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Abstract

Inference techniques play a central role in many cognitive systems. They transform low-
level observations of the environment into high-level, actionable knowledge which then gets
used by mechanisms that drive action, problem-solving, and learning. This paper presents
an initial effort at combining results from AI and psychology into a pragmatic and scalable
computational reasoning system. Our approach combines a numeric notion of plausibility
with first-order logic to produce an incremental inference engine that is guided by heuristics
derived from the psychological literature.

In this report, we illustrate core ideas with detailed examples and pseudocode. We also dis-
cuss the advantages of the approach with respect to cognitive systems, along with the properties
of problems for which the approach is best suited. Finally, we outline several key directions
for future research.
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1 Introduction

Reasoning plays a fundamental role in cognition and intelligence. It supports decision making,
action, problem-solving, and learning by converting observations of the surrounding environment
into a high-level representation of the current situation. Cognitive systems aimed at large and
complex environments therefore require the support of a computationally efficient and scalable
inference system to provide these interpretations. A central problem in computational inference
concerns brittleness. Many inference techniques work well under a handful of well-defined condi-
tions, but few can function outside their intended purpose. Each new appliction therefore requires
careful revision of existing inference methods.

The artificial intelligence and psychological communities have both studied reasoning exten-
sively. Artificial intelligence focuses on developing both powerful logic-based and uncertainty-
based computational mechanisms for reasoning under a variety of circumstances. However, the
resulting systems typically rely on proving or on carefully estimating probabilities for large num-
bers of beliefs at great computational expense. Resulting systems tend to ignore plausible but
unsound conclusions, to process large batches of data instead of individual observations, and often
do not scale well. Conversely, psychologists focus on describing at a high level the mechanisms
that humans use for reasoning under specific circumstances. Most mechanisms therefore lack suf-
ficient description for a computational implementation, or are too specific to apply to a general
cognitive systems.

This report presents initial work on the Plausible Logic Inference Engine (PLIE), which seeks
to combine results from both artificial intelligence and psychology into an incremental, pragmatic,
and scalable computational reasoning system. Our approach includes three key elements. First, it
combines first-order logic with uncertainty based on a notion of plausibility to provide the system
with a flexible knowledge representation. Second, the system includes an inference mechanism
that integrates deductive and abductive methods to provide a more robust inference capability than
either method can provide alone. Importantly, the inference mechanism also supports incremen-
tal update of individual beliefs. Finally, PLIE includes a guidance mechanism based on biases
identified in the psychology literature to determine which inferences the system should pursue.

Our presentation begins by describing the knowledge representation and specific inference pat-
terns applied by the inference engine. Next we discuss the inference process along with the heuris-
tics used it guide it. We illustrate key ideas throughout using an expanded version of Pearl’s (1988)
burglar alarm example. We also discuss the relationship of our approach to cognitive systems in
general throughout the presentation. Later, we outline the relationship of our proposed techniques
to other inference methods and discuss both roadblocks and next steps toward realizing the stated
goals. Some of these include constructing appropriate testbeds, extensions to analogical reasoning,
concept and structure learning, and metacognitive abilities such as bias learning.
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2 Knowledge Representation

Combining first-order logic with uncertainty has long been a goal of artificial intelligence. First-
order logic provides a compact representation and efficient inference techniques, but it does not
handle the uncertainties present in the real world. Probabilistic methods naturally capture and
reason about this uncertainty, but they do not represent or exploit the relational structure of the
world.

Recent efforts at combining the two, such as Markov logic (Richardson & Domingos, 2006),
have shown success. However, such methods rely heavily on complex statistical computation
which has not been shown to scale up. More fundamentally, combined methods such as Markov
logic depend heavily on translating first-order knowledge into grounded literals, which forfeits any
advantage given by the original, relational representation.

By contrast, psychologists have relatively little to say about mechanisms that combine these
two capabilities. While there is evidence that humans maintain and process both relational patterns
(schemata for example, Bartlett (1932)) and estimates of confidence in their beliefs (Shynkaruk &
Thompson, 2006), few specific mechanisms have been proposed. Broad theories of reasoning
based on both logic (Rips, 1994) and probability (Oaksford & Chater, 2007) have been advanced,
but little progress has been made toward unifying the two.

This work uses a combination of logic and uncertainty based on plausibility as first described by
Polya (1954), who codified the methods used for hypothesizing theorems and guiding the search
for the associated proofs. Polya’s approach was based on a qualitative notion of accumulating
confidence from evidence, and is largely consistent with Dempster-Shafer theory (Shafer, 1976),
a mathematical theory of evidence that allows one to combine many sources of evidence into a
degree of belief. Our approach replaces the qualitative account of confidence with a quantitative
one, but retains the important properties highlighted by Polya. The result is similar to MYCIN
(Shortliffe & Buchanan, 1975) and to Friedman’s (1981) work on plausible inference.

2.1 Beliefs and Working Memory

PLIE represents knowledge using a combination of predicate logic and uncertainty. A predicate
represents a generalized concept, or equivalently, a class of environmental situations. Each pred-
icate may include a list of arguments. For example, Alarm(x) represents the situation in which the
burglar alarm at location x is sounding.

Beliefs represent specific groundings or instances of a predicate such that each variable in the
predicate’s argument list is bound to some domain constant. For example, Alarm(BOB) indicates a
belief that the alarm at Bob’s house has sounded. Observations similarly correspond to grounded
predicates, but come from the perceptual process rather than the inference process. This work does
not speculate as to the nature of perception; we assume that some process produces the needed
results.
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Each belief, b, also has a plausibility score composed of the difference in evidence for and
against the belief, Pl(b)=E+(b)−E−(b), where 0≤E+(b),E−(b)≤ 1. The methods for calculat-
ing these evidence values are described later. Plausibility scores lie in the interval [−1,1] such that
Pl(b) = 1 indicates a strong belief in b while Pl(b) =−1 indicates a strong belief against b. Impor-
tantly, the plausibility of a belief is tied to the plausibility of its logical negation, Pl(b) =−Pl(¬b),
preventing contradictions. Pl(b) = 0 confounds the cases in which there is no evidence in either
direction (default state of all beliefs) and in which the evidence for and against a belief cancel
each other. From a decision-making point of view, these two cases may be reasonably viewed as
equivalent, but for cases in which distinguishing between no evidence and conflicting evidence is
important, the evidence values can be used directly.

PLIE stores both beliefs and observations in its working memory as nodes in a directed graph.
The edges of the graph represent derivational information, and stem from the inference process.
Specifically, a directed edge from belief b1 to b2 indicates that b1 formed part of the evidence
used to conclude (or explain) b2. Thus, observations have only outward directed edges, while all
inferred beliefs have at least one edge directed inward.

2.2 Rules and Long-Term Memory

Graph edges derive from the rules stored in long-term memory. Rules represent the relationships
among predicates that can be used to derive new beliefs. From this perspective, the contents of
working memory may be viewed as activated structures from long-term memory. This is consistent
with Cowan’s (1988) view that working memory is an extension of long-term memory, and that the
number of activated long-term structures is not limited, although the number of items in the focus
of attention is limited.

Rules in PLIE take the form

p1(·), p2(·), · · · , pm(·) =⇒q1(·), q2(·), · · · , qn(·) ,

where pi(·) and q j(·) represent predicates, and =⇒denotes threshold-implication (Stracuzzi &
Könik, 2008). Threshold-implication defines the consequent to be true if the linear-threshold func-
tion, ∑

m
i=0 vi Pl(pi)> 0, is satisfied given that vi represents the weights associated with each term in

the antecedent (wi for the consequent), and Pl(p0) = Pl(q0) = 1 by definition. Note that pi(·) and
qi(·) represent general predicates while pi and qi denote the specific groundings used to instantiate
a rule, which PLIE identifies by pattern matching from working memory. In this work, both sides
of the implication represent linear threshold functions, so when the antecedent function is satisfied,
the system updates beliefs in an effort to satisfy the consequent function.

Each implication also has two associated parameters that represent rule strength. For a rule
A=⇒B, the parameter α ≈ Pr(B|A) represents the reliability of the rule when viewed deductively,
meaning that belief in A implies a belief in B. Similarly, β ≈ Pr(A|B) represents the reliability
of the rule when viewed abductively, meaning that belief in B allows the assumption of A. Here,
0 ≤ α,β ≤ 1, though the two are not complimentary. In practice these parameters will initially
take default values, which the system can later modify based on experience.
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(1) Burglar(x1)
α=0.95
=⇒

β=0.40
Alarm(x1)

(2) Earthquake(x2)
α=0.30
=⇒

β=0.60
Alarm(x2)

(3) Alarm(x3) ∧ Neighbor(y3, x3) ∧ Quiet(y3)
α=0.90
=⇒

β=0.05
Calls(y3, x3)

(4) Alarm(x4) ∧ Neighbor(y4, x4) ∧ ¬Quiet(y4)
α=0.70
=⇒

β=0.5
Calls(y4, x4)

(5) PhoneRings(x5) ∧ Neighbor(y5, x5) ∧ Quiet(y5)
α=0.10
=⇒

β=0.95
Calls(y5, x5)

(6) SecurityCo(y6, x6) ∧ Calls(y6, x6)
α=1.0
=⇒

β=1.0
Burglar(x6)

Table 1. Long-term memory contents for the alarm example.

Table 1 shows the rules for the burglar alarm example. For the sake of clarity, they are expressed
using Boolean connectives rather than in threshold logic. For example, PLIE could represent the
antecedent of rule (6) as

1 ·Pl(SecurityCo(y, x))+1 ·Pl(Calls(y, x))−1.5 > 0 .

Threshold logic provides several important advantages. First, it provides a more powerful
representation than Horn clauses, including conjunctions, disjunctions, and many other simple
functions such as p1∧ (p2∨ p3). Second, the underlying numeric representation (the weights) also
provides a natural way to handle numeric (as opposed to symbolic) domain constants. Finally, with
respect to the long-term goals of this work, threshold logic provides a strong foundation for rule
learning. Specifically, the weights associated with each rule term creates a continuous relationship
among possible rule definitions, which provides for a much finer level of control than typically
available in relational representations. Stracuzzi and Könik (2008) demonstrate how to learn a set
of hierarchically structured predicate definitions based on threshold logic functions from sparse,
supervised examples.
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3 Inference Patterns and Confidence Propagation

Researchers in artificial intelligence have considered inference methods extensively, though often
in a piecemeal fashion. As noted, the integration of logical and statistical inference has only
recently come to the fore with methods such as Markov Logic (Richardson & Domingos, 2006)
and Bayesian Logic Programs (Kersting & De Raedt, 2005). The integration of multiple inference
patterns, such as deduction, abduction, and analogy has received even less attention. For example,
Kate and Mooney (2009) applied the deductive inference engine included with the Markov logic
framework abductively. However, the two methods rely on different rule structures so that the user
must decide which method to apply before encoding the domain rules.

In this report, we consider the combination of deduction and abduction. The utility of combin-
ing the two follows from their complementary nature. Deduction produces sound arguments (in
which the conclusion necessarily holds given the evidence), but can only restate existing knowl-
edge in different terms. Abduction adds new information to the system by hypothesizing (unsound)
explanations for existing knowledge, which deductive methods can then further expand upon. The
resulting system should therefore reason more broadly than one based on either method alone.

3.1 Inference Patterns

PLIE relies on four distinct inference patterns for constructing new beliefs. Each pattern, shown in
Table 2, applies to a specific situation depending on the available evidence. For example, modus
ponens deductively concludes the consequents (q j) of a rule given that the antecedents (pi) hold.
In the context of threshold-implication, this means that the evidence equation, ∑

m
i=0 vi Pl(pi) > 0,

must be satisfied by pattern matching beliefs from working memory to the predicates in the rule
antecedent. When successful, PLIE concludes that ∑

n
j=0 w j Pl(q j)> 0 must also hold. In practice,

this means that the system increases the plausibility in each of the rule’s consequent beliefs, qi.
The other inference patterns operate analogously depending on which beliefs get used as evidence.

The four inference patterns have differing characteristics. Two of them, modus ponens and
modus tollens, are logically sound, deductive rules. A third, denying the antecedent, is also de-
ductive in nature though not logically sound because it ignores the possibility that a conclusion
may be drawn in multiple ways. Nevertheless, logically unsound inference patterns are still useful
for accumulating evidence about beliefs (Polya, 1954) and for considering beliefs that, while not
provable, may still accurately describe an agent’s environment. Finally, affirming the consequent
serves as the basis for abduction, which is also not logically sound for similar reasons. Notice
also that two of the patterns deal with inference from positive evidence (plausibilities sufficiently
greater than zero), while two of them deal with negated evidence (plausibilities less than zero).
This lets PLIE handle a broad array of situations and rule structures.

Consider the following application of the inference patterns to the rules shown in Table 1.
For now, we consider only the symbolic application of patterns, but return in the next section to
describe the plausibility updates. Suppose that working memory initially contains the observations

11



Pattern Symbolic Form Evidence Update Equation

Modus Ponens p1(·), · · · , pm(·) =⇒q1(·), · · · ,qn(·) ∆E+(q j) = α
∑i∈S vi Pl(pi)

∑i∈S |v j|
• Deductive ∑

m
i=0 vi Pl(pi)> 0

• Increases evidence for qi ∑
n
j=0 w j Pl(q j)> 0

Modus Tollens p1(·), · · · , pm(·) =⇒q1(·), · · · ,qn(·) ∆E−(pi) =−α
∑ j∈S w j Pl(q j)

∑ j∈S |w j|
• Deductive ∑

n
j=0 w j Pl(q j)< 0

• Increases evidence against pi ∑
m
i=0 vi Pl(pi)< 0

Denying the Antecedent p1(·), · · · , pm(·) =⇒q1(·), · · · ,qn(·) ∆E−(q j) =−α
∑i∈S vi Pl(pi)

∑i∈S |v j|
• Deductive ∑

m
i=0 vi Pl(pi)< 0

• Increases evidence against qi ∑
n
j=0 w j Pl(q j)< 0

Accepting the Consequent p1(·), · · · , pm(·) =⇒q1(·), · · · ,qn(·) ∆E+(pi) = β
∑ j∈S w j Pl(q j)

∑ j∈S |w j|
• Abductive ∑

n
j=0 w j Pl(q j)> 0

• Increases evidence for pi ∑
m
i=0 vi Pl(pi)> 0

Table 2. Inference patterns and associated confidence updates.
For the symbolic forms, note that the implication (first line) rep-
resents a rule from long-term memory, the inequality above the
horizontal bar represents the evidence required for the pattern to
apply, and the inequality below the bar represents the conclusion
drawn given the pattern, the rule, and the evidence.

Quiet(JOHN) and Calls(JOHN, BOB), each with plausibilities of 1.0. The system can then apply rules (3)
and (5) with accepting the consequent to conclude (or assume) Alarm(BOB) (rule 3), PhoneRings(BOB)
(rule 5), and Neighbor(JOHN, BOB) (both rules). Figure 1 shows the coherence graph that would result
if the system applied both rules. Notice that Calls(JOHN, BOB) explains Quiet(JOHN). The opposite is
not true in this case because the antecedents to rules (3) and (5) are not satisfied, which prevents
PLIE from applying the rules with modus ponens.

Similarly, rule (4) does not apply in this case. Although the consequent matches with the
observation Calls(JOHN, BOB) in working memory, the antecedent term ¬Quiet(JOHN) contradicts
the observation Quiet(JOHN). For now, we assume that PLIE cannot change the plausibility of
observations (it trusts its senses). However, the assumption is not fundamental, and may be dropped
in later versions of the work. Rule (6) also does not apply because, in the context of working
memory contents, it fits the modus ponens pattern, which requires that the antecedent be satisfied.
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Calls(JOHN, BOB) E+ = 1.00
E− = 0.00

-(3,5)

@
@
@
@
@R

(5)

?

(3,5)

�
�
�
�
�	

(3)

Quiet(JOHN) E+ = 1.00
E− = 0.00

Neighbor(JOHN, BOB) E+ = 0.33
E− = 0.00

Alarm(BOB) E+ = 0.02
E− = 0.00 PhoneRings(BOB) E+ = 0.31

E− = 0.00

Figure 1. Contents of working memory generated by applying
the inference patterns and evidence updates from Table 2 to the
long-term memory contents in Table 1. Edges indicate derivation,
while edge labels indicate the rules used to derive the beliefs.

3.2 Evidence Updates

As discussed earlier, plausibility quantifies the system’s belief in specific aspects of the environ-
ment. PLIE represents and propagates any uncertainty associated with its rules and observations
through the inference process. This is particularly important in the context of abduction, which
produces logically unsound assumptions. Some of these may be reliable, while others may not.
Quantifying this uncertainty lets PLIE distinguish between these two cases and focus on working
with more plausible conclusions during subsequent inference steps. This is an essential aspect of
maintaining tractability in complex domains.

The update equations shown in Table 2 implement this by first combining the plausibility values
used to trigger the rule, and then dividing it among the conclusions. The summation factor in the
equations determines the amount of evidence that gets propagated by performing a weighted sum
over the plausibility scores associated with the matched beliefs. However, recall that threshold
logic can represent disjunctive (or partially disjunctive (as in p1 ∧ (p2 ∨ p3)) rule bodies. This
means that not all of the terms in the evidence must be satisfied for the rule to apply.

A belief b satisfies a rule term if sign(wb Pl(b)) is positive for the inference patterns that in-
crease confidence in conclusions (b contributes to exceeding the threshold), and negative for pat-
terns that decrease confidence in conclusions (b contributes to not exceeding the threshold). We
define S as the set of beliefs used to instantiate the satisfied terms in the evidence of a rule ap-
plication. For example, suppose p1∧ (p2∨ p3) represents the evidence for an inference step and
that PLIE has p1 and p3 in working memory with positive confidence, and p2 with negative confi-
dence. Applying modus ponens would produce S = {p1, p3}, while denying the antecedent would
produce S = {p2} (and fail).

Before PLIE propagates the accumulated update value to the conclusions, the value first gets
scaled by the reliability of the applied rule (α or β ) as shown in Table 2. This lends greater
confidence to conclusions drawn from reliable rules. Note also the sign of the evidence update,
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which is negated for inference patterns that increase evidence against a belief. In these cases, the
weighted sum of the evidence values will be negative because the sign of the weighted plausibilities
is negative. Evidence values are always positive however, so the sign needs to be flipped.

Finally, the evidence score for a belief qi is updated by

Et+1(qi) = (1−λ ŵi)Et(qi)+λ ŵi∆Et(qi) (1)

where ŵi =
|wi|
‖w‖ represents the normalized weight magnitude associated with qi in the rule, and

0 < λ < 1 represents a recency parameter (discussed below). The equation for updating pi is
analogous. Note that we omitted the positive and negative superscripts from E; Table 2 shows
which evidence value gets updated by a given inference pattern. However, if the qi term is negated
in the rule (wi < 0), then the update gets switched from E+ to E− or vice versa. This follows from
the plausibility relationship Pl(b) =−Pl(¬b) between beliefs and their negations.

Equation 1 supports a form of the primacy-recency bias (Ebbinghaus, 1913) by scaling the
existing and updated evidence scores. PLIE implements primacy by setting λ = 1 on the first
evidence update for each belief. This causes the initial evidence for a belief to have an outsized
effect compared to subsequent evidence (typically λ < 1, which scales down the impact of new
evidence). New evidence will eventually dominate the older evidence (a recency effect), but this
may require a sequence of several updates. Setting λ near 1 accelerates this process by increasing
the impact of new evidence, while λ near 0 extends the primacy effect. Psychologists view these as
memory biases, but this work assumes that biases in how beliefs and their supporting evidence get
stored impact the reasoning process. Along similar lines, rule terms with relatively large weight
magnitudes receive higher impact from new evidence than those with low weight magnitude, as
these contribute the most to satisfying the rule.

Returning now to Figure 1, notice that the plausibility associated with Alarm(BOB) is very low
at 0.04 (assuming that λ = 1 and the weight on each rule term is 1). This follows from the low
β value associated with rule (3), implying that John has a high false-positive rate. The plausi-
bility of PhoneRings(BOB) is much higher, indicating that John’s call is a much better indicator of
Bob’s phone ringing than of his burglar alarm’s sounding. Rules (3) and (5) both contribute to
the plausibility of Neighbor(JOHN, BOB) (assume that the rules were applied in the order listed in
Figure 1).

Upon initial review, the inference patterns and evidence updates may appear complex. How-
ever, closer inspection reveals that all of the patterns and equations represent minor variations on
a general mechanism depending on whether the inference flows with or against the rule’s impli-
cation sign, and whether the evidence increases the evidence for or against a belief. This closely
resembles Friedman’s (1981) work, except that in switching from Boolean to threshold logic, we
have collapsed several highly specialized cases into one general case.
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4 Inference Engine and Heuristics

The inference patterns described above govern the details of how PLIE combines beliefs with
rules to derive new beliefs. Given these patterns, the inference engine first selects beliefs and rules
from memory, and then applies the patterns to construct new beliefs and update plausibility scores.
Importantly, the incremental application of the inference patterns from Table 2 provides a seamless
integration of forward and backward reasoning methods, allowing PLIE to exploit opportunities
in reasoning as they become available. A similar idea appears in the planning community as
opportunistic planning, or metaplanning (see work by Hayes-Roth & Hayes-Roth, 1979, for an
early example). In this section, we describe the details of the inference engine, including the
methods used to select beliefs and rules for inference.

4.1 Heuristics and Biases

This work aims to produce a scalable inference engine that, while neither complete nor sound,
performs well in practice and provides a foundation for other cognitive abilities. At present, PLIE
does not have access to an agent’s goals, so our approach focuses on properties of beliefs based
on three cognitive biases, and one that is more computational in nature. The cognitive biases
specifically impact reasoning and have amassed substantial evidence in their favor. We do not claim
to reproduce the exact conditions that lead to these biases as identified in the literature. Instead, we
focus on incorporating a generalized view of each bias into our computational reasoning system.
Incorporating other biases and heuristics remains a key area of future work.

The first cognitive bias, explanatory coherence (Thagard, 1989), implies a preference for beliefs
that “hang together” in the context of explaining observations. Although often associated with
abduction, we also apply coherence to deduction, as PLIE may also make unsound deductive
inferences.

PLIE implements coherence as a measure of linkage with emphasis on the plausibility of the
linked beliefs and their proximity to observations. Let adj(b) represent the set of beliefs adjacent to
b in working memory regardless of edge direction. For a belief b′ ∈ adj(b), let rel(b′,b) represent
the rule reliability (α or β ) that applies when the system views the rule that links b with b′ as
though it were used to derive b from b′ (see Table 2). Also let δ (b′) represent the shortest distance
from b′ to any observation in working memory (0 if b′ is an observation).

Given these definitions, we define coherence as

coh(b) = ∑
b′∈adj(b)

ŵb′ rel(b′,b)
δ (b′)+1

Pl(b′) .

Though related to plausibility in its use of belief weights and rule reliabilities, coherence is a
measure of the total evidence in working memory for b, with each piece of evidence weighted by
its proximity to an observation. In practice, a unit increment in the coherence measure represents
direct evidence from or explanation of one (high plausibility) observation through a reliable rule.
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The measure attenuates as evidence gets divided over multiple rule terms, rules become unreliable,
observations grow more distant, and evidence terms become less plausible. As a result, coherence
is unbounded in magnitude and cannot be computed incrementally. Nevertheless, the coherence
measure is computationally simple and calculated locally, so the approach should remain tractable
as the size of working memory grows large. Our coherence measure is similar in spirit to that of
Ng and Mooney (1990), but operates over individual beliefs rather than proof trees.

The second cognitive bias implements a preference for working with highly plausible beliefs.
We view this as a generalization of several specific biases identified in the literature, such as the
confirmation and disconfirmation biases (Lord et al., 1979). The former states that people tend to
favor information that confirms their preconceptions, while the latter states that people tend to be
very critical of information that contradicts them.

PLIE implements these in two ways. First, it ignores beliefs that have low plausibility. In the
alarm example, an agent may ignore the contingency in which the alarm has sounded if John’s un-
reliability causes a sufficiently low plausibility score and no other evidence is available to increase
it. Second, PLIE prefers rule applications with stronger evidence over those with weaker evidence.
The extent to which a rule application exceeds its threshold indicates how strongly the evidence
supports the rule application. This favors rule instances with more matched evidence terms, and
whose evidence terms have high plausibility.

The preference for working with highly plausible beliefs comes with two caveats. First, the ap-
proach may ignore a plausible inference if evidence is spread thinly across many rule applications.
In cases for which no one rule application provides sufficient evidence to maintain a belief, and the
inference procedure does not apply multiple rules for the belief in a single cycle, the belief will be
ignored repeatedly. The extent to which this is acceptable behavior requires empirical evaluation.
The second caveat is that the inference procedure could revisit plausible beliefs repeatedly, causing
them to become more plausible without any new evidence. To control this, the inference procedure
is explicitly prevented from revisiting previously made inferences as indicated by the coherence
graph.

The third cognitive bias applies a second form of recency in the inference engine by prefer-
ring to expand upon beliefs and observations that have been recently updated or added to working
memory. Recall that primacy and recency biases have already been implemented by the plausibil-
ity update equations. This gets implemented by having the inference engine select only a small
number of beliefs for expansion during any given inference cycle based largely on their the recency.

The computational bias implemented in the inference engine borrows from Fischer et al’s
(1991) work on essential explanation. Here, the system prefers beliefs that unify with fewer rules
in long-term memory. The underlying insight is that choosing from among fewer options means
that fewer incorrect choices are possible, and the computational cost of evaluating each option will
be lower overall. Like coherence, essential explanation was developed in the context of abductive
inference, although PLIE uses it for guiding deduction as well.

This combination of biases should cause PLIE to reason along a small number of plausible
trajectories. Nothing explicitly prevents the system from exploring other lines of inference opened
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by new observations or substantial changes to the plausibility of established beliefs. However, it
should not explore broadly through highly implausible regions of the belief-space.

4.2 Inference Procedures

PLIE operates in cycles, with each cycle consisting of three steps. First, the system selects a small
subset of beliefs from working memory for expansion and identifies the relevant rules from long-
term memory. Next, it applies the inference patterns from Table 2 to derive new and update existing
beliefs. Finally, it filters the resulting beliefs to remove those with low plausibility or coherence.
The remainder of this section details each step in turn.

Each cycle begins with PLIE applying the essential explanations bias to select a small subset of
beliefs, Wsel, from working memory for expansion. The number of selected beliefs depends on the
number of beliefs having the same number of essential explanations (all beliefs with the minimum
count are selected). PLIE then identifies the applicable rules from long-term memory given the
beliefs in Wsel. A rule is applicable if three conditions are met: (1) a belief from Wsel matches a
term in the rule evidence, (2) the remaining evidence terms can be matched by beliefs in working
memory, and (3) the intended inference has not been previously made using the same rule and
evidence.

After identifying the set of applicable rules, PLIE then sorts them according to the change in
belief coherence that applying the rules would effect. The system prefers larger improvements to
coherence over smaller improvements or reductions. Finally, PLIE applies the inference patterns
from Table 2 to generate conclusions and update plausibility scores. This may entail multiple
rule applications and may generate many conclusions, or multiple updates to a single conclusion.
Though the search remains focused on recent, coherent beliefs, this provides a broader search
through belief space than if the system used only the single “best” belief in each cycle.

Also note that conclusions drawn abductively by PLIE may contain unbound variables, such as
Neighbor(y3, BOB). Here, the system creates a Skolem constant as a place holder. During subsequent
inference cycles, it can unify Skolem constants with other constants. For example, this would
effectively replace the belief “Bob has some specific, unnamed neighbor” with “Bob’s neighbor is
John.” All instances of a Skolem constant must be replaced with the same domain constant and all
unifications must be consistent (must not create a belief that contradicts any existing belief).

After generating conclusions and updating plausibility scores, PLIE filters its results to remove
beliefs with very low magnitude plausibility. Specifically, any belief b with |Pl(b)| < τ does not
get added to (or replaced in) working memory, where τ is an adjustable parameter. This prevents it
from creating and storing a large number of beliefs with scores very near to zero. Although PLIE is
unlikely to select such beliefs for Wsel, they may still get matched as part of the inference process,
thereby deriving a potentially large number of new beliefs with low plausibility.

An important side effect of this is that some beliefs may lose their support over time. The
plausibility of such a belief does not change in working memory, but the coherence declines, which
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biases PLIE against selecting the belief for expansion. Plausibility changes only when the system
draws a direct conclusion about a belief.

4.3 An Example

Consider now a larger example based on the rules in Table 1. To begin, suppose that PLIE receives
four observations, each with plausibility 1.0: Neighbor(JOHN,BOB), Quiet(JOHN), SecurityCo(XYZ,BOB),
and Calls(XYZ,BOB). Initially, the only possible inference applies rule (6) with modus ponens to
conclude that there is a burglar at Bob’s house, Burglar(BOB), as shown in the coherence graph in
Figure 2. The high plausibility of the conclusion follows from the use of both highly plausible
observations as evidence, and a highly reliable inference rule (α = 1.0).

In the second cycle, PLIE chains forward from Burglar using rule (1) with modus ponens to
conclude that the alarm has sounded at Bob’s house, Alarm(BOB). This conclusion is also highly
plausible for reasons similar to those above. Note however that the coherence of Burglar (1.13) is
substantially higher than that of Alarm (0.48) because Burglar links directly to observations.

PLIE has available two applicable rule instances in the third cycle given that Wsel contains
Alarm(BOB). Rule (2) applies abductively and rule (3) applies with modus ponens. Assuming similar
thresholds for the two rules, PLIE would prefer rule (3) over rule (2) based on the slightly larger
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Figure 2. Coherence graph after three inference cycles
given the observations Neighbor(JOHN,BOB), Quiet(JOHN), Securi-
tyCo(XYZ,BOB), and Calls(XYZ,BOB). Dashed arrows indicate avail-
able inferences not made by PLIE.
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plausibility contributions, and therefore coherence improvements, from Neighbor and Quiet (1.0
versus 0.95 from Alarm). PLIE therefore infers Calls(JOHN,BOB) with coherence 1.16 based on its
links to two observations. The inference also raises the coherence of Alarm slightly to 0.50. The
small increment in this case follows from the low reliability of rule (3) when viewed abductively
(β = 0.05).

To summarize the inference process so far, PLIE has determined that a burglar has very likely
struck Bob’s house given that the XYZ security company has called him. His alarm system has
also plausibly sounded, which implies that John may also call soon. PLIE avoided the inference
that an earthquake triggered the alarm, though, even if made, the inference would be both less
plausible and less coherent than the burglar explanation. Nevertheless, this does raise a question
about whether preferences and coherence are sufficient to avoid or distinguish between multiple,
conflicting explanations for a single set of observations. PLIE does not explicitly represent the
notion that, while not technically mutually exclusive, rules (1) and (2) should not typically occur
together. For now we reserve this as a point for future work.

A second open question relates to a stopping criterion. For cases in which the stream of incom-
ing observations stagnates for a period of time, PLIE would ideally determine a point at which con-
tinuing inference is no longer productive. In the current example, PLIE could continue reasoning
by applying rule (5) abductively to generate the assumption PhoneRings(BOB). As with Earthquake,
this represents an alternate, and less plausible explanation for John calling Bob. If other rules re-
lated to events or beliefs stemming from the alarm’s sounding or John’s call to Bob were present
in long-term memory, then the system would tend to follow those paths. In this case, no other in-
ference paths are available, so PLIE returns to considering the low-plausibility and low-coherence
lines of reasoning ignored earlier.
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5 Discussion

The plausibility-based approach to computational reasoning outlined above represents a distinct
departure from traditional proof-based logic. It provides mechanisms for drawing unsound con-
clusions, and relies on incomplete heuristic search. Although this admits the possibility that the
system may draw incorrect conclusions or ignore many correct conclusions, it also represents an
attempt at avoiding the intractability associated with many logical inference systems by identifying
potentially useful conclusions. This is an important point in the context of cognitive agents whose
goal is to perform tasks in complex environments.

From this perspective, adding information about agent goals to PLIE would be a fruitful di-
rection for future work. For example, PLIE could use the relationship of a belief’s predicate to
goal predicates as an additional guidance heuristic. This respects the approach of exploring from
observations (as well as goals) while further sharpening the system’s focus on working with beliefs
that are relevant to the task or domain at hand.

In the context of symbolic inference, Bridewell and Langley’s (2011) AbRA is most similar
to PLIE. Although their discussion focuses on abduction, AbRA can also apply rules deductively.
Both systems can therefore combine both forward chaining from observations and backward chain-
ing from goals. Their approach does not support inference from negated evidence (modus tollens
and denying the antecedent) and does not handle uncertainty in beliefs or rules, however. Fried-
man’s (1981) work does support all four inference patterns identified in Table 2 and uses a numeric
confidence measure that is somewhat similar to PLIE’s plausibility scores, but relies on brute force
computation to derive all possible beliefs.

Production systems such as Soar (Laird et al., 1987) also perform a kind of symbolic inference.
Unlike many other inference systems, production systems do not commit to any one reasoning
formalism, although the rules can be structured to implement a variety of formalisms. Instead,
they take a purely syntactic approach, firing rules that match the current belief state and using
other productions to implement preferences while typically ignoring the structural properties of the
generated beliefs. In contrast, PLIE commits to a fixed reasoning formalism based on deduction
and abduction while its guidance heuristics take the relationships among beliefs into consideration.

PLIE also represents a departure from traditional statistical optimization-based inference tech-
niques. These methods, including Bayesian networks (Pearl, 1985) and more recent efforts like
Markov logic (Richardson & Domingos, 2006), attempt to estimate probability distributions asso-
ciated with one or more query variables. Statistical inference algorithms can require substantial
computation, often drawing on information from large portions of the underlying belief network
in response to a single query, or evaluating every possible belief simultaneously. Conversely,
PLIE updates selected plausibilities incrementally in response to changes in observations. Though
clearly less precise than statistical inference methods, PLIE entails a much lighter computational
burden. This makes sense in the context of agents acting in worlds where responsiveness often
takes precedence over precision.
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6 Future Work

One of the major hurdles encountered so far relates to identifying appropriate testbeds for eval-
uation. Both the artificial intelligence and psychology research communities have developed a
number of tasks for use in studying reasoning. Examples include the challenge problems for
commonsense reasoning1 from artificial intelligence, and the well-studied Wason selection task
(Wason, 1966) from psychology. The problem with these tasks and others like them is that they
were crafted to highlight very limited reasoning capabilities. Many of the reasoning problems used
by artificial intelligence researchers were designed with pure deductive or abductive reasoners in
mind. Likewise, the Wason selection task was designed to study very simple deductive reasoning
in humans. As a result, none of these tasks are appropriate to evaluating a more general reasoning
engine such as PLIE.

The examples above suggest that PLIE may demonstrate a number of interesting and useful
properties, but a much more extensive evaluation is required. Of specific concern are the system
parameters and the inference heuristics. With additional experimentation, the parameters should be
set to fixed, domain independent values. Likewise, the impact of the inference heuristics requires
further study. We selected plausibility, coherence, and primacy/recency because they are well-
known and easy to implement. However, other implementations are possible and many other
cognitive biases have been studied. The impact of these and other biases on system performance
needs further study.

Given these points, continued development of PLIE requires the context of real-world applica-
tions. For example, aerial image analysis and cyber defense both focus on inferring activity and
intent from sequential data. However, machine learning techniques have shown limited success at
these tasks because context and knowledge of the local environment play a major role in distin-
guishing between normal and malicious activity. Accounting for this contextual information in a
“big data” environment is a potential strength of the plausible logic approach.

We envision a system for collaborative human-computer data analysis in which the automated
reasoner exchanges information with the human analyst in a continuous feedback loop. The rea-
soner provides the computational power needed to insulate the analyst from high data volumes, but
also models analyst knowledge and methods to support productive, high-level interactions. The
goal is then to improve analyst accuracy and throughput by combining both computational speed
with human ability to identify novel situations.

As noted earlier, analogical and inductive reasoning processes will play major roles in produc-
ing a system that scales and performs well on real world problems, such as aerial image analysis
and cyber defense. Briefly, the role of analogy is to expand the applicability of the rules in long-
term memory. By mapping known rules into novel domains, PLIE can leverage a greater proportion
of its knowledge when it encounters new situations.

Adding analogical reasoning to PLIE also offers potential for interdisciplinary collaborations.
For example, analogical reasoning is also known by the term transfer or transfer learning in the

1http://www-formal.stanford.edu/leora/commonsense/
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artificial intelligence community. Based on prior work in this area (Stracuzzi et al., 2011), we
hypothesize that successful analogy depends on the beliefs and interpretations provided by deduc-
tion and abduction. This view differs from current psychological theories, which often hold that
analogy serves as the fundamental basis for all reasoning. This difference in hypotheses supports
a human subjects study in which analogical performance is compared between subjects that are
asked to construct analogies directly and subjects that apply other forms of reasoning to the task
first.

Like analogy, an inductive process will expand and add nuance to the system’s existing knowl-
edge. This is particularly important in the context of complex domains such as aerial image anal-
ysis and cyber security that may rely heavily on large stores of background knowledge. Inductive
modifications to long-term memory include tuning rule strengths (α and β ), modifying rule an-
tecedents and consequents, adding new rules based on experience, and organizing the contents of
long-term memory to improve the efficiency of reasoning and learning. Together, these should
reduce PLIE’s reliance on manual knowledge engineering and increase the breadth of its reasoning
capability.

PLIE’s learning methods will draw heavily on principles established in prior work on hierarchi-
cal knowledge base induction (Stracuzzi & Könik, 2008) and on concept learning in computational
cognitive architectures (Li et al., 2011). Some of the principles advocated by the work on knowl-
edge base induction have already been incorporated into PLIE’s knowledge representation, as dis-
cussed at the end of Section 2. Others, such as the importance of knowledge organization must
be added to the induction methods. Briefly, hierarchical rule organization helps to reduce learning
complexity by reducing the number of candidate rule terms evaluated by the concept learning algo-
rithm. This results in a smaller search. Learning in PLIE then becomes an incremental, bottom-up
refinement of representation, which is well suited to the types of streaming data domains discussed
above.

A more distant area of future work is metacognitive in nature. Currently, PLIE contains a set of
four inference patterns, which may expand as analogical and inductive processes get added. These
patterns are fixed, but could be adapted or expanded based on experience. For example, if the
abductive pattern regularly produces conclusions that later get removed or refuted, then the system
could modify the pattern require evidence with higher plausibility scores. This would increase it’s
efficiency by finding and exploiting general patterns in the reasoning process.
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7 Concluding Remarks

The goal of this research is to combine ideas and results from a broad array of work in both the
artificial intelligence and psychological research communities into a pragmatic and computation-
ally tractable inference system. Our approach draws on experiences in both logical and statistical
inference while dropping obsessions with formal proof and statistical precision. Likewise, even
though our approach takes inspiration from research on human cognition, our objective is simply
to identify reasoning heuristics that lead the inference engine to construct and maintain beliefs that
are relevant to an agent acting in the environment.

The work reported here summarizes an initial effort at designing a knowledge representation
and inference algorithms to achieve the stated goals. The provided examples demonstrate the
intended function of the system, but further testing is required to establish that the intended per-
formance holds up across a variety of domains. Nevertheless, combination of logic, plausibility,
and heuristics presented above provide a strong foundation on which to experiment with, revise,
and expand the core ideas of this work. Moreover, the Plausible Logic Inference Engine shows
potential to support a number of interdisciplinary research endeavors, including clear connections
to experimental psychology and computational neuroscience.
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