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Abstract 

 
In a spherical shock-tube a high-pressure gas contained in a small spherical shell is 
suddenly released. The flow structure is characterized by a forward moving primary 
shock and a backward moving secondary shock. A material interface is formed 
between the outward and the inward shocks. Interfacial material mixing appears in 
many modern technologies including combustion, supersonic flows, explosions, spray 
development, and environmental flows. Accurate simulations of the dynamics of 
interfaces separating the two fluids are essential in computing fluid mixing. Our goal 
here is to extend such progress to the fast energy-exchange environment. 
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1. INTRODUCTION 

1.1. Background of the Base Flow 

1.1.1. The Flow Structure 
While our focus herein is on understanding the instability associated with detonative combustion, 
it is imperative that we first review the base flow that produces these instabilities. The base flow 
models can be classified into two groups: (A) point source explosions, where the energy is 
released from a singular point at the center of the explosion, and (B) a bursting sphere model. 
The analytical solutions for the point source explosions assuming strong-shock relations are the 
self-similar solutions of Taylor (1950a), Sedov (1946), and Van Neumann (1947). 

Our interest herein is on the high-pressure gas explosions resulting from a bursting sphere. When 
a highly pressurized sphere is suddenly released, an outward-moving primary shock develops, an 
inward rarefaction wave in the high-pressure region develops, and a contact interface (CI) 
appears between the rarefaction wave and the shock wave. Due to the spherical geometry, the 
rarefaction wave soon develops into an imploding spherical shock. At the contact interface, the 
pressure and velocity on the two sides are the same, but the density and temperatures on the two 
sides are different. The contact discontinuity initially moves behind the main shock front but 
with a decreasing velocity and then starts moving towards the center. This is demonstrated by the 
sketch in Figure 1–1a. The Ring Nebula (shown in Figure 1–1b) is believed to be resulting from 
a past explosion of a star. The CI appears in the Ring Nebula as separating the white and the 
yellow-colored matter. Due to the density jump across the CI, instability may arise and result in 
distorting the CI as shown in Figure 1–2a. Also, shown in Figure 1–2b is the Eskimo Nebula in 
which it is hypothesized that the radial spikes are the result of the development of the interfacial 
instability following the initial explosion of the star. 

 
1a 

 
1b 

Figure 1–1. A contact interface represented by the green circle 
between the two shocks (1-1a) and the Ring Nebula (1-1b). 
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2a 

 
2b 

Figure 1–2. A contact interface represented by the green circle 
between the two shocks (1-2a) and the Ring Nebula (1-2b). 

1.1.2. Theoretical Models 
An excellent review of the theoretical work in modeling the base flow is given by Sachdev 
(2004). McFadden (1952) and Friedman‟s (1961) theoretical solutions assumed that at t = 0, a 
unit sphere containing a perfect gas at a high pressure is allowed to expand suddenly into a 
homogeneous atmosphere, such as air. This is an analogue of a plane shock tube problem, but 
here additionally the spherical term must also be included. McFadden (1952) wrote out a series 
form of the solution, the zero-order solution in the series is simply the solution of the plane shock 
tube problem. McFadden (1952) found first order correction for various regions of the flow and 
explained how the geometry affected the solutions of the shock tube problem. Essentially the 
same problem was treated subsequently by Friedman (1961), who obtained a solution by 
perturbing the corresponding plane rarefaction wave. Both McFadden (1952) and Friedman 
(1961) essentially produced the same model, however in the former, the gas sphere pressure is 
relatively low such that the phenomenon of a secondary shock is not observed. In the case of the 
rapid expansion of a higher pressure gas sphere considered by Friedman (1961), a secondary 
shock develops due to the spherical effect.  

The secondary shock is absent in the plane one-dimensional shock-tube problem since the main 
shock and the expansion come into instantaneous equilibrium, being separated by a region of 
uniform pressure and velocity. The phenomenon of secondary shock in spherical explosions can 
be described as follows: physically the high pressure gas passing through a spherical rarefaction 
wave must expand to lower pressures than those reached through an equivalent one-dimensional 
expansion, due to the increase in volume. Therefore, the pressure at the tail of the rarefaction 
wave is lower than that transmitted by the main shock and a compression or a secondary shock 
must be inserted to connect these two phases. 

1.1.3. Numerical 
In terms of Numerical work, Brode (1959) used the method of artificial viscosity to numerically 
compute results for the sudden release of an initially static high pressure gas from spherical 
enclosures. Brode succeeded in capturing the complete post-explosion wave structure and the 
birth and evolution of the secondary shock which originates at the tail of the inward facing 
rarefaction wave. The calculations further revealed that the contact interface moves initially 
outwards following the blast wave but decelerates and subsequently reverses direction to move 
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inward. The main contribution of this numerical study is the detection of a secondary shock 
which originates as an imploding shock following the inward rarefaction into the high pressure 
gases.  

1.1.4. Experiments 
Experimental investigations of a bursting sphere flow are given in Boyer (1960). The initial 
sphere radius was 5.08 cm and the pressure was 22 atm. Brode‟s (1959) results compared 
favorably with the experimental data by Boyer (1960), but has also showed some notable 
disagreements such as the arrival time of the secondary shock at the center. 

1.2. Rayleigh-Taylor and Richtmyer-Meshkov Instabilities 

1.2.1. Rayleigh-Taylor Instability (RTI) 
Rayleigh-Taylor instability (RTI) occurs at the interface of two fluids of different densities when 
the lighter fluid is pushing on the heavier fluid. Lord Rayleigh (1883) is credited with 
discovering these effects under the acceleration of Earth‟s gravity. Taylor (1950b) is credited 
with expanding the theorem to account for any acceleration in addition to gravitational 
acceleration. Due to the lighter fluid‟s attempt to support the weight of heavier fluid any small 
perturbation can trigger the start of the instability. 

In Taylor‟s (1950b) analysis, he considers two fluids with different densities initially at rest. The 
heavier fluid is denoted by    while the lighter fluid is represented by   . The interface is located 
at     and subjected to the gravitational acceleration      .   The perturbations are then 
expanded in the    direction in terms of complex exponentials with a planar wave number  . The 
growth in time is assumed to follow be exponential growth such that the perturbation amplitude, 
  can be written as                      where   is the amplification rate. A simple 
dispersion relation can be obtained by applying the conservation of mass conditions. Upon 
enforcing continuity of the normal velocity and pressure Taylor pioneers a new area of research 
by arriving at his expression       t   The Atwood number    is simply the density 
difference normalized by the density sum.  

 

Figure 1-3. Pictorial representation of nonlinear RTI spikes and bubbles.  

Taylor‟s exponentially growing analysis is linear; consequently, it breaks down when the 
perturbation amplitude is too large. Nonlinear effects are no longer negligible and are observed 
as „spikes‟ and „bubbles‟ while they roll up forming vortices. During the nonlinear phase of RTI, 
the „bubbles‟ of lighter fluid rise into the heavier fluid while the „spikes‟ of heavier fluid „fall‟ 
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into the lighter fluid as depicted by Figure 1-3. Taylor‟s profound work is discussed in further 
detail in Chapter 2 to elaborate upon the subsequent work of others that ventured into the same 
field.  

1.2.2. Richtmyer-Meshkov Instability (RMI) 
Richtmyer-Meshkov Instability (RMI) occurs when an interface between two fluids of differing 
density is impulsively accelerated. The passage of a shock wave is a classical problem studied by 
many (Richtmyer, 1960, Meshkov, 1969). As in the case of RT instability, the onset of RM 
instability is triggered by small amplitude perturbations that initially behave linearly in time. 
Likewise, the linear regime is concluded with the start of the non-linear regime where the lighter 
fluid penetrates the heavier fluid forming bubbles and the heavier fluid penetrates the lighter 
forming spikes as depicted in Figure 1-4. 

 

Figure 1-4. RMI (Rightley et al. 1997) Pictorial representation of nonlinear RTI spikes and 
bubbles.  

The understanding of Richtmyer-Meshkov instabilities is seen as the impulsive limit Rayleigh-
Taylor instability. Rather than a constant acceleration due to gravity, the interface is impulsively 
accelerated due to a shock wave or time varying acceleration. Such a phenomenon is often 
referred to as baroclinic deposition of vorticity onto the interface. Building upon the RT analysis, 
the amplitude of the disturbance is governed by                     . The time varying 
acceleration      is assumed to occur over a short time period such that the imparted incremental 
velocity    can be defined as:            . Due to the rapid nature of the impulse, the 
differential equation is integrated to yield                   . The growth rate is given in terms 
of the initial amplitude   and planar wavenumber    Note that the instability is active regardless 
of acceleration‟s direction and for all impulses. Consequently, the amplitude of the mixing layer 
grows linearly in time unlike the RT case which grows exponentially, but similarly it is 
proportional to the wavenumber   and Atwood number. In chapter 2, the impulsive effects of 
RMI are present consequently they add to the intricacy of the problem in question. Note that both 
RMI and RTI are inviscid studies Chandrasekhar (1981) addresses the effects of viscosity for a 
planar Rayleigh-Taylor instability with zero thickness. In Chapter 3, his work is utilized as 
means of verification.  
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1.3. Objectives 

Classical Raleigh Taylor instability has been of interest since the early 1900s. It is the interfacial 
instability produced by a density discontinuity between two fluids in a planar context subjected 
to a body force, usually gravity. The classical problem does not account for Bell-Plesset effects 
or curvature effects, impulsive effects, and compressibility effects. In the introduction of Chapter 
2, after discussing the history of the various instability mechanisms mentioned, we investigate 
these additional effects for a moving rather than stationary interface. The Chapter is self-
contained and as such it explains in detail the formulation of both the base flow and the 
perturbed flow. The procedure by which the base flow‟s governing equations are perturbed and 
then decomposed in terms of spherical harmonics is elaborated upon. Following which in 
Chapter 2, we extend the Roe-Pike numerical scheme so that it can be employed to numerically 
solve the perturbation equations. After  which, the growth rate is found to be exponential rather 
than power law and quantitatively compared with various theoretical works. The effects of 
compressibility are fully explored through a parametric study. The saturation phenomenon of the 
growth rate at large spherical wave numbers is explained by comparison with the work by 
Banderia (1984).  

In Chapter 3, the viscous effects are investigated for various Reynolds number and it is shown 
that an optimal spherical mode with a peak growth rate appears. Unlike the inviscid case, the 
saturation phenomenon is not present for the viscous case because the viscosity dampens the 
growth of the instability for very large wave numbers. As in the inviscid case, a comparison with 
theoretical models is also conducted for the viscous case. The Reynolds number and Prandtl 
number are shown to dictate the spherical wave number at which the peak growth rate is reached. 
The spherical wave number determines the number of instabilities that can be experimentally 
visualized.  

Chapter 4 contains the formulation for our future work on the Eulerian-Eulerian multiphase 
problem where particles are included. As in Chapter 2 and Chapter 3, a similar system of 
equations is obtained for the perturbed flow. Additionally, an analytical model that predicts the 
growth rate of the two interfaces close to each other is presented as a guide for the future 
simulations to be performed. Due to computational constraints, there is little research being done 
on the subject of a gas-gas interface, in the presence of a neighboring particle-gas interface. The 
employment of spherical harmonics has proven to be greatly advantageous since it is not as 
computationally demanding as a Direct Numerical or Large Eddy Simulation (DNS or LES). In 
the future, with the advancement of computational resources a  Direct Numerical Simulation 
(DNS) for given pressure and density ratio, initial spherical diameter, Reynolds and Prandl 
numbers, and a single disturbance can be performed. 
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2. COMPRESSIBLE INVISCID INSTABILITY OF RAPIDLY EXPANDING 
SPHERICAL MATERIAL INTERFACES 

2.1. Introduction 

The interest in studying the stability of a spherical material interface stems from its relevance to 
many engineering applications such as supersonic combustion, pulse denotation engines, fusion 
reactors, propellant rocket motors, and supernovae. Understanding the mechanisms by which the 
contact interface becomes unstable has several benefits in these applications. For instance 
regarding combustion-based applications, a spherical interface separates the hot fuel mixture 
from the cold ambient air. Mixing at the interface is essential for continued burning and energy 
release. Consequently, the stability of the interface strongly affects the combustion efficiency. 

Here we consider the spherical shock tube problem, where a finite-sized spherical container 
filled with high pressure gas is suddenly released into the ambient and we are interested in 
understanding the initial linear stage of the resulting instability. Immediately following the 
release, just as in a planar shock tube, a spherical blast (or shock) wave and a contact 
discontinuity (the material interface between the gas that was initially within the container and 
the ambient) propagate radially out, but the expansion fan propagates into the high pressure gas. 
Although there is a substantial body of knowledge on the instability of shock waves and material 
interfaces in isolation under idealized conditions, here we are interested in relating this 
understanding to the instability of the more complex flow resulting from the release of a finite-
sized high pressure spherical container.  

The instability of a planar shock wave in a material with an arbitrary equation of state has been 
rigorously investigated (Swam and Fowles, 1975, Erpenbeck, 1962). When applied to the ideal 
gas case it can be readily shown that a planar shock remains linearly stable for all values of the 
adiabatic index. The stability of a spherical shock wave produced by the rapid release of initially 
highly focused energy has also received much attention in the context of supernovae (Ryu and 
Vishniac, 1987, Kushnir et al., 2005). They have considered finite release of energy from an 
infinitesimal point source, where only a strong shockwave is produced, without an associated 
contact discontinuity or expansion fan. These studies agree that an expanding spherical shock is 
generally stable except when the adiabatic index is close to one and only for a limited range of 
large wave numbers. Hence, an expanding spherical shockwave in air with the adiabatic index 
being close to 1.4 remains stable. On the other hand, an imploding shock is unstable over a wide 
range of adiabatic index and disturbance wavelengths.  

The contact interface is also a surface across which density jumps, but unlike a shock front the 
velocity and pressure are continuous. The early work of Rayleigh (1900) and Taylor (1950) 
considered the stability of a plane interface separating two incompressible stationary fluids of 
different densities subjected to gravity acceleration. When the direction of gravity is from the 
heavier to the lighter fluid, Taylor showed that the flow is unstable and that the instability growth 
rate is proportional to the square root of the product of wave number, acceleration, and Atwood 
number. The latter is defined as the ratio of the difference between the two densities to their sum.  

Motivated by the phenomenon of cavitation, Plesset (1954) studied the Rayleigh-Taylor (RT) 
instability in the context of a spherical surface of discontinuous density. In particular he 
considered the collapse of the interface that separates an inner air bubble from the outer liquid. 
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Plesset (1954) and Bell (1951) demonstrated that in addition to the classical RT instability there 
is an additional mechanism that was not present in the planar case. This additional instability 
mechanism caused by the movement of a curved interface is pertinent only in cylindrical or 
spherical geometries and is commonly referred to as the Bell-Plesset (BP) effect.  

Both Plesset‟s (1954) and Taylor‟s (1950) studies as well as the majority of studies that ensued 
were limited to incompressible flows. However recently, the compressibility effects have 
received attention due to their relevance to many important applications. Amendt et al. (2003) 
considered a “compressible” spherical model similar to that of Plesset, in which the density both 
inside and outside the interface is taken to be constant in space, but vary in time and thus 
introducing compressibility effects. The density variation of the inner fluid is dictated by the 
motion of the interface, by satisfying the continuity equation. The time variation of the density of 
the outer fluid is used as a free compressibility parameter. An extension of this model is 
presented by Epstein (2004) where the compressibility effects are considered in the base flow by 
allowing the density to vary in time. However the density‟s time rate of change was set to be 
equal on both sides of the Contact Interface (CI). The perturbed flow is still assumed to be 
incompressible allowing the growth rate to be explicitly given by a second-order ordinary 
differential equation. 

Amendit‟s and Epstein‟s studies as well as others that predated or followed them (Vandervoot 
1961; Bernstein and Brook, 1983; Sharp, 1984; Yang and Zhang, 1993; and Turner , 2002) have 
not been conclusive. Some indicate enhancement of instability growth rate due to 
compressibility, while others suggesting stabilizing effects of compressibility. Recently, Yu and 
Livescu (2008) performed a comprehensive investigation of the compressibility effect on the 
stability of a cylindrical contact interface in order to clarify the matter. The problem was 
simplified by assuming the interface to be stationary and the base flow‟s temperature to be 
uniform. The base flow is allowed to vary along the radial direction, but not in time. Regarding 
the conflicting results on the effects of compressibility, Yu and Livescu clarified that the effect 
of compressibility can be different depending on how the incompressible limit is approached. It 
can be evaluated either by letting the Mach number go to zero or by letting the adiabatic index go 
to infinity. They concluded that the growth rate increases as the Mach number approaches zero, 
but it decreases as the adiabatic index increases. 

In the present problem of a sudden release of high pressure gas from a finite-sized spherical 
container, the resulting base flow is spherically symmetric and characterized by the close 
presence of all three compressible flow features - shock, contact discontinuity and expansion fan. 
Experiments of spherical explosions, where the detonation product plays the role of the high 
pressure gas, show the air shock to be stable, while the contact discontinuity between the 
products of detonation and the ambient to be highly unstable. Accordingly, in the present context 
of a spherical shock tube, the contact discontinuity can be expected to undergo classical RT and 
BP instabilities.  

Despite its simplicity, the spherical shock tube configuration departs in several significant ways 
from the idealized conditions assumed in the above mentioned theoretical analysis of the 
classical instabilities. In a spherical shock tube the instability is influenced by various 
mechanisms which include classical Rayleigh-Taylor (RT) effect, Bell-Plesset (BP) or 
geometry/curvature effect, the effect of impulsively accelerating the interface, and 
compressibility effects. Henceforth, the present instability will be referred to as non-classical RT 
instability to distinguish it from classical RT instability.  
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Furthermore, in a spherical shock tube following the release, the density field develops 
substantial variation along the radial direction around the contact discontinuity and thus differs 
from the uniform density field assumed in the instability theories. Also, unlike the planar 
counterpart, the time-dependence of the flow in a spherical shock tube is quite complex, and 
cannot be taken to be either steady or self-similar. In particular, quantities of relevance to 
interfacial instability such as the Atwood number and acceleration of the contact discontinuity 
cannot be assumed to remain constant, and consequently the effect of their time-dependence 
must be accounted. Lastly, the contact discontinuity is embedded between the primary shock 
wave and the secondary shock wave that develops from the tail of the expansion fan. The 
influence of these additional discontinuities in the base flow on the stability of the contact 
discontinuity has to be considered. Finally, in the case of spherical shock tube compressibility 
effects are critical in evaluating the spherically symmetric base flow and correspondingly 
compressibility effects on its instability must be thoroughly ascertained. 

Although the theoretical analysis of the spherically symmetric base flow resulting from a 
spherical shock tube was studied (McFadden, 1952; and Friedman, 1961), the study was limited 
to early times and includes several simplifying assumptions. Owing to the complex nature of the 
flow there is no explicit analytic expression for the base flow. Here we consider numerical 
solutions of both the base flow and the perturbation and we fully account for the compressibility 
effects. In 1981, Roe formulated an approximate Riemann solver, which was revised in 1999 by 
Roe and Pike. Here we use a WENO reconstruction algorithm (Haselbacher, 2005) that is based 
on the work of Jian and Shu (1996). The Roe-Pike solver coupled with a high-order WENO 
scheme is employed to simulate the base flow. The governing equations for the 3D linear 
perturbations are derived and then solved numerically using the same scheme. Linearization 
allows for the expansion of the 3D disturbance in terms of spherical harmonics.  

Thus, in the present work we numerically investigate the instability of the rapidly expanding 
material interface resulting from a spherical shock tube, fully accounting for compressibility 
effects and without any assumptions or approximations regarding the time and space dependence 
of the base flow. The numerical results will be compared against the different theoretical results 
to establish an approximate analytical approach that can adequately explain the computed 
instability.  

The present investigation will be limited to an inviscid flow and thus only the Euler equations are 
solved for both the base flow and the perturbation. As a consequence, based on inviscid classical 
RT instability theory, we can anticipate the growth rate of the perturbation to monotonically 
increase with wave number. Clearly viscous, thermal, and mass diffusion effects must be 
included in order to identify the most amplified spherical harmonics. Nevertheless, with the 
present inviscid instability analysis we will be able to address an important question: how well 
the simple classical RT and BP instability theories that are based on idealized conditions are able 
to capture the computed inviscid instability of the spherical shock tube problem. Once we 
establish the applicability of the theoretical results, we will generalize the inviscid instability to a 
wide range of initial pressure and density ratios that parameterize the sudden release of high 
pressure gas from a finite-sized spherical container.   

The study is presented in the following order: in section II the derivation of the perturbation 
equations in spherical coordinates is described. The boundary conditions and behavior near the 
origin are discussed in section III. The numerical scheme and boundary treatment are explained 
in section IV. The results for the stability of the contact interface are presented in section V for a 
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specific pressure and density ratio, corresponding to that considered in the classic work of Brode 
(1995, 1959). In section VI, a comprehensive parametric study is presented in order to analyze 
the effects of the two key operating parameters: initial inside-to-outside pressure and density 
ratios.  Conclusions are given in section VII.  

2.2. Formulation 

Before analyzing the stability of the contact interface, the base flow must first be defined. The 
base flow of interest here is produced by the sudden release to the ambient of a high pressure gas 
contained initially in a finite-sized sphere. The limiting case for the base flow is Taylor's (1950) 
and Sedov‟s (1946) point source solution, where the initial high pressure radius goes to zero, i.e., 
all the energy is contained in a single point at the origin. It is well understood that in the context 
of a finite-source release (as opposed to point-source), in addition to the main shock wave, there 
will be a contact discontinuity and an expansion fan. An expansion fan consists of an infinite 
number of Mach waves; across the expansion fan, the flow accelerates while the static pressure 
and density decrease. The tail of the expansion fan, due to the radial effect, becomes a second 
shock wave, which after a brief period of outward propagation, turns and starts to move inwards 
towards the origin. These additional discontinuous surfaces were discussed by Brode (1955, 
1959) and Friedman (1961). At the contact interface, the pressure and radial velocity on the two 
sides are the same, but the density and temperature are discontinuous across the surface. Initially, 
the contact discontinuity moves radially outward behind the main shock front, but its velocity 
continually decreases until it starts to move inwards towards the origin. After a long time, the 
contact discontinuity reaches an asymptotic radial location defining the near-field of the rapid 
energy release, while the main shock wave continues to travel out. The far-field solution of the 
blast wave becomes identical to Taylor‟s self-similar solution so long as the shock remains 
strong. Our focus herein is on the Rayleigh-Taylor instability of the contact interface that 
develops between the primary and secondary shocks. 

2.2.1. Base Flow Equations (Zero-Order) 
Here we pursue the approach of Ling et al. (2009) for the base flow; where due to spherical 
symmetry only the radial velocity is of importance. For simplicity, the fluid is taken to be a 
perfect gas. Upon neglecting viscosity but taking into account compressibility effects, the base 
flow equations reduce to a system of three nonlinear partial differential equations in   and  . The 
Euler continuity, momentum, and energy equations are given by:  

   

  
  
     

  
  
   

 
     (1)  

      

  
  
        

  
  
    

 
   (2)  

   

  
  
     

  
  
   

 
      (3)  

Here   is the total energy and   is the base flow velocity in the radial direction. The density is  ; 
the pressure is  , and the total enthalpy   is given by: 

         (4)  

http://en.wikipedia.org/wiki/Mach_wave
http://en.wikipedia.org/wiki/Static_pressure
http://en.wikipedia.org/wiki/Density
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For a thermally and calorically perfect gas, the total enthalpy is related to the static temperature 
by        likewise for the total energy       .  The specific enthalpy is related to the total 
enthalpy as      likewise for the total energy     . The base flow domain extends from the 
origin to beyond the primary shockwave where ambient conditions prevail. 

2.2.2. The Linearized Perturbation Equations 
The starting point for deriving the perturbation equations is the compressible Euler equations in 
spherical coordinates. We begin by assuming that each flow quantity is composed of the base 
flow             and a perturbation  u  v  w        . Thus, 

                                         (5)  

where                  are the perturbation radial velocity, azimuthal velocity, zenithal (polar) 
velocity, pressure, and density, respectively. Upon substituting this split into the 3D Euler 
equations, neglecting the nonlinear terms, and subtracting the base flow equations, the linearized 
continuity is obtained as follows: 
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For the spherical coordinate system, we define: 
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The  -momentum equation is given by: 
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The perturbation velocity is composed of two components:    in the radial direction and     for 
the tangential direction, where  

                  (9)  

Here    and    are unit vectors along the azimuthal and zenithal (polar) directions respectively, 
and 
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is the gradient in the tangential direction. The tangential momentum equation is obtained from 
the    and   -momentum equations: 

   
   

  
    

 

 
 
       

  
      

    (11)  

The energy equation is given by: 

 
   

  
   

 

  
         

  
    

  

  
             (12)  

and, 

            (13)  

where    and    are the total perturbation energy and total perturbation enthalpy respectively.  

2.2.3. Spherical Harmonic Decomposition 

Since the perturbation equations are linear, we can expand them in the            directions using 
the spherical harmonic functions as: 
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           (15)  

Here, the spherical wave number   = 0, 1, 2,… and the mode number   = 0, 1, 2,…,  . The 
spherical harmonic          of order  ,   is given by: 

            
            (16)  

where        is the associated Legendre polynomial. Upon employing this decomposition the 
divergence becomes: 
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where         . After substituting the decomposition into the linearized equations we 
obtain: 
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where   is the adiabatic constant and the energy equation has been replaced by an equivalent 
perturbation pressure equation. The final perturbation equations are written in conservative form 
as follows:  
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   (24)  

To close the system, we have: 

                 
  

 
      (25)  

Thus, for a given spherical wave number   we can solve the continuity, radial-momentum, 
tangential-momentum, and energy equations to obtain the perturbation solution. Notice that the 
mode number   does not appear in the final governing equation, hence the growth of the 
instability is dependent only on the spherical wave number    
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2.2.4. Boundary Conditions 
The disturbance must decay away from the contact interface and thus the far-field boundary 
condition becomes:  

                                          
 

(26)  

The inner boundary condition for the perturbation flow is not as obvious. The inner boundary 
condition for the base flow is a reflecting wall at the origin; consequently, the inner boundary 
condition for the perturbation flow is also a reflecting wall at    .  
The base flow‟s inner reflecting boundary condition requires the radial velocity to be zero 
(     at the origin, which leads to         in order to satisfy the radial momentum 
equation. Likewise for the perturbation flow, the vectorial velocity must be zero (     and 
    ) which leads to          in order to satisfy the radial perturbation momentum equation.  

1.1.1. The Perturbation Equations near the Origin 

The perturbation equations as written in (22)-(25) are singular at    ; consequently, we need 
to examine the solution near the origin. To clarify the behavior near    , let us rewrite the 
source term to as: 

   

 
 
 
 

 
 
      

 

 
   

          

 
 

 
                         

 

 

 
       

 

  

     
 

 
   

          

  
 
 
 

 
 
 

    (27)  

Upon substituting the base flow solution near the origin, the perturbation equations can be 
reduced to observe that the singularity arises from the two terms: 

 
  

 
   
        

 
    (28)  

which should be handled carefully in any numerical boundary treatment. 

2.3. The Numerical Scheme  

A finite volume approach is employed to solve the system of perturbation equations. The flux is 
calculated by applying the Roe scheme (Roe, 1981; and Roe and Pike, 1999). Gradients are 
calculated using a Weighted Essentially Non-Oscillatory (WENO) scheme that is second order 
accurate (Haselbacher, 2005; and Jian and Shu, 1996). The time evolution is according to the 
classical fourth order Runge-Kutta method. The Roe-Pike scheme is extended here for the 
perturbation flow.  
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2.3.1. Extension of the Roe-Pike Method 
There are three major steps in the Roe-Pike Method. The first of which involves writing the 
equation in a semi-linear form by defining a Jacobian         for some „average‟ values of 
the quantities and calculating the eigenvalues/vectors of the Jacobian in terms of these average 
quantities. The second step is decomposing the jumps across the discontinuity in terms of the 
eigenvectors,    as         

 
   , and finding the weights   in terms of the averaged 

quantities. The last step is finding the average quantities that satisfy the flux-difference formula. 
The Jacobian   for the perturbation equations can be written as: 
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where        

 
 

 
 

  

   
 
  

 
      

  

 
   (30)  

The eigenvalues are found to be:                 and the eigenvectors are:  

   

        
    

        
    

 

 
   

  

 
 

 

 
   

   (31)  

Proceeding onto the second step of calculating the wave strengths, a system of four algebraic 
equations for    in terms of    is formed: 

         
 
    . (32)  

The solution to the system yields the perturbation weights, which are given as: 
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                      (34)  
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                (35)  

        , (36)  

where the subscript on the base radial velocity    is used to denote an average between the right 
and left states. 

Notice that the Jacobian obtained here is the same as that for the regular quasi-linearized Euler 
equations (governing equations of the base flow); therefore, the form of the eigenvalues and 
eigenvectors are the same as in the Roe-Pike analysis of the Euler equations. The equations 
obtained for the perturbation weights   have the same form as that of nonlinear Euler equations 
(Toro, 2009). However here,    denotes the perturbation‟s jump across the discontinuity rather 
than the base flow‟s jump. Roe-Pike also presented an approximate formula for the weights in 
terms of the characteristic variables; it is possible to derive such an approximate formula for the 
perturbation equations as well by writing: 

                      (37)  

           
                   (38)  

where the momentum error    and the energy error    are given by: 

                                                      (39)  
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(40)  

The subscripts L, R are used to indicate the left and right states respectively. In this case, the 
approximate weights are written in terms of the perturbation characteristic variables: 
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Again the rewritten weights are identical in form to the weights obtained by Roe-Pike (Toro, 
2009), except the difference between the right and left state is the difference in perturbation 
quantity rather than the base quantity. For either form of the perturbation weights, the „averaged‟ 
base flow quantities are determined such that the flux difference equation is satisfied. 

           

 

   

    (45)  

For the base flow‟s weights, Roe and Pike showed that the approximate characteristic weights 
satisfy the flux difference equation for any definition of an average. In other words, so long as 
the averaged value falls between the right and left values the flux difference is satisfied. Upon 
repeating the same process for the perturbation characteristic weights, the conclusion is the same.  
Unlike the approximate characteristic weights, the more accurate weights demand that the 
average be defined as:  

          (46)  

    
            

       
    (47)  

The remaining averaged parameters are computed in a similar fashion. Now that flux difference 
is computed, the flux at the face    can be evaluated by: 

     
 

 
         

 

 
        (48)  

Notice that the perturbation equations‟ Jacobian was directly given in terms of only the base 
flow. Therefore, no additional approximation was needed. This is no surprise because the 
perturbation system was already linear, so there was no need for a quasi-linear form. 

2.3.2. Inner Boundary Numerical Implementation 

At the inner boundary    , solely by requiring that    ,     , and that    is nonsingular, 
the fluxes at the face reduce to: 

    

       

             
   

       

   

 
   
 
 

     (49)  

The condition that the gradient of the perturbation pressure is zero is enforced through the flux, 
since the pressure at the face     is set equal to the cell centered value at     /2. The 
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singularity is removed by refraining from solving the   -equation at the first node; instead, we 
specify    at the first node as         .  

2.4. Results and Discussion  

We first present the results for a specific case of a spherical container with an inside to ambient 
pressure ratio of 22 and a temperature ratio of 1. For simplicity we consider both the compressed 
gas and the ambient to be air with an adiabatic index γ of 1.4. Correspondingly the initial inside 
to ambient density ratio is also 22. The ambient temperature and pressure are taken to be 299oK 
and 1.0207 atm respectively. The initial location of the diaphragm    was 0.0254 m. These 
operational parameters were chosen because several other prior studies have used the same 
spherical shock tube condition, since the earliest work by Brode [20] and Freidman [18]. For this 
case we first briefly review the results of the base flow and then proceed to discuss the instability 
results and compare the numerical results with the different theoretical predictions. Once the 
comparison is firmly established we then generalize to consider a wider range of pressure and 
density ratios. 

All the results presented herein are normalized as follows: the length scale is chosen to be the 
initial location of the spherical diaphragm separating the high pressure gas from the ambient air, 
thus a dimensionless radial coordinate can be defined as       . The velocity and density are 
normalized by the ambient speed of sound and density respectively. The time scale   is formed 
from the ambient speed of sound and the initial location of the diaphragm, hence the 
dimensionless time is obtained as           . Lastly, the pressure and total energy are 
normalized by    , where    and   are the density and speed of sound of the undisturbed 
ambient. 

2.4.1. The Base Flow 

 
1a 
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1b 

 
1c 

Figure 2–1. The radial dependence of (1a) pressure, (1b) radial velocity, and (1c) density 
of the base flow at 4 different non-dimensional times. The location of the primary shock 

(PS), secondary shock (SS) and contact interface (CI) are most evident in the density 
profile and are marked. The above results are obtained with a discretization of 2000 

uniform grid points extending up to a radial location of   = 15.75. 

Figure 2–1 shows the dimensionless pressure, velocity, and density of the base flow as a function 
of   at various times. The pressure and velocity jumps across both the primary shock (PS) and 
the secondary shock (SS) are clear in Figure 2–1a and Figure 2–1b respectively. The pressure 
and velocity are continuous across the contact interface (CI), but the density is discontinuous, 
which is evident in Figure 2–1c. The primary shock moves only in the forward direction, while 
the secondary shock initially moves outward, then inwards, and finally reflects off the origin. 
The location of the maximum density derivative is used as an estimate for the contact interface‟s 

position denoted by    .  
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2a 2b 

Figure 2–2.  -   Diagram of the location of the contact interface, primary shock, and 
secondary shock. In terms of the original non-dimensional location (2a), and rescaled by 

the location of the contact interface (2b). 

Figure 2–2 depicts the location of the discontinuities as a function of time. As shown in Figure 
2–2a, during the time range [0, 4] the contact interface‟s path is approximately parabolic, which 
suggests a constant deceleration of the CI that is explored in detail later on. The secondary 
shock‟s first reflection happens at a dimensionless time,      . Once the SS is reflected it 
continues to move outward until it interacts with the CI creating a tertiary shock, while 
undergoing Richtmyer-Meshkov (RM) instability (Richtmyer, 1060; and Meshkov (1969). For 
now, we focus on studying the non-classical RT instability of the CI, before its interaction with 
the secondary shock. Therefore, the time domain of interest is up to       in order to isolate 
the non-classical RT mechanism from the RM mechanism. In Figure 2–2b, we normalize the 
radial distances by the location of the CI, thus showing the location of the shocks relative to the 
CI. It is clear that the secondary shock for an extended duration remains close to the contact at 
about 80% of its radial location; even the primary shock till about       remains within one 
radius of the contact‟s location. Thus, it is of interest to study how the non-classical RT 
instability of the CI is influenced by the presence of the two nearby shocks. 

The velocity of the contact interface and its grid 
independence are shown in Figure 2–3. Note that 
the CI‟s velocity goes to zero around      . 
From the figure, the deceleration of the contact 
interface appears to be a constant for the range of 
      to about 4.0. Interestingly, this time 
range coincides with the inward motion of the 
secondary shock. Once the secondary shock 
reflects off the origin the inward acceleration of 
the CI begins to slow down. Also in Figure 2–3, 
we demonstrate the effect of the numerical grid 
resolution on the extracted deceleration. Results 
for three different resolutions ranging from 1000 
to 4000 uniform grid points resolving a region of 
           are shown in the figure and it is 

 
Figure 2–3. The constant deceleration of 

the CI and its grid independence. 
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evident that the velocity of the CI rapidly becomes grid-independent.  

The convergence of the base flow with increasing numerical resolution is critical when studying 
the behavior of the perturbation. This is particularly important in the present context of non-
classical RT instability, which depends on the sharpness of the interface. Figure 2–4 illustrates 
the effect of refining the computational grid on the mean flow parameters relevant to the growth 
rate of the instability. The two parameters presented in the figure are the Atwood number and the 
finite thickness of the contact interface. The Atwood number is computed by finding the local 
maxima and the local minima of the density. The narrow region between the locations of these 
two local extrema is defined as the thickness of the contact interface. It is clear that the Atwood 
number converges to its asymptotic value with increasing resolution. Furthermore, it is very 
interesting that the Atwood number remains nearly a constant during the time period of 
investigation. In comparison, the convergence of the width of the contact interface is slower. 
This phenomenon is typical of discontinuity-capturing numerical approaches, because the width 
of the discontinuity is limited by the grid spacing and thus convergence is at best first order. The 
resulting finite thickness of the contact interface will have an impact on the growth rate of the 
instability and this effect is investigated in detail. 

  
4a 4b 

Figure 2–4. Grid Study of base flow parameters Atwood number and the CI width. 

2.4.2. The Perturbation Solution 
In this section we present results on the spatial and temporal structure of the perturbation 
resulting from the instability analysis. It must first be emphasized that the present approach is an 
initial value formulation and not an eigenvalue problem. Since the base flow, whose stability is 
being investigated, is a function of both time and  , the governing equations for the perturbation 
(22)-(25) remain dependent on both time and  . Here we solve these equations along with the 
base flow equations starting from an assumed initial perturbation structure. The two 
disadvantages of the initial value approach are that a system of partial differential equations must 
be solved for the perturbation and that the computed time evolution of the perturbation depends 
on its assumed initial structure.  

For the results presented in this section, the perturbation density was initialized with a Gaussian 
distribution with a peak density perturbation chosen to be 0.1% of the initial density of the inner 
high pressure fluid.  The distribution is centered at the initial location of the spherical diaphragm, 
   . The width of the Gaussian distribution is chosen such that it decays to 1% within 30% of 
the radial location. Fortunately, as will be discussed in section 5.3, the growth of the disturbance 
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is quite insensitive to a broad class of initial perturbation profiles, thus allowing general 
conclusions about the instability, without being dependent on the details of the initial 
perturbation. Thus, the results to be presented below on the spatial structure of the perturbation 
profile can be taken to be generic. The perturbation results presented below are for a specific 
spherical wave number of      and the results for other values of   are qualitatively similar. 

   
5a 5b 

  
5c 5d 

Figure 2–5. The radial structure of the perturbed flow’s density, radial velocity, tangential 
velocity, and temperature eigen modes for     . 

The radial profile of the perturbation is presented in Figure 2–5 for four different times. The 
perturbation density and velocity have a Gaussian-like profile. Over time their peaks remain 
approximately aligned with the location of the contact interface (note that if plotted against 
unscaled   the disturbance will appear to move and grow with the CI). The tangential velocity 
switches sign around the CI and is of much smaller amplitude than the radial velocity. These two 
features of the tangential velocity are physically consistent with the large value of the spherical 
wave number and the Gaussian-like profile of the perturbation radial velocity. Thus, the structure 
of the radial and tangential velocity components yield pairs of vertical tubes centered about the 
spherical contact interface. It is observed that the pressure perturbation is quite small (i.e., 
        ) and as a result               and thus the radial distribution of temperature 
perturbation resembles that of density. From (25) the total energy perturbation can be expressed 
as,                , and thus takes a somewhat more complex radial structure than the 
perturbation temperature.  
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The dependence of perturbation structure on spherical wave number is shown in Figure 2–6a, 
where radial velocity perturbation is plotted against scaled radial location at     for five 
different values of  . As can be expected the thickness of the disturbance along the radial 
direction decreases with increasing spherical wave number. For    , the disturbance decays 
slowly away from the CI and remains non-zero as it extends to the primary and secondary 
shocks, which are located at        and        respectively. In fact the interaction of the 
disturbance with the secondary shock can be seen to locally enhance the disturbance around 
      . For   greater than about 20 the disturbance decays sufficiently rapidly that it can be 
considered to be isolated from direct interactions with the primary and secondary shocks. For 
large values of the spherical wave number the disturbance structure appears to reach an 
asymptotic structure and not scale inversely with  . This is an effect of the finite resolution of 
the base flow depicted in Figure 2–6b. Notice that width of the contact interface in Figure 2–6b 
is almost the same as the width of the radial velocity distribution for       in Figure 2–6a. 
Only for an infinitely thin contact interface (true contact discontinuity), and with adequate 
resolution, the perturbation thickness will continue to decrease with  .  

  
6a 6b 

Figure 2–6. Dependence of perturbation structure on spherical wave number (6a) and the 
finite width of the Contact Interface (6b). 

 

Figure 2–7 represents the growth in time of the 
peak density and radial velocity perturbation. 
The growth appears to be exponential over the 
time range of [1.0 4.0] (to be established below 
in section 5.3). Notice that the growth of the 
disturbance remains smooth and continuous 
starting from      , and the exponential 
growth appears to be valid from the start without 
much transient behavior. This suggests that the 
initial Gaussian disturbance is quite close to the 
true exponentially growing perturbation and that 
the initial adjustment is quite small and rapid. 
The slight oscillation in the perturbation density 
amplitude seen in Figure 2–7 around       is 

 
Figure 2–7.  Peak perturbation density 
and radial velocity growth over time. 
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not due to physical phenomenon; instead it is caused by post processing. We have used an 
automated interface tracking technique to identify the location of the contact interface and 
extract the perturbation properties there. This automated tracking becomes sensitive when the 
contact interface changes direction (i.e., when the contact interface velocity is close to zero) and 
the location numerically alternates between two adjacent nodes. This effect is more evident in 
Figure 2–4b in the plots of CI‟s width. As can be expected this fluctuation decreases with 
increasing resolution, and can be removed by more sophisticated post-processing. This was not 
pursued since it has little effect on the results to be discussed below. 

2.4.3. The Effect of the Perturbation’s Initial Condition on the Amplification Rate 
We attempt herein to clarify the nature of the growth rate and its dependence on the initial 
disturbance. Since our focus is on the instability of the CI, we choose to start with an initial 
disturbance that is centered on the CI. For the range of parameters considered here the primary 
shock is always stable; consequently, any disturbance that leaks from the CI towards the primary 
shock rapidly decays. On the other hand, the secondary shock is initially stabile but becomes 
unstable as it collapses towards the origin. Once it reflects off the origin, its stability behaves in 
the same fashion as the primary shock. In general as shown in Figure 2–6a, during the initial 
period of interest here, for sufficiently large   the presence of the PS and SS does not influence 
the non-classical RT instability of the CI. Past this duration of interest, the reflected secondary 
shock interacts with the CI and leads to RM instability.   

For the present study, the growth rate is obtained from the time evolution of the following 
volume integral of the perturbation: 

                   
       

       

 (50)  

It can be thought of as the integrated kinetic energy contribution strictly from the perturbation 
radial velocity localized around the contact interface.  

Figure 2–8a plots      for various initial perturbations in order to establish the independence of 
the disturbance growth rate from the initial condition. The perturbed flow is governed by a linear 
system; therefore, the results should simply scale with the initial amplitude of the disturbance, 
and as such some of the curves were shifted for presentation purposes. The independence of the 
growth rate from the initial condition is established by comparing      for five different types of 
initial disturbances: 

 An initial parabolic perturbation in density alone with a maximum at the CI , while 
the rest of the initial disturbance quantities are set to zero. 

 An initial Gaussian perturbation in density alone centered on the CI.  
 An initial Gaussian perturbation in the total energy alone centered on the CI.  
 An initial Gaussian perturbation in the radial velocity alone centered on the CI.  
 Gaussian disturbances are introduced in both the density and total energy, again the 

remaining disturbance quantities are set to zero. 
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All the five cases share a common pattern: first the disturbance grows very rapidly over a short 
initial period of      . This initial period of rapid growth is followed by an extended period of 
exponential growth that lasts to about      , and is characterized by the straight segment in the 
log-linear plot. 

 Notice the initial adjustment time is minimal for case 2 where the disturbance introduced is only 
in the density and of Gaussian shape. Also for case 4, since the asymptotic structure of the radial 
velocity disturbance is also Gaussian-like, only a slight initial adjustment is required. For cases 3 
and 5, a Gaussian profile for the initial perturbation energy is not appropriate as it substantially 
deviates from its asymptotic structure. As a result, the time evolution of the integrated 
perturbation shows large initial oscillation before entraining into the exponential growth period. 

Also note that the definition of      based on the integrated radial velocity squared is not a 
unique choice for evaluating the growth rate. Figure 2–8b also depicts the growth rate when 
calculated based on the integrated density squared rather than radial velocity. As expected from 
linear theory the growth rate is almost the same.  

  
8a 8b 

Figure 2–8. The effect of the initial spatial profile on the computed growth rate (8a) and 
calculating the growth rate based on the  radial  integration of a variable squared (8b). 

An important conclusion drawn from the figure is that there exists an asymptotic eigen structure 
for the exponentially growing disturbance. Provided the initial disturbance is close to this eigen 
structure the perturbation enters the exponential growth period with minimal initial adjustment. 
This allows an exponential growth rate to be defined as a function of the spherical wave number 
 , independent of the shape and structure of the initial disturbance. 
When analyzing the stability of self-similar spherically expanding base flows, the disturbance 
growth was shown to follow a power-law (Ryu and Vishniac, 1987). We notice here that the 
growth rate is nearly exponential over an extended time interval. Over this time period, the 
contact interface‟s deceleration and Atwood number exhibit a near constant behavior thus 
allowing an exponential disturbance growth (see Figure 2–3 and Figure 2–4a).  

2.4.4. Effect of the Spherical Wave Number on the Growth Rate 
During the intermediate period of near constant exponential growth, Figure 2–9 presents the 
dependence of growth rate on the spherical harmonic wave number. At low wave numbers the 
growth rate increases as   , but with increasing   the corresponding increase in growth rate 
slows down and eventually for sufficiently large spherical wave numbers it reaches a constant 
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value. Also, shown in the figure are the growth rates obtained at five different grid resolutions 
employed for both the base flow and the perturbation. Also plotted for reference is a line 
representing the    increase in growth rate. 
Three different wave number regimes with different behaviors can be observed. For small values 
of   we observe significant departure from the    increase in growth rate with wave number. 
This departure is expected, since for such small   the disturbance is quite thick in the radial 
direction (see Figure 2–6a) and begins to interact with the adjacent shocks. Over this thickness 
the base state shows considerable variation on either side of the CI, thus contributing to departure 
from non-classical RT instability. Furthermore, there is additional disturbance growth around the 
secondary shock (see Figure 2–6a) that interacts with contact interface. The RM instability 
effects begin to corrupt the estimation of the volume integral of the perturbation as defined in 
(50) and the resulting growth rate. Nevertheless, the computed growth rates are independent of 
the grid resolution employed for both the base and perturbation flows. 

In the intermediate wave number regime, the growth rate increases as    and the width of this 
intermediate regime increases with increasing grid resolution. A grid resolution of 1000 uniform 
grid points over a domain of           is adequate to extract grid independent growth rate 
for     while with a much finer resolution of 8000 grid points we obtain reasonable 
convergence for     , with increasing resolution the    increase in growth rate can be 
expected to extend to an even wider range of spherical wave numbers. 

This numerical behavior is related to the dependence of the base flow solution on the grid, as 
shown in Figure 2–3 and Figure 2–4. Although the deceleration of the CI and the Atwood 
number computed across it reach adequate convergence, as discussed in section 5.1, the 
thickness of the contact interface remains finite at any level of resolution. Provided the radial 
width of the perturbation (as shown in Figure 2–6) is much larger than the thickness of the CI, 
the perturbation sees the CI as a near discontinuity and the perturbation growth rate increases as 
  . With increasing  , since the radial penetration of the perturbation around the CI narrows, the 
finite thickness of the contact interface cannot be ignored and the increase in growth rate with   
slows down. 

For large   the length scale of the perturbation becomes smaller than the finite thickness of the 
CI. As will be shown later in this report, in this regime the growth rate can be expected to be 
independent of   and depend only on the gradients of density and pressure across the finite 
thickness of the CI. With increasing resolution we observe this numerically influenced 
asymptotic constant growth rate regime to be postponed to larger  . Furthermore, the asymptotic 
constant growth rate increases with increasing resolution, since the density gradient within the CI 
increases as its finite thickness decreases. 

With the inclusion of viscous and diffusive effects the perturbation growth rate will decrease for 
large   and the most amplified spherical harmonic can be identified. Furthermore, since the 
viscous and diffusive effects well define the finite thickness of the CI, a precise finite resolution 
requirement can be stated for accurate grid-independent prediction of the growth rate. However, 
in the present case of inviscid analysis, since there is no finite length scale for the discontinuous 
CI, a definite limiting numerical resolution cannot be achieved. 
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Figure 2–9. The global growth rate vs. the wave number for various resolutions. 

2.4.5. Comparison with Theoretical Models 
To establish the validity of the computed instability results, we compare our results with 
previous theoretical models. In order to identify the mechanisms involved we consider different 
theoretical models that systematically include the effects of spherical geometry, compressibility, 
unsteady effects, and the finite thickness of the interface. Before we proceed to compare the 
theoretical and computed results we briefly summarize the theoretical results to be considered.  

2.4.5.1. Incompressible Planar RT Instability 

Taylor (1950) considered two incompressible fluids separated by a planar interface. The density 
is discontinuous across the interface and the system is subjected to a gravitational acceleration, 
 . Taylor established the perturbation amplitude      to grow exponentially as: 

                       (51)  

Here      is the initial amplitude and the planar growth rate is given by 

                          (52)  

where   is the planar wave number and    is the Atwood number: 

    
     
      

    (53)  

where the subscripts 1 and 2 refer to the outside and inside of the contact interface. In order to 
compare Taylor‟s planar results with the present spherical problem several considerations must 
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be made. First, Taylor‟s formulation is for a constant Atwood number. As shown in Figure 2–4 
the computed Atwood number is nearly a constant over an extended time interval, from which an 
average Atwood number is computed to evaluate the growth rate. For the planar case, the wave 
number has a dimension of one over length, but the spherical wave number is dimensionless. To 
facilitate comparison, the two are taken to be related by        , where     is the radius of 
the CI. Again     varies in time as a parabola, however, a time averaged value for     is used.  
In the recent work by Epstein (2004), it was shown that for an accelerating interface   must be 
taken to be equal to the pressure gradient scaled by the density at the interface 

         
 

 

  

  
 
  

  (54)  

Note that the density and pressure gradients are both discontinuous across the contact interface, 
but    is continuous. Due to the finite thickness of the CI, the value of discontinuous quantities 
on either side of the interface and the value of continuous quantities must be appropriately 
evaluated. If we refer to Figure 2–6b, densities    and    outside and inside of the interface are 
defined as the local minimum and maximum adjacent to the interface. The finite thickness of the 
interface is defined to be the distance between these two locations. Quantities at the interface 
      are evaluated at the midpoint between the local extrema which is observed to be 
approximately the same as averaging across the width of the interface. In our simulations,    is 
observed to be nearly equal to the acceleration of the contact interface     .   

2.4.5.2. Compressible and Incompressible Spherical RT instability 

  r  w   r s  t   st i ’s (2004) elegant formulation that clearly highlights the classical 
RT instability from the BP effect, while accounting for the compressibility of the base flow 
by allowing the density on either side of the interface to vary in time. The perturbation is 
taken to be incompressible. As in the original formulation of Plesset (1954) the time 
evolution of the perturbation amplitude is governed by a second-order differential 
equation: 

                         
 

  
 
       

  

  
   

       
  (55)  

where  

   
   

      

 
 

     
            

     (56)  

     
 

  
 
   
  

  
 

  
 
   
  

           
    
   

    (57)  

In equation (56),    is the same as given in (54),    and    account for the compressibility and 
the convergence (geometric) effects, while    accounts for the RT instability. The solution for 
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the above differential equation can be obtained for any arbitrary time-dependent contact 
interface, where   ,    and    are functions of time. In applying this theoretical formulation to 
the computed base flow, we take    to be the average value obtained from the either side of the 
CI, which are approximately equal for our problem. We observe the solution to the above 
ordinary differential equation nearly follows an exponential growth during the intermediate time 
period of interest. From which an average growth rate can be evaluated and for the purpose of 
comparison we will denote this theoretical growth rate to be Epstein-ODE. 

An explicit expression for the growth rate can be obtained from (55) if the compressibility, 
convergence and RT parameters (  ,    and   ) are constants. In this limit, Epstein (2004) 
obtained the growth rate to be 

                 
 

 
           

  
 

 
       

 
    (58)  

It is easier to present the original incompressible analysis of Plesset (1954) in terms of the above 
formulation by Epstein (2004). The incompressibility limit of Plesset can be obtained by setting 
the compressibility effect to zero (i.e.     ) in (55). Thus, the time evolution of the 
incompressible perturbation is also governed by a second order differential equation. Again, an 
explicit expression for the growth rate can be obtained if     and    are constants and the 
resulting growth can be expressed as 

                 
  
 
    

  
  
 

 
    (59)  

2.4.5.3. Incompressible RT Instability of an Interface of Finite Thickness 

In 1998, the effect of finite thickness of the interface in the incompressible planar context was 
considered by Lind l(1998). The configuration was the same as that of Taylor (1950), however 
instead of a discontinuous change in density across the interface, Lindl assumed the density to 
vary exponentially in space across the interface. In other words, in Lindl‟s analysis both the 
width and the density gradient across the contact interface are finite. In this case the modified 
growth rate was obtained to be: 

                
       

        
 (60)  

where   is the density gradient length scale across the interface, which is equivalent to the 
thickness of the contact interface. Again   will need to be approximated by        .  
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2.4.5.4. Local Compressible Convective Instability of a Finite Interface 

The instability of the contact interface of finite thickness can also be considered as a convective 
instability arising from density stratification. The general Schwarzschild criterion for convective 
instability in a compressible medium can be easily derived and can be expressed as        , 
where           and          . In general, across a contact interface of finite thickness 
both   and   will vary with position thus the above criterion must be interpreted as local 
instability criterion. The corresponding criterion for instability in an incompressible flow can be 
expressed as        and thus in this context the effect of compressibility can be seen to be 
destabilizing. The local growth rate in the limit of large wave numbers can be written as 
(Bandiera, 1984): 

                 
 

 
        (61)  

where   is the speed of sound. In applying the above formula to estimate the growth rate of the 
perturbation we will use the average value of   and   evaluated across the interface and also use 
the outer speed of sound.  

2.4.5.5. Comparison with Theories 

A comparison of the computed growth rate with the various theoretical models discussed above 
is presented in Figure 2–10. The predictions of planar and spherical RT instability theories are 
generally close to each other indicating the relatively modest effects of compressibility and 
sphericity. The dominant feature of all these theories is the increase in growth rate as square root 
of the spherical wave number. The computed growth rate follows this scaling up to a wave 
numbers of about 40, beyond which the growth rate slows down and eventually saturates to a 
constant growth rate that is independent of the wave number. In the regime where growth rate is 
    the solution to the compressible ODE by Epstein (2004) in equation (55) and its steady 
approximation (58) compare the best with the computed growth rate. This can be expected since 
Epstein‟s theory accounts for both compressibility and radial effects. Surprisingly Taylor‟s 
(1950) incompressible theory seems to do quite well. The growth rate predicated by Plesset 
(1954) is slightly higher than the rest. The effect of compressibility is to decrease the growth rate 
and as a result prediction by Plesset is higher than by Epstein. Interestingly, the radial effects 
work the other way and partly compensate for the compressibility effect. Thus, Taylor‟s theory 
that ignores both compressibility and radial effects compares better than Plesset‟s prediction. 

The asymptotic constant growth rate computed for large wave numbers compares well with the 
local convective growth rate given by Bandiera (1984). At such large wave numbers the finite 
thickness of the contact interface computed in the base flow solution begins to have a strong 
influence. The interface does not appear as a discontinuity and the density gradient in 
conjunction with the local pressure gradient within the contact interface dictates the growth rate. 
Unlike classical RT instability, the convective instability given in (61) is independent of the 
spherical wave number. Figure 2–10 corresponds to a grid resolution of N = 16000 for both the 
base flow and perturbation solutions. The theory by Lindl (1998) follows both the low and large 
wave number behaviors. However, Lindl‟s prediction is based on incompressible analysis of a 
planar interface and is somewhat lower than the computed growth rate.   
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Figure 2–10. The effect of the wave number on the growth rate. 

Figure 2–11 depicts the iso-surface of constant density for the contact interface a τ = 4.0. The 
total density is obtained by adding the base flow density and the perturbation density. The latter 
is not only a function of time and r, but also a function of   and  . The iso-surface is shown for 
two specific cases Figure 2–11a      with     and Figure 2–11b     and    . The 
wrinkling of the interface increases with time due to the exponential growth of the disturbances 
and is particularly evident at late times. The amplitude of the disturbance is however dependent 
on the arbitrary strength of the initial perturbation. The surfaces of the primary and secondary 
shocks are still purely spherical because they are stable. Note that the theory predicts the growth 
of the perturbation to depend only on   and independent of  . From experimental observation it 
can be expected that in the nonlinear regime the growth of the disturbance will depend on both   
and  . 
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11a 11b 

Figure 2–11. The Contact Interface for a wave number of      and a mode of     
(11a) and for a wave number of     and mode of     (11b). 

2.5. Parametric Study of the Instability 

The purpose of the parametric study is to better understand the complicated mechanisms 
involved in predicting the instabilities. A better understanding will enable designers to control 
the instabilities, suppress or enhance them depending on the circumstances of the various 
applications. The problem of a spherical shock tube is characterized by two key parameters: the 
inside-to-outside pressure ratio and density ratio. The equations of state for the inside gas and the 
outside ambient will also play a role. But for simplicity we have taken them to follow the ideal 
gas law relations with adiabatic index of  1.4. In all of the results presented in the previous 
sections the pressure ratio and density ratios were kept at 22 and correspondingly the temperature 
of the high-pressure core was equal to the ambient temperature. Thus, this case corresponds to 
the “cold explosion” limit. This operating condition is the same as that employed by Brode 
(1959) and Freidman (1961) in their investigations, and is denoted by a star in Figure 2–12. 
Three sets of parametric studies were performed in order to ascertain the effect of pressure and 
density ratios on the nature of the base flow contact interface and the resulting non-classical RT 
instability. In the first set, the pressure ratio is varied and the temperature inside the initial sphere 
is set equal to the ambient temperature and thus the density ratio is equal to the pressure ratio. 
The second set corresponds to a fixed pressure ratio of 100 and the density ratio is varied from 
100 to 1. The final set corresponds to a fixed density ratio of 6 with varying pressure ratio. 
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Figure 2–12. Parametric Study of the Pressure Ratio and Density Ratio. 

The parametric study revealed two interesting limiting cases. The first is when the pressure ratio 
is close to unity but the density ratio is larger. In this case, the flow resembles a stationary 
droplet rather than a spherical shock tube. Another limiting case is when the contact interface 
resulting from the spherical shock tube has an Atwood number of zero, i.e. no density 
discontinuity. However the first derivative of the density is still discontinuous. In the present set 
of simulations this second limiting case is reached either by increasing the pressure ratio past 16 
while keeping the density ratio fixed at 6, or by decreasing the density ratio past 16 for a fixed 
pressure ratio of 100. The three sets of parametric studies and their respective limiting cases are 
described below in further detail.  

2.5.1. Set 1: Pressure Ratio is Equal to the Density Ratio 
As predicted by RT instability theory, and verified by the simulation results presented in section 
5, the two key quantitative measures of the contact interface that control the perturbation growth 
rate are the Atwood number and the deceleration of the interface (which is also nearly equal to 
the pressure gradient scaled by density, i.e.,   ). Here we will focus on the variation of these two 
flow parameters obtained from the numerical solution of the base flow. The resolution of the 
base flow was chosen such that the Atwood number and the velocity of the contact interface 
approached grid independence. However, as discussed in Figure 2–4b the thickness of the 
contact interface remains finite. 
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Figure 2–13. The Atwood number as a function of time for various pressure ratios and 

density ratios. 

Figure 2–13 shows the time evolution of the Atwood number for varying initial pressure ratio 
(the initial density ratio is the same as pressure ratio). For the lowest and the highest pressure 
ratios of 3 and 1000 shown in the figure, the corresponding Atwood number calculated based on 
the initial density jump across the spherical diaphragm are 0.15 and 0.72. Once the diaphragm is 
released the total density jump between the inside gas (still undisturbed by the expansion fan) 
and the ambient remains the same. However, the density jump is divided amongst the primary 
shock, secondary shock, and contact interface. Immediately following the release, in order to 
predict the functional dependence of the Atwood number on the initial pressure and temperature 
ratios, we will examine the planar shock tube relations and compare them to the spherical case. 
The resulting Atwood number as a function of initial pressure and density ratios can be obtained 
by writing the Atwood number in terms of the temperatures since the pressure is continuous 
across the CI:  

                 
     
       

  (62)  

where    and    are temperatures outside and inside the contact interface. In order to compute    
and   , the shock Mach number    must first be computed from the initial pressure ratio   

  
  and 

temperature ratio   
  
  (the initial density ratio is used to obtain the temperature ratio): 

 
  
  
   

    
       

        
   
   

 
  
  
     

 
  

  

  
   

 
(63)  
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Here    corresponds to the initial condition inside the high pressure sphere and    corresponds to 
ambient conditions. Now    can be obtained from the moving normal shock relation: 

 
  
  
     

   

      
          

       
 

  
    (64)  

Finally    is obtained from the constant Riemann characteristics across the expansion fan: 

 
  
  
     

   

      
          

       
 

  
    (65)  

Once the temperatures across the CI are computed, the Atwood number in (62) is computed and 
plotted as a function of the pressure ratio in Figure 2–13 as an inset. In the computations of the 
spherical shock tube, immediately following the initial release, the Atwood number across the 
contact interface rapidly increases to reach a peak (as the interface forms) and then rapidly 
decreases to reach a near constant value (this can be more clearly observed in Figure 2–4a). Over 
longer time the Atwood number of the contact interface shows a slow variation. The time 
averaged value of the computed Atwood number, averaged after the rapid initial transients, is 
also shown in the inset of Figure 2–13. Notice that the planar Atwood number predicted using 
the planer shock tube theory (62) is somewhat larger than the computed time-averaged value of 
the spherical Atwood number. We observe this difference to somewhat reduce with increasing 
resolution of the CI. 

The velocity of the contact interface computed for set 1 is shown in Figure 2–14, plotted as a 
function of time. Although deceleration of the interface appears to slowly vary over time, it can 
be seen that in all the cases over an extended period of time the variation in interface 
deceleration is quite small. It is also evident that the magnitude of the deceleration weakens with 
increasing pressure ratio. In Figure 2–13 and Figure 2–14 the time varying results for the 
Atwood number and CI velocity are plotted only over the time duration till about the point when 
the secondary shock reflects off the origin. This allows us to focus on non-classical RT 
instability, since the subsequent interaction between the contact interface with the secondary 
shock will involve RM instability. The duration of non-classical RT instability increases with 
pressure ratio from about 2 time units for an initial pressure ratio of 3 to about 16 time units for a 
pressure ratio of 1000. As discussed in Brode (1955) the time scale of spherical expansion 

depends on initial pressure ratio as    
  
  
   

 , which is in excellent agreement with the increase in 
the time duration of non-classical RT instability shown in Figure 2–13 and Figure 2–14. 
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Figure 2–14. The CI Velocity as a function of time for various pressure ratios and density 

ratios. 

The flow is initially at rest but upon releasing the diaphragm the velocity rapidly reaches its 
maximum (which appears as the initial CI velocity in Figure 2–14). The Mach number for this 
peak velocity is plotted for various pressure ratios in the inset of Figure 2–14. Since density is 
discontinuous, two different Mach numbers associated with the contact interface are plotted. The 
two Mach numbers are based on local values inside and outside of the contact interface, M2 and 
M1 respectively. Since the CI velocity in Figure 2–14 was normalized by the ambient speed of 
sound it falls between M2 and M1. Both the inner and outer Mach numbers monotonically 
increase as the pressure ratio increases, which suggest increasing compressibility effects.  

The inset of Figure 2–15 shows the time-averaged square root of the product of the Atwood 
number and deceleration of the contact interface against the pressure ratio. It is evident that the 
product reaches an asymptotic constant value. Increasing the pressure ratio beyond 100 (which 
corresponds to a CI Mach number of about 2) can be expected to have a negligible effect on the 
perturbation growth rate. In Figure 2–15 the time evolution of the integrated perturbation radial 
velocity squared is plotted as a function of time for various initial pressure ratios at a fixed 
spherical wave number of 45. For this wave number adequate resolution has been achieved for 
both the base flow and the perturbation for all the pressure ratios. The growth rate of the 
perturbation is observed to increase with increasing pressure ratio, but consistent with the inset 
of Figure 2–15, the long term growth rate of the disturbance remains the same for initial pressure 
ratios in excess of 100.  
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Figure 2–15. The growth of the perturbations for a wave number of 45 for various 

pressure ratios. 

For varying pressure ratios, the effect of compressibility and spherical geometry on the growth 
rate of the instability is investigated as follows. We calculate the theoretical growth rate using 
Epstein‟s formulation (58) with   ,   , and    evaluated from the computed base flow. Figure 2–
16 shows the growth rate    for varying pressure ratio, which corresponds to classical RT 
instability without compressibility and geometric effects. Also plotted is     which includes both 
compressibility and Bell-Plesset effects. Setting      allows us to include the Bell-Plesset 
effects but exclude the compressibility effects and results thus obtained are also shown. It is 
evident that the effect of compressibility is to decrease the growth rate. This Mach number effect 
is consistent with the conclusions of Yu and Livescu (2008). Ignoring both compressibility and 
spherical geometry effects results in a decrease in the predicted growth rate. Thus the geometry 
effect more than compensates for the compressibility effect. This finding is consistent with the 
observation seen in Figure 2–10 that Plesset overestimates the growth rate, while prediction 
based on Taylor‟s and Epstein‟s theories are in better agreement. 

 
Figure 2–16. The growth rate predicted by various theoretical works for a wave number of 

45 for various pressure ratios. 
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2.5.2. Set 2: Pressure Ratio is Fixed at 100 but the Density Ratio is Varying   
In set two the initial pressure and density ratios are no longer equal. In other words, the initial 
core temperature is no longer equal to the ambient temperature but hotter. For a fixed pressure 
ratio as the density ratio drops the core temperature becomes hotter. Figure 2–17a shows the time 
evolution of Atwood number for the different density ratios for a fixed pressure ratio of 100. For 
the largest density ratio of 100 considered, the Atwood number is about 0.58 and with decreasing 
density ratio the Atwood number decreases. For a density ratio of 25 (the core is four times 
hotter than the ambient), the contact interface is characterized by a very week density jump. 
Further reduction in density ratio, to a value of 16, results in a near zero Atwood number. For the 
density ratio of 16, a plot similar Figure 2–11c of the radial variation in base flow density (not 
shown here) indicates that for τ > 0.1 there is no density discontinuity across the contact 
interface, although the contact interface is marked by a rapid change in the radial derivative of 
the density. In this case, the initial density ratio of 16 gets distributed across the primary and 
secondary shocks, with virtually no change in density across the contact interface. The planar 
case formula (63) predicts that the Atwood number goes negative; however, this is not the case 
for the spherical geometry.  Figure 2–17b presents the corresponding CI velocity for various 
density ratios and deceleration of the contact interface increases with decreasing density ratio. 
The inset of the figure illustrates that at the zero Atwood number limit M2 and M1 are identical.  

  
17a 17b 

Figure 2–17. The Atwood number (17a) and CI Velocity (17b) as a function of time for a 
pressure ratio of 100 and various density ratios. 

Figure 2–18 depicts the time evolution of the perturbation for the various density ratios. As can 
be expected from the above base flow characterization, the perturbation is barely growing for 
density ratios less than 25. Notice that as the density ratio decreases from 100 to 16 the 
interface‟s deceleration increases but Atwood number decreases. Figure 2–18 reflects the fact 
that the decrease in Atwood number is greater than the increase in the interface‟s deceleration. 
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Figure 2–18. For a pressure ratio of 100, the growth of the  perturbation for various 

density ratios at a wave number of 45. 

2.5.3. Set 3: The Density Ratio is Fixed at 6 but the Pressure Ratio is Varying 
As the pressure ratio increases for a fixed density ratio of 6, Figure 2–19a and Figure 2–19b 
show that the Atwood number decreases but deceleration increases. The zero Atwood number 
limit can be reached by increasing the pressure ratio to 16 for a fixed density ratio of 6 as 
depicted in Figure 2–19a. In that case, the core temperature is approximately 2.5 hotter than the 
ambient temperature. Another interesting limiting case that appears in this set is when the 
pressure ratio approaches unity for a fixed density ratio of 6. Such a limit is analogous to a 
stationary droplet in a zero-g environment. 

  
19a 19b 

Figure 2–19. The Atwood number (19a) and CI Velocity (19b) for a density ratio of 6 
and various pressure ratios. 
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Figure 2–20. For a density ratio of 6, the growth of the  perturbation for various density 

ratios at a wave number of 45. 

Recall for the zero Atwood limit the initial density jump across the diaphragm is distributed to 
the primary and secondary shocks and none to the contact interface. The stationary droplet limit 
is the opposite, the initial density jump is all allocated to the contact interface and consequently 
there is no primary or secondary shock. As in the previous two sets the development of the 
instability is shown in Figure 2–20. Increasing the pressure ratio while fixing the density initially 
results in a slight increase of the growth rate, but as the pressure ratio increases to about 16 the 
zero Atwood number limit is reached and the perturbations decay.   

2.6. Summary  

We have presented herein the linear inviscid stability analysis of the spherical contact interface 
associated with the sudden release of a high-pressure gas initially contained in a small spherical 
region. The perturbations were expanded in spherical harmonics to reduce their dependence to 
only the radial coordinate and time. A high-order WENO scheme was employed to capture the 
time evolving radial structure of both the base flow and the perturbed flow. The numerical 
scheme is able to predict a sharper discontinuity with increasing grid resolution without 
introducing numerical noise around the discontinuity. 

For the perturbation analysis, we focus attention to times well before the interaction of the 
reflected secondary shock with the contact interface. Thus, our results isolate the Rayleigh-
Taylor instability from the Richtmyer-Meshkov instability. During this period of interest, the 
deceleration and characteristics of the contact interface are observed to be nearly constant. As a 
result, despite the time-dependent nature of the base flow an eigen structure for the disturbance 
with an exponential growth is observed. Outside this time domain, the growth rate of the 
perturbation begins to deviate from an exponential growth and slows down.  

The radial profiles of the perturbation density and radial velocity were found to be Gaussian-like 
with a peak around the contact interface, while the tangential velocity switches sign around the 
contact interface. The effects of the initial disturbance structure was found to be limited to very 
early time, as the input disturbance quickly evolves to the eigen structure corresponding to the 
growing mode.  

Over an intermediate range of spherical harmonic wave number the growth rate increases with 
  . This classic RT instability behavior is observed provided the grid resolution is such that the 
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disturbance sees the contact interface as a near discontinuity. For larger wave numbers, the radial 
thickness of the perturbation decreases and the finite thickness of the interface influences the 
perturbation growth rate. In the limit of very large  , the disturbance length scale becomes 
smaller than the contact interface thickness and in this limit a constant growth rate is approached. 
Also for very small values of   the perturbation extends over a large radial extent and begins to 
interact with the primary and secondary shocks. In this limit also the growth rate departs from 
the    behavior. 

The simulation results compared favorably with the theoretical predictions. The best agreement 
was with the theoretical model of RT instability by Epstein (2004), since it included both the 
effects of compressibility and the spherical geometry. Comparison with model of Plesset which 
ignored the effect of compressibility reveals that the effect of compressibility in the present 
problem is to reduce the instability‟s growth rate. 

A systematic parametric study was conducted where the inside-to-outside pressure and density 
ratios were varied. In Set I of the parametric study, the initial temperature ratio was fixed and the 
pressure ratio was varied, which demonstrated that the growth rate increases with increasing the 
pressure ratio, until a saturation level that is reached for a pressure ratio of about 100. Further 
increase in the pressure ratio has little or no effect on the disturbance growth rate. In terms of 
Mach number of the CI, increasing the Mach number of the CI beyond 2 has little effect on the 
growth rate. This phenomenon is explained by the fact that the product of the acceleration and 
the Atwood number of the contact interface reaches an asymptotic value at such high pressure 
ratios. 

In Sets II and III of the parametric study, the initial temperature ratio was allowed to vary by 
fixing the pressure ratio and varying the density ratio, or by fixing the density ratio and varying 
the pressure ratio. In both sets it was demonstrated that it is possible to reach a combination of 
these parameters such that the Atwood number of the CI is practically zero, which may have 
some significant implication on the possibility of controlling the perturbation instability. Thus, 
heating of the core for a given pressure ratio can eliminate Rayleigh-Taylor instability.  
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3. VISCOUS EFFECTS ON THE RAYLEIGH-TAYLOR INSTABILITY OF 
RAPIDLY EXPANDING SPHERICAL MATERIAL INTERFACES 

3.1. Introduction 

The interest in studying the stability of a viscous spherical material interface stems from its 
relevance to many engineering applications such as supersonic combustion, pulse denotation 
engines, fusion reactors, and propellant rocket motors. Understanding the mechanisms by which 
the contact interface becomes unstable has several benefits in these applications. For instance, in 
combustion-based applications, a spherical interface separates the hot fuel mixture from the cold 
ambient air. Mixing at the interface is essential for continued secondary burning and the release 
of additional energy. Consequently, the stability of the interface strongly affects the 
combustion‟s efficiency. 

The early work of Rayleigh (1900) and Taylor (1950a) considered the stability of a plane 
inviscid interface separating two incompressible stationary fluids of different densities subjected 
to gravity acceleration. When the direction of gravity is from the heavier to the lighter fluid, 
Taylor has shown that the flow is unstable and that the instability‟s growth rate is proportional to 
the square root of the product of wavenumber, acceleration, and Atwood number. The latter is 
defined as the ratio of the difference between the two densities to their sum. 

The effect of viscosity on the stability of a spherical material interface has been addressed by 
several researches for incompressible flow situations. Prosperetti (1977) considered the viscous 
effects of an external liquid on the stability of the contact interface separating an air bubble from 
the outer liquid. The effect of the viscous boundary-layer thickness is presented in Hao and 
Prosperetti (1999). In both of these works the density of the inner bubble is neglected. However, 
recently Lin et al.(2002) extended these works to account for the density of the gas bubble. These 
studies indicate that the effect of viscosity is to dampen the growth rate of the incompressible 
Rayleigh-Taylor Instability (RTI) as in the planar case (Chandrasekhar, 1981; Duff et al., 1962). 

In many real world applications involving rapid expansion of a material interface the flow is 
compressible. Therefore in our study, the focus is on the effects of viscosity on the instability of 
a spherical interface while accounting for the full compressibility effects of both the base flow 
and the perturbed flow. A Roe-Pike (1999) solver coupled with a high-order WENO scheme is 
employed to simulate the base flow resulting from the rapid rupture of a spherical diaphragm 
enclosing high pressure gas. Due to the density jump across the contact interface produced by the 
rupture, Rayleigh-Taylor instability develops. The governing equations for the 3D linear viscous 
compressible perturbations are derived, and then solved using an extension of the Roe-Pike 
scheme and the WENO scheme. The purpose of the linearization is to allow for the expansion of 
the three-dimensional disturbance in terms of spherical harmonics. Following the spherical 
decomposition, the viscous governing equations reduce to a set of simultaneous 1D PDEs in time 
and radial coordinate. While linearization results in the loss of the important nonlinear effects, it 
allows eliminating the two angular coordinates and hence enabling us to explore high-wave 
numbers perturbations. 

Accounting for the viscous effects results in two major changes that are not present in the 
inviscid limit. The first is the inclusion of viscous diffusion, which is proportional to the square 
of the spherical wave number. Hence, as the wave number increases viscous diffusion becomes 
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more dominant resulting in an optimal wave number of maximum disturbance growth rate. The 
second major change results from accounting for the base flow‟s viscous effects. The Atwood 
number of the base flow is reduced as a result of the viscous effect, which again reduces the 
disturbance growth rate.  

The study is presented in the following order: in section II the derivation of the viscous 
perturbation equations in spherical coordinates is described. The boundary conditions and 
numerical implementation are explained in section III. The results for the stability of the contact 
interface are presented in section IV, while conclusions are given in section V.   

3.2. Formulation 

Before analyzing the stability of the contact interface, the base flow must first be defined. The 
base flow of interest here is produced by the sudden release of a high pressure gas contained in a 
sphere into the air. The limiting case for the base flow is Taylor's (1950b) and Sedov‟s (1946) 
point source solution, where the initial high pressure radius goes to zero, i.e., all the energy is 
contained in a single point at the origin. It is well understood that in the context of a finite-source 
release (as opposed to point-source), in addition to the main shock wave, there will be a contact 
interface discontinuity and an expansion fan. The tail of the expansion fan, due to the radial 
effect, becomes a second shock wave, which after a brief period of outward propagation, turns 
and starts to move inwards towards the origin. These additional discontinuous surfaces were 
discussed by Brode (1955) and Friedman (1961). At the contact interface, the pressure and radial 
velocity on the two sides are the same, but the density and temperature are discontinuous across 
the interface. Initially, the contact discontinuity moves radially outward behind the main shock 
front, but its velocity continually decreases until it starts to move inwards towards the origin. 
After a long time, the contact discontinuity reaches an asymptotic radial location defining the 
near-field of rapid energy release, while the main shock wave continues to travel out. The far-
field solution of the blast wave becomes identical to Taylor‟s self-similar solution so long as the 
shock remains strong. Our focus herein is on the viscous Rayleigh-Taylor Instability of the 
contact interface that develops between the primary and secondary shocks. 

3.2.1. Base Flow Equations (Zero-Order) 
Here we pursue the approach of Ling et al. (2009) for the base flow, where due to spherical 
symmetry, only the radial velocity is of importance and the flow quantities are dependent only on 
time and the radial coordinate. For simplicity, the fluid is taken to be a perfect gas. The base flow 
equations reduce to a system of three nonlinear partial differential equations in r and t. The 
continuity, momentum, and energy equations are given by:  
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Here E is the total energy and U is the base flow velocity in the radial direction. The density is ρ; 
the pressure is P, the temperature is T, and the total enthalpy H is given by: 

       (69)  

The viscosity   varies with temperature and is given by the Sutherland Law, 

               
 

  
 

 
    

     
 

 

(70)  

Here (       ) are the reference viscosity, reference temperature, and the Sutherland 
temperature. The reference viscosity is typically taken to be the same as the ambient viscosity. 
The radial viscous term is defined as: 
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The dissipation function for a radial flow is: 
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We also assume that the thermal conductivity, like the viscosity, follows the Sutherland‟s law, 
i.e., the Prandtl number is a constant. Thus,   also varies with temperature as: 

           (73)  

Here    is a reference thermal conductivity. The base flow domain extends from the origin to 
beyond the primary shockwave where ambient conditions prevail. 

3.2.2. The Linearized Perturbation Equations 
The starting point for deriving the perturbation equations is the fully compressible Navier Stokes 
equations in spherical coordinates. We begin by assuming that each flow quantity is composed of 
the base flow             and a perturbation                 . Thus, 

                                         (74)  
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Here                  are the perturbation radial velocity, azimuthal velocity, zenithal (polar) 
velocity, pressure, and density, respectively. Upon substituting this split into the governing 
equations, neglecting the nonlinear terms, and subtracting the base flow equations, the linearized 
continuity is obtained as follows: 
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For the spherical coordinate system, we define: 
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The r-momentum equation is given by: 

 

  
   

  
   

  

  
   

   

  
          

  

  
  

   

  
  

   
 

  
 
 

  
         

 

     
 
 

   
            

 

     
 
     

  
 
         

 
  

(77)  

The first-order shear stresses are represented by   . The tangential momentum equation is 
deduced from the   and   momentum equations which are given by: 
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The energy equation is given by: 
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The system is closed by, 

          (81)  

The total energy and total enthalpy of the perturbations are    and    respectively. As previously 
mentioned when presenting the base flow, the viscosity is not constant in space but rather varies 
with temperature according to the Sutherland law. Consequently, perturbation viscosity    
appears and is defined as:  

                      
 

 

  

 
 

  

    
  

 

(82)  

Likewise, the perturbation thermal conductivity also varies with both the perturbation and base 
temperature: 

         (83)  

3.2.3. Spherical Harmonic Decomposition 

The total perturbation velocity is composed of two components:    in the radial direction and 
   for the tangential direction, where  

               (84)  

Here    and    are unit vectors along the azimuthal and zenithal (polar) directions respectively, 
and 

    
 

 
     

 

  
   

 

    
 
 

  
  (85)  

is the gradient in the tangential direction. Since the perturbations are linear, we can expand them 
along the            directions using the spherical harmonic functions as: 
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Here,   = 0, 1, 2,… and   = 0, 1, 2,…,  . The spherical harmonic          of order  ,   is 
given by: 

            
          (88)  

Here        is the associated Legendre polynomial. Upon employing this decomposition the 
divergence becomes: 

     
 

  
       

  
     

            
   

  
 
       

 
 

 

(89)  

where         . After substituting the decomposition into the linearized equations we 
obtain: 
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where, 
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3.2.4. Dimensionless Conservative Form 

3.2.4.1. Non-dimensionalization 

In order to ascertain the effect of the Reynolds number and Prandtl number on the perturbed 
flow, the governing equations are normalized by reference values. 
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Here (r          ) are the initial location of the diaphragm, ambient speed of sound, ambient 
density, and ambient temperature, respectively. The Reynolds number and Prandtl number are 
defined as: 
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Recall    is the reference viscosity that appears in the Sutherland law which is the same as the 
ambient viscosity.  
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3.2.4.2. Conservative Form 

For aesthetic purposes from hence forth, the plus superscript in   is dropped to   even though it 
is dimensionless; likewise for all the other remaining parameters. The final viscous 
dimensionless perturbation equations are written in conservative form with Reynolds and Prandtl 
numbers as follows:  
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where, 
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To close the system, we have: 

                 
  

 
    (107)  

Note that    and    are dimensionless temperatures associated with the Sutherland law. Thus, for 
a given     mode we can solve the continuity, radial-momentum, tangential-momentum, and 
energy equations to obtain the perturbation solution.  
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3.3. Boundary Conditions and Numerical Scheme 

Very far away from the contact interface and past the primary shock, the disturbances must 
decay and thus the far-field boundary condition becomes:  

                                        
 

(108)  

The inner boundary condition for the base flow is a reflecting wall at the origin; consequently, 
the inner boundary condition for the perturbation flow is also a reflecting wall at r   .  The 
base flow‟s reflecting boundary condition requires the radial velocity to be zero (     at the 
origin, which leads to   

  
   in order to satisfy the radial momentum equation. Likewise for the 

perturbation flow, the vectorial velocity must also be zero (u    and     ) which leads to 
   

  
   in order to satisfy the radial momentum equation. 

3.3.1. The Numerical Scheme 
A finite volume approach is employed to solve the viscous system of perturbation equations. The 
flux is calculated by applying the Roe-Pike scheme (Roe-Pike 1999). Gradients are calculated 
using a Weighted Essentially Non-Oscillatory scheme (WENO) that is second order accurate 
(Jian and Shu, 1996; Haselbacher 2005).  The time evolution is according to the classical fourth 
order Runge-Kutta method.  

3.3.2. Extension of the Roe-Pike Method 
The Roe-Pike scheme is extended here for the perturbation flow. There are three major steps in 
the Roe-Pike Method. The first of which involves writing the equation in a semi-linear form by 
defining a Jacobian   

  

  
 for some „average‟ values of the quantities and calculating the Eigen 

values/vectors of the Jacobian in terms of these average quantities. The second step is 
decomposing the jumps across the discontinuity in terms of the Eigen vectors, K as    
     
 
   , and finding the weights   in terms of the averaged quantities. Lastly, find the average 

quantities that satisfy the flux-difference formula. The Jacobian   for the perturbation equations 
is identical to the Jacobian of the Base flow Equations. Hence, the Eigen values and Eigen 
vectors of   are also the same. Proceeding onto the second step of calculating the wave 
strengths, a system of four algebraic equations for    in terms of    is formed: 
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The solution to the system yields the perturbation weights which are given as: 
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                      (111)  

                (112)  

        (113)  

Here, the subscript a is used to denote an average between the right and left states. 

The equations obtained for the perturbation‟s weights   have the same form as that of nonlinear 
Euler equations (Toro, 2009). However here,    denotes the perturbation‟s jump across the 
discontinuity rather than the base flow‟s jump. Roe-Pike also presented an approximate formula 
for the weights in terms of the characteristic variables; it is possible to derive such an 
approximate formula for the perturbation equations as well. For either form of the perturbation 
weights, the „averaged‟ base flow quantities are determined in the third and last step. Following 
Roe-Pike‟s method, the „average‟ value is determined such that the flux difference equation is 
satisfied. 

           

 

   

 (114)  

For the base flow‟s weights, Roe and Pike showed that the approximate characteristic weights 
satisfy the flux difference equation for any definition of an average. In other words, so long as 
the averaged value falls between the right and left values the flux difference is satisfied. Upon 
repeating the same process for the perturbation‟s characteristic weights, the conclusion is the 
same.  Unlike the approximate characteristic weights, the more accurate weights demand that the 
average be defined as:  

          (115)  
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The remaining averaged parameters required to compute the perturbation weights are averaged in 
the same fashion as the base flow‟s velocity. Now that flux difference is computed, the flux at 
the face can be evaluated by: 

     
 

 
         

 

 
     (117)  
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Notice that the perturbation equations‟ Jacobian was directly given in terms of only the base 
flow. Therefore, no additional approximation was needed. This is no surprise because the 
perturbation system was already linear, so there was no need for a quasi-linear form. 

3.3.3. Inner Boundary Numerical Implementation 

At the inner face, solely by requiring that    ,     , and that    is nonsingular the fluxes at 
the face reduce to: 

    

       

             
   

       

   

 
   
 
 

  (118)  

The condition that the perturbation pressure‟s gradient is zero is enforced through the flux, since 
the pressure at the face is set equal to the cell centered value. The      condition is reinforced 
by refraining from solving the q-equation at the first node; instead, specify q at the first node 
as       

 
 which is approximately zero. Especially for the inviscid case, reinforcing the tangential 

velocity condition is required to ensure the source terms are well behaved near the origin.  

3.4. Results and Discussion  

The results are presented in the following order: the base flow, the perturbation radial profiles 
and time history, the growth rate vs. wave number for various Atwood numbers, comparison 
with theoretical models, for a given Atwood number the effect of the Reynolds number, and the 
wrinkling of the contact interface. All the results presented are for a base-flow pressure ratio of 
22, a temperature ratio of one, an adiabatic index γ of 1.4, and the initial location of the 
diaphragm is at 0.0254 m. The ambient temperature and pressure are 299 K and 1.0207 atm 
respectively. These operational parameters were chosen because several other studies use the 
same operational parameters, since the earliest work by Brode (1955). For example, Freidman 
(1961) also used the same operating conditions. 

All the results presented herein are dimensionless and have been normalized as specified in the 
formulation section. In order to highlight the direct effect of viscosity on the perturbation flow 
the base flow‟s Atwood number must be unchanged. Hence, the viscous perturbation results are 
compared with the inviscid perturbation results, while the base flow is considered inviscid in 
both cases to keep the Atwood number constant. Additionally, for all the results presented the 
thermal conductivity is neglected; thus, Prandtl number is taken to be infinity. 
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3.4.1. The Base Flow 

 
1a 

 
1b 

 
1c 

Figure 3–1. The radial dependence of (a) pressure, (b) radial velocity, and (c) density of 
the base flow at 4 different non-dimensional times. The location of the primary shock 
(PS), secondary shock (SS) and contact interface (CI) are most evident in the density 
profile and are marked. The above results are obtained with a discretization of 2000 

uniform grid points extending up to a radial location of   = 15.75. 

Figure 3–1 shows the pressure, velocity, and density of the base flow as a function of r at various 
times. The pressure and velocity jumps across both the Primary Shock (PS) and the secondary 
shock (SS) are clear in Figure 3–1a and Figure 3–1b respectively. The pressure and velocity are 
continuous across the contact interface (CI) or contact surface (CS), but the density is 
discontinuous, which is evident in Figure 3–1c. The secondary shock corresponds to the inner 



54 
 

discontinuity in pressure and velocity.  However, unlike the primary shock; it moves inward then 
reflects off the origin.  

Figure 3–2a depicts the location of the discontinuities as a function of time. During the time 
range between [1, 4.5] the contact interface‟s path is approximately parabolic, consequently the 
deceleration of the CI is constant for this time range. The secondary shock‟s first reflection 
happens at the dimensionless time, τ = 4.6. Once the SS is reflected it continues to move outward 
until it hits the CI creating a tertiary shock while undergoing Richtmyer-Meshkov Instability 
(RMI) (Richtmyer 1960; and Meshkov, 1969). Recall our focus is on studying the RT instability 
of the CI. Therefore, the time domain of interest is up to τ = 5.4 in order to isolate the RTI 
mechanism from the RMI mechanism.  

  
2a 2b 

Figure 3–2. a)  -  Diagram of the location of the contact interface, primary shock, and 
secondary shock. b) Grid independence of the Atwood number. 

The behavior of the base flow with increasing numerical resolution is critical when studying the 
behavior of the perturbation flow. The  -  Diagram is completely grid independent and as a 
result the CI‟s velocity and acceleration are also grid independent. On the other hand, Figure 3–
2b illustrates the effect of refining the computational grid on the Atwood number which is 
relevant to the instability study. From Figure 3–2b, it is clear that the Atwood number converges 
as the number of points increases; however, complete convergence for a perfect discontinuity 
cannot be achieved in shock capturing. With increasing resolution the discontinuity will continue 
to be resolved sharper and sharper. The time averaged Atwood numbers of (0.3575, 0.3839, 
0.4023) correspond to a resolution of (1000, 2000, 4000) points for the radial domain using 
WENO.  

3.4.2. The Perturbation Solution 
The perturbation results are initialized as an initial Gaussian distribution with a peak density 
equal to 1% of the base flow density, centered at the initial location of the diaphragm. The effect 
of the initial profile on the growth rate was found to be negligible. The initial flow adjustment is 
limited to the period τ < 0.5 during which the inserted disturbance conforms to the appropriate 
spatial structure of the Eigen mode. The adjustment period is followed by an exponential growth 
range that lasts to about τ = 4.5. 
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             3a Inviscid               3b Viscid 

  
             3c Inviscid               3d Viscid 

Figure 3–3. The radial shape of the perturbed flow’s density and radial velocity for both 
the inviscid and viscid cases. The spherical wave number is 1862 and the Atwood 

number is 0.3575. 

The radial profile of the perturbation is provided in Figure 3–3 and Figure 3–4 for various times. 
The perturbation density, temperature, and velocity have a Gaussian-like profile. Interestingly, 
the tangential velocity is much smaller than the radial velocity and switches sign around the CI, 
which is physically meaningful. It is clear that for a large spherical harmonic wave number, such 
as the one chosen for this figure, the viscosity has a strong effect and inhibits the growth rate 
when compared to the inviscid results. 

 Figure 3–5a shows the time evolution of the peak value of the perturbation radial velocity as 
obtained by both the inviscid and viscous stability analyses. In Figure 3–5b, At refers to Atwood 
number and WN refers to the spherical wave number. Here the plotted peak corresponds to the 
location of the contact interface for all time. The growth is exponential for the time range of [1.0 
to 4.5]. Notice that the initial disturbance is well chosen, so that even at very early time, there 
hardly is any irregularity that could be discerned as the initial disturbance adjusting to the Eigen 
structure. 
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            4a Inviscid             4b Viscid 

  
            4c Inviscid             4d Viscid 

Figure 3–4. The radial shape of the perturbed flow’s tangential velocity and total energy 
for both the inviscid and viscid cases. The spherical wave number is 1862 and the 

Atwood number is 0.3575. 

 

  
5a 5b 

Figure 3–5. a) Viscous vs. inviscid evolution of the peak perturbation radial velocity. b) 
the growth of the inviscid perturbation vs. the viscous perturbation. 

In the following the growth rate is obtained by performing the following volume integral at each 
time step: 
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 (119)  

Keeping track of this integral for all times is used to ascertain the growth rate of the perturbed 
flow. It can be thought of as the specific kinetic energy contribution strictly from the radial 
velocity or simply a radially averaged quantity. The effect of the viscous forces dampening the 
growth is evident in Figure 3–5b. In the inviscid limit, the growth is much higher than the growth 
predicted by viscous theory. 

3.4.3. Effect of the Wave Number 
Figure 3–6 presents the growth rate versus the wave number for both the inviscid case and the 
viscous case. For the inviscid case, initially the growth rate increases as the wave number 
increases until an asymptotic value is reached at high wave numbers. The base flow parameters 
such as Atwood number and the contact interface‟s width affect the growth rate. Since these 
parameters are affected by grid resolution as outlined before, the instability solution is influenced 
as well as shown in Figure 3–6. However notice that in Figure 3–6, the pattern of growth rate 
dependency on the wave number is the same for various Atwood numbers.  Yet the asymptotic 
values reached for very high wave numbers are dependent on the Atwood number. This is 
actually not a numerical shortcoming, but rather reflects the physics. A higher Atwood number 
means a sharper discontinuity and hence a higher growth rate. 

The viscous effects are negligible for low wave numbers and their significance is only seen at 
large wave numbers. The viscous effects stifle the perturbation‟s growth and consequently a 
maximum growth rate is achieved. For a Reynolds number of 6.2 x 105, a spherical wave 
number around 400 corresponds to the maximum growth rate predicted by viscous theory. 
Unlike viscous theory, inviscid theory predicts no change in the growth rate as the wave number 
goes to infinity. 

  

 
Figure 3–6. The global growth rate vs. the wave number for  various Atwood numbers at 

a Reynolds number of 6.2 x 105. 
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3.4.4. Comparison with Theoretical Models 
In order to identify the mechanisms involved and the validity of the assumptions made in 
modeling the viscous fully compressible instability, a comparison with previous theoretical 
models is presented in Figure 3–7. The comparison is performed for the viscous simulation 
corresponding to an Atwood number of 0.4023 and a Reynolds number of 6.2x105. We compare 
our results in Figure 3–7 with the theoretical incompressible models of Plesset (1954), 
Chandrasekhar (1981), and Lin et al. (2002). Plesset model is for a spherical RTI in bubble 
collapse and does not account for the viscous effects, but is included as a reference to help 
identify the viscous effects. Chandrasekhar model include the viscous effects, but it is for the 
plane, incompressible RTI.  Lin et al. model, as in Plesset, considers RTI in the case of the 
bubble collapse but accounts.  These three models for the incompressible case consider the 
global instability in that they accounts for the boundary conditions.  

For all of these models, as well as our simulation, we note that for wave numbers less than 25, 
the growth rate is proportional to the square root of the wave number. As the wave number 
increases, our computation begins to deviate from these models. Our simulations indicate that a 
maximum growth rate is reached at a wave number of about 400. As our simulations predict the 
Lin et al. model and the Chandrasekhar model also illustrates the viscous effects at high wave 
numbers inhibiting the perturbation‟s growth. 

In addition to the viscous or spherical effects considered in the previous models, our simulations 
account for full compressibility effects as well as the interface‟s thickness effects. Our predicted 
peak amplification rate is lower than that of the incompressible models. To validate our results, 
we also present in the Figure 3–7 the local growth rate predicted by Bandiera (1984) which is 
valid only for high wave numbers. Bandiera‟s model is a simple local model based on only the 
local pressure and density gradients, but as shown in the figure it predicts almost the same peak 
growth rate as our simulations. 

 
Figure 3–7. The effect of the wave number on the growth rate. 
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3.4.5. The Effect of the Reynolds Number 
Figure 3–8 demonstrates the effect of the Reynolds number on the growth rate for a given 
Atwood number.  For low wave numbers the Reynolds number has no effect on the growth rate. 
Consequently, the growth rate predicted for wave numbers less than 45 did not change as the 
Reynolds number went from 6.2 x 105 to 104. However, for high have numbers, as the Reynolds 
number decreases the peak growth rate and its corresponding wave number also decrease. As the 
Reynolds number is reduced from 6.2 x 105 to 104, the peak growth rate is reduced from 1.15 to 
1.07 and its corresponding wave number also reduced from 400 to 100. For the limiting case of 
very large Reynolds number (    ), the inviscid solution is recovered where the growth rate 
saturates and does not decline for very large wave numbers.  The low-Reynolds number cases 
may be taken as an approximation to the turbulent flow case, in which the presence of turbulence 
can be modeled by an eddy viscosity that increases the effective Reynolds number. 

 

 
Figure 3–8. The effect of the Reynolds number on the growth rate for an Atwood number 

of 0.3575. 

3.4.6. The Wrinkling of the Contact Interface 
Figure 3–9 paints the density contours at various time intervals. The total density is obtained by 
adding the base flow density and the perturbation density. The latter is not only function of time 
and r, but also a function of   and  . The results shown in Figure 3–9 are for l = 40, m = 1. The 
wrinkling increases with time and due to the exponential growth of the disturbances it is 
particularly evident at late times. The wrinkling of the contact interface is evident in the 
contours. However, the surfaces of the primary and secondary shocks are still purely spherical 
because they are stable at this wave number. 
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τ = 4.05 τ = 4.725 

Figure 3–9. The total density of the interface for a wave number of 40 and Atwood 
number of 0.4039. 

3.5. Conclusions 

We have presented herein the fully compressible-viscous-spherical linear stability analysis of the 
spherical contact interface associated with the sudden release of a high-pressure gas initially 
contained in a small spherical region. A high-order WENO scheme was employed to capture 
both the base flow and the perturbed flow. The numerical scheme is able to predict a sharper 
discontinuity with increasing grid resolution without introducing numerical noise around the 
discontinuity. 

The radial profiles of the perturbation density, temperature, and radial velocity were found to be 
Gaussian-like with a peak around the contact interface, while the tangential velocity switches 
sign around the contact interface. The peaks of these profiles are reduced in the viscous case as 
compared to the inviscid one.  For the inviscid case, as the wave number increases the growth 
rate increases until it saturates at very large wave numbers. Unlike the inviscid case, the viscous 
case predicts a maximum growth rate around a spherical wave number of 400 for a Reynolds 
number of 6.2 x 105. As the Reynolds number decreases, the maximum growth rate and its 
corresponding wave number both decrease.  

The present analysis provides an explanation of the viscous mechanism. We note that the viscous 
terms in the perturbation equations include         , where n is the spherical wave number. 
Thus, only at high wavenumbers the viscous effects becomes important and is proportional to the 
square of the wavenumber. Such high wave numbers correspond to a small wavelength, hence, 
would require a prohibitive number of grid points in both angular directions if we attempt to 
capture them by nonlinear direct numerical simulations. The linearization process, however, 
enables us to eliminate the need to resolve the angular dimension, thus were able to properly 
capture the viscous effects at high-wave numbers.   
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4. FUTURE WORK: SIMULATIONS OF THE EFFECTS OF SOLID 
PARTICLES ON FLOW INSTABILITY IN DETONATIVE 
COMBUSTION 

Our goal is to extend the work performed in Chapter 2 and Chapter 3 to account for the 
presence of particles. The instability resulting from the presence of a gas-particle interface 
in close proximity to the contact interface is a rich problem that many researchers are 
interested in understanding. 

4.1. Introduction 

4.1.1. Significance of the Problem 
The stability of a material interface (MIF) is significant in several applications, but we will focus 
our discussion herein on its role in combustion and in industrial explosions.  There are two 
common types of combustion: deflagration (flame propagation is subsonic), and detonation 
(flame propagation is supersonic).  When detonation occurs, a shock wave is formed that 
increases the temperature and pressure of the driven gas and induces a flow in the direction of 
the shock wave but at lower velocity than the lead wave. Simultaneously, a rarefaction wave 
travels back into the driver gas. The interface separates the driven and the driver gases is referred 
to as the contact surface or interface and separates the fuel mixture from the combustion 
products. Figure 4–1 shows an experimentally observed Rayleigh-Taylor Instability (1950) (RTI) 
in which spherical cellularity develops on the surface of a spherical expanding flame. This 
stability can be influenced by the presence of small solid particles and, thus, can be used to 
enhance the combustion process.  

Industrial explosions can happen accidentally or intentionally. Cant et al. (2004) provides an 
excellent review of CFD applications in modeling large explosions in nuclear and petrochemical 
industries. An example of designed explosion is that of a rocket lift-off. Such explosions are 
associated with a contact surface behind the shock. The stability of this interface affects the 
explosion process. Spraying solid particles have been proposed as an effective means for blast 
mitigation (Schwer and Kailasanath, 2003).  

 

Figure 4–1. Observed Cellularity Developing on the Surface  of a Spherically-Expanding 
Flame (Marshall et al. 2010). 
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4.1.2. Review of Recent Work 
Frost et al. (2005) have conducted a series of experiments to demonstrate the effect of including 
solid particles on explosive detonations. Figure 4–2 shows a time series of developing the 
combustion products: on the left, heterogeneous charge contained zirconium particles and to the 
right homogeneous charge contained only sensitized Nitro Methane (NM) charges. Time 
between photographs for (a) is 0.5 ms, whereas the times for the photographs in the right figure 
are 0.2, 0.4, 0.6, 1.0, and 2.5 ms, respectively. In both cases, perturbations are evident on the 
surface of the fireball at early times. However, the perturbations are more regular and persist for 
a longer time for the heterogeneous charges. Frost et al. have attempted to interpret Figure 4–2 as 
a result of the reduced deceleration of metalized fireballs compared to the homogenous 
explosives; hence, the perturbation will persist longer. 

 

Figure 4–2. Frost et al. Experimental Results. 

Balakrishnan and Menon (2010, 2011) have conducted 3D nonlinear simulations of the flow-
field subsequent to the detonation of a spherical charge of TNT including the presence of 
reactive solid particles. Considering the symmetry of a spherical explosion, only a sector of the 
explosion was modeled. RTI ensues on the contact interface that separates the inner detonation 
products from the outer shock-compressed air. Upon growth with time, a mixing layer forms 
where the detonation products afterburn due to the inclusion of additional air. In Figure 4–3 from 
Balakrishnan and Menon the black dots represent the steel particles in the NM charge. A most 
interesting phenomenon to note is that in part a of the figure one can clearly see Rayleigh-Taylor 
structures forming in the mixing layer. At this early time the particles have yet to reach the 
surface. At a later time in  part b, the particles overrun the interface. According to Balakrishnan 
and Menon, there must be two types of perturbation: one without the particles the other involves 
the particles.  They have also pointed out the mixing layer stretches wider for the particle cases 
as compared with the baseline particle-free case.  
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3A                                    3B 

Figure 4–3. Sector of a sphere from Balakrishnan and Menon (2011), parts A and, B are 
the simulated iso-surfaces of the mixing layer. 

(The time stamps for parts a and b are 0.13 and 0.58, milliseconds respectively.) 

 

Mankbadi and Balachandar (2011) have used a high-fidelity scheme to study the flow instability 
resulting from the sudden release of a high pressure gas contained in a small sphere and followed 
its time evolution in an effectively spherical shock tube representing a detonative combustion. 
Their work is extended here to include the presence of solid particles that results in a second 
interface separating the mixture from the pure gas.  In the formulation section, we discuss the 
basic flow, the splitting approach adopted, and the governing equations for the base and 
perturbations flows. In the results section, we discuss the base flow development in the absence 
or presence of solid particles. The results for the perturbation flow are first presented for a 
simplified analytical model of two interfaces in the proximity of each other‟s representing the 
two distinct interfaces characteristic of the presence of solid particles in the shock-tube problem. 
Further numerical results will be presented later followed by the summary and conclusion 
section. 

4.2. Formulation  

4.2.1. Description of the Flow 
Figure 4–4 from Ling et al.(2010) depicts the flow regimes. Following the detonative 
combustion, a forward propagating shockwave is formed that separates the ambient region (0) 
from behind the shock (1). Simultaneously, a rarefaction wave travels back into the driver gas 
which develops into a shock due to the converging geometry between regions (3) and (4). An 
interface develops that separates the driven and the driver gases between regions (1) and (2). 
Upon the inclusion of solid particles, a second material interface develops that separates the gas-
solid mixture from the gas between regions (2) and (3).  
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Figure 4–4. Schematic Illustration of Explosive Dispersals from a Spherical Charge 
Containing Gas-Particle Mixture (Ling et al, 2010). 

4.2.2. Direct versus Splitting Approaches 
In Direct Numerical Simulations (DNS) the full Navier-Stokes equations are solved directly with 
fine resolution enough to resolve all the relevant scales. For almost all attempts of direct 
simulations to address the present problem, the computer limitations allow only resolving a small 
range of scales. Therefore, such attempts are effectively some sort of Implicit Large-Eddy 
Simulations (ILES).  There are several recent ILES of the present problem with no solid 
particles. This includes: Fraschetti et al. (2010) who have considered the Rayleigh-Taylor 
instabilities that are generated by the deceleration of a supernova remnant during the ejecta-
dominated phase. Also, Kuhl et al. (2011) have simulated combustion in confined TNT 
explosions using an ILES approach coupled with an adaptive mesh refinement. They have 
concluded that the dominant effect that controls the rate of TNT combustion with air is the 
turbulent mixing rate.  

The alternative to ILES is the splitting technique in which each flow parameter is split into a 
basic component and a perturbations one. Separate equations are solved for the base flow and 
another set of equations are solved for the perturbations flow. The later set is linearized, and 
therefore, the nonlinear effects are lost. Our focus here is on the instability waves, which 
according to the classical RT theory is more amplified at high-wave numbers (small wave 
length), which cannot be captured by DNS or ILES due to the resolution requirements. As such, 
we adopt here the splitting approach in which each  total flow parameter is split into a base flow 
and a fluctuation component. The base flow is essentially one-dimensional spherical, and  can be 
predicted effectively.  New equations are then developed for the perturbation part of the flow. 
Upon, linearizing these equations, it is then possible to use a spherical harmonic decomposition 
to reduce the physically 3-D perturbations into an effectively 1-D system of equations. This will 
be discussed further in section 2.4 below.  

4.2.3. Base Flow Governing Equations 
The governing equations of the gas phase are conveniently expressed in the Eulerian frame of 
reference, while that of the particles flow is usually described using a Lagrangian frame of 
reference. However, we follow here a recent approach by Ling et al. (2009, 2010) which adopts 
an Eulerian approach for the particles as well. As in Ling et al. we consider the sudden release of 
a compressed air including particles initially contained in a spherical diaphragm of a small radius 
Ri. The following assumptions are made: (1) the fluid is a perfect gas; (2) the fluid motion may 
be regarded as inviscid, so its viscosity and conductivity are neglected except in the interaction 
with the particles; (3) the particles are inert, rigid, and spherical; (4) the particles have constant 
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heat capacity and uniform temperature distribution; (5) the volume fraction of the particles is 
negligible; (6) the only force acting on the particles is the viscous drag force; (7); the particles do 
not collide with each other. The mass, momentum and energy equations of the gas phase can be 
written as: 

 
 

  
 

    

       

       
   

 

   
 

       

             

          
  

 

 
 

       

          

          
     

 
     

        
  (120)  

Here   ,   ,   ,   , and    represent gas‟s mass fraction, velocity, pressure, total energy, and 
total enthalpy, respectively. Note that   is the mixture density; it is not identical to the gas 
density. The superscripts g and p represent the gas and particle phase respectively. To close the 
system, the total enthalpy of the gas    is given by: 
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The corresponding mass, momentum, and energy equations of the particle phase in an Eulerian 
frame of reference are: 

  

  
 

    

       

       
   

 

   
 

       

          

          
  

 

 
 

       

          

          
    

 
     

        
  (122)  

The terms    and    that appear on the right-hand sides of the equations represent the drag force 
and heat transfer of the particle phase. The mixture density      is related to the gas and solid 
densities by 

                (123)  

Here    is the volume fraction. Thus, we have:  

                                   (124)  

The mass fraction Y is related to the volume fraction    by the relations: 

    
    
  

      
    

  
 (125)  

Since    is usually less than 0.2, we can make the dilute flow approximations: 
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                                   (126)  

4.2.4. The Perturbation Equations 
For the time being we neglect the direct effects of the particles forces and heat transfer on the 
flow perturbations (but no on the base flow) and follow the same approach as in Mankbadi and 
Balachandar (2011). The starting point for deriving the perturbation equations is the fully 
compressible Navier Stokes equations in spherical coordinates. We begin by assuming that each 
flow quantity is composed of the base flow             and a perturbation  u  v  w        . 
Thus, 

                                         (127)  

Here                  are the perturbation radial velocity, azimuthal velocity, zenithal (polar) 
velocity, pressure, and density, respectively. Upon substituting this split into the governing 
equations, neglecting the nonlinear terms, and subtracting the base flow equations, the linearized 
continuity is obtained. We then use Spherical Harmonic decomposition as follows. The total 
perturbation velocity is composed of two components:    in the radial direction and    for the 
tangential direction, where: 

                (128)  

Here    and    are unit vectors along the azimuthal and zenithal (polar) directions respectively, 
and: 
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is the gradient in the tangential direction. Since the perturbations are linear, we can expand them 
along the            directions using the spherical harmonic functions as: 

                                      (130)  
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Here,   = 0, 1, 2,… and   = 0, 1, 2,…, n. The spherical harmonic          of order  ,   is 
given by: 
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          (132)  

Here        is the associated Legendre polynomial. Upon employing this decomposition the 
perturbation equations are obtained in the form:   
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(136)  

where         . Here we have assumed that the mass fraction cannot be perturbed. Note 
that if     does not vary in time and space but rather is taken to be a constant, then the above 
system of equations is identical to the gas-gas system.  

4.3. Preliminary Results 

We present the results for a specific case of a spherical container with an inside to ambient 
pressure ratio of 22 and a temperature ratio of 1. For simplicity we consider both the compressed 
gas and the ambient to be air with an adiabatic index γ of 1.4. Correspondingly, the initial inside 
to ambient density ratio is also 22. The ambient temperature and pressure are taken to be 299 K 
and 1.0207 atm respectively. The initial location of the diaphragm    was 0.0254 m. These 
operational parameters were chosen because several other prior studies have used the same 
spherical shock tube condition since the earliest work by Brode (1959). For this case we first 
briefly review the results of the base flow and then proceed to discuss the instability results  

All the results presented herein are normalized as follows: the length scale is chosen to be the 
initial location of the spherical diaphragm separating the high pressure gas from the ambient air, 
thus, a dimensionless radial coordinate can be defined as       . The velocity and density are 
normalized by the ambient speed of sound and density respectively. The time scale   is formed 
from the ambient speed of sound and the initial location of the diaphragm, hence, the 
dimensionless time is obtained as           . Lastly, the pressure and total energy are 
normalized by    , where    and   are the density and speed of sound of the undisturbed 
ambient. 
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4.3.1. Base Flow 
Figure 4–5 from Mankbadi and Balachandar (2012) shows the dimensionless pressure, velocity, 
and density of the base flow as a function of   at various times without including solid particles. 
The pressure and velocity jumps across both the primary shock (PS) and the secondary shock 
(SS) are clear in Figure 4–5b respectively. The pressure and velocity are continuous across the 
contact interface (CI), but the density is discontinuous, which is evident in Figure 4–5c. The 
primary shock moves only in the forward direction, while the secondary shock initially moves 
inward then reflects off the origin. The location of the maximum density derivative is used as an 
estimate for the contact interface‟s position denoted by    .  
Figure 4–6 depicts the location of the discontinuities as a function of time. As shown in Figure 
4–6a, during the time range [0, 4] the contact interface‟s path is approximately parabolic, which 
suggests a constant deceleration of the CI. The secondary shock‟s first reflection happens at a 
dimensionless time,      . Once the SS is reflected it continues to move outward until it 
interacts with the CI creating a tertiary shock. For now, we focus on studying the RT instability 
of the CI, before its interaction with the secondary shock. Therefore, the time domain of interest 
is up to       in order to isolate the RT mechanism. In Figure 4–6b, we normalize the radial 
distances by the location of the CI, thus showing the location of the shocks relative to the CI. It is 
clear that the secondary shock for an extended duration remains close to the contact at about 80% 
of its radial location; even the primary shock till about       remains within one radius of the 
contact‟s location. Thus, it is of interest to study how the RT instability of the CI is influenced by 
the presence of the two nearby shocks. 

Before we show the effect of particles on the base flow, we first validate the new Eulerian-
Eulerian approach. Figure 4–7 shows the gas and the particle velocities for the planar case in 
comparison with the corresponding standard ordinary-differential equation (ODE) solution. It 
matches very nicely for fine resolution.  While the gas phase is characterized with the 
discontinuous jump, the particle velocity gradual increases. In the final manuscript we will 
present results to show that the spherical Eulerian case do match with the Lagrangian case.  

5A 
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5B 

 

5C 

 
Figure 4–5. The radial dependence of (a) pressure, (b) radial velocity, and (c) density of 
the base flow at 4 different non-dimensional times. The location of the primary shock 
(PS), secondary shock (SS) and contact interface (CI) are most evident in the density 
profile and are marked. The above results are obtained with a discretization  of 2000 

uniform grid points extending up to a radial location of   = 15.75. 

 

 

  
6a 6b 

Figure 4–6.  -   Diagram of the location of the contact interface, primary shock, and 
secondary shock. In terms of the original non-dimensional location (6a), and rescaled by 

the location of the contact interface (6b). 
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Figure 4–7. Numerically Predicted Gas and Particle Velocities in the Planar Case using 
the Eulerian Approach in Comparison with the planar Standard Drag ODE. 

 

4.3.2. Preliminary Perturbation Flow- Analytical Solution for the Stability of Two 
Contact Surfaces 

In the final manuscript we will present results for the flow instability in the presence of solid 
particles. In the meantime, we present here an analytical model for the instability of two adjacent 
contact surfaces representing the gas-gas interface, and the gas-mixture interface  

   
______________________________________________ Z=0 

    
______________________________________________ Z=-L             

   
 

Figure 4–8. A model of Two Contact Surfaces Distance “L” Apart where           . 

 

Consider the two contact interfaces illustrated above. The governing equations for each layer are: 
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A stream function is introduced: 

                  (140)  

Upon substituting into the two momentum equations, the solution at each region is obtained in 
the form: 

                                           (141)  

The boundary conditions are that the solution decays away from the CI‟s and at each CI the z-
velocity and the total pressure are continuous. Applying these two boundary conditions at both 
interfaces produces four linear equations for A, B, C, D. Setting the determinate of the algebraic 
system to zero produces a dispersion relation:  

                                                         (142)  

Here A21 and A10 are the Atwood numbers between the 2 and 1regions and between the 1 and 0 
regions, respectively.  Solving for     

   

  
 

  

                    
          

            
                                            

 

(143)  

Only the negative sign above such that if any of the two A‟s are zero, we retrieve the classical, 
single CS solution. For a given   , we have: 

            

        
     
      

 
(144)  

                                    (145)  

Therefore for a given   and  , the corresponding two Atwood numbers can be computed as: 
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Here,                  .   

 
Figure 4–9. Imaginary Part of Omega. 

 
Figure 4–10. Real Part of Omega. 
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We show in Figure 4–9 and Figure 4–10 the imaginary and real pars of the growth rate for 
A=0.4. The amplification rate is given by the imaginary component. We note that when the 
density discontinuity in one of the CS is zero, the amplification rate of the other one is the same 
as that of the classical RTI: 

                                              (148)  

                                              (149)  

Also, if kL is very large 

                     (150)  

                            (151)  

Physically this means,             
 

 
, i.e., the thickness is much larger than the x-wave 

length, the presence of the other CS diminishes. 

When kL is order (1), then the square root may have an imaginary part. Thus, the presence of 
two CS in the proximity of each other can result in modifying each individual CS‟s growth rate 
and in introduce an oscillatory component in the time development of the perturbations. 

4.4. Proposed Work 

We considered here in the problem of flow instability associated with forming two distinct 
material interfaces resulting from the detonative release of energy while including the effects of 
the presence of solid particles. A splitting technique is adopted in which each flow component is 
split into a base flow and linearized perturbations, and a high-fidelity numerical simulation code 
is developed to solve the resulting two systems of equations. Results for the base flow with no 
solid particles are presented for reference. The newly developed Eulerian-Eulerian approach for 
studying the effect of solid particles is verified for the planar case. For the perturbation flow, we 
have presented an analytical model to examine the effect of having two distinct contact surfaces 
in the proximity of each other. The two CI represent the gas-gas interface, and the mixture-gas 
interface. Further numerical results for the base flow and perturbations will be presented in the 
final manuscript. 

We are currently working on performing the following tasks which will shed some light on the 
instability of the multiphase problem. These tasks will define the scope of my thesis. 

 Employ the two fluid Eulerian model and verify the base flow by comparing it with the 
Lagrangian-Eulerian base flow. 

 Numerically evaluate the perturbation equations for the two phase problem and vary the 
spherical wave number. 
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 Compare the growth of the multiphase interface with the growth of the single gas-gas 
interface from Chapter 2. 

 Study the effects of Viscous diffusion, thermal diffusivity, and  mass diffusion on the two 
phase problem and compare with the single-phase results from Chapter 3. 

 Explore the new instability‟s parametric space by varying the initial location of the gas-
particle interface and the initial mass fraction distribution. 

 Past the linear regime, observe the continued growth of the instability into the nonlinear 
regime.  
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5. SUMMARY 

The inviscid case was covered in great detail in Chapter 2 and a parametric study was performed 
across various pressure and density ratios. The inviscid results revealed a region of constant 
exponential growth that was compared with various theoretical works. The comparison revealed 
that the effect of compressibility for constant adiabatic index was stabilizing while the spherical 
Bell-Plesset effects were destabilizing. There exists a regime of wave numbers where the growth 
rate is proportional to the square root of the wave number as in the classical Raleigh-Taylor 
instability. Due to the finite thickness of the interface, for very large wavenumbers the growth 
rate saturates. The results of the inviscid case were published in the Journal the Physics of Fluids. 

Upon investigating the inviscid problem, the viscous terms were included in order to better 
capture the real world physics of the problem. As wave number is increased to a large enough 
value that it is of the same order as the square root of the Reynolds number the viscous effects 
begin to dampen the instability. A maximum growth rate is reached at a given wave number 
beyond which further increase in the wave number results in a decay of the growth rate. The 
peak amplification rate occurs at a wave number that scales with the square root of the Reynolds 
number. Hence, if the Reynolds number is decreased by two orders of magnitude then the 
corresponding peak wave number is decreased by one order of magnitude. Furthermore, the 
thermal diffusivity effects are the same as that of the viscous effects in that they also dampen the 
growth at the instability. As was the case for the viscous effects, also the thermal diffusivity 
effects are only important when the square root of the Reynolds number is of the same order as 
the wave number. Likewise, mass diffusivity effects are the same as that of the thermal 
diffusivity effects in that they also slightly dampen the growth of the instability at very large 
wave numbers. 

Upon inclusion of solid particles, in addition to the gas-gas contact interface the gas-particle 
interface is of interest especially due to its close proximity to the gas-gas interface. The base 
flow problem is modeled by an Eulerian-Eulerian approach and the resulting instability PDEs are 
similar to that of the gas-gas interface‟s instability. Hence, the same numerical technique applied 
to the single-phase problem can be employed for the multi-phase problem. 
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