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Abstract 

The Wind Turbine Blade Reliability Collaborative (BRC) was formed with the goal of improving wind 
turbine blade reliability. Led by Sandia National Laboratories (SNL), the BRC is made up of wind farm 
maintenance companies, turbine manufacturers and third party investigators. Specific tasks have been 
assigned by SNL to the various parties. The portion of the BRC that will focus on establishing the 
criticality of manufacturing defects (aka, Effect of Defects) is being researched by the Montana State 
University Composites Group (MSUCG). The research described herein compiles the second round of a 
multi-year year plan consisting of three rounds of work performed by Montana State University (MSU) 
within two areas—Flaw Characterization and Effects of Defects. The first round was published in 
SAND2012-8110.1 The purpose of this document is to capture and convey the progress which has been 
made by the MSUCG team since submission of the Round 1 Report.  

The work presented has built upon the established framework for quantitative categorization and 
analysis of flaws. Additional physical testing has been performed utilizing improved manufacturing 
techniques that have reduced manufacturing time and materials, while providing samples with flaws 
common to wind turbine blades. This additional physical testing was performed to fill two needs: 
additional data points to further understand the Effects of Defects; and, to increase in scale away from 
simple coupons toward larger structures. These data were also analyzed to allow for continued 
analytical/experimental correlation occurring in this and future portions of this study.  Manufactured 
specimens were evaluated non-destructively to verify flaw parameters and visualize damage utilizing 
computed tomography and digital image correlation, respectively. 

A further understanding of the changes in the material properties associated with characterized 
flaws has been achieved on a coupon level with this additional physical testing. This testing further 
indicated that fiber misalignment and porosity resulted in decreased material performance . Modeling 
efforts toward matching these results have been performed utilizing two distinct and fundamentally 
different approaches. These are modeling damage as a degradation of properties, and modeling the 
actual damage in the material via finite element analysis with progressive damage. Reasonable 
agreement has been achieved when compared to the test data, though there is room for improvement. 

Work will continue with efforts to increase size and scale of tested samples. In addition, research will 
be continued into reliability methods suitable for wind turbine composites. Finally, 
analytical/experimental correlation will be improved through the use of improved and more accurate 
models. This is leading to the goals of establishing the severity and criticality of manufacturing defects, 
and to provide a cogent approach to accept/reject criteria, and the need for repair and/or maintenance 
in the field. 
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I.  Introduction 

The size, weight, shape and economic considerations of wind turbine blades have dictated the use of 
low cost composites materials. Even though composites have desireable engineering qualities, it is not 
apparent that design and manufacturing within the wind industry is able ensure a 20 year product life. 
Prevention of failures has been shown to have a profound economic impact on the continued 
development of the wind turbine industry. While significant research has been performed to better 
understand what is needed to improve blade reliability, a comprehensive study to characterize and 
understand the manufacturing flaws commonly found in blades has not been performed. The 
Department of Energy (DOE) sponsored Blade Reliability Collaborative (BRC) has been formed to 
perform such research.  

Montana State University (MSU) has taken responsibility for the Effects of Defects portion of this 
collaborative and has split this into two distinct tasks: Flaw Characterization and Effects of Defects. The 
function of Flaw Characterization portion of this program has been to provide quantitative analysis for 
two major directives: (A) acquisition & generation of quantitative flaw data for use  in the Effects of 
Defects numerical modeling program; and, (B) development of a flaw severity designation system for as 
built flaws. The Effects of Defects portion is focused on the development of modeling capabilities to 
predict the structural implications of common flaws found in composite wind turbine blades.  

It must be noted that this work is intended to serve as a reporting effort on the preliminary 
development of data generated for use in a wind turbine blade reliability infrastructure. Testing and 
analysis are being performed on a specific material system and as such the absolute values presented 
are only valid for that particular system. However, the framework under development may be 
reproduced by interested parties on their specific material syste ms. Moreover, the probabilistic 
reliability and criticality/severity metrics being developed should be applicable to any composite 
structure assuming the requisite data is utilized.  

Three composite material defect types (Figure 1) are being investigated through all rounds of this 
study after being deemed critical to blade function and life cycle: in-plane (IP) and out-of-plane (OP) 
waviness, and porosity/voids.2 Many flaws are possible, but the flaws for this study were chosen via 
consensus of wind turbine blade manufacturers, wind turbine suppliers, wind turbine operators, and 
wind turbine blade repair companies. Initial results from these efforts was reported in Sandia Report 
SAND2012-XXXX.1 These results included the first round of results from flaw surveys, non-destructive 
evaluation, flaw characterization, manufacturing, physical testing and damage modeling.   

The work presented in the Round 1 report established that characterization of defects common to 
wind turbine blades is possible. A consistent framework was established and validated for quantitative 
categorization and analysis of flaws. With proper characterization, it is possible to establish t he 
structural implication of a flaw. Applying the characterization techniques described in the Round 1 
report to incoming data have enabled the generation of a statistically significant and comprehensive 
flaw database.3 It is the goal of this investigation that these tools and data, once disseminated to 
industry, will contribute to improvements in the reliability of wind turbines.   
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Figure 1:  IP Waves seen on the surface (top-left); OP Waves seen through the thickness (top-right); and, 
Porosity/Voids seen within the laminate (bottom). 

An understanding of the changes in the material properties associated with characterized flaws was 
achieved on a coupon level with physical testing performed in several configurations of the different  
flaw types.4 This testing clearly indicated that fiber misalignment and porosity resulted in degraded 
material properties and decreased material performance. To compliment and work toward predicting 
these types of results, simple modeling efforts were performed and reasonable agreement was been 
achieved when compared to the test data.  

The results and findings outlined in the Round 1 report culminated with a detailed outline of the 
critical functions to be undertaken during Round 2. These functions included improving analytical 
models, improving manufacturing techniques, additional static testing (in-plane and interlaminar), and 
further non-destructive evaluation. All of these functions were deemed necessary to improve the 
accuracy and ensure adequate representation of wind turbine blades. These next steps for this 
investigation were outlined in the Round 1 report and are copied below. This report outlines these next 
steps as well as future work for the continuation and completion of this study. Please note that for the 
proper and logical flow of this report, results are not presented in the order of the Round 2 Tasks listed 
below. 

A.  MSU EOD Round 1 Future Work Plan 

1. Analytical model improvement 
a. Overall improved performance achieved and improved visualization of results established 
b. Exploration of utilizing explicit solver  
c. Continuum Damage Modeling (CDM) approach 

i. Established limits of 2d binary material property degradation model  
ii. Implemented initial softening methods to improve load-displacement curve accuracy  

iii. Initial 3d model generated and elastic testing performed  
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iv. Run models with properties from test data for convergence 
d. Discrete Damage Modeling (DDM) approach 

i. Generated 3d mesh utilizing cohesive elements between tows and layers  
ii. Run models with properties from test data for convergence  

2. Discussion of development of new manufacturing techniques that yield test articles which mimic 
more closely the defects observed in commercial wind turbine blades. Moreover significant 
effort has been undertaken to design fixtures which will enable the testing of thicker laminates. 
Reporting will include results of manufacturing and testing of thinner laminates that meet the 
following conditions: 
a. Improved manufacturing of porosity test articles and investigation of laminates with higher 

porosity content. 
b. Improved manufacturing of IP waveforms for better layer consistency and testing of flaw 

parameters missing from the Round 1 effort.  
c. Improve manufacturing process to more accurately match OP waves observed in blades and 

testing of flaw parameters missing from the Round 1 effort. 
3. Multi-angle laminate testing and modeling 

a. Coupon size samples of [0, 45, -45, 0] tested in tension and compression 
b. Analysis of load-displacement curves for more complex behavior  
c. Model with binary material property degradation model to determine feasibility 

i. Binary material property degradation model eliminated from further use  
4. Elimination of all ±45° laminates from further testing as results from Round 1 indicate that in 

most cases defect laden samples were not significantly degraded compared to controls.  
Whereas, 0° laminates were worst-case for all defect types and therefore warrant the full focus 
of this investigation. 

5. Discussion of utilizing Non-Destructive Evaluation (NDE) technologies to verify flaw parameters 
and help with damage visualization. Preliminary results include use of computed tomography 
and digital image correlation during testing. 
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II.  Improved Manufacturing Techniques 

The Montana State University Composites Group (MSUGC) has identified the need to test laminates with 
embedded flaws. While methods utilized for Round 1 were satisfactory, improvements were made to 
reduce material waste, save manufacturing time, improve control and repeatability, and ensure flaws 
were as similar as possible to those found in wind turbine blades. To this end, several novel 
manufacturing methods have been developed and are outlined. 

A.  In-Plane Wave 

IP waves are formed manually one ply at a time. The first step in the method of forming IP waves is to 
lay the fabric over a piece of polyethylene tubing oriented transverse to the 0° fiber angles in order to 
form a wave of approximately the desired amplitude and wavelength out-of-plane with the fabric. This is 
accomplished by pressing the ply gently over the tubing by hand, using only enough force to cause the 
tows to form around the tube. To ensure fiber integrity, this must be performed slowly due to the 
stiffness of the tows. Next, steel bars are placed on either side of the tubing to act as an anchor for the 
fabric when the hose is removed (Figure 2). Holding these steel bars in place by hand, the hose is then 
unclamped and removed (Figure 3). It is essential that the steel bars remain in place to constrain the 
wave through the entire process. 

 

Figure 2:  Fabric over polyethylene tubing constrained by steel bars. 
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Figure 3:  After the tubing is removed, the wave is ready to be pressed over into an IP wave. 

Once the polyethylene tubing is removed the process of  transforming the as-formed OP wave into an IP 
wave begins. First, the waves are manually pressed over, or essentially rotated to lay at approximately 
45° to their initial out-of-plane orientation. Then the steel bars are removed and placed at a distance 
apart on the work table such that the fabric layer is laid between them so as to use them as end 
constraints for the tows (Figure 4). The partially formed waves are then manipulated further by hand, 
with care taken to keep the peaks of the waves aligned transversely to the 0° fiber angle and to prevent 
fiber wrinkling. Once the wave form has the approximate desired dimensions, the fabric is covered with 
3/8" thick glass, while still remaining constrained by the steel bars (Figure 5). The purpose of the glass is 
twofold: first, the weight added friction between the fabric and the work table so that the wave form 
will remain as prepared for the time required to allow the tows to relax into the new form.  Second, 
measurements can be made through the glass to get a rough estimate of the off axis fiber angle in the 
wave. The fabric must rest in this configuration for at least two hours allowing stresses in the fibers to 
be relieved. Once this is complete, the plies are stacked on the mold for the standard vacuum assists 
resin injection process. 
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Figure 4:  Partially formed wave constrained between steel bars. 

 

Figure 5:  Finished wave relaxing under glass ready to be measured. 
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B.  Out-of-Plane Waves 

The first step in building a plate with OP waves is to secure the bottom layer of peel ply to the mold tool 
to ensure it does not shift during the infusion process. A form for the OP wave is then constructed using 
individual fiber tows. The fiber tows used for the wave build-up are cut to the width of the laminate. The 
wave build-up is created by stacking fiber toes in a pyramid fashion until the desired amplitude and 
wave length values are approximately reached (Figure 6). The OP wave sections are then placed onto 
the secured peel ply perpendicular to the direction of resin flow and to the orientation of the l aminate 
fiber toes.  

 

 

Figure 6:  Chopped wave perturbation tows (top) and chopped tows as implemented for creation of OP waves 
(bottom) 

Layers of fiberglass sheets are then placed on top of the mold while  ensuring that the OP wave build-ups 
do not shift and remain perpendicular to the fiber direction. The buildup is completed by securing the 
top layer of peel ply and flow media. Once a vacuum is pulled, the OP wave buildups are rolled to ensure 
no air pockets or voids had formed. Infusion is then completed using a VARTM method (Figure 7).  

 

 

Figure 7:  Plate under vacuum with OP waves 

OP 
Waves 
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C.  Porosity 

A simple, yet effective, manufacturing process was developed for inducing porosity by introducing air 
into the plate while injecting resin. This method employs a “double bagging” technique which involves 
creating a 2” by 2” grid of holes in the first bag and then sealing that with a second bag.  As can be seen 
in Figure 8, the second bag also has an inlet hose for letting air into the bag.  

 

 

Figure 8:  Double bagging with 2”x 2” grid of holes in first bag. 

 
Trials with this approach have found that opening the inlet hose after the plate is infused results in low 
porosity contents. Higher porosity levels are achieved by allowing air to leak in slowly through the inlet 
hose during the entire infusion process. In short, when air is introduced during the infusion process, air 
becomes encapsulated in the laminate resulting in a porous laminate.  
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III.  Non-Destructive Evaluation 

As indicated in the Round 1 testing and evaluation, flaws introduced into the laminate changed during 
the manufacturing process. For example, it was noted that IP wave fiber angles changed resulting in an 
additional level of inaccuracy when analyzing the results and performing analytical/experimental 
correlations. Thus, due to variability in the manufacturing processes, it is necessary to characterize the 
as-built flaw parameters prior to testing to ensure that all analyses are performed accurately. 

A.  Waves 

Previous work has concluded that waveforms found common to wind turbine blades follow sinusoidal 
geometric periodicity and are mechanically best characterized by off-axis fiber angle. The method for 
extracting this information remains the same as outlined in the Round 1 Report.1 Through thickness, IP 
wave images for each layer are collected with the use of a Computer Tomography (CT) scanner. With 
this technique wave parameters (amplitude and wavelength) for each ply can be measured, while OP 
waves can be measured by hand. Figure 9 shows an example of an IP wave image collected from the CT 
scanner. 

 

Figure 9:  Radiograph of an IP wave 

Analysis of the as-built waveforms confirmed improved manufacturing consistency associated with the 
process improvements described in detail in Section II.A. This was evident not only by less variability 
between layers but waveform parameters were closer to intended target values. 
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B.  Porosity 

The method employed by the Montana State University Composites Group for obtaining porosity 
content values with the most success is microscopy. For this process specimen are cut into small pieces, 
mounted in acrylic resin and then polished. Depending on the size of the voids either an optical o r 
Scanning Electron Microscope (SEM) is used to take digital images of the cut surface plane. Image 
processing techniques are then used to identify the location and size of gas inclusions. From this data a 
planar area fraction of porosity content is established. This value is then extrapolated to percent 
porosity by volume. An image taken by a scanning electron microscope on a specimen with induced 
porosity is shown in Figure 10. This process proves to be time consuming and has the potential for 
mistakes to be made by the investigator. 

 

Figure 10:  Laminate with porosity 

A novel method for characterizing porosity in composite laminate plates is under development. 
Preliminary results show that there is a good correlation between radiodensity and percent porosity by 
matrix volume (Figure 11). Radiodensity is a measure of the linear attenuation of X-rays and is related to 
both the density and atomic number of a material. Measuring radiodensity i s quick and easy to do with 
an X-ray machine and as these devices become more portable, this technique may prove to be an 
inexpensive and efficient way to evaluate porosity in the field and on the manufactures floor.  
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Figure 11:  Correlation between porosity and radiodensity 

The Hounsfield Scale is a quantitative scale for describing the linear attenuation of X-rays through a 
material. By definition, distilled water and air at standard atmospheric pressure and temperature have 
values of 0 and -1000 Hounsfield Units [HU] respectfully.2 The CT scanner can measure the attenuation 
of the scanned material and calculate the radiodensity in relationship to air and water using the 
following equation: 

 1000





airwater

waterxHU



 (1) 

Where μx, μwater and μair are the linear attenuation coefficients for the material under inspection, distilled 
water and air respectively. As Steve Nolet (Principal Engineer & Director of Innovation of TPI 
Composites) indicated to this project team, there is a need in industry to develop effective methods 
quantify levels of porosity and its effects on laminate mechanical response:3

“Porosity is a HOT BUTTON top for TPI. It affects our operations not because of field failures, but 
primarily because of the inability to characterize levels of porosity in a part (accurately) AND project its 
effect on long term service. As a result, we believe, a significant amount of rework or scrap is created 
without any basis. Rework usually involves the removal of three to seven times more GOOD laminate 
than porosity affected laminate as a result of required scarf angles for repair (often 20:1 or 50:1) .  

 So this work is really important to us, but it also needs to be accompanied by a comprehensive 
methodology to characterize the void content in a production blade using non-destructive techniques. 
We have had difficulty establishing procedures to accomplish this (percentage and depth of porosity, 
included!).  

I will solicit input from the other individuals from TPI that I have copied and we will likely want to 
engage in a more detailed discussion as we provide you with the information you have requested 
below. It may very well make sense to plan on a meeting with [your group] to really flesh this issue out 
and build a program that will service the blade manufacturing community in a significant way.“ 
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IV.  Round 2 Physical Testing 

Physical testing is necessary for the establishment of damage growth and validation tools of composite 
wind blades to contribute toward a reliability infrastructure for the wind industry. The goal of the Round 
2 test program was to further characterize the mechanical properties of the critical defect types and the 
results are presented herein. In addition, as with the Round 1 results, all Round 2 results were utilized 
for analytical/experimental correlations, with the purpose of performing laminate analysis with included 
defects.  

A.  Materials and Processing 

Generally, laminates were infused utilizing a VARTM process with one layer of peel-ply on the top and 
bottom surfaces and one layer of flow medium on the top surface of the laminate  except where noted in 
the manufacturing procedures above. Mostly uni-directional PPG-Devold 1250 gram-per-square-meter 
E-glass was used with a Hexion RIM 135 resin system in all cases. Laminates were manufactured with all 
fibers in the 0° direction with the exception of the Multi-Angle testing which had fiber directions of 
[0°,+45°,-45°,0°]. The cure profile for each panel was 48 hours at room temperature followed by 8 hours 
at 70°C. The nominal fiber volume fraction of the panels was 55% with a nominal thickness of 0.8 mm 
for each layer.  

Test coupons were cut from the panels for use in tension and compression testing.  Tensile coupons 
were cut to approximately 50 mm wide by 200 mm long and were tabbed resulting in a gage length of 
100 mm. Compression coupons were cut to approximately 25 mm wide by 150 mm with an anticipated 
gage length of 25 or 38 mm where the wavelengths were greater than 25 mm.  Larger scale test coupons 
were cut and machined as well and are outlined in more detail below.  

In addition, specimens were manufactured for delamination testing.  During the infusion process, a 
layer of release film was placed at the mid-plane of the four-ply laminate to create an initial crack 25 
mm in length from the leading edge. Coupons were cut to a width of 25 mm and aluminum pull -tabs 
(blocks) were bonded to the end with the initial crack. Coupons for double cantilever beam (DCB) testing 
were cut to a length of 150 mm, while those for end-notch flexure (ENF) testing were cut to 100 mm to 
fit existing MSUCG fixtures. 

B.  Test Methods: Static In-Plane and Delamination 

Coupons were constructed with representative blade materials and construction processes though scale 
was reduced. Scaling was required to achieve compatibility with the Instron 8802 250 kN testing 
machine and grip capacity (Figure 12). Static ramp tests on the specimens were conducted at a rate of 
0.05 mm/s in tension and 0.45 mm/s in compression for all 4-ply coupon and Multi-Angle laminates. 
Typical of the Montana State University Composites Group (MSUCG), tensile these tensile tests were 
performed based on the ASTM D 3039 tensile testing of composites standard.5 This simple test can be 
used to find the ultimate tensile strength and strain, tensile modulus, Poisson’s ratio and transition 
strain. Likewise, compression testing is more loosely based on ASTM D 3410 and D 6641.6,7 Properties 
that may be derived include ultimate compressive strength and strain, compressive modulus and 
Poisson’s ratio in compression. 

Failure within composite materials commonly occurs as the result of delamination and significant 
work to understand the strain energy release rates has been performed.  This type of defect and damage 
was added to the initial IP waves, OP waves and porosity in Round 2 testing and analysis. Noting this, 
calculations to determine whether a crack will propagate can be performed.  Further, with residual 
strength and damage propagation characterized, determinations of a laminated, and perhaps a blade’s, 
damage tolerance can be made. 
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Figure 12:  Representative tensile (left) and compressive (right) samples being tested. 

Given this common type of failure of composite materials, many tests exist to characterize interlaminar 
fracture. Generally, test methods are used to determine a critical strain energy release rate for crack 
propagation, GC. This critical value must be experimentally determined for each material system as well 
as for each mode. In practical terms, materials that are "tougher" have higher critical values of GC, 
requiring more energy to grow a crack in that material. For both Mode I and II tests outlined below, 
visual crack length techniques were utilized by measuring the crack length on each side and then 
utilizing the average value. This is particularly useful in the run-arrest growth scheme observed in these 
tests.  

The standard test for Mode I is the double cantilever beam (DCB) as described in ASTM stand ard 
D5528 and shown in Figure 13 where opening forces are applied to the ends of the speciman.8 The 
critical strain energy release rate (GIC) to grow a crack in the material is determined from the load-
displacement curve of the test and the modified beam theory method. From this, the Mode I (opening) 
interlaminar fracture toughness may be calculated. It is worth noting that initially the GIC increases 
monotonically before stabilizing, due to fiber bridging that increases the fracture toughness of the 
specimen.  Values calculated beyond the end of the initial crack may be considered dubious and thus, 
the initiation value is preferred.  
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Figure 13:  Double Cantilever Beam (DCB) specimen just prior to first Mode I crack propagation. 

The end-notched flexure (ENF) test has emerged as the standard test method for measuring Mode II 
(shearing) type crack growth within the MSU Composites Group.9 Specimen geometry and loading for an 
ENF specimen are shown in Figure 14. This specimen produces shear at the mid-plane of a composite 
loaded in three-point bending and at critical load the crack advances. The strain energy release rate (GIIC) 
to grow a crack in the material is determined from the load-displacement curve of the test and the 
modified beam theory method. From this, the Mode II interlaminar fracture toughness may be 
calculated. 

 

Figure 14:  End-Notch Flexure (ENF) specimen just after Mode II crack propagation. 

A total of approximately 50 coupons were tested with 3-5 in each test group. Results of all experiments 
will be available in the DOE/MSU Composite Material Database.4 

C.  Thin Flawed Laminate Testing Results 

Review of Round 1 testing showed gaps in the data, e.g. no fiber angles between 0 and 15deg, porosity 
values <2% etc.1 Moreover some of the results, in particular from the OP waves were considered to 
dubious. It is the goal of this program, to be able to accurately predict the Effects of Defects in thicker 
laminates such as those found in wind turbine blades. However testing of thick laminates for model 
validation is resource intensive, therefore only a small number of larger scale tests will performed. The 
purpose of these larger tests will be to validate the extrapolation of models developed on thinner 
laminates to larger ones. The need for generating a comprehensive flawed material properties dataset 
coupled with improvements in manufacturing techniques provided the impetus for continued thin 
laminate testing.  
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Raw results from these tests are provided in Tables 6-8 and may be found in Appendix VII.  A.  . These 
provide data at a much wider range of the key variables for each flaw type allowing for more insightful 
analyses to be performed as below. In addition, these data were utilized to provide load-displacement 
and stress-strain curves, also found in Appendix VII.  B.  . These will be of particular use in continuing 
correlation to analytical models. 

Analysis of the results show that strength degradation in laminates with waves tend to correlate 
slightly better to the average fiber angle of all layers rather than the maximum fiber angle. Figure 15 
&Figure 16 display the results of failure stress verses average fiber angle for IP and OP wave 
respectively. Results from compression of OP waves is not being presented as they are still under 
investigation. An OP wave embedded in a planar structure under compression is inherently an 
eccentricity and is therefore subject predominately to buckling. While buckling is a common mode of 
failure in a wind turbine blade it is driven in large part by the global structure and local geometry. With 
this in mind, care must be given to ensure that the failure data, from a material standpoint, is 
completely understood. In analysis of the effects of porosity on laminates it is necessary to consider the 
variations in the fiber volume ratio. As porosity increases, one of two things must happen as a direct 
function of encapsulated gases; the volume of the part must grow (typical for vacuum bag 
manufacturing) or should the total volume remain the same (typical of cull plate manufacturing), there 
must be a reduction of resin content. Either case will cause variations in the fiber volume ratio. Test 
specimens in the investigation have been manufactured using a vacuum bag technique therefore it is 
necessary to include volume effects. A simple method for comparing results in this case is to normalize 
the failure stresses to 55% fiber volume ratio, Vf. Figure 17 shows a comparison between porosity 
content and the reduced strength. 

 

Figure 15:  Peak Stress of IP Waves at various fiber angles. 
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Figure 16:  Peak Stress of OP Waves at various fiber angles. 

 

Figure 17:  Reduction in Strength due to porosity. 

The data in Figure 17 report the as-measured experimental data from mechanical tests. The void 
content was determined by image analysis of specimens from the same plates which were used for the 
test coupons. The void data are presented as a function of void content in the composite to provide use 
to designers on that basis. 
 
Some discussion on the micromechanics of voids in the composite is warranted. The influence of voids 
on the mechanical properties has the effect of reducing the bulk modulus of the resin. While this does 
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not have as great of an effect in tension, the reduced modulus has a significant effect for compression 
strength as the reduced modulus does not support the fibers in compression as well as a stiffer matrix.  
 
The first model for resin modulus reduction might be based on the rule of mixtures:  
 

Em’ = Em (1-Vv)                  (2) 

 
Where Em’ is the reduced matrix modulus of elasticity, 
Em is the modulus of elasticity of the matrix without voids, and 
Vv is the void volume fraction 
 
However, a void, modeled as a spherical inclusion reduces the matrix modulus of elasticity to a greater 
extent than simple rule of mixtures because of the local strain concentrations from the spherical void 
geometry.10-12 Additional studies, outside the scope of this report may be necessary to apply these data 
to other material systems to predict the influence of void content on mechanical properties.  

The results of this testing effort have been considered in large part to be a success. In particular, a 
comparision was made with a study on compression of fiberglass composites containing pororsity 
performed by BRC member TPI.13 Both the TPI and MSUCG data sets are depicted in Figure 18 where 
strong correlations between the two can been seen.  In general, correlation of ultimate strength to flaw 
characterization parameters exhibit trends describable through regression with values for coefficient of 
determination greater than 0.9. Moreover model predictions of load displacement curves are expected 
to be accurate to within ±5%. 

 

Figure 18: Comparision of results from compression testing of specimens containing prosity. 
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D.  Multi-Angle Laminate Physical Testing and Results 

As noted in the Round 1 report, Multi-Angle laminate testing was suggested to enable analytical and 
experimental correlation with a more complex load-displacement curve. In short, the more complex 
laminate would likely have more damage accumulation through the test which would require a higher 
level of accuracy from associated models.  

i.  Multi-Angle Laminate Tension Results & Discussion 

Tensile tests were carried out on Multi-Angle laminates with fiber orientation of [0°,+45°,-45°,0°] with 
no intentional defects introduced. Material properties were calculated (Table 1) as outlined by ASTM D 
3039 which was used as a guideline for this testing and resulting analysis.  Load-displacement and stress-
strain curves for each test are shown below in Figure 19 & Figure 20. Peak load and strain-at-failure was 
fairly consistent with differences of approximately 3% and 12%, respectively. The peak average stress of 
approximately 0.56 GPa was lower than 1.02 GPa noted in Round 1 testing.1 This is easily explained with 
the change to the Multi-Angle laminate from the uni-directional laminate used in the Round 1 testing. 
While it was intended that the load-displacement curves would be significantly more complex, Figure 19 
confirms that only two significant changes: increased softening up to initial failure and then a short load 
plateau before ultimate failure. Further discussion of these salient observations may be found below .  

Table 1:  Multi-Angle laminate tension material properties. 

 
 

ii.  Multi-Angle Laminate Compression Results & Discussion 

Based on the same logic for performing the tensile tests above, compressive tests were carried out on 
Multi-Angle laminates with fiber orientation of [0°,+45°,-45°,0°] with no intentional defects introduced. 
Material properties were calculated (Table 2) as outlined in several ASTM standards that were used as a 
guidelines for this testing and resulting analysis. Load-displacement and stress-strain curves for each test 
are shown below in Figure 21 &Figure 22. Peak load and strain-at-failure was fairly consistent with 
differences of approximately 3% and 12%, respectively. Likewise, the peak average stress of 
approximately 0.32 GPa was lower than 0.58 GPa noted in Round 1 testing.1 This is easily explained with 
the change to the Multi-Angle laminate from the uni-directional laminate used in the Round 1 testing. 
Below, Figure 21 confirms the same two significant changes from the uni-directional tests in Round 1: 
increased softening up to initial failure; and, a short load plateau before ultimate failure. Similar to the 
tensile tests, a damage progression section is noted in the curves between the initial failure and ultimate 
failure allowing for more accurate assessment of experimental  and analytical convergence. Further 
discussion of these salient observations may also be found below. 

Table 2:  Multi-Angle laminate compression material properties. 

 

Ultimate Strength 81.0 ksi 558 MPa

Maximum Stress 81.4 ksi 561 MPa

Strain at Failure 5.09 % -- --

Modulus of Elasticity 2.42 Msi 16.7 GPa

Ultimate Strength 46.0 ksi 317 MPa

Maximum Stress 45.2 ksi 312 MPa

Strain at Failure 0.83 % -- --

Modulus of Elasticity 6.49 Msi 44.8 GPa
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Figure 19:  Multi-Angle laminate tension testing load-displacement curves. 

 

Figure 20:  Multi-Angle laminate tension testing stress-strain curves. 
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Figure 21:  Multi-Angle laminate compression testing load-displacement curves. 

 

Figure 22:  Multi-Angle laminate compression testing stress-strain curves.  
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E.  Delamination Testing Results & Discussion 

As noted above, delamination damage analysis of composites is common and widely performed due to 
much lower strengths compared to in-plane. Failure occurs as the result of delamination, which must be 
considered as part of an accurate analytical tool. This is especially true for discrete damage modeling 
where cohesive elements are placed between layers so that crack propagation may occur not only 
within the layer, but also between layers. This discrete approach is discussed in more detail below. Also 
as noted above, DCB and ENF tests were performed to determine critical strain energy release rates in 
Mode 1 and Mode 2, respectively.  

An increasing crack resistance behavior is noted due to fiber bridging as the crack propagates 
through each sample (Table 3).  This result is expected and is due to secondary cracking and fiber 
bridging. Only initial cracking was considered for ENF testing and these values are found below in Table 
4. Representative load-displacement curves may be found below (Figure 23 & Figure 24). Initial values 
are fairly consistent and appear reasonable for use in delamination prediction in future model ing efforts 
as outlined below. Data was collected utilizing a primarily 0° uni-directional material to attain the lowest 
possible values for GIC and GIIC. Thus, results are conservative when applied to cases with other fiber 
angles. These data will be particularly useful going forward with complex modeling efforts for 
analytical/experimental correlation, specifically with discrete damage modeling as outlined further 
below. However, no additional delamination testing is planned and will only be pursued further if 
deemed necessary to further the modeling efforts. 

Table 3:  Mode I critical strain energy release rate determined from DCB testing. 

 
 

Table 4:  Mode II critical strain energy release rate determined from ENF testing. 

 

Sample Initial GIc Secondary GIc Final GIc Units

DCB_01 295 506 720 J/m^2

DCB_02 287 651 854 J/m^2

DCB_03 320 659 843 J/m^2

AVERAGE 301 605 806 J/m^2

Sample GIIc Units

ENF_01 1321 J/m^2

ENF_02 1883 J/m^2

ENF_03 1367 J/m^2

AVERAGE 1524 J/m^2
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Figure 23:  Representative load-displacement results from a Double Cantilever Beam (DCB) test during initial 

crack growth. 

 

Figure 24:  Representative load-displacement results from a End-Notch Flexure (ENF) test during crack growth. 
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Figure 25:  Thick Specimen Tensile 
Loading Fixture 

F.  Thick Specimen Testing 

Wind turbine blades are primarily composed of thick composite laminates (>1 in). While prior research 
has shown strong tendencies for laminate mechanical response to scale according to Weibull scaling 
theories (critical defect sensitivity), there is no conclusive evidence to support that the response of 
flawed structures will follow the same trends.14 Therefore, it was decided to test thicker layups. In order 
to complete this task, new testing fixtures had to be designed and manufactured for use in high load test 
machines. Brief outlines for the fixtures designed for both tension and compression are given below and 
manufacturing drawings are available upon request. 

i.  Tension Fixture Development 

Tension testing is being performed on a Baldwin 200kip 
hydraulically actuated test machine. Grips on this machine 
where not designed for testing composite laminates. As with 
most grips, load is introduced on the surface in the form of 
shear. Shear loading of thick specimen is not considered an 
adequate technique as early surface delamination can occur, 
which is not representative of in-field loading and failure 
scenarios. Therefore a new test fixture has been developed 
which enables both surface shear and through thickness 
loading. The Thick Specimen Tensile Loading Fixture (TeST LF) 
is modular design which allows for variations in coupon 
thickness and length. The high strength 5160 steel plates and 
grade 9 cap screws can accommodate loads up to 200kips. A 
stainless steel rod on each end allows for compensation of 
small misalignments (Figure 25).  

The most effective way to transfer a load through the 
thickness of a part is to use bolts or pins. Unfortunately, 
bolted composite joints typically reach at most, 40% of the 
un-notched strength.15 Prior research has shown that 
designing a joint with clamping can increase the joint 
efficiency up to 100%.16,17 The TeST LF has been designed to 
take advantage of this effect. Load transfer is initially applied 
to the surface of a specimen through friction on the clamping 
surface. Clamping forces are applied with a predetermined 
bolt torque. Once friction on the surface can no longer resist 
the applied load, the TeST LF begins to slip, engaging the 
bolts. Load is then transferred through the thickness on the 
bolt hole surfaces.  

ii.  Compression Fixture Development 

As noted, the Round 1 testing established basic materials properties of thin (4-layer) glass fiber/ epoxy 
composite coupons containing intentionally manufactured defects.1 The next component of this work 
requires manufacture and testing of thicker laminate specimens, potentially up to 20-ply laminates. It is 
desired to test these specimens in a combined loading fixture (end loaded and side supported) designed 
in-house and manufactured in a local machine shop. 
By applying both a shear load to the clamped, shimmed areas of the specimen and an end load to the 
terminal ends of the specimen, combined loading fixtures largely mitigate end crushing.  According to 
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ASTM D6641 a compression test of polymer matrix composite material is unsuccessful if end crushing 
occurs.7 This fixture for polymer matrix composites does not include side support for the gage section.   

Maintaining alignment of the fibers in the 0° direction and preventing fixture misalignment due to 
complex geometries in the gage section is critical to testing the planned specimens. Implementation of 
low friction linear bushings will function to help prevent binding even under heavy compressive loads. 3 

Binding as a consequence of friction is a primary concern as the alignment system should not carry any 
of the load for a valid test. Secondary to binding, failure of the housing for the alignment rods was 
considered for tear-out and failure at the shaft bore as well as stress concentrations at sharp inside 
corners. The maximum transverse load which could result from specimens with fiber waviness was 
determined for a 20-layer laminate using Computer Aided Design Environment for Composites 
(CADEC).18 Fiber and matrix properties were input and the desired 2% strain level and a maximum 
transverse stress was calculated by the software. Using the resulting total transverse stress, compressive 
load on the fixture linear bearings was backed out by modeling each alignment rod as a cantilever beam 
with a distributed load. The fixture is shown below in Figure 26.   

Future work with this fixture will include determination of the ratio of shear loading to end-loading 
as well as any load the fixture alignment system may be carrying. This will include, but not be limited to, 
work in characterizing loads transferred by fiber misalignment to the alignment system which could lead 
to binding. Characterization of the test fixture response will take place prior to testing any specimens for 
usage in the Effects of Defects program. Due to the significant weight of this fixture, a handling system 
may also be implemented both to promote safety for technicians and to facilitate expedited testing. 

 

Figure 26:  Complete compressive testing assembly with specimen ready for testing.  

iii.  Initial Thick Laminate Test Results 

The first phase of thick laminate testing consists of verifying scaling parameters for control specimen. 
Initial testing of 8 and 16 ply control laminates in tension and compression have been performed. The 
purpose of these tests was primarily to evaluate the testing fixtures. The test fixtures performed as 
expected, that is without complications or unexpected consequences. Preliminary results of the 
compression test show that bolt torque and shim placement impacts the specimen performance. 
However, failure stresses are in good agreement with thin laminate compression testing reported on 
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earlier (-5% deviation). Further tension testing is needed to identify variables in the testing process. 
Work will continue to improve upon the testing methods in order to ensure that results are repeatable 
and indicative of actual material response rather than fixture influences.  
Once the baseline control scaling parameters have been identified, follow-on tests will examine the 
effect of porosity, IP and OP waves on uni-axial, 0 -degree fiberglass epoxy laminates as thick as 20 
layers. This data is required to validate modeling tools for damage progression on thicker composites. It 
will also provide information into the scalability of flaws in composites. Due to the success and 
comprehensive nature of testing on thinner laminates it should not be necessary to test excessive 
amounts of flaw parameter permutations in order to establish correlation between flaws and 
mechanical performance. Moreover, it is expected that testing of 8 and 16 ply control specimen will 
provided insight into scaling that mitigates the need to perform thick laminate testing on multiple layup 
thicknesses. The following Table details the proposed defect laden test articles.  

Table 5:  Thick Flawed Laminate Testing Matrix 

Flaw Type Test Type # of Coupons Description/Notes 

In-Plane 
Tension 3 

Fiber angle 15-30 deg 
Compression 3 

Porosity 
Tension 3 

5-10% by Volume 
Compression 3 

Out-Plane 
Tension 3 

Fiber angle 15-30 deg 
Compression 3 

Total 18 
 

 
These tests will be considered successful if the following criteria are met: 1) Results of ultimate strength 
exhibit trends describable through Weibull scaling and/or regression analysis  and/or 2) Model prediction 
of load displacement curves are accurate to within ±5%. 

These tests will be considered inconclusive if the following criteria are met: 1) Results of ultimate 
strength do not exhibit trends describable through Weibull scaling and/or regression an alysis and 2) 
Model prediction of load displacement curves have errors > ±5%. 

Should the inconclusive criteria be met, the first recourse will be to adjust material property curves 
and models. Additionally it may be necessary to perform testing on a larger spectrum of flaw 
parameters and material thicknesses.  
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V.  Round 2: Analytical Modeling Effort 

A.  Background 

To meet the proposed goals of this project, significant analytical efforts will be continued in a 
progressive manner through the three rounds. Initial rounds of simple uni-directional coupons have 
utilized relatively simple material degradation models. These binary models utilize a simple logic that 
will set certain material properties to zero depending on the type of damage.  However, as test specimen 
become more complex in further rounds, corresponding models will likely need to become more 
complex. To account for this, two distinct modeling methods have been investigated and will be 
compared through the entire project: Continuum Damage Modeling (CDM) and Discrete Damage 
Modeling (DDM). CDM is a “pseudo-representation” that does not model the exact damage but instead 
updates the constitutive properties as damage occurs. For each individual element: 
 

   
 

 
∫  [ ]    
 

  (1) 

where: 
 [ ]   ( ) (2) 
 
As the model iterates, the constitutive matrix C is updated to reflect equilibrium damage. Whereas DDM 
actually models the damage as it occurs through the load profile, and is generally thought to be 
computationally more expensive (Figure 27)23. Even though both of these methods have significant 
advantages and disadvantages, they offer more accurate modeling options than the initial binary 
method noted above which is a simplified CDM method.  

While testing of wind related composite coupons and structures is an integral portion of this 
research, it will be performed in large part for correlation with analytical data. Several different 
analytical modeling approaches will be considered, falling into either CDM or DDM categories noted 
above. In both categories, analytical models will follow a similar path as the testing, from simple 
coupons toward larger structures, during this research plan. In order to effectively model larger 
structures, multiscale modeling will be utilized to reduce computational expense as much as possible. 
This will allow a microscopic model will be utilized in areas of damage while the rest of the structure will 
utilize a macroscopic model. While both damage modeling techniques will differ over the entire 
structure, the key differences will be evident in how the damaged area is estimated.  

 

Figure 27:  Crack growth (circled) in a stiffener panel visualized utilizing Discrete Damage Model.
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i.  Continuum Damage Modeling (CDM) 

Continuum modeling derives from the assumption that a material is continuous and fills an entire region 
of space. From this it can be broken into representative volume elements (RVE) such that constitutive 
equations relate the RVE to the entire structure. However, it is necessary to homogenize the material 
properties of the RVE which is not always feasible when studying composites. 14 In some instances, the 
two different materials cannot be represented accurately this way, especially as damage accumulation 
occurs independently in one of the constituents. 

Simple CDM’s have been utilized in finite element analysis that account for damage in the fiber and 
matrix independently. Utilizing a simple material property degradation model, Chang and Chang 
presented a progressive damage model for laminated composites with a circular hole in tension.19 
Convergence between stress and failure analyses were performed utilizing classical lamination theory 
considering material nonlinearity and property degradation resulting from damage, respectively.  
Nonlinear finite element analysis was performed and agreement was found between the analytical and 
experimental data. In the stress analysis, the equilibrium equation and stress-strain relations were 
derived. The equilibrium equation took into account that once the laminate was damaged a 
redistribution of the stresses and strains resulted in degraded material properties. Thus, the equilibrium 
equation was solved at each step utilizing a Newton-Raphson iteration scheme. The failure criteria were 
defined based on the failure mechanisms resulting from damage: matrix cracking, fiber-matrix shearing 
and fiber breakage. Based on these criteria, a property reduction model was implemented reducing 
certain properties to zero upon failure. Numerical procedures were written based on the following 
procedural logic: 

1. Increase the applied load from Pn-1 to Pn by a small increment ΔP. 
2. Calculate incremental strains Δe ij and incremental stresses Δσij from derived stress-strain relations 

and equilibrium equations. 
3. Update the total stresses σn

ij. 
4. Calculate in-plane stresses in each ply by coordinating transformation. 
5. Assess damage using failure criteria equations. 
6. Return to the first step if no damage is found or continue to the following steps if damage occurs.  
7. Stop, if damage has propagated across the laminate and no more load can be added. Otherwise, 

continue. 
8. Update mechanical properties by applying property degradation model as indicated in Equation 1 

above. 
9. Redistribute stresses and strains in the laminate by applying equilibrium equations again. 
10.  Return to step (4). 

This logic is also presented as flow diagram (Figure 28) with the damage user-subroutine steps indicated 
in light blue while standard model routine steps are shown in dark blue.  As shown, the subroutine 
simply performs the failure analysis and then checks for failure.  If no failure criteria is met, the load is 
increased and the model iterates. If a failure criteria is met, then the logic accounts for that damage and 
checks for ultimate failure. If the ultimate failure criteria is met, then the model stops whereas if it is 
not, then it iterates by adjusting model inputs as outlined by the damage model  that is utilized. 
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Figure 28:  Flow of model and damage progression logic utilized in this research with user-subroutine 

components shown in lighter blue. 

Using this logic, Chang and Chang’s results were in agreement between the analytical and experimental 
data for seven (7) independent laminates. Later, Chang and Lessard performed similar work on damage 
tolerance of laminated composites in compression with a circular hole. 20 A similar logic as above was 
utilized resulting in agreement between the analytical and experimental data similar to that noted in the 
Round 1 Report. 

Additional research in this area has been performed by others for many different conditions (e.g. 
material, matrix, loading, fastening, etc.). Eveil developed a 3D failure analysis methodology for 
composite laminates.21 This analysis utilizes a similar logic to Chang above with failure criteria based on 
Hashin and Yeh. Utilization of this advancement to 3D improved error from 25-30% to as low as 2.6%. 
Tay et al. have compared material property degradation models, element failure method and strain 
invariant failure theory.22 Material property degradation is the method used in each of the papers 
above. The element failure method modifies nodal forces to reflect damage and is employed with 
micromechanics based failure criteria. It is suggested that these and other alternative approaches may 
be superior when translating results from specimen level to component and structural levels.   

While these simplified versions show reasonable correlation to experimental data, the accuracy with 
which they can predict damage beyond initial fiber or matrix failure is dubious.  This is largely due to the 
oversimplified property degradation and failure criteria, though these simplified methods do attempt to 
account for the constituents independently. Further, these simple models are utilizing a uni-directional 
material.23 Hansen, Walker and Donovan presented a multicontinuum technique that keeps each 
constituent independent and allows for the introduction of additional constituents for more complex 
materials such as woven fabrics.24 By utilizing a volume fraction mixture theory, the composite average 
stress, or strain, may be estimated by summing the stresses, or strains, of each constituent based on the  
volume ratio of that constituent. By decomposing the average composite stress/strain state into 
constituent average stress/strain states, a basis is formed from which damage evolution may be 
predicted at a point of interest. Thus, constituent failure criteria may be based on the constituent 
average stress which potentially increases the level of accuracy of the model.  It must be noted that this 
multicontinuum technique is the foundation for the Helius:MCT software package available from 
Firehole Composites (Laramie, WY). 
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ii.  Discrete Damage Modeling (DDM) 

Discrete modeling is considered by many to be more consistent with the physical damage of  
thermosetting polymer reinforced composites. As noted, a continuum approach relies on changing 
material properties which do not change during damage evolution. Thus, DDM attempts to directly 
model damage as it would actually occur within a structure as shown in Figure 1 above.  It must be noted 
however, that this method is generally computationally more expensive and is more mesh dependent 
than CDM.25 In addition, knowledge a priori of the damage location is very helpful as an initial crack may 
have to be place depending on the type of model.  

Several techniques for discrete modeling exist such that crack development and path may be 
modeled. Originally, discrete models had discrete crack propagation and would be followed by a re -
meshing with the new geometry. This cycle is repeated until ultimate failure has been reached based on 
one of several crack propagation criteria.26 The discontinuity created by the crack can make re-meshing 
difficult and extended finite element modeling (XFEM) allows for a crack to propagate without having to 
re-mesh at each step.   

Additionally, the use of cohesive elements has proven a viable opti on for modeling laminated 
composites and does not require an initial crack be placed in the model. 27 In summary, a layer of zero 
thickness cohesive elements with specific traction-separation criteria are placed in areas of interest such 
as between layers of the laminate. As the traction-separation criterion is met for a specific cohesive 
element, a separation occurs resulting in crack propagation. Thus, damage evolution is able to modeled 
discretely. Though, significant time up-front is needed to build meshes as models become very detailed.  

B.  Improvements from Round 1 CDM Efforts 

As noted in the Round 1 report, a simple binary CDM was utilized to initiate damage modeling. The 
resulting damage from the model was checked and the damage progression compared visually to the 
test results. It was noted that stress accumulated rapidly in the peak of the wave and increased until 
fiber-matrix failure and then with each step the damaged area grew. This matches the damage 
progression noted visually and with a digital image correlation (DIC) system. All Control and IP Wave 1 
models were tested in a linear elastic fashion to ensure the boundary conditions and model integrity.  
The load-displacement results of these models are compared to those from the physical testing with 
good agreement. Once this agreement was achieved, the damage progression subroutine was turned on 
and damage was predominantly fiber-matrix and occurred catastrophically at just over 40 kips which 
reasonably agreed with the physical test data.  

Even though these initial modeling efforts showed reasonable agreement, this simple model was 
found to need improvement to be considered fully functional.  To test the full capabilities of this method, 
the Multi-Angle laminate testing (above) and modeling (below) was implemented to show the 
limitations and salient features. The modeling effort is continuous through all three rounds working 
toward better prediction at larger scales. Below is the list of items to aid in finalizing the modeling effort, 
which allows for stepping toward more complex modeling efforts as listed in Round 1 with a brief 
update through Round 2. 
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i.  Specific Model Updates through Round 2 

Below is the list of items to aid in finalizing the modeling effort, which allows for stepping toward more 
complex modeling efforts as listed in Round 1 with a brief update through Round 2:  

1. Update and run models for other tested configurations—Additional modeling of testing 
configurations will be ongoing through Round 3 to confirm tested configurations of tests  
performed in all three rounds.  

2. Understand damage type for each model—Continued review of DIC and other visualization data 
from each test to ensure consistent damage progression between experimental and analytical 
analyses. This has been aided by the visualizing the failure type as it occurs in the models (Figure 
29).  

3. Compare to strains from model to DIC data and calculated stresses from test data—An ongoing 
effort through each round of analytical and experimental correlation (Figure 30).  

4. Modify mesh size and element type to determine sensitivity to each—Mesh size and element 
type have shown to have minimal effect on the simple binary CDM. It must be noted that mesh 
sensitivity and element type will likely have major impacts on the DDM and will continually be 
tested to ensure optimization. 

5. Test sensitivity to oriented properties—See Multi-Angle laminate test and model results herein. 
6. Update/add failure criteria and improve strength properties accuracy to improve damage 

progression subroutine—As noted below in the Multi-Angle laminate modeling efforts noted 
below, significant advances are necessary to increase model accuracy. See below for more detail. 

 

Figure 29:  Representative damage type through the damage progression of an IP Wave from the simple binary 

CDM.  This data was then compared with tested specimens and similar damage progression was noted. 

 



42 

                       
Figure 30:  Experimental (left) and analytical (right) comparison of IP Wave coupon in tension.  

Further discussion of next steps and advances anticipated in Round 3 may be found in the Future Work 
section. It is important to note that this modeling has been done with experimental analytical 
correlations compared to other studies on wind turbine blades which have either modeled the damage 
progression, or measured the effect of damage without a damage growth model.  

C.  Multi-Angle Laminate CDM Results & Discussion 

Using a similar approach as performed in Round 1, material properties were taken from the test data 
and put into a linear elastic version of the model. This allowed for confirmation of the properties by 
superimposing the model data onto the load-displacement curves (Figure 31 & Figure 32). As was 
apparent in prior instances where this model was used, the model is not able to accommodate for the 
softening that occurs through the elastic region of the curve in either case.  The result is that the model 
is initially softer before a slightly overestimating before reaching the ultimate load, more so in the 
tensile case.  Ideally, if the model is not able to accurately match the curve, the model would remain 
conservative and slightly underestimate the stiffness through the entire curve. This would increase 
confidence that all cases would statistically be represented in the model.  Consideration will be paid to 
this in all future modeling efforts as this is a significant weakness in thi s simplified model.  

Next, the user-subroutine containing the damage logic was implemented and the model was re -run 
for each tension and compression. Utilization of the test data led to rapid convergence of the model’s 
initial failure point which, as shown in Figure 31 & Figure 32 below, is reasonable though somewhat 
conservative. Since these curves contain damage growth unlike the initial uni -axial samples, more 
complete analysis of the experimental/analytical correlation is able to be performed.   It is apparent that 
further modeling work is necessary as the model is not able to match the plateau observed in the either 
set of test data. To ensure that this was a result of the binary material property degradation model, both 
the material properties and the failure criteria were modified. While these data are able to confirm the 
finding that this material property degradation is insufficient, further work with them to ensure an 
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accurate and repeatable model is needed in Round 3. It is worth noting that these results confirm Task 4 
listed above; that further testing of ±45° is not needed. The properties from the Round 1 Control 
samples were utilized in this testing and the best correlation yet in this study was achieved even with a 
±45° layer in the center of the 4-ply laminated. 

In summary, the Multi-Angle laminate tensile testing was performed to further prove the capabilities 
and limitations of the binary material property degradation model.  While there is a reasonable 
convergence of failure point, better approximation of linear elastic region is needed.   In addition, the 
damage growth is misrepresented due to poor material property degradation model and better 
constitutive property adjustment and failure criteria are needed moving forward.  

 

 
Figure 31:  Multi-Angle laminate tensile load-displacement curves with model data superimposed for 
comparison. 
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Figure 32:  Multi-Angle laminate compression load-displacement curves with model data superimposed for 
comparison. 

D.  Initial DDM Efforts 

Modeling efforts to utilize discrete damage modeling (DDM) methods were begun in Round 2.  Initial 
models were created by placing layers of cohesive elements between the continuum elements at 
representative tow thicknesses. To be consistent with the CDM efforts to date, the same IP wave was 
analyzed. Based on the observed damage progression in all physical testing to date of IP waves, cohesive 
elements were placed between the fiber tows across the width (Figure 33). In addition, it was deemed 
acceptable to utilize a 2D model with Abaqus’ built in *SHELL SECTION, COMPOSITE tool to calculate 
through the thickness.27  
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Figure 33:  2D DDM utilizing cohesive elements between each vertical row of continuum elements.  

While initial results appear to be promising at the time of the publication of this report, further work 
and analysis is needed before correlation can be compared. Largely material properties estimated for 
the cohesive elements need to be verified. Physical testing for transverse properties of these materials 
has not been directly performed. Initial calculations appear to be lacking and either additional physical 
testing or research to determine a robust method of estimating these properties must be performed.  
However, as noted below in Figure 34, this method does show initial promise as the cohesive elements 
are failing in the same location as noted visually and in DIC imagery.  In short, cracking has been 
observed in the area where the wave begins and as noted in Figure 34 damage has occurred between 
the fiber tows. Gaps are observed between the tows. Sliding is also observed as the elements are 
shifting different amounts noted by the changes in shape.  While further work is needed, these 
preliminary results are promising and suggest that this method will continue to be of interest.   
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Figure 34:  Close-up of failure between the fiber tows indicating that cohesive elements initially fail in the same 

location as noted visually and in DIC imagery.

Note that Figure 34 is the discrete damage modeling equivalent of Figure 31 & Figure 32 which utilized a 
continuum approach. A similar discrete approach for damage progression will be investigated for both 
OP waves and porosity. Since initial failures in OP Wave samples have been noted to be through the 
thickness or interlaminar, the approach toward modeling change. It will likely necessitate a move to 3D 
models with cohesive elements placed not only through the thickness ( Figure 35). 
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Figure 35:  An IP Wave in a 4-ply 3D model (left) with cohesive elements between each ply layer as highlighted 
on the right. 
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VI.  Conclusions 

The work presented herein indicates that not only have the results of Round 1 been built upon, but that 
steps have been made along several fronts in Round 2. These steps have resulted in broader data ranges 
and met the goal of moving toward larger scale testing and modeling. Further steps in these directions 
will be continued in Round 3 as outlined in the Future Work section found below.  

A significant effort has been given to improving the flaw laminate manufacturing techniques. Data 
from the thin laminate testing has shown that these more consistent manufacturing processes have 
improved the range, and in some cases the consistency, of the test data. In particular, the new OP wave 
specimens showed failure modes more representative of what one would expect to see in the field. 
Additionally, the porosity introduction technique achieved much higher levels porosity in the test 
articles and preliminary results from a new method used to characterize porosity content using 
radiodensity shows promise. All thin laminate flawed specimen tests showed appropriate mechanical 
responses and repeatable results successfully building upon the results from Round 1. This coupled with 
the comprehensive nature of the testing has enabled the generation of database for which high levels of 
confidence exists. It is expected that thick laminate testing will reveal that these results can be scaled to 
larger and more complicated structures. In addition, Multi-Angle and Delamination testing were 
successfully performed for flaw free laminates. Results correlate well with previous data and provided 
load and material property data necessary for improved analytical/experimental correlations.  

Thick laminate control testing has begun and the results look promising. Samples tested in 
compression show results on par with expectations. In order to minimize fixturing effects, some minor 
variable such as bolt torque, shim material and spacing have been isolated for further investigation. First 
efforts with the tension fixture showed complications due to tear out as expected. Further tests will 
evaluate the laminate pin strength, clamp load friction, bolt placement and variations to the layup 
schedule of test articles. It is expected that the tear out issue will be resolved quickly by evaluating these 
results coupled with characteristic length analysis.28 

Finally, progress has been achieved in modeling efforts through Round 2.  Both CDM and DDM 
approaches have shown promise to model damage progression.  In particular, CDM approaches have 
been utilized more than DDM and a variety of improvements have been made through Round 2. These 
include several steps, outlined above, to that have successfully improved correlation to test and DIC 
data. Also, proving the initial binary material property degradation model utilizing the Multi -Angle 
Laminate test results was deemed critical from the Round 1 efforts.  While reasonable correlation was 
achieved through the elastic region, mechanical responses after initial damage onset were not accurate.  
This has led to the conclusion that the binary material property degradation model is insufficient and 
must be improved. DDM work has progressed utilizing cohesive elements in areas where failure is 
anticipated. While additional work to ensure correct properties is necessary, the concept appears to be 
working. Overall, both methods have shown promise and will continue to fine tuned through Round 3 to 
improve analytical/experimental correlation. Additional details of this work may be found in References 
29 and 30. 
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VII.  Future Work 

While significant progress has been noted above, there is still substantial work to complete this study. 
Parallel work will continue on both Flaw Characterization and Effects of Defects to achieve these goals.  
The steps for each are outlined below will be the basis for the Round 3 portion of this study. 

1. Flaw Characterization & Defect Risk Management 
a. Flaw Data Acquisition 

i. Review, evaluate and report on repair work orders from Sandia Reliability Database. Attempt 
to establish new partnerships with industry  

ii. Collect data more on as-built flawed blades from NREL with the use of NDE 
b. Compile collected flaw data into a succinct database/summary 
c. Continued evaluations of NDI technologies 

i. Review of Sandia technology round robin results 
ii. Quantify probability of detection for use in Defect Risk Management studies 

d. Characterization of critical defects 
i. Continued testing of laminates increasing in scale 
ii. Finalize criticality evaluation metric 

e. Development of Reliability Protocols for Defect Risk Management 
i. Identify parameters from Effects of Defects Damage Progression Modeling 
ii. Finalize Criticality/Severity metrics and input data  

iii. Develop probabilistic evaluation tools 
a. Performed on an as-built defect laden part utilizing characterization information, statistics 

on flaw distributions and the probability of defect detection 
b. Develop limit state function(s) 
c. Evaluate and select a probabilistic reliability modeling method. Methods under 

investigation: Expert Systems, First Order Reliability Method, β-Method, Response Surface 
Method & Taguchi Methods 

f. Report on indices to serve as a guide for acceptable values in future reliability assessments  
g. Monitor any programs which might utilize the procedures developed herein 
h. Continue to complement on-going activities of entire BRC and work in conjunction where possible 

2. Effects of Defects: Round 3 Analytical Modeling 
a. Improve user-subroutine of CDM approach. 

i. Implement degrading properties instead of zeroing properties upon damage onset.  
ii. Improve/modify failure criteria. 

iii. Improve models ability through damage progression.  
iv. Investigate/utilize Abaqus/Explicit to improve damage progression modeling.  
v. Modify to analyze 3D mesh. 

b. Begin DDM utilizing 3D mesh. 
i. Add cohesive elements. 
ii. Substructure by beginning to integrate superelements or similar approach. 

c. Utilize both CDM and DDM models to predict and correlate to Round 2 physical testing for all 
three flaw types.  

d. Generate 3D mesh utilizing accurate CAD of defects. 
e. Increase scale. 

i. Investigate and use superelements to aid in substructuring if applicable. 
f. Correlate to larger scale testing. 
g. Identify strengths and weaknesses of CDM and DDM and compare results of these modeling 

methods.  
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Appendix 

A.  Round 2 Thin Laminate Testing Raw Results. 

Table 6:  Results from Round 2 Compression and Tension testing of IP Wave Samples. 

 

Table 7:  Results from Round 2 Tension testing of OP Wave Samples. 

 
  

Test type Sample name kips kN ksi Mpa Msi Gpa

C-IPA-1-2183 17 -7.07 -31.4 48.0 331 0.70% 2.38 16.4

C-IPA-2-2183 11 -7.03 -31.3 48.9 337 0.54% 2.00 13.8

C-IPA-3-2183 16 -7.05 -31.4 46.4 320 0.58% 2.59 17.9

C-IPA-4-2183 16 -7.10 -31.6 48.9 337 1.01% 4.84 33.4

C-IPA-5-2183 15 -7.17 -31.9 49.4 341 0.86% 0.84 5.77

C-IPB-1-2173 21 -6.03 -26.8 40.6 280 0.80% 2.41 16.6

C-IPB-1-2181 27 -4.93 -21.9 34.6 238 0.90% 1.88 13.0

C-IPB-2-2173 21 -5.56 -24.7 38.1 262 0.81% 1.23 8.50

C-IPB-2-2181 27 -4.94 -22.0 34.4 237 0.90% 1.23 8.49

C-IPB-3-2181 26 -5.31 -23.6 37.2 256 0.92% 1.28 8.83

C-IPB-4-2181 29 -4.97 -22.1 32.8 226 0.85% 1.40 9.63

C_IP_1_2195 18 -5.48 -24.4 39.1 269 0.90% 0.89 6.12

C_IP_2_2195 20 -5.85 -26.0 37.9 261 0.80% 1.01 6.95

C_IP_3_2195 19 -6.20 -27.6 38.5 265 0.90% 0.99 6.84

T_IPA_1_2173 17 18.6 82.5 64.8 447 3.26% 3.41 23.5

T_IPA_1_2183 12 21.6 95.9 75.2 519 3.40% 3.03 20.9

T_IPA_2_2173 21 18.0 80.2 63.7 439 2.85% 3.02 20.8

T_IPA_2_2183 14 25.3 112.6 85.9 592 4.07% 2.98 20.6

T_IPA_3_2183 16 23.8 105.9 81.7 563 3.69% 3.04 21.0

T_IPA_4_2183 16 23.5 104.4 82.1 566 3.64% 3.08 21.2

T_IPA_5_2184 16 22.7 101.0 79.4 548 3.87% 2.95 20.4

T_IPB_1_2181 30 8.67 38.6 15.0 103 2.71% 1.10 7.61

T_IPB_2_2181 36 8.68 38.6 14.9 103 2.85% 1.02 7.05

T_IP_1_2195 17 20.61 91.7 65.8 454 3.10% 2.98 20.5

T_IP_2_2195 16 21.58 96.0 69.5 479 3.40% 2.81 19.4

T_IP_3_2195 11 21.27 94.6 74.0 510 3.20% 3.04 21.0
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Test Type Sample name kips kN ksi Mpa Msi Gpa

T_OPA_1_2179 6 30.9 137.5 108.6 749 5.00% 3.12 21.5

T_OPA_2_2179 6 32.8 145.7 116.0 800 5.16% 3.13 21.6

T_OPA-1-2168 6 30.1 133.9 107.2 739 4.76% 3.17 21.9

T_OPB_1_2168 8 29.1 129.3 102.9 710 4.63% 2.99 20.6

T_OPB_2_2168 9 26.5 117.7 94.8 654 4.09% 2.99 20.6

T_OP_C_2_2197 25 26.9 119.6 94.1 649 4.80% 1.92 13.2

T_OP_D_1_2196 23 21.6 95.9 78.5 542 4.20% 2.00 13.8

T_OP_D_2_2196 25 23.7 105.3 85.2 587 4.30% 2.05 14.1

T_OP_E_1_2197 25 28.2 125.6 100.2 691 5.30% 1.55 10.7

T_OP_E_2_2197 26 22.4 99.5 80.1 552 4.60% 1.60 11.0

T_OP_G_1_2196 4 34.8 154.7 127.5 879 5.50% 3.37 23.2

T_OP_G_2_2196 6 35.1 156.2 127.5 879 5.90% 3.25 22.4

T_OP_G_3_2196 6 34.2 152.1 123.8 854 5.30% 3.38 23.3
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Table 8:  Results from Round 2 Compression and Tension testing of Porosity Samples. 

 
  

Test Type Sample name kips kN ksi Mpa Msi Gpa

C_P_1_2148 14 -8.0 -35.6 52.8 364 0.69% 0.73 5.04

C_P_1_2184 8 -11.8 -52.6 75.6 521 0.95% 5.23 36.1

C_P_1_2185 9 -11.4 -50.8 73.5 507 0.90% 1.96 13.5

C_P_2_2148 13 -10.4 -46.3 70.6 487 1.24% 5.98 41.2

C_P_2_2184 8 -11.1 -49.2 73.9 509 1.52% 5.29 36.5

C_P_3_2148 8 -10.6 -46.9 71.7 494 1.40% 5.45 37.6

C_P_3_2184 9 -10.0 -44.5 65.6 453 1.13% 5.95 41.0

C_P_4_2184 11 -10.9 -48.7 73.2 505 1.48% 5.33 36.7

C_P_4_2185 7 -11.3 -50.2 73.0 503 1.44% 5.51 38.0

C_P_5_2185 9 -11.5 -51.0 72.9 503 1.39% 5.70 39.3

T_P_1_2151 1 38.2 170.1 134.8 929 6.35% 3.29 22.7

T_P_1_2167 3 36.0 160.1 121.8 840 6.00% 3.14 21.6

T_P_1_2184 5 38.9 173.0 128.6 887 6.32% 3.13 21.6

T_P_1_2185 8 40.4 179.8 128.8 888 6.61% 3.03 20.9

T_P_2_2148 7 37.0 164.7 128.9 889 5.98% 3.22 22.2

T_P_2_2149 1 38.6 171.7 133.5 921 6.42% 3.22 22.2

T_P_2_2184 6 40.4 179.8 135.1 932 6.71% 3.13 21.6

T_P_3_2184 5 37.8 168.2 124.2 857 5.83% 3.17 21.9

T_P_4_2185 6 37.9 168.4 119.7 825 6.62% 2.82 19.5

T_P_5_2185 11 35.8 159.0 114.5 790 5.89% 2.94 20.2

T_P_1_2146 <1 36.5 162.3 122.0 841 6.10% 3.02 20.8

T_P_2_2146 <1 34.6 153.7 114.7 791 6.20% 2.93 20.2

T_P_2_2151 <1 36.8 163.9 126.6 873 5.89% 3.24 22.3
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B.  Round 2 Thin Laminate Load-Displacement and Stress-Strain Curves. 

 
 

 



58 

 
 

 
 



59 

 
 

 
 



60 

 
 

 
 



61 

 
 



 

62 
 

 
 

Distribution: 
Emily Baca (10) 
Office of Wind and Hydropower Technologies 
EE-2B Forrestal Building, U.S. DOE 
1000 Independence Ave. SW 
Washington, DC 20585 
 
Doug Cairns  (5) 
Dept. of Mechanical & Industrial Engineering 
Montana State University 
PO Box 173800 
320 Roberts Hall 
Bozeman, MT 59717-3800 
 
Paul Veers 
NREL/NWTC 
1617 Cole Boulevard MS 3811 
Golden, CO 80401 
 
Scott Hughes 
NREL/NWTC 
1617 Cole Boulevard MS 3811 
Golden, CO 80401 
 
Derek Berry 
NREL/NWTC 
1617 Cole Boulevard MS 3811 
Golden, CO 80401 
 
Steve Nolet 
TPI Composites Incorporated 
Structural Composites Division 
373 Market Street 
P.O. Box 367 
Warren, RI   02885-0367 

Internal Distribution: 
MS1124 J. Berg, 6121 (Electronic) 
MS 1124 S.M. Gershin, 6122 (Electronic) 
MS 1124 D.T. Griffith, 6122 (Electronic) 
MS 1124 B. Hernandez-Sanchez, 6122 
(Electronic) 
MS 1124 D. Laird, 6122 (Electronic) 
MS 1124 B. LeBlanc, 6121 (Electronic) 
MS 0615 S. Neigidk 6624 
MS 1124 A. Ogilvie, 6121 (Electronic) 
MS 1124 J. Paquette, 6121 
MS 1124 M. Rumsey, 6121 (Electronic) 
MS 0615 T. Rice, 6624 
MS1124 B. Resor, 6121 (Electronic) 
MS 0615 D. Roach, 6620 
MS1124 J. White, 6121 (Electronic) 
MS 1124 Wind Library, 6121 (5) 
MS 0899 Technical Library, 9536 (electronic copy) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



 

 
 



 

 
 

 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 

 


