated increases. Figure 5.13 illustrates the L2 error in J with
increasing contours. The error remains fairly stable after the third contour for the plateau
and plateau-ramp functions. The error for the entire crack front is based on the analytical
solution given in Equation 5.7. The plots support the argument that radial convergence has
been achieved at this load. The linear weight function yields J values that are still slightly
increasing with increasing numbers of contours. The linear weight function may require more

45

Figure 5.10. J (in-lb/in2) versus load P calculated for
cone crack model.

domains to claim radial convergence; however, due to the geometry of the specimen, this is
not possible.

5.4.2 Embedded Ellipse Results: J Along Crack Front

Due to the non-uniform nature of the flaw geometry, the driving force of the crack will vary
along the crack front. The accepted solution [1] uses a combination of geometry factors and
the crack-face pressure to calculate KI , the mode I stress intensity factor.

KI = PG0

√
πa
Q

where KI = stress intensity,
P = applied uniform crack face pressure,
a = crack radius in thickness direction,

G0 = non-dimensional geometry factor, and
Q = flaw shape parameter.

(5.4)

The non-dimensional geometry factor, G0, and the flaw shape parameter, Q, are defined:

46

t

2h

2W

P

(a)

φt 2a

2c

d

(b)

Figure 5.11. Embedded elliptical crack in flat plate with
pressure P applied on the crack faces.

G0 = [sin2φ+ (a
c
)2cos2φ]1/4

Q = 1 + 1.464(a
c
)1.65

(5.5)

For mode I crack opening, we also know that the stress intensity can be described in
terms of the J -integral with the following relationship:

KI =
√

JE
1−ν2

where J = J -integral,
E = Young’s modulus, and
ν = Poisson’s ratio.

(5.6)

Setting the two equal to one another, we can calculate the analytical solution for J.

J = P 2G2
0
πa
Q

1−ν2
E (5.7)

Figure 5.14 shows the varying values of J from contour 9 at each node along the crack
front for all three weight functions in Sierra. Because we have shown radial convergence in
J at this load, the value at contour 9 (or any other contour greater than 3) can be used to
represent the value of J at each node along the crack front.

The nodes at the edges of the mesh yield non-smooth values of the driving force, as seen
by the error plot in Figure 5.14(b). However, the error at the edge nodes is still within 1%.

47

(a) 90◦ crack mesh (b) Domain 9

Figure 5.12. Mesh of embedded elliptical crack in flat
plate.

Element performance (we are currently limited to a uniform-gradient formulation) might be
a contributing factor. Ignoring these boundary values for J , the driving force calculated
along the crack front at this load is within 0.2% of the analytical solution for the plateau
and plateau-ramp case and 0.7% of the analytical solution for the linear weight function.
There is a slight trend towards increasing errors at φ = 0, or along the major axis of the
ellipse.

5.5 C-shaped Compact Tension Specimen

Work done by Kim et. al [8] was used as a model for our final case study. The C-shaped
compact tension specimen, or C-specimen, has a straight crack front and flat crack plane,
resulting in a fairly simple calculation of the crack direction. However, the elastic-plastic
material model and varying J -integral values across the specimen thickness adds complexity
and interest to the problem.

We modeled a straight sided, i.e. not side grooved, C-specimen with crack length a
= 4.94 mm, and ligament length, w = 9.14 mm, Figure 5.15(a). A quarter symmetry
model, with half the height, and half the thickness, was created, and the elements were
biased towards the free surface of the model, Figure 5.15(b). To avoid localization of plastic
strains near the loading regions, a stiff, elastic pin was inserted into the loading hole of
the C-specimen mesh. The mesh is contiguous between the pin and specimen to avoid
computational complexity associated with contact surfaces. The baseline model consisted of
28,968 elements and took approximately 1 hour on 32 processors to run to a point just past
yielding.

48

Figure 5.13. L2 error in J versus contour for the embedded
ellipse model with applied crack face pressure loading.

As no analytical solution exists, we compared the Sierra results with results obtained by
analyzing the same mesh in Abaqus. A multi-linear elastic-plastic material model was used
for both analyses, and we analyzed a uniaxial tension specimen to confirm that the input
material behaved as expected for both analysis codes. The output stress versus strain rela-
tionship was used to confirm that the material model does not contribute to any differences
that may appear in the C-specimen results.

We use identical meshes for the Abaqus and Sierra analyses; however, the two codes
determine contour regions differently. Abaqus automatically creates contours by following a
path of elements around the crack tip. Because the mesh at the crack tip is rectangular, the
contours created are rectangular. Sierra creates contours within a circular region by including
elements within each user specified radius, resulting in a pixellated circular contour region
regardless of the mesh shape. Figure 5.16 illustrates the differences in contour region created
by the two codes for the same mesh. We also should note that Abaqus employs a small-strain
implementation of the J-integral while Sierra employs a finite-deformation implementation
of the J-integral.

5.5.1 C-specimen Results: Bulk Behavior

A comparison of the load versus load-line opening for the displacement controlled C-specimen
analysis in Figure 5.17 shows that there are slight deviations between the Abaqus results
and the Sierra results. These differences are small at lower loads but are magnified at
higher loads. As we have confirmed that the elastic-plastic material model is interpreted

49

correctly by each code, and we used identical meshes for both codes, we attribute some of
the differences to the element formulations. The C3D8R element in Abaqus does not mirror
the uniform-gradient element in Sierra. That fact that both are using hourglass stabilization
complicates any comparison at large deformations. Without a more general implementation
in Sierra, code comparisons only have utility at small deformations.

5.5.2 C-specimen Results: Radial Convergence in J

We claim that radial convergence in J is achieved if J converges as the contour radius
increases. Because value of J varies through the thickness, as we will discuss in the next
section, we use the center and the surface of the C-specimen at each contour to test for radial
convergence. Figure 5.18 and Figure 5.19 show the J versus contour plots at three different
loads for the center and the surface of the C-specimen, respectively. At the highest load
shown on the plot, the Abaqus and Sierra results cannot be compared directly because the
output interval yielded slightly different load values. This inability to control output load
values is inherent in analyses that are displacement controlled.

Within the elastic region, we can comfortably assert that radial convergence in J is
reached within the 10 contours that we used for loading. The results from the two smaller
loads shown in figure 5.20 show that the contour region encompasses regions of plastic strain
above 1%. At the higher load, the contour region does not enclose the plastic strain region,
and calculated J has not converged. A larger contour radius is required to ensure radial
convergence at the higher loads. The maximum contour radius is based on the specimen
geometry and crack length and is not unlimited. There will be a load at which it will no
longer be possible to achieve radial convergence in J.

5.5.3 C-specimen Results: J Along Crack Front

The straight sided specimen causes a “tunneling” effect - the J -integral value is lower at the
free surfaces and peaks at the center-plane. In order to better capture the gradient in the
driving force at the free surfaces of the specimen, the element density is higher at the free
surfaces and lower at the center plane.

Figure 5.21 shows J at contour 10 at each node through specimen thickness at three
loads for Abaqus results and all three weight functions for Sierra. Although we have failed
to illustrate radial convergence in J for the given outer radius, the outer contour is represen-
tative of the gradient in J along the crack front. Again, note that at the highest load shown,
Abaqus and Sierra results cannot be directly compared as the loads at which the curves are
plotted are not identical.

50

(a) J along crack front for domain 9

(b) Percent error of J

Figure 5.14. J calculated from domain 9 at each node
along the crack front for the embedded elliptical flaw problem
with applied crack face pressure. Symmetry surface values
have unresolved spikes in value. φ = 0 aligns with the major
axis of the ellipse.

51

4.94

9.07

4.83

R18.29

R9.14

11.71

Units: mm

t = 4.57

2 x φ3.26

(a) (b)

Figure 5.15. C-specimen (a) dimensions and (b) mesh.
Displacement is applied at the nodeset in the center of the
plug. The crack front nodes are highlighted along the bottom
surface of the mesh.

(a) Abaqus (b) Sierra

Figure 5.16. Domain 10 for C-specimen model as calcu-
lated by (a) Abaqus and (b) Sierra for an identical mesh.
Elements in red are included in the domain.

52

Figure 5.17. Load versus load line opening results from
Abaqus and Sierra for C-specimen.

Figure 5.18. J at the center of the C-specimen plotted
against the contour for Abaqus calculation and three weight
functions in Sierra. The weight function in Abaqus mirrors
the plateau weight function. Note that the results from the
two codes cannot be directly compared at highest load shown.

53

Figure 5.19. J at the surface of the C-specimen plotted
against contour for Abaqus calculation and three weight func-
tions in Sierra. The weight function in Abaqus mirrors the
plateau weight function. Note that the results from the two
codes cannot be directly compared at highest load shown.

54

(a) Domain 10 elements in red.

(b) Plastic Strain at P = 1712 N

(c) Plastic Strain at P = 2444 N

(d) Plastic Strain at P = 3357 N

Figure 5.20. Domain region and equivalent plastic strain
at free surface of C-specimen at various loads calculated in
Sierra. We correlate the fact that the calculated J is not
converged with the observation that the plastic zone is not
encompassed within the contour regions (a). Large radii are
necessary to investigate the radial convergence of J .

55

Figure 5.21. J -integral through the thickness of the C-
specimen. The driving forces for the Abaqus and Sierra
are comparable. The weight function in Abaqus mirrors the
plateau weight function. Note that the results from the two
codes cannot be directly compared at highest load shown.
The J-integral is sampled from the contour 10.

56

Chapter 6

Conclusion

This document has attempted to provide analysts with sufficient detail on the theory, im-
plementation, discretization, application, and verification of a finite-deformation J-integral
capability in Sierra. Fundamentally, the surface integral that embodies the driving force has
been converted to a domain integral for increased accuracy and ease of computation. We
have also added a pressure correction to the domain integral that enables path-independent
results for tractions on the body and/or crack faces. Temperature gradients are not currently
“corrected” and future work can remedy this issue. Working with Cubit developers, we were
able to create the snap to normal option that enables orthogonal meshes along the crack
front. While we believe this option is helpful for numerous situations, an orthogonal mesh
greatly increases the robustness and accuracy of the current J-integral implementation.

A set of examples with analytical solutions (via linear elastic fracture mechanics) provides
verification for straight, circular, and elliptical crack fronts. We also explored the increasing
complexity of curved crack surfaces and inelasticity through a cone-crack and a C-specimen
geometry, respectively. For these cases, we compared to a commercial code to ensure that
the solutions were smooth and representative. We note that the weight function in Abaqus
mirrors the plateau weight function. For small strains, both Abaqus and Sierra (using the
plateau weight function) yield comparable driving forces. Inaccuracies in the J-integral
for the linear weight function stem from the fact that the domain integral is sampling both
inaccurate and nonproportional fields. Greater accuracy is achieved through the plateau and
plateau-ramp weight functions. The goal of this report is not to make recommendations for
applying the J-integral to elastic-plastic fracture mechanics. Rather, we seek to examine the
implemented infrastructure for numerous cases to ensure that the domain integral is ready for
the production environment. We must aid analysts and implement additional element types
beyond the uniform-gradient hexahedral element if the current J-integral implementation
will be widely used for J2 plasticity and the accompanying isochoric motions.

Finally, we note that we have applied the current methodology to more complicated
geometries not represented in this report. Although these varying geometries have aided our
debugging efforts, included all the relevant cases is beyond the scope of this document. The
team is not currently aware of any issues with the implementation. This document attempts
to illustrate that verification. Generalizing and improving the capability will the subject of
future reports.

57

58

References

[1] T.L. Anderson. Fracture Mechanics, Fundamentals and Applications. CRC Press,
Boston, 1991.

[2] Broek D. Elementary Engineering Fracture Mechanics. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1986.

[3] J.D. Eshelby. The force on an elastic singularity. Philosophical Transactions of the
Royal Society of London, A244:87–112, 1951.

[4] J.D. Eshelby. Inelastic behavior of solids. McGraw-Hill, New York, 1970.

[5] HKS. ABAQUS Version 6.7, Theory Manual. Hibbitt, Karlsson and Sorensen, Provi-
dence, RI, 2007.

[6] G.R. Irwin. Analysis of stresses and strains near the end of a crack traversing a plate.
Journal of Applied Mechanics, 24:361–364, 1957.

[7] M.F. Kanninen and C.H. Popelar. Advanced Fracture Mechanics. Oxford University
Press, New York, 1985.

[8] Y. Kim, Y.J. Chao, M.J. Pechersky, and M.J. Morgan. C-specimen fracture toughness
testing: Effect of side grooves and η factor. Journal of Pressure Vessel Technology,
126:293–299, 2004.

[9] B.R. Lawn. Fracture of Brittle Solids. Cambridge University Press, Cambridge, 1986.

[10] F.Z. Li, C.F. Shih, and A. Needleman. A comparison of methods for calculating energy
release rates. Engineering Fracture Mechanics, 21:405–421, 1985.

[11] G.A. Maugin. Material Inhomogeneities in Elasticity. Chapman & Hall/CRC, New
York, 1993.

[12] J.R. Rice. A path independent integral and the approximate analysis of stress concen-
tration by notches and cracks. Journal of Applied Mechanics, 35:379–386, 1968.

[13] C.F. Shih, B. Moran, and T. Nakamura. Energy release rate along a three-dimensional
crack front in a thermally stressed body. International Journal of Fracture, 30:79–102,
1986.

[14] H. Tada, P.C. Paris, and G.R. Irwin. The Stress Analysis of Cracks Handbook. Del
Research Corporation, Hellertown, PA, 1973.

59

DISTRIBUTION:

1 MS 0899 Technical Library, 8944 (electronic copy)

60

v1.35

