
SANDIA REPORT
SAND2012-8235
Unlimited Release
Printed September 2012

LDRD Final Report: Combinatorial
Optimization with Demands

Ojas Parekh

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2012-8235
Unlimited Release

Printed September 2012

LDRD Final Report: Combinatorial Optimization
with Demands

Ojas Parekh
Discrete Mathematics and Complex Systems (01465)

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1326
odparek@sandia.gov

Robert D. Carr (01465)
David Pritchard (Princeton University)

Abstract

This report summarizes the research conducted and results obtained under the Laboratory-
Directed Research and Development (LDRD) project, “Combinatorial Optimization with De-
mands,” from October 2010 to September 2012. Complex resource allocation problems are
ubiquitous in mission-driven applications. We investigated resource allocation problems en-
dowed with additional parameters called demands, which allow for richer modeling. Demand-
endowed resource allocation problems are considerably harder to solve than their traditional
counterparts, and we developed a conceptually simple but powerful new framework called
iterative packing which allowed us to address the added complexity of demands. By lever-
aging iterative packing, we designed approximation algorithms to solve a large class of hard
resource allocation problems with demands. Approximation algorithms are efficient heuris-
tics which also offer a performance guarantee on the worst case deviation from the cost of an
optimal solution. Our algorithms offer better performance guarantees over previously known
algorithms; moreover, we are able to show that our algorithms provide performance guarantees
that are likely close to best possible.

3

Acknowledgments

We thank Cindy Phillips for insightful and entertaining discussions. We thank Brian Barrett and
Rich Field for maintaining the LATEX template on which this report is based.

4

Contents
1 Introduction . 7

1.1 Integer programming . 7
1.2 Demands . 8
1.3 Approximation algorithms . 9
1.4 LP relaxations and rounding . 10

2 Iterative packing . 13
2.1 Related work . 14
2.2 An example: maximum weight matching . 14

3 Packing in hypergraphs . 17
3.1 Problem statement . 17
3.2 Related work . 17
3.3 Results . 18

4 Demand packing in graphs and hypergraphs . 19
4.1 Problem statement . 19
4.2 Related work . 19
4.3 Results . 20

5 Capacitated 2-edge-connected spanning subgraph . 21
5.1 Problem statement . 21
5.2 Related work . 21
5.3 Results . 22

6 Future work . 23
7 Conclusion . 24
References . 25

5

This page intentionally left blank.

1 Introduction

In many combinatorial optimization and resource allocation scenarios, many commodities or re-
sources are discounted when purchased in bulk, and others such as piping and cabling may only
be available in a small number of types of varying capacity and cost. Such scenarios result in a
nonlinear relationship between cost and capacity, which may be modeled by infusing traditional
combinatorial optimization models with a feature called demands. Thus the challenge is to design
algorithms for models endowed with demands while leveraging the rich and immense mathemat-
ical infrastructure developed for more traditional non-demand linear and combinatorial optimiza-
tion. Even without considering economies of scale or demands, most of the underlying problems
we consider are already NP-hard; a means of mitigating this is designing an approximation algo-
rithm, an efficient heuristic algorithm that provides a worst-case performance guarantee relative to
the cost of an optimal solution.

Our main results are simple but high-quality approximation algorithms for a large class of
resource allocation problems that significantly advance the state of the art. In the remainder of this
section we provide a brief and self-contained introduction to designing approximation algorithms
for combinatorial optimization problems, highlighting the main challenges as well as the general
technique on which our algorithms are based.

1.1 Integer programming

A technique that has proven remarkably effective in solving resource allocation and more general
combinatorial optimization problems is integer programming. An integer programming problem,
or integer program (IP), takes the following form:

max {c · x | Ax≤ b and x is an integer vector}, (1.1)

where the constraint matrix A and vectors b and c define the problem instance. We require that the
entries of A, b, and c are rational and, by scaling, may assume without loss of generality that they
are integer. A feasible solution x is any integer vector that satisfies the linear constraints Ax ≤ b,
while an optimal solution is a feasible solution x that also maximizes the objective function, c · x
over all feasible solutions. Thus we may think of solving an IP as finding an integer vector x
maximizing c · x subject to the constraints Ax≤ b.

Although perhaps not apparent, integer programs are extremely effective in modeling combi-
natorial optimization problems. For example, one may express the well-known and fundamental
maximum weight matching problem as a simple IP. A matching in a graph G = (V,E) is simply a
set of edges such that no two edges in the set share a common vertex. If we are given weights, c on
the edges, the maximum weight matching problem seeks to find a matching of maximum possible

7

weight in G. An IP for maximum weight matching follows:

Maximize ∑
e∈E

cexe

subject to ∑
e∈δ (v)

xe ≤ 1 ∀v ∈V (1.2)

0≤ xe ≤ 1 ∀e ∈ E (1.3)
xe integer ∀e ∈ E. (1.4)

The above IP is presented in a common but slightly different form than (1.1). In particular the
rows of A are expressed in a compact quantified form, i.e. (1.2) expands to |V | inequalities. Thus
the constraint matrix A corresponding to the above IP would have |V |+ 2|E| rows, since (1.3)
corresponds to both−xe≤ 0 and xe≤ 1. To see that the above IP indeed captures maximum weight
matching, first note that each entry of the vector x corresponds to an edge in G, and the constraints
(1.3) and (1.4) ensure that for each edge e, xe ∈ {0,1}. This allows us to treat any feasible solution,
x as a vector indicating which edges to select in a matching, i.e. precisely those edges with xe =
1 are selected. By this correspondence, every feasible solution represents a matching since the
constraints (1.2) ensure that for every vertex v, no more than one edge containing it is selected (the
notation δ (v) refers to the set of edges adjacent to v).

Integer programming provides a rich medium for expressing combinatorial optimization prob-
lems, and for our purposes, we may simply define a combinatorial optimization problem as one
which can be expressed as an IP. Unfortunately an IP formulation of a combinatorial optimization
problem does not immediately lend itself to an efficient algorithm; solving an IP in general is NP-
hard. However, by dropping the requirement that x be an integer vector from (1.1), we drastically
reduce the complexity of the problem:

max {c · x | Ax≤ b and x is a real vector}. (1.5)

This problem is called linear programming and the above is a linear program (LP). Surprisingly,
any LP can be solved in polynomial time, while as noted above, solving IPs is NP-hard. Never-
theless, exact IP algorithms that may take exponential time in the worst case are perhaps the most
widespread and effective general means of solving practical instances of combinatorial optimiza-
tion problems.

1.2 Demands

Integer Programs derived from combinatorial optimization problem are typically dominated with
constraints that have coefficients that are ether 0 are 1. This is an artifact of modeling combinatorial
structures. For example, consider the constraints (1.2) from our maximum weight matching IP.
This constraint captures the combinatorial structure of a matching, i.e. that no two selected edges
should share a vertex. We formulated this as a linear constraint by insisting that at most one edge
adjacent to each vertex is selected, which results in a constraint with 0 or 1 coefficients. It turns
out that such 0-1 constraints are expressive enough to model a variety of combinatorial structures;

8

moreover, these constraints are easier for general purpose IP solvers to handle than those with large
coefficients.

On the other hand, allowing coefficients beyond 0 or 1 does add an added level of richness.
For example, consider a simple constraint that says that we must select at most ten items among a
larger collection:

∑
i

xi ≤ 10, (1.6)

where we assume that each variable is also constrained to be 0 or 1. Note that (1.2) is a version of
this type of constraint. As one may imagine, such constraints are quite common.

Now if we allow the coefficients of such a constraint to take potentially larger values, di, then
we get:

∑
i

dixi ≤ 10. (1.7)

This also has a natural interpretation: each item i has a cost di associated with it, and we may
select any combination of items with a total cost of at most 10. Thus this imposes a natural budget
constraint on some resource, such as money, time, fuel, workforce, etc. This type of constraint is
also known as a knapsack constraint.

We call the quantities di demands, and we may consider the demand-endowed version of
any natural 0-1 combinatorial optimization problem. We saw above that endowing the 0-1 con-
straint, (1.6) with demands results in the knapsack problem, (1.7). We may also consider endowing
the maximum weight matching problem with demands. This results in a problem called demand
matching that is a natural generalization of both matching and knapsack, for which we obtain a
new approximation algorithm.

Demands are instrumental in modeling economies of scale, indivisible bundles of goods, all
or nothing scenarios in routing problems as well as other types of resource allocation constraints.
Unfortunately problems with demand constraints are considerably harder to solve than their 0-1
counterparts. Although we could simply ignore the underlying combinatorial structure of a demand
problem and try using a general purpose IP solver, this is likely to result in poor performance. We
show that for a large class of resource allocation problems called sparse packing problems, that we
are able to solve the demand version of the problem while still leveraging underlying combinatorial
structure.

1.3 Approximation algorithms

All the combinatorial optimization problems we consider are NP-hard, hence it is unreasonable to
expect an efficient algorithm that always produces an optimal solution. However we may set our
sights on efficient algorithms that always produce an approximately optimal solution. Such algo-
rithms are commonly known as heuristics, yet one issue with such algorithms is that they provide
no guarantee on how close the solutions they produce are to an optimal solution. Approximation

9

algorithms remedy this by providing a mathematical guarantee on their worst case performance
relative to the optimal value.

The fact that high quality approximation algorithms exist is surprising, because for NP-hard
problems it is also typically NP-hard to even compute just the value of an optimal solution rather
than the solution itself. Although their design is generally driven by the same sorts of intuitive
insights as heuristics, approximation algorithms are often more complicated in order to provide
the provable guarantee on their performance. This along with the observation that many heuristics
empirically tend to produce nearly optimal solutions on practical instances are common criticisms
of approximation algorithms. Yet designing approximation algorithms is an important endeavor
because one often gains a great deal of mathematical insight into a problem which may offer
suggestions for simpler and easier to implement heuristics. Also the performance guarantee offered
by an approximation algorithms is a worst-case bound, and the algorithm may perform vastly better
on practical instances. One advantage of the iterative packing framework which we developed and
the resulting approximation algorithms is that they are very easy to implement.

Approximation algorithms are typically parameterized by their performance guarantee. We
formally define this notion below.

Definition 1.1 (Approximation algorithm). For a constant α ≥ 1, an α-approximation algorithm
is a polynomial-time algorithm that for any problem instance I, produces a solution of objective
value at least 1

α
·OPTI , where OPTI is the optimal objective value for the instance I.

Thus an α-approximation algorithm is able to always produce a solution of weight at least 1
α

of the best possible. Since we seek to maximize the objective function, the smaller the value of
α , the better the algorithm. A 1-approximation is simply an exact algorithm. We usually call
α the performance ratio or performance guarantee. Many NP-hard combinatorial optimization
problems exhibit an interesting phenomenon where a nearly optimal approximation algorithm can
actually be used to solve the problem exactly. These problems are called APX-hard, and for such
problems there exists some threshold t > 1 such that there can be no α-approximation for α ≤ t
(unless P=NP) [5]. Thus for APX-hard problems, a goal is to find the best possible approximation
guarantee (assuming P6= NP). This all begs the question: how does one devise an approximation
algorithm without being able to compute OPTI (since, as mentioned above, even computing OPTI
is itself often NP-hard)?

1.4 LP relaxations and rounding

In order to derive an α-approximation algorithm for a problem, by Definition (1.1) we need to
show that for any instance I, the algorithm produces a solution SI such that:

weight(SI)≥
1
α
·OPTI.

To do so it suffices to find an bound BI for each instance such that:

10

1. BI ≥ OPTI , and

2. weight(SI)≥ 1
α
·BI .

Then we would have weight(SI) ≥ 1
α
·BI ≥ 1

α
·OPTI as desired. In other words, if we are able

to prove a performance guarantee with respect to an upper bound on OPTI , then we get one with
respect to OPTI as well. This may seem counterintuitive since proving a performance guarantee
with respect to an upper bound, which may be larger, seems harder that the original task; however,
this circumvents the potential NP-hardness of computing OPTI . A key to effectively leveraging
such a bound is being able to show for any instance I, the upper bound is close to OPTI .

One systematic way of finding such upper bounds is by considering the LP relaxation of a com-
binatorial optimization problem formulated as an IP. An LP relaxation is simply the LP obtained
from an IP by dropping the restriction that x be an integer vector. For instance the LP relaxation
of the maximum weight matching IP from Section (1.1) is obtained by dropping the integrality
constraint, (1.4). LPs can be solved efficiently not just theoretically, as noted, but also in practice
by using, for example, the celebrated Simplex Algorithm. Since we obtain an LP relaxation by
expanding or relaxing the feasible region, any feasible solution for the IP is also feasible for the
LP relaxation (but not vice versa), so solving the LP relaxation yields a solution x∗ whose weight
is at least as large as the optimal IP solution, i.e. OPTI .

Thus solving the LP relaxation gives us both an upper bound on OPTI as well as a solution x∗;
however, the latter may not be a bona fide solution to the underlying combinatorial optimization
problem since it may take on fractional values. Recall that for matching, we interpreted xe = 1 as
selecting the edge e; how should we interpret x∗e =

1
3? One natural idea is to round such fractional

values to integers and then interpret the resulting solution. This is certainly a viable approach;
however, doing so is nontrivial. Rounding up is beneficial since it increases the objective value;
however, such a solution may no longer be feasible (e.g. for matching we may round up two
fractional edges touching the same vertex). If we round down, we’re not guaranteed a good quality
approximate solution; indeed if all the fractional values are below 1, we would obtain the empty
solution which has weight 0.

LP relaxation’s are a powerful approach but achieving a good performance ratio is often more
of an inspired art. Some of the more elegant breakthroughs in approximation algorithms in last
decade have been LP relaxation based approaches. However, there is a natural barrier for the
performance guarantee of an LP relaxation based approximation algorithm, which we simply call
an LP-relative approximation algorithm. Since such algorithms are using the optimal LP relaxation
value as an upper bound rather than the actual value of OPTI , the performance guarantee one is
able to establish is limited by this upper bound, even though the algorithm may perform better
in reality. A natural way of quantifying this limit is by considering the integrality gap of an LP
relaxation.

Definition 1.2 (Integrality gap). The integrality gap, g of an LP relaxation is the worst case gap
between the optimal values of the relaxation and the IP taken over all instances, I:

g = max
I

OPT∗I
OPTI

,

11

where OPT∗I is the optimal value of the LP relaxation for I.

As an example, consider the LP relaxation for the maximum matching problem. Our instance
I is simply a triangle where each edge has weight 1. It is apparent that any matching on I has
weight 1 since only one edge may be selected. However, the LP can achieve a larger weight by
“cheating” and using fractional values. The fractional solution which assigns a value of 1

2 to each
of the three edges is feasible for the LP relaxation since at each vertex v, ∑e∈δ (v) xe =

1
2 +

1
2 = 1.

That is, it is enough that the edges fractionally sum to at most 1. Thus this LP solution has total
weight 3 · 1

2 = 3
2 . This example shows that the integrality gap is at least OPT∗I

OPTI
= 3/2

1 = 3/2. Could
there be another instance with a larger gap?

In order to answer this question we need an upper bound on the integrality gap g. We showed
g ≥ 3

2 above, so if we could show g ≤ 3
2 we would know the integrality gap for maximum weight

matching. The latter requires showing that for any instance, its gap is not large. One way of doing
this is, for any instance, actually producing a solution of large weight relative to the optimal LP re-
laxation solution. This is precisely what an LP-relative approximation algorithm does, since it uses
the optimal LP value as its bound. Thus if we are able to derive an LP-relative α-approximation
algorithm with a matching integrality gap (i.e. g = α), then we know that no better approximation
algorithm is possible without using a stronger upper bound than the LP relaxation.

Results which establish the integrality gaps of LP relaxations are interesting in their own right.
Using our new iterative packing framework, we have been able to design approximation algorithms
that also establish integrality gaps, i.e. our algorithms give a previously unknown upper bound on g
with a matching lower bound. Iterative packing is a conceptually simple technique, and its power
in producing high quality approximation algorithms that are able to establish integrality gaps is
surprising. We describe iterative packing and motivate it with an example in the next section and
then present our results in the following sections.

12

2 Iterative packing

A conceptually simple yet powerful method called iterative rounding, introduced by Jain just
over a decade ago [47], has been surprisingly effective in elegantly producing breakthrough ap-
proximation algorithms for a variety of discrete optimization problems and resolving open prob-
lems [47, 65, 57]. Iterative rounding is designed to work on covering problems, and unfortunately,
applying the method to even non-demand versions of packing problems such as those arising in re-
source allocation is difficult. The main thrust of our work is a new method called iterative packing
inspired by iterative rounding that works for packing problems, even with demands.

Our main insight, which differentiates our approach from previous ones, is to iteratively build a
collection of feasible integral solutions, that serve as a sparse approximate convex decomposition
of the current fractional solution. A convex decomposition of a fractional LP solution x∗ is a
weighted average of integral solutions:

x∗ = ∑
i∈I

λiχ
i,

where each χ i is an integral IP solution to the problem, and ∑i λi = 1 and λi ≥ 0 for all i. One may
think of the multipliers λi as a weighting of the IP solution χ i. Since the λi are nonnegative and
sum to 1, the fractional solution x∗ is then a weighted average of the integral χ i.

A convex decomposition is a powerful property, since if we are given one for a fractional
solution, we essentially have an exact solution to our problem. This is because no matter what the
objective function c is, we must have that one of the χ i has objective value as good as x∗. To see
this note that:

c · x∗ = ∑
i∈I

λi(c ·χ i);

now the scalar, c · x∗ on the left is just a weighted average of the scalars, c · χ i, hence one of the
latter must have value at least c · x∗. If x∗ is an optimal LP solution, then for some j, we have
c ·χ j ≥ c · x∗ ≥ OPTI , hence χ j must be an optimal integral solution.

Thus hoping for an convex decomposition is too much for NP-hard problems; however, we
may expect an α-approximate convex decomposition, for some α ≥ 1:

1
α

x∗ = ∑
i∈I

λiχ
i.

The idea behind such a decomposition is that by scaling the fractional solution x∗ down by 1
α

, it
becomes easier to produce a convex decomposition; however, scaling down decreases the over-
all objective value by a factor of α . Using a similar argument as above, one can see that being
able to generate an α-approximate convex decomposition in polynomial time implies a simple
α-approximation algorithm: select the χ i with the largest objective value as the solution. Thus
approximate convex decompositions are powerful because they are essentially collections of so-
lutions with the property that no matter which objective function one selects, at least one of the

13

solutions in the collection is a good approximate solution. This in some sense gives us an objective-
oblivious representation of an approximate solution, which has applications in other contexts such
a multi-objective optimization. Iterative packing produces such an approximate convex decompo-
sition an an iterative fashion.

2.1 Related work

Singh and Lau [65] were the first to extend Jain’s celebrated iterative rounding technique [47] to
address packing constraints. Their approach obtains an approximate solution that marginally vi-
olates the packing constraints by iteratively removing packing constraints involving only a small
number of variables. They were able to apply this elegant idea to resolve an open question concern-
ing minimum cost degree-bounded spanning trees. More recently, Chan and Lau [19] employed an
interesting combination of an iterative approach and the fractional local ratio method [8] to give the
first approximation algorithm for the k-hypergraph matching problem that matches the integrality
gap of the natural LP formulation, which had previousy been established as k−1+1/k [36].

Pseudo-greedy methods similar to iterative packing have been successfully applied to packing
and coloring problems. Chekuri, Mydlarz, and Shepherd [23] used such a technique to obtain a
4-approximation for multicommodity flows on trees. Bar-Yehuda et al. [8] gave both an iterative
packing like and local ratio algorithms for approximating independent sets in t-interval graphs.
Feige and Singh [32] applied this type of technique for weighted edge coloring of bipartite graphs.

Iterative packing can be seen as an extension and unification of the above type of techniques
into a single framework. Moreover, akin to the iterative rounding method for covering problems,
iterative packing explicitly identifies elements with large fractional values to obtain better approx-
imation ratios. Other aspects of the framework include leveraging a specific ordering of the el-
ements and starting with a nontrivial convex decomposition. This combination of ideas allows
iterative packing to obtain approximation ratios approaching the integrality gap of the underly-
ing LP formulation. We illustrate a basic version of iterative packing on the maximum weight
matching problem in Section 2.2.

2.2 An example: maximum weight matching

We illustrate iterative packing on the maximum weight matching problem. Although this is a
simple application, it serves well to illustrate the method. Consider the natural LP relaxation for
the maximum matching problem from Section 1.1 on a graph G = (V,E):

Maximize ∑
e∈E

cexe PM(G)

subject to ∑
e∈δ (v)

xe ≤ 1 ∀v ∈V (2.1)

0≤ xe ≤ 1 ∀e ∈ E. (2.2)

14

Given a feasible fractional solution x∗ for the above LP, the iterative packing procedure obtains an
α-approximate convex decomposition of x∗,

1
α

x∗ = ∑
i∈I

λiχ
i, (2.3)

for some α ≥ 1, where each χ i is an integral feasible solution – i.e. a matching (and ∑i λi = 1 and
λi ≥ 0 for all i). Iterative packing in its most basic form directly produces a sparse decomposition,
namely one with |I | ≤ |E|+ 1. Even when this is not the case, we can apply elementary linear
algebra to retain at most |E|+1 solutions (more generally n+1, where x∗ ∈ IRn). A procedure to
accomplish the latter is related to the classical Carathéodory’s Theorem.

The basic idea behind iterative packing is simple. We start with the trivial fractional solution,
x = 0 which has a trivial approximate convex decomposition for any value of α: 1

α
x = λ1 · χ1,

where λ1 = 1 and χ1 = 0. Now we select some edge e and insert into each χ i into which it
fits (i.e. χ i is still feasible after adding e). We keep doing this until we have inserted e into a
collection of solutions whose multipliers sum exactly to 1

α
xe. This ensures that the equation of

(2.3) corresponding to e is satisfied. In order to do this, we may have to add a new solution to our
existing convex decomposition. We then select another edge and repeat. in this manner, we iterate
through the edges and grow an attempt to grow an approximate convex decomposition. We may
fail and not be able to insert an edge into enough solutions; however, the idea is that if α is large
enough, then each fractional edge is scaled by 1

α
to a value small enough for iterative packing to

succeed. Analyzing the algorithm entails finding a value of α that allows the algorithm to succeed
and is also small enough to give an good performance guarantee.

This describes iterative packing in a bottom-up perspective; to actually prove the bounds we
require, it will be easier to describe the algorithm from a top-down perspective. Continuing with
our example, we first show that choosing α = 2 suffices. This yields a 2-approximation while also
showing that the integrality gap of PM(G) is at most 2. We then show that we may actually select
α to be as low as 3

2 ; to do this, we leverage the fact that extreme points of PM(G) must contain an
edge e with xe ≥ 1/2 (in fact this holds for all e). As we observed in Section 1.4, this establishes
the integrality gap of PM(G). Although this result is well known, this is interesting, since much
like iterative rounding, iterative packing offers insight into how large fractional components can
facilitate the approximation of packing problems. Extending these ideas allowed us to derive
results for more general packing problems that were not previously known.

We start with a fractional solution x∗ and:

1. Remove an edge e (without otherwise modifying the instance)

2. Recursively obtain an α-approximate convex decomposition of the resulting fractional solu-
tion, x̄∗

3. Pack e into precisely a 1
α

x∗e fraction of the integral solutions.

The key, of course, is showing that the last step can always be performed successfully. For this
to work, we require that for any fractional (or perhaps extreme point) solution x∗ there exists an

15

e ∈ E with

∑
i∈Ie

λi ≥
1
α

x∗e , (2.4)

where 1
α

x̄∗ = ∑i∈I λiχ
i is an arbitrary approximate convex decomposition of the residual solution,

x̄∗, and i ∈ Ie indicates that χ i is able to accommodate the edge e (i.e. χ i ∪ e is still a valid
matching).

Although we may well be able to pack e into a fraction of the integral solutions that is larger
than an 1

α
x∗e , to maintain our implicit inductive hypothesis we must ensure that e is packed into

exactly an 1
α

x∗e fraction of solutions. To accomplish this, we may have to clone some solution χ i,
insert e into exactly one of the two copies of χ i, and distribute the multiplier λi among the copies so
that e appears in the requisite fraction of solutions. The base case, which contains no edges, selects
the empty solution with a multiplier of 1. Thus if (2.4) holds universally for a particular value of α ,
then we can efficiently obtain an α-approximate convex decomposition of x∗ consisting of at most
|E|+1 integral solutions. Selecting the best of these gives us the corresponding α-approximation
algorithm as previously observed.

To see that (2.4) holds when α = 2, consider some fractional solution x∗ and an arbitrary edge
e = uv ∈ E with x∗e > 0. Obtaining x̄∗ as above by deleting e, we have that

max{x̄∗(δ (u)), x̄∗(δ (v))} ≤ 1− x∗e ,

hence in any convex decomposition 1
α

x̄∗, at most a 2
α
(1−x∗e) fraction of the χ i do not accomodate

e, hence we require 1− 2
α
(1− x∗e)≥ 1

α
x∗e, which is equivalent to

α ≥ 2− x∗e (2.5)

Thus by selecting α = 2, we may successfully pack any edge 0 ≤ x∗e ≤ 1 in the last step of our
algorithm. However, by selecting a large edge at each iteration we can improve the bound. It is
well known that extreme points of PM(G) are 1/2-integral, i.e. they have values either 0, 1

2 , or 1,
so we may actually take α = 2− 1

2 = 3/2.

Note that although establishing the performance guarantee of the algorithm requires a bit of
analysis in showing that a small value of α allows iterative packing to succeed, the algorithm itself
is quite simple. For the more general packing problems we outline in the next few sections, we
will need to refine the basic method. For example, we might wonder whether iterating over the
edges in a particular order affords us anything. We will show that selecting a proper ordering of
the edges is crucial for iterative packing to succeed when demands are introduced. Another area
of refinement is the recursion in step (2): how far down do we go? In the above example, the base
case was an empty solution, but we might also stop earlier and use some other technique for the
base case.

For each of the following sections, we will define the problem that we solved and outline our
results in the context of previous work. We will briefly describe the enhancements to iterative
packing required to obtain our results, but we will leave full technical details to the papers we have
already published describing our work [59, 16, 60].

16

3 Packing in hypergraphs

3.1 Problem statement

One natural generalization of the maximum weight matching problem is to consider the problem
in the context of hypergraphs rather than graphs. One may motivate a hypergraph by considering
what a graph where each edge is allowed to have more than two vertices might look like. A
hypergraph H is defined on a finite set of vertices, V , just as a standard graph. However, instead
of edges, a hypergraph contains hyperedges, where each hyperedge, S is simply a subset of vertices
(standard edges are subsets of exactly two vertices). A k-hypergraph is a hypergraph in which every
hyperedge has at most k vertices; so a 2-hypergraph is nothing more than a standard graph (with
possible single-vertex “half edges”).

One may define a hypergraph matching analogously to a graph matching as a collection of
hyperedges such that no two share a common vertex. Our focus is on generalizations of hypergraph
matching. We consider the case where each vertex v has a capacity bv, and we allow up to bv
hyperedges incident upon v. This generalizes the well-known b-matching problem in graphs.

Another way of approaching the problem is to consider an integer program, (1.1) where the
matrix A and vector b are nonnegative. Such problems are called packing problems. If we fur-
ther restrict A to have entries that are either 0 or 1, then we obtain exactly the maximum weight
hypergraph b-matching problem described above. The columns of A correspond to the hyper-
edges, while its row correspond to vertices. If we consider a sparse matrix A in which no column
has more than k nonzero entries, then we obtain the maximum weight k-hypergraph b-matching
problem. The 2-hypergraph 1-matching problem is equivalent to the maximum weight matching
problem in graphs. Although the b-matching problem in graphs is solvable in polynomial time,
k-hypergraph b-matching is NP-hard for k ≥ 3 even when b = 1.

3.2 Related work

Matching problems in k-hypergraphs are well-studied. A celebrated result of Füredi, Kahn, and
Seymour [36] established the integrality gap of the natural relaxation at k−1+1/k for k-hypergraphs
matching, with an improvement to k− 1 for k-partite k-uniform hypergraphs. On the algorithmic
side for any fixed ε > 0, the best known performance ratios are (k

2 + ε) for the unweighted ver-
sion by Hurkens and Schrijver [45] and (k+1

2 + ε) for the weighted version by Berman [10]. On
the other hand, Hazan, Safra and Schwartz [44] showed that the problem is hard to approximate
within a factor of Ω(k

logk) unless P= NP.

The above algorithms are based on local search and do not provide a bound on the integrality
gap of the natural relaxation. Chan and Lau [19] recently gave a (k− 1+ 1/k)-approximation
algorithm based on the fractional local ratio method; their approximation guarantee matches the
integrality gap of the natural relaxation and offers an improvement for k = 3. They also give linear
and semidefinite formulations with an improved gap.

17

Unfortunately, none of the above results extend to b-matching in k-uniform hypergraphs. For
this problem fewer approximation results are known. Most relevant to our work are a greedy
k+1-approximation by Krysta [55] and a primal-dual k-approximation by Young and Koufogian-
nakis [54]. An algorithm with guarantee (k+3

2 + ε) is implicit in the recent work of Feldman et
al. [33] and Ward [66] on k-exchange systems; however, its running time has an exponential de-
pendence on k and a pseudo-polynomial dependence on b. In addition to being a true polynomial
time algorithm with respect to k and b, our result provides a better approximation for k ≤ 4.

3.3 Results

We derived a k− 1+ 1/k-approximation algorithm for k-hypergraph b-matching [60]. Our al-
gorithm also establishes that the integrality gap of the natural LP relaxation for this problem is
k− 1+ 1/k for any prime k; though this is conjectured to be the case for all k. Thus algorithm
obtains the best possible performance ratio using the natural LP relaxation, and an improvement
would require a new upper bound.

Devising our algorithm required a number of refinements to the vanilla iterative packing ap-
proach. We needed to perform iterative packing based on a carefully selected ordering of the
hyperedges that allowed us to prove our improved bound. We also needed stronger inductive con-
ditions on the approximate convex decomposition that our iterative packing algorithm produced.
Although the algorithm is fairly simple to implement, the analysis required handling many techni-
cal details and was nontrivial.

18

4 Demand packing in graphs and hypergraphs

4.1 Problem statement

We also considered a demand version of the k-hypergraph b-matching problem, which we refer to
as the k-hypergraph demand matching (k-HDM) problem. From the IP perspective, the problem
we considered is solving any packing integer program (with possibly non 0 or 1 coefficients) with
at most k nonzeros per column; we impose the additional restriction that all the nonzero values
in any particular column are the same. The more general problem in which the nonzero values
in a column are allowed to take on different values is called k-column-sparse packing integer
programming (k-CS-PIP). The motivation for the problem is perhaps more natural from the graph
perspective.

Consider the b-matching problem in graphs, except that now we also associate a demand de
with each edge e. For b-matching, a feasible solution is one that has at most bv edges adjacent
to vertex v. For the demand version this condition becomes: a feasible solution is one where the
sum of the demands of the edges adjacent to v is at most bv (i.e., F is a feasible set of edges
if ∑e∈F∩δ (v) de ≤ bv for all v). Thus feasibility is dictated by a knapsack type constraint at each
vertex. One can view this problem as a natural common generalization of both knapsack and
hypergraph matching problems.

The addition of demands renders the problem much more difficult to approximate, and prior
to our work it was not clear whether a performance guarantee comparable to the k− 1+ 1/k for
the non-demand version was achievable. Moreover, even the demand matching problem, obtained
when they hypergraph is a graph (i.e. k = 2), is NP-hard [64].

4.2 Related work

Shepherd and Vetta introduced the demand matching problem in 2002 and observed connections
to designing CLOS switching networks [64]. They gave a deterministic 3.5-approximation al-
gorithm and randomized 3.264-approximation algorithm for demand matching. Chakrabarty and
Pritchard [62] recently gave a deterministic 4-approximation algorithm and randomized 3.764-
approximation algorithm for the more general 2-CS-PIP problem. Shepherd and Vetta also estab-
lished a lower bound of 3 on the integrality gap of the natural LP for demand matching.

For the more general k-hypergraph demand matching problem, Chekuri, Mydlarz, and Shep-
herd [23] presented an approximation algorithm with O(k) guarantee for the restricted version
in which the maximum demand of any hyper edge is at most minv bv. Their result is part of a
framework which they developed based on work of Kolliopoulos and Stein [53] that relates the
integrality gap of a demand-endowed packing problem to its unit demand counterpart.

While Chekuri et al. [21] observed an 8k-approximation for k-HDM, a recent flurry of work
has also yielded O(k)-approximations for the more general k-CS-PIP problem. Pritchard initiated

19

the improvements with an iterative rounding based 2kk2-approximation [61], which was improved
to an O(k2)-approximation by Chekuri, Ene, and Korula (see [62] and [6]) and Chakrabarty and
Pritchard [62]. Most recently, Bansal et al. [6] devised a deterministic 8k-approximation and a
randomized (ek+o(k))-approximation.

4.3 Results

Our first result for these problems is a deterministic 2k-approximation for k-hypergraph demand
matching. The integrality gap of this relaxation is at least 2k− 1 [6], hence our result essentially
closes the gap. We show that our result is obtained by a simple modification to the standard
iterative packing approach, namely iterate over the edges in order of decreasing demand. No other
modifications are necessary. The fact that such a simple algorithm is able to achieve the integrality
gap is remarkable considering the difficulties that demands present. Our result is also interesting
because we give a performance guarantee that is only a factor of 2 off from the ones we were able
to derive for the non-demand version of the problem.

Our second results settles an open problem and establishes the integrality gap for both demand
matching and the more general 2-CS-PIP by giving a 3-approximation algorithm whose perfor-
mance guarantee matches the lower bound given by Shepherd and Vetta. This required a more
sophisticated invocation of iterative packing with a different base case. We essentially used iter-
ative packing to handling a troublesome configuration of edges and used an existing algorithm to
finish the job. This type of hybrid approach presents interesting possibilities for future work.

The results are detailed in a single-authored paper by the PI in the prestigious peer-reviewed
Integer Programming and Combinatorial Optimization conference [59].

20

5 Capacitated 2-edge-connected spanning subgraph

5.1 Problem statement

The 2-edge-connected spanning subgraph (2-ECSS) problem captures the essence of network de-
sign: given a graph with edge costs, we seek to select, at minimum cost, a subset of edges spanning
all the vertices that contains at least two edge-disjoint paths between any pair of vertices. This type
of requirement is natural in the design of networks that are robust in light of attacks or failures.
This problem is a fundamental combinatorial optimization problem, in part because of its close
relation to the traveling salesman problem (TSP). Indeed under metric costs, the approximability
of the two problems has both been observed and conjectured to behave similarly [39].

We consider a generalization of 2-ECSS which endows it with economies of scale. In addi-
tion to purchasing a single edge uv, our generalization allows the bulk purchase of bundles of
edges between u and v at a discounted rate; i.e., purchasing a bundle is never more expensive than
purchasing the same number of individual edges. Since we require 2-edge-connectivity, a bun-
dle need not contain more than two edges. Moreover multiple bundles between a pair of vertices
are redundant as we need only offer the single cheapest bundle. Thus our generalization offers
three installation options between each pair of vertices: (i) no edge, (ii) a single edge, or (iii) a
bundle of two edges. This type of problem falls under the banner of capacitated [18, 15] or buy-
at-bulk [4, 37, 22] network design. We follow Chakrabarty et al. [18] and refer to our problem as
the capacitated 2-ECSS (cap-2-ECSS) problem, where each edge has a capacity that represents the
size of the associated bundle; e.g., a bundle of two edges is represented as an edge of capacity 2.

This problem differs from those we have discussed thus far in that it is a covering rather than
a packing problem. Here, since our objective is minimization, we must redefine what we mean
by an α-approximation algorithm (recall Defintion 1.1). In the context of minimization problems,
an α-approximation algorithm produces a solution of cost at most α ·OPTI for any instance I.
We still have that α = 1 is an exact algorithm and that the smaller the value of α , the better the
performance of the algorithm. We define integrality gaps accordingly. The notion of capacities
here is analogous to that of demands in the context of packing problems that we have discussed.

5.2 Related work

The standard 2-ECSS problem admits a 2-approximation algorithm, and several algorithms of dif-
ferent flavors are known [46, 51, 52]. Under the restriction of metric costs, 2-ECSS is closely
related to (symmetric) TSP, and Christofides’ celebrated heuristic for metric TSP [24] delivers a
3/2-approximation algorithm for metric 2-ECSS as well. In fact for metric costs the natural LP
relaxation for 2-ECSS is equivalent to the subtour relaxation [39, 67], which is a well known and
standard TSP LP relaxation (e.g. Schrijver, Chapter 58 [63]). Wolsey showed that Christofides’
algorithm is also a 3/2-approximation with respect to this LP bound [68]. The integrality gap
is known to be at least 4/3, and it is a well known conjecture that it is precisely 4/3 (e.g. Goe-

21

mans [38]).

Another closely related variant is one which allows selecting multiple copies of any edge (we
need at most two). The TSP counterpart to this multi-2-ECSS problem is the graphical TSP [25],
which allows doubling edges and seeks to obtain a minimum cost spanning connected eulerian
subraph (i.e. all vertex degrees are even). Both multi-2-ECSS and graphical TSP admit 3/2-
approxmations as well [13]. For these problems the metric and multiedge variants are equivalent
from an optimization and approximation point of view.

Interestingly, in our case of cap-2-ECSS such an equivalence is not apparent, since the usual
technique of shortcutting does not immediately apply to capacitated edges. Thus multi-2-ECSS
is a more appropriate pedigree for cap-2-ECSS rather than the more commonly formulated met-
ric 2-ECSS. Capacitated network design has attracted a great deal of interest recently, and many
generalizations of cap-2-ECSS have been studied, including larger degrees of connectivity, multi-
ple commodities, and richer notions of economies of scale; see [4, 18, 37, 22] and the references
therein for a sample of recent work. In particular Chakrabarty et al. [18] give logarithmic approxi-
mation algorithms for capacitated variants of k-ECSS.

5.3 Results

We show that, somewhat surprisingly, the capacitated extension of the natural LP relaxation for
(multi-)2-ECSS has an integrality gap of at least 2. We offer a strengthened formulation, and
demonstrate its integrality gap is between 3/2 and 5/3. Our result is constructive and we give
a Christofides like 5/3-approximation algorithm. Our result is interesting because in addition to
giving a good approximation guarantee, we show how existing approaches like the Chrstiofides
heuristic may be extended to address capacities/demands.

This work was conducted jointly with Robert Carr (01465) and has been accepted for publica-
tion in the high-impact journal, Operations Research Letters [16].

22

6 Future work

In addition to establishing the state of the art in terms of theoretical performance guarantees, we
believe our algorithms have the potential for significant practical impact. In fact this was part of the
motivation in engineering a simple but effective framework like iterative packing. Our algorithms
are easy to implement; however, many integer programming applications arising at the labs have
complicated constraints in addition to types of packing or resource allocation constraints our work
addresses. A direction for future research is to investigate how our work can be brought to bear
on such applications. However, our work still has the potential for immediate impact in that the
iterative packing framework can be integrated within Sandia’s PICO IP solver to provide upper
bounds for problems with a packing component.

23

7 Conclusion

Our most significant contribution is devising the iterative packing framework which provides a
unified approach for designing approximation algorithms for packing problems. Moreover, the
performance guarantees offered by these algorithms are very good and are able to match the inte-
grality gap of the natural LP relaxation, indicating that improving our results is challenging and
may not even be possible.

The work conducted under this LDRD has resulted in several publications in top peer-reviewed
Operations Research venues. In particular we produced: 1 peer-reviewed conference paper, 1 jour-
nal paper, 1 submitted peer-reviewed conference paper, and 1-2 additional papers in preparation.

24

References

[1] 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 21-24
October 2006, Berkeley, California, USA, Proceedings. IEEE Computer Society, 2006.

[2] 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October
23-26, 2010, Las Vegas, Nevada, USA. IEEE Computer Society, 2010.

[3] Anthony Alexander, Sylvia Boyd, and Paul Elliot-Magwood. On the integrality gap of the
2-edge connected subgraph problem. Technical Report TR-2006-04, SITE, University of
Ottawa, 2006.

[4] Spyridon Antonakopoulos, Chandra Chekuri, F. Bruce Shepherd, and Lisa Zhang. Buy-at-
bulk network design with protection. Math. Oper. Res., 36(1):71–87, 2011.

[5] Giorgio Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi, P. Crescenzi, and
V. Kann. Complexity and Approximation: Combinatorial Optimization Problems and Their
Approximability Properties. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1st edition,
1999.

[6] Nikhil Bansal, Nitish Korula, Viswanath Nagarajan, and Aravind Srinivasan. On k-column
sparse packing programs. In Eisenbrand and Shepherd [31], pages 369–382.

[7] Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph (Seffi) Naor, and Baruch Schieber.
A unified approach to approximating resource allocation and scheduling. J. ACM, 48:1069–
1090, September 2001.

[8] Reuven Bar-Yehuda, Magnús M. Halldórsson, Joseph Naor, Hadas Shachnai, and Irina
Shapira. Scheduling split intervals. SIAM J. Comput., 36(1):1–15, 2006.

[9] Reuven Bar-Yehuda and Dror Rawitz. Using fractional primal-dual to schedule split intervals
with demands. Discrete Optimization, 3(4):275–287, 2006.

[10] Piotr Berman. A d/2 approximation for maximum weight independent set in d-claw free
graphs. In Halldórsson [42], pages 214–219.

[11] Robert E. Bixby, E. Andrew Boyd, and Roger Z. Rı́os-Mercado, editors. Integer Program-
ming and Combinatorial Optimization, 6th International IPCO Conference, Houston, Texas,
USA, June 22-24, 1998, Proceedings, volume 1412 of Lecture Notes in Computer Science.
Springer, 1998.

[12] C. Boucher and D. Loker. Expected approximation guarantees for the demand matching
problem. Technical Report CS-2006-33, University of Waterloo, School of Computer Sci-
ence, 2006.

[13] Sylvia Boyd and Amy Cameron. A 3/2-approximation algorithm for the multi-two-edge
connected subgraph problem. Technical Report TR-2008-01, SITE, University of Ottawa,
2008.

25

[14] Robert Carr and R. Ravi. A new bound for the 2-edge connected subgraph problem. In Bixby
et al. [11], pages 112–125.

[15] Robert D. Carr, Lisa Fleischer, Vitus J. Leung, and Cynthia A. Phillips. Strengthening inte-
grality gaps for capacitated network design and covering problems. In SODA, pages 106–115,
2000.

[16] Robert D. Carr and Ojas Parekh. Approximating a capacitated 2-edge-connected spanning
subgraph problem. Operations Research Letters, 2012. 13 pages, accepted for publication.

[17] Robert D. Carr and Santosh Vempala. Randomized metarounding. Random Struct. Algo-
rithms, 20(3):343–352, 2002.

[18] Deeparnab Chakrabarty, Chandra Chekuri, Sanjeev Khanna, and Nitish Korula. Approxima-
bility of capacitated network design. In Günlük and Woeginger [41], pages 78–91.

[19] YukHei Chan and LapChi Lau. On linear and semidefinite programming relaxations for
hypergraph matching. Mathematical Programming, pages 1–26, 2011.

[20] Moses Charikar, editor. Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010. SIAM, 2010.

[21] Chandra Chekuri, Alina Ene, and Nitish Korula. Unsplittable flow in paths and trees and
column-restricted packing integer programs. In Dinur et al. [27], pages 42–55.

[22] Chandra Chekuri, Mohammad Taghi Hajiaghayi, Guy Kortsarz, and Mohammad R.
Salavatipour. Approximation algorithms for non-uniform buy-at-bulk network design. In
FOCS [1], pages 677–686.

[23] Chandra Chekuri, Marcelo Mydlarz, and F. Bruce Shepherd. Multicommodity demand flow
in a tree and packing integer programs. ACM Trans. Algorithms, 3(3):27, 2007. Preliminary
version appeared in Proc. 30th ICALP, pages 410–425, 2003.

[24] N. Christofides. Worst case analysis of a new heuristic for the traveling salesman problem.
Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon Uni-
versity, Pittsburgh, PA, 1976.

[25] G. Cornuéjols, D. Naddef, and J. Fonlupt. The traveling salesman problem on a graph and
some related integer polyhedra. Math. Programming, 33:1–27, 1985.

[26] Camil Demetrescu and Magnús M. Halldórsson, editors. Algorithms - ESA 2011 - 19th An-
nual European Symposium, Saarbrücken, Germany, September 5-9, 2011. Proceedings, vol-
ume 6942 of Lecture Notes in Computer Science. Springer, 2011.

[27] Irit Dinur, Klaus Jansen, Joseph Naor, and José D. P. Rolim, editors. Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques, 12th International
Workshop, APPROX 2009, and 13th International Workshop, RANDOM 2009, Berkeley, CA,
USA, August 21-23, 2009. Proceedings, volume 5687 of Lecture Notes in Computer Science.
Springer, 2009.

26

[28] Christoph Dürr and Thomas Wilke, editors. 29th International Symposium on Theoretical
Aspects of Computer Science, STACS 2012, February 29th - March 3rd, 2012, Paris, France,
volume 14 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[29] Jack Edmonds. Maximum matching and a polyhedron with 0,1 vertices. J. Research National
Bureau Standards, Sect. B, 69:185–204, 1965.

[30] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467,
1965.

[31] Friedrich Eisenbrand and F. Bruce Shepherd, editors. Integer Programming and Combinato-
rial Optimization, 14th International Conference, IPCO 2010, Lausanne, Switzerland, June
9-11, 2010. Proceedings, volume 6080 of Lecture Notes in Computer Science. Springer, 2010.

[32] Uriel Feige and Mohit Singh. Edge coloring and decompositions of weighted graphs. In
Halperin and Mehlhorn [43], pages 405–416.

[33] Moran Feldman, Joseph Naor, Roy Schwartz, and Justin Ward. Improved approximations
for k-exchange systems - (extended abstract). In Demetrescu and Halldórsson [26], pages
784–798.

[34] Amos Fiat and Peter Sanders, editors. Algorithms - ESA 2009, 17th Annual European Sym-
posium, Copenhagen, Denmark, September 7-9, 2009. Proceedings, volume 5757 of Lecture
Notes in Computer Science. Springer, 2009.

[35] Lisa Fleischer, Michel X. Goemans, Vahab S. Mirrokni, and Maxim Sviridenko. Tight ap-
proximation algorithms for maximum general assignment problems. In SODA ’06: Proceed-
ings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 611–620,
New York, NY, USA, 2006. ACM.

[36] Zoltán Füredi, Jeff Kahn, and Paul D. Seymour. On the fractional matching polytope of a
hypergraph. Combinatorica, 13(2):167–180, 1993.

[37] Ashish Goel and Ian Post. One tree suffices: A simultaneous o(1)-approximation for single-
sink buy-at-bulk. In FOCS [2], pages 593–600.

[38] Michel X. Goemans. Worst-case comparison of valid inequalities for the tsp. Math. Program.,
69:335–349, 1995.

[39] Michel X. Goemans and Dimitris J. Bertsimas. Survivable networks, linear programming
relaxations and the parsimonious property. Math. Program., 60:146–166, 1993.

[40] Ralph E. Gomory. An algorithm for integer solutions to linear programs. In Recent advances
in mathematical programming, pages 269–302. McGraw-Hill, New York, 1963.

[41] Oktay Günlük and Gerhard J. Woeginger, editors. Integer Programming and Combinatoral
Optimization - 15th International Conference, IPCO 2011, New York, NY, USA, June 15-17,
2011. Proceedings, volume 6655 of Lecture Notes in Computer Science. Springer, 2011.

27

[42] Magnús M. Halldórsson, editor. Algorithm Theory - SWAT 2000, 7th Scandinavian Workshop
on Algorithm Theory, Bergen, Norway, July 5-7, 2000, Proceedings, volume 1851 of Lecture
Notes in Computer Science. Springer, 2000.

[43] Dan Halperin and Kurt Mehlhorn, editors. Algorithms - ESA 2008, 16th Annual European
Symposium, Karlsruhe, Germany, September 15-17, 2008. Proceedings, volume 5193 of Lec-
ture Notes in Computer Science. Springer, 2008.

[44] Elad Hazan, Shmuel Safra, and Oded Schwartz. On the complexity of approximating -set
packing. Computational Complexity, 15(1):20–39, 2006.

[45] Cor A. J. Hurkens and Alexander Schrijver. On the size of systems of sets every t of which
have an sdr, with an application to the worst-case ratio of heuristics for packing problems.
SIAM J. Discrete Math., 2(1):68–72, 1989.

[46] Kamal Jain. Factor 2 approximation algorithm for the generalized steiner network problem.
In FOCS, pages 448–457, 1998.

[47] Kamal Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica, 21:39–60, 2001.

[48] Joanna Jedrzejowicz and Andrzej Szepietowski, editors. Mathematical Foundations of Com-
puter Science 2005, 30th International Symposium, MFCS 2005, Gdansk, Poland, August
29 - September 2, 2005, Proceedings, volume 3618 of Lecture Notes in Computer Science.
Springer, 2005.

[49] David S. Johnson and Uriel Feige, editors. Proceedings of the 39th Annual ACM Symposium
on Theory of Computing, San Diego, California, USA, June 11-13, 2007. ACM, 2007.

[50] Idit Keidar, editor. Distributed Computing, 23rd International Symposium, DISC 2009, Elche,
Spain, September 23-25, 2009. Proceedings, volume 5805 of Lecture Notes in Computer
Science. Springer, 2009.

[51] Samir Khuller. Approximation algorithms for finding highly connected subgraphs. In Dorit S.
Hochbaum, editor, Approximation Algorithms for NP-hard Problems. PWS Publishing Co.,
Boston, Mass., 1996.

[52] Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph carvings. J. ACM,
41(2):214–235, 1994.

[53] Stavros G. Kolliopoulos and Clifford Stein. Approximating disjoint-path problems using
packing integer programs. Mathematical Programming, 99(1):63–87, 2004.

[54] Christos Koufogiannakis and Neal E. Young. Distributed fractional packing and maximum
weighted b-matching via tail-recursive duality. In Keidar [50], pages 221–238.

[55] Piotr Krysta. Greedy approximation via duality for packing, combinatorial auctions and
routing. In Jedrzejowicz and Szepietowski [48], pages 615–627.

28

[56] Lap Chi Lau, Joseph Naor, Mohammad R. Salavatipour, and Mohit Singh. Survivable net-
work design with degree or order constraints. SIAM J. Comput., 39(3):1062–1087, 2009.

[57] Lap-Chi Lau, R. Ravi, and Mohit Singh. Iterative Methods in Combinatorial Optimization.
Cambridge University Press, New York, NY, USA, 1st edition, 2011.

[58] Ron Lavi and Chaitanya Swamy. Truthful and near-optimal mechanism design via linear pro-
gramming. In FOCS ’05: Proceedings of the 46th Annual IEEE Symposium on Foundations
of Computer Science, pages 595–604, Washington, DC, USA, 2005. IEEE Computer Society.

[59] Ojas Parekh. Iterative packing for demand and hypergraph matching. In Proc. of the 15th
International Conference on Integer Programming and Combinatorial Optimization, pages
349–361. Springer-Verlag, 2011.

[60] Ojas Parekh and David Pritchard. Approximation algorithms for generalized hypergraph
matching problems. 12 pages, submitted to the Symposium on Theoretical Aspects of Com-
puter Science, 2013.

[61] David Pritchard. Approximability of sparse integer programs. In Fiat and Sanders [34], pages
83–94.

[62] David Pritchard and Deeparnab Chakrabarty. Approximability of sparse integer programs.
To appear in Algorithmica, 19 pages, 2010.

[63] Alexander Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer-
Verlag, Berlin, 2003.

[64] F. Bruce Shepherd and Adrian Vetta. The demand-matching problem. Mathematics of Oper-
ations Research, 32(3):563–578, August 2007.

[65] Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning trees to
within one of optimal. In Johnson and Feige [49], pages 661–670.

[66] Justin Ward. A (k+3)/2-approximation algorithm for monotone submodular k-set packing
and general k-exchange systems. In Dürr and Wilke [28], pages 42–53.

[67] David P. Williamson. Analysis of the held-karp heuristic for the traveling salesman problem.
Master’s thesis, MIT, Cambridge, MA, June 1990.

[68] Laurence A. Wolsey. Heuristic analysis, linear programming and branch and bound. Math.
Program. Study, 13:121–134, 1980.

29

DISTRIBUTION:

1 MS 1326 Ojas Parekh, 01465
1 MS 1326 Robert D. Carr, 01465
1 MS 1326 M. Daniel Rintoul, 01465
1 MS 0899 Technical Library, 9536 (electronic copy)
1 MS 0359 D. Chavez, LDRD Office, 1911

30

v1.38

