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Abstract 

 
 
 
With the Life Extension Programs (LEPs), many nuclear weapon (NW) analog 
electronic components are being replaced by modern digital devices, increasing 
system complexities dramatically. Ensuring the reliability, security, and robustness of 
these upgraded systems is critically important. Many custom hardware systems 
throughout the NW operations space rely on Field-Programmable Gate Arrays 
(FPGAs) to implement sophisticated logic. Effective verification, while increasing 
confidence, can reduce the overall effort in system debugging and testing. 

 
 
This work explored Formal Verification (FV) of trusted FPGA-based hardware 
designs through the use of novel algorithms. The algorithms developed support the 
analysis of critical digital components, such as memory, with mathematical reasoning 
from automated theorem proving and model checking. Such verification will detect 
race conditions and corner cases at an early stage, eliminating system failure and 
instability during operation. 
 
 
This work was funded by the Laboratory Directed Research and Development 
(LDRD) office at Sandia National Laboratories.  
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1. INTRODUCTION 
 
 
 Formal verification (FV) emerged as an alternative approach to traditional validation techniques, 
such as random simulation and directed testing, for ensuring correctness of hardware designs. While FV 
has been successful in many applications, such as aircraft navigation systems, cryptography, and medical 
devices, there has been little work at Sandia in this field for NW-related hardware systems.  
 Formal Verification is the act of proving or disproving the correctness of intended algorithms 
underlying a system with respect to a certain formal specification (property), using formal mathematical 
methods. For digital hardware designs, formal verification is the process of checking that the intent of the 
design is preserved in its implementation. 
 

 
1.1. Formal Verification   
 
 Formal verification uses mathematical techniques to ensure that a given hardware design 
conforms to a set of precisely expressed notions of functional correctness. The basic goals are to verify 
that the design (1) does everything it is supposed to do, and (2) does not do anything that it is not 
supposed to do. Below is a list of properties that can be specified: 
 

 Functional properties 
 Timing properties 
 Structure properties 
 Fault tolerance properties 
 Equivalence at various design stages 

 
 
 The two main aspects to formal verification in any design process are the formal framework and 
the verification techniques. The formal framework is used to specify desired and expected properties of a 
design. The verification techniques are used to reason about the relationship between a specification and a 
corresponding implementation. As a widely adopted technology to ensure correct functionality of digital 
systems in the Electronic Design Automation (EDA) industry, formal verification operates on (1) a design 
model, (2) a specification of the operational environment, and (3) a specification of the properties that the 
given design is intended to fulfill. 
 
 Commonly used FV techniques include: 
 

 Equivalence checking (whether two representations of a design is equivalent) 
 Model checking (whether a modeled design meets specification) 
 Symbolic model checking (build propositional logic instead of graph for FSM) 
 Automated theorem proving (proving of mathematical theorems with computer programs) 

 These techniques are targeting domain-specific problems relevant to systems in Sandia’s mission 
areas, including NW and Energy, Climate, and Infrastructure Security (ECIS). However, the currently 
published and employed domain-specific verification algorithms for such applications ([14]) do not have 
the capability to verify critical components, such as memory blocks, of existing and future hardware 
designs in the NW space. The verification algorithms developed by this work support the analysis of such 
critical digital components with mathematical reasoning from automated theorem proving and model 
checking.  
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1.2. Digital Design with FPGAs – Simulation vs. Formal Verification 
 
 A typical flow for designing with FPGAs is shown in Figure 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  A typical FPGA-based design flow. 
 
  
 While simulation dynamically demonstrate that the design generates correct output given 
certain stimulus by proving correctness, formal verification statically proves that the 
implementation satisfies the requirements by catching fault. A simple comparison of the two 
techniques can be given as: 
 

 Simulation 
o Fact: potentially identify the presence of a bug 
o Challenge: does not ensure the absence of a bug 

 Formal verification 
o Fact: exhaustive explore all state space to uncover all incorrect behaviors 
o Challenge: identify enough properties to check 

 
 A simple adder circuit, shown in Figure 2, is used to demonstrate the feasibility of 
“complete simulation”, that would test every single possible input case. Table 2 lists the time it 
takes to achieve a complete simulation for different sized adders, assuming the simulator can 
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Synthesis/Logic Optimization

Technology Mapping
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Design Verification

Device Configuration
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execute one event per  microsecond (capability of current state of the art simulator). It is clearly 
not a feasible solution to completely simulate a 32-bit adder, which is a very simple circuit. This 
example demonstrates the need for an alternative way to verify the design’s correctness. 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

Figure 2.  A simple n-bit adder circuit. 
 
 

Table 1.  Complete simulation runtime as adder size increases 
 

n Simulation run time 

1 4   us 

2 16  us 

4 256 us 

8 65 ms 

16 1.2 hr 

32 584,942 yr 

 
 

 

 

 

 
A(n) 

B(n) 

Sum(n) 

 
Cout(1) 
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2. FORMAL VERIFICATION IN HIGH-CONSEQUENCE APPLICATIONS 
 
 Design and verification of highly complex, trustworthy hardware and software systems 
have always been a challenge. The use of formal verification techniques in such systems has 
been increasing in recent years. This paper presents a survey of the methodologies and 
applications that are targeted.  
 Mission-critical designs are those that have to work, otherwise a catastrophe could occur. 
Examples of such systems include: nuclear reactor control systems, automotive safety and 
control systems, aerospace control systems, spacecraft controllers, military communication 
systems, etc. [23]. Any fault in a mission-critical system leads to high consequence, and should 
be avoided even at significant costs. Other safety-critical systems, such as railroad/subway 
control systems and medical devices, also have very high requirements for reliability and 
stability. A fault in safety-critical systems could lead to the loss of human life or dramatic 
damage to the environment. Thus there are some similarities when applying formal verification 
techniques to mission-critical and safety-critical systems. Most of the time, these systems are 
required to go through stringent certification and assurance process, which is not required for 
pedestrian consumer products. Table 2 lists some of the widely followed safety standards for 
hardware and software systems. For high-consequence systems, high reliability leads to 
functional correctness, and high availability leads to low downtime of the system. Table 3 lists 
the system availability in terms of “9”s and the actual downtime to be expected.  
  

 
Table 2.  Safety-related hardware/software design standards 

 

Standard 

Applicati

on 
Industry Created By H

W SW 

DO-178B  √ Aerospace & 
Defense 

Radio Technical Commission for 
Aeronautics (RTCA) 

DO-254 √  Aerospace & 
Defense RTCA 

EN 50128  √ 
Railway 
Transportation 

European Committee for 
Electrotechnical Standardization 
(CENELEC) 

FSDA √  Cryptographic 
Equipment National Security Agency (NSA) 

IEC 60601 √  Medical 
Equipment 

International Electrotechnical 
Commission (IEC) 

IEC 60880  √ Nuclear Power IEC 

IEC 61508 √ √ 
Heavy 
Equipment and 
Energy 

IEC 

ISO 26262 √ √ Automotive 
Electronics 

International Organization for 
Standardization (ISO) 
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 Table 3.  System availability and downtime 
 

Availability (%) Downtime 

 Weekly Monthly Annually 

90% “one 9” 16.8 hours 72 hours 36.5 days 

99% “two 9s” 1.68 hours 7.2 hours 3.65 days 

99.9% “three 9s” 10.1 minutes 43.2 minutes 8.76 hours 

99.99% “four 9s” 1.01 minutes 4.32 minutes 52.56 minutes 

99.999% “five 9s” 6.05 seconds 25.9 seconds 5.256 minutes 

99.9999% “six 9s” 0.605 seconds 2.59 seconds 31.5 seconds 
 
 
 The complexity of mission-critical systems is continually increasing. In order to meet 
new challenges the systems need to be very robust and reliable. With the emergent technology in 
Integrated Circuits (IC), Field Programmable Gate Arrays (FPGAs) are becoming more and 
more popular, both in traditional digital systems designs, and in mission-critical system 
components [11][24]. Currently FPGAs can be delivered in 28nm node, with programmable 
logic blocks, configurable memory blocks, complex peripherals, and even embedded hardware 
Intellectual Property (IP) blocks. FPGAs are attractive because they are flexible, reconfigurable, 
and easily to designed with vendor-provided tool software.   
 To ensure security of mission-critical systems, sensitive Intellectual Properties (IPs) can 
be protected better with FPGAs compared to custom hardware. It is harder for attackers to target 
a specific IP or design, if the IP or design is not loaded onto the device until after it is 
manufactured. One challenge for ensuring system security with FPGA designs is the introduction 
of vulnerabilities. Often there are design “hooks” which are intended for future enhancement and 
possible optimization. But they can be used to introduce unintended functionalities, sometimes 
could be malicious. Other possibilities include design-tool subversion, trustworthiness of 
foundries, and at the final physical netlist protection.  
 Mission-critical systems often need to operate in harsh environment involving extreme 
temperature and radiation. Such hostile environment makes it infeasible to do a dynamic test of 
the design. At the same time when silicon becomes denser with smaller transistors, they are more 
sensitive to lower level of radiation. This trend has led to the need of more robust radiation-
hardand radiation-tolerant designs. Technologies such as Triple Modular Redundancy (TMR) are 
introduced to mitigate radiation-induced errors. Being able to formally verify designs facing such 
environment is still a challenge. 
 In addition to rad-tolerant characteristics, mission-critical systems also need to be fault-
tolerant under various circumstances. Frequently, faults are non-deterministic, making 
exhaustive testing infeasible and the verification task harder. 
 Traditionally, hardware designs are validated through simulation and emulation, while 
software systems are validated through code reviews and dynamic testing. As a mature 
technology, a good simulation test bench could demonstrate the presence of a design bug (i.e. 
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assure the design does what it is supposed to do), but can never ensure the absence of a design 
bug (i.e. assure the design does not do what it is not supposed to do). 
 Formal verification for both hardware and software systems provides high level of 
confidence, automation, and efficiency. As an example, NASA [20] highly recommends 
applying formal methods for safety-critical software development and verification.  
 
 
2.1 Design and Verification of High-consequence Systems 

 
 A typical design flow that involves formal verification is shown in Figure 3Error! 
Reference source not found.. Specifications (system, functional, property) are normally 
described in plain text along with block diagrams.  Implementation is done in two general ways: 
hardware description language such as Verilog and VHDL, software programming language such 
as C/C++. Property modeling can be done with formal semantics. The verification framework 
then generates the result, which can be used to modify the implementation or specification. 
Mission-critical and safety-critical systems have much rigorous requirement to be satisfiable 
[1][10][19]. 
 
 

System Specification

Property SpecificationFunction 
Specification

Implementation Property Modeling

Satisfiable?

Verification 
Framework

 
 

Figure 3.  A typical design process with formal verification. 
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Table 4.  Common Formal Specification Language 

 
Formal Language Description Application 

Cryptol [2] Domain Specific 
Language (DSL) Cryptography 

Esterel [6] 
Synchronous 
language with 
formal semantics 

Aerospace 

LOTOS [4] 
Language of 
temporal ordering 
specification 

Communication Protocols 

Promela [4][6] Process meta 
language 

Aerospace, Medical Devices, 
Spacecraft 

SIGNAL [5] 
Block-diagram 
based synchronous 
language 

Real-time System Design 

SMV [4][17] Synchronous 
language Rail Transportation 

 
 

 
Table 5.  Common Formal Verification Framework 

 
Formal 

Framework 
Description 

Supported 

Language 

Cadence SMV Deterministic SMV, Verilog 
CADP Probabilistic LOTOS 
Cryptol Tool Deterministic Cryptol language 
SCADE Deterministic Esterel 
NuSMV Deterministic SMV 
ROMEO Deterministic Time Petri Nets 
SPIN Deterministic Promela 

 
 
2.2 Case Studies 

 
 This section presents several case studies to demonstrate the application of formal 
methods and formal verification for mission-critical and safety-critical systems. There are both 
hardware and software applications and each one is summarized for their modeling language, 
formal framework, unique contribution, and the impact on the applications. 

 
2.2.1 FPGA-based Aerospace hydraulic Monitoring System 

 
 Hammarberg and Nadjm-Tehrani [6] published an application of formal verification in an 
aerospace hydraulic monitoring system. The system detects hydraulic leakage inside a JAS 39 
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Gripen multi-role aircraft. This is a critical system, because an electrical fault could lead to the 
complete loss of control of the aircraft in worst case. 
 The co-designed system contains one software component and two FPGA-based 
hardware components. The purpose of using two separate FPGA devices is to increase 
redundancy in the system, making it more fault-tolerant.  
 Traditional Fault Tree Analysis (FTA) was not tractable for such a complex system, a 
formal verification based design model was implemented as shown in Figure 4. Esterel Studio 
provides two model checkers, one based on Binary Decision Diagrams (BDD) and another one 
based on propositional satisfiability (SAT). The SAT based solver was chosen for this particular 
design. The main goals of this verification are (1) verify single fault tolerance of the system, and 
(2) identify potential double fault combinations. 
 In order to achieve co-design and co-verification, all three components and nets that 
connect them are modeled in Esterel. The top level structure of a developed verification bench is 
shown in Figure 4. The highlighted verification bench is written as plug-in modules. These 
modules are solely for verification purposes, and are ignored during design code generation and 
system implementation. The output from the verification bench (“Alarm Signal”) indicates 
whether there is a fault detected or not. 
 Possible hardware faults, such as bit flipping on silicon (FPGA or processor) can be 
caused by environmental factors, such as radiation, extreme temperature, and sudden power 
change. A fault switch is inserted to serve as a fault injector. The objective of such fault switch is 
to indicate whether a formally verified safety-related property would hold if an environment fault 
presents. An example of environmental fault modeled in this application is the arbitrary 
malfunction in either of the FPGA devices. 
 Esterel’s built-in model checker does a good job in this application, especially with the 
support of user-provided constraints. The verification results are impressive by proving: (1) the 
components do not contain design faults causing violation of the safety property; (2) no 
combination of the potential faults can cause violation of the property; (3) no single random fault 
can cause violation of the property; and (4) the only double fault violating the property is when 
the software component and one of the FPGA component are faulty. 
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Figure 4.  Hardware/software co-verification model. 
 
 Another advantage of this approach is the short run time. The model checking takes a few 
second to run, while a simulation test bench with descent coverage can easily run in hours, even 
days for such a complex system. 
 The authors also demonstrated a comparison between manually created and automatically 
generated VHDL design for another smaller safety-critical application. The example is the PID 
controller used in a brake control system for an aircraft arrester system. The same design is 
implemented in two ways: (1) manually created a VHDL design, and (2) automatically generated 
VHDL code from Esterel model. Both designs are then run through the FPGA design flow 
(synthesis, place & route, timing analysis). The manual design wins in both area (logic usage on 
device) and speed (Fmax of the design). However, Esterel generated VHDL design has smaller 
size (lines of code) in general. 
 This is a case study that demonstrates a practical design process for mission-critical 
system. The design is specified at a high abstraction level, which is implementation independent. 
With the built-in verification bench, it successfully detected random faults that are of high-
consequence. The tradeoff is the implementation efficiency, which could lead to the need of a 
bigger and faster FPGA device. This tradeoff, however, can be easily justified for such 
applications. 
 
2.2.2 Multi-thread Control Module for Space Craft 
 
 Havelund, Lowry and Penix [8] published a formal analysis case study of a space craft 
controller. The software to be verified is a component of NASA’s Remote Agent (RA), an 
artificial intelligence (AI) based space craft control system architecture. The module is developed 
in LISP programming language and is multi-threaded. The Remote Agent itself is a mission-
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critical application as it is the first AI based software that demonstrated the complete control of a 
space craft. 

 SPIN is chosen to be the model checker for this application, as it supports verification of 
finite state asynchronous process systems. A domain specific language (DSL) named Executive 
Support language (ESL) is used to specify the bottom layer of the module. The verification 
scheme is shown in  

Figure 5. By abstraction, the original LISP program is reduced to a finite state system described 
in Promela, which is a C-like programming language used by SPIN. This abstraction is a critical 
step for efficient verification, as it makes feasible to create bounded state space. Two properties 
are fed into SPIN, described either as Promela assertion or Linear Temporal Logic (LTL) 
formulae. SPIN is then run to verify if both properties are satisfied. 
 Outputs from SPIN indicate both properties are not satisfied, with four software errors 
being identified immediately. With the error trace provided by SPIN for the four bugs, a design 
flaw (duplicated execution) is also identified. The result is the discovery of five hard-to-find 
errors, which would manifest themselves only under very particular circumstances involving 
precise timing. However, these errors are also of very high consequence. A real incident happened 
during an operation of RA in space, where the thrusting did not turn off as requested, resulting in 
an immediate action to put the space craft in stand-by mode. This happened when RA was 
onboard the DEEP_SPACE 1 space craft. It turned out the cause of the failure was an identical 
error identified by SPIN, but it existed in another module that was not formally analyzed. 
 
 

ESL Program

Promela model

SPIN
Property 1
(Assertion)

Property 2
(LTL)

              Abstraction

 
 

 
Figure 5. Verification scheme of control module (red stars indicate identified violations). 

 
 This work focused on the development of Promela model. The longest run time of SPIN is 
less than 1 minute. The result from this work had a major impact on the RA design team, with 
increased confidence of the delivered software. 
 This case study demonstrates a very successful application of SPIN’s partial order 
reduction algorithm and state compression. 
 A related work is reported in [9] that formally analyzes the concurrent software system 
before and after flight.  
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2.2.3 Model Checking for Fault Tolerant Systems 
 

 Schneider, Easterbrook, Callahan, and Holzmann [22] published a model checking case 
study to verify a fault-tolerant embedded space craft controller, which is a real-time control 
system handling critical control sequences. The key contribution of their work is the effective 
verification based on partial specification. The higher abstraction level is achieved by ignoring 
unnecessary details, while keeping main properties. Due to the complexity of this application, 
reducing the state space is crucial to ensure the feasibility of model checking for critical system 
requirements. 

 The implementation of this verification scheme is shown in 
Figure 6. A critical sequence is executed on a deterministic model, with non-deterministic 

faults injected. Three unrecoverable faults, each indicating a design problem, were identified by 
this verification scheme. 
 

 

Deterministic System 
Model

Non-deterministic fault 
injection

Critical Control 
Sequence

 
 

Figure 6. Fault injection model (red stars indicate identified faults). 
 
 With proper modeling, selection of reliable model checker (SPIN), and effective state 
space reduction, this case study delivered good results in very short run time. The exhaustive 
examination of selected partial specification runs for about 3 minutes, whereas the run time for 
full specification is estimated to be 10 12 years.  The three design problems identified could lead to 
potential fault control sequence. Another notable contribution of this case study is the parallel 
design-verification process, which allows prompt feedback and dynamic modification of both 
design and specification, as shown in Figure 7. 
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Figure 7. Co-design and verification process. 
 
2.2.4 Cryptographic Applications 
 
 Cryptographic applications require very high level of assurance, performance, reliability, 
and security. Historically programmable logic has not been widely used because of the challenge 
to support multiple levels of security and handle isolated redundancy. FPGAs are suitable for 
implementing cryptographic algorithms because there are a lot of bit-level operations, such as 
shifting and permutation. With the growing logic density and performance of FPGA devices and 
development tools [2][7][16], it is now feasible to implement a cryptographic system (even Type 
I) on a single FPGA chip. However, such designs have to be partitioned in a way that isolated 
subsystems do not leak information to each other. For example, strong isolation is expected to 
segregate plain text (red text) and cipher text (black text). The communication between these 
partitions has to be tightly controlled to meet the National Security Agency’s (NSA) Fail Safe 
Design Assurance (FSDA) requirements. 
 The primary goal of verifying a cryptographic system is to ensure the risk of 
compromising its integrity caused by a hardware fault is minimized. Lewis, Hoffman, and 
Browning [14] published a design and verification flow for implementing a single FPGA-based 
cryptographic system. This flow leverages a Domain Specific Language (DSL) named Cryptol 
and tools to support it. Cryptol is a functional description language designed for the NSA as a 
public standard for cryptographic algorithm specification. It allows the user to create 
specifications at a much higher level of abstraction compared to structural or behavioral 
description of digital systems. Even the final implementation is physically on a FPGA, the design 
process is independent of hardware features and detailed configuration. Compared to any 
hardware design language (HDL) such as Verilog or VHDL, Cryptol enables the designers to 
focus on the functional level.  
 The formal verification feature provided by Cryptol tools focus on equivalence checking. 
Based on SAT and Satisfiability Modulo Theories (SMT), equivalence checking can be done at 
various design stages throughout the design process. Similar to Esterel used in an earlier cast 
study, Cryptol can also generate lower level VHDL designs, which can then be synthesized, 
placed and routed on a FPGA device. One attractive feature of Cryptol is that the generated 
VHDL code comes with a formal proof to ensure the functional equivalence. Results have shown 
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that the auto-generated implementations are comparable or better compared to manually written 
Verilog/VHDL implementation, in terms of area and speed. With the introduction of Signal-
Processing Intermediate Representation (SPIR) model, Cryptol provides a nice mixture of easy 
development at higher level and easy access to lower detailed implementation information. An 
overview of the design and verification flow for Cryptol is shown in Figure 8. 
 This case study demonstrates an effective co-design/verification flow for systems with 
very high-assurance and high-reliability. 
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Figure 8. Design/verification flow provided by Cryptol. 
 
2.2.5  Control Software for B-2Test Program 
 
 Chang et al. [3] published a case study in which formal method has made significant 
contribution to the verification of a mission-critical software system. The targeted application is 
the Tape Copy and Management System (TCAMS) built for United States Air Force. TCAMS is 
an important part of the B-2 bomber testing program, which handles enormous amount of flight 
data during testing. Due to the complexity and extreme requirements of B-2, TCAMS has to be 
exceptionally reliable. 
 The overall process of this application is shown in Figure 9. Continuous software 
verification was made possible through a matrix development model [Tomayko96]. At the 
requirement analysis stage, formal method was combined with object-oriented analysis to model 
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system specification. At the high level design stage, formal method was used to describe data 
flow, serial processing ordering, and process parallelization. At the integrated test stage, formal 
methods were used to create test procedures and validation criteria. 
 Without giving the details of applied the formal method and formal verification technique, 
the authors confirmed that verification of the system was enhanced. The final delivered system 
achieved exceptional quality and reliability, proven by continuous successful operation upon 
deployment. 
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Figure 9. TCAMS design process coupled with formal methods. 

 
 

2.2.6  Formal Modeling and Analysis Military Avionics Systems 
 

 A collaborative research project between the University of South Australia and Australia’s 
Defense Science and Technology Organization aiming at modeling and analyzing avionics 
mission systems is another success story [21]. The application is an avionics mission system 
(AMS) for AP-3C Orion maritime surveillance aircraft. The complexity of such systems comes 
from the large number of hardware and software components, and their integration. 
 The key contribution of this work is to combine state space methods and Colored Petri 
Nets (CPN) to reason system properties. Due to the vast number of subsystems and components, 
complexity can only be managed by higher level of abstraction. CPN was chosen because (1) it 
provides primitives for modeling concurrency and synchronization; (2) it provides primitives for 
modeling data manipulation; (3) it is parameterized and can easily be shared for different systems; 
(4) it supports hierarchical design specification; and (5) it is executable thus can be simulated. In 
this case study, CPN was used to model different levels of abstraction, allowing formal 
specification of communications between various subsystems and the avionics bus. 
 The most challenging tasks for AMS is task scheduling and data transfer management. 
Task scheduling problem was handled by a state space search approach in this application. If a 
path from an initial state to a final state is found, then a schedule has been successfully identified. 
Compared to traditional scheduling algorithms, this approach creates a single model that can be 
used for both task scheduling and property specification.  
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 All data transfer in this case study happen on a shared data bus, making it critical to ensure 
the safety and accuracy of data.  In this system, data can be transferred between sensors, central 
control unit, display and storage. The CPN model allows a high level description of the entire data 
management network. 
 A remaining challenge for this cast study was the state space explosion problem. As the 
number of system tasks increase, the state space of the CPN model grows significantly. In the 
original publication, the author proposed to investigate more advanced methods for reducing the 
state space in similar models. 
 Overall, this case study represents an effective formal modeling and analysis approach for 
a real mission-critical application. The result of this work was the high confidence level of the 
AP-3C aircraft mission system, which contributes to the aircraft’s major missions,, including anti-
subsurface/surface warfare, surveillance, search/rescue, and maritime strike.  
 
2.2.7 Aircraft Safety-critical Software  
 
 A recent publication by Yin, Liu, and Su [25] reported a formal verification technique for 
an aircraft safety-critical software (ASCS) – an aircraft inertia/satellite navigation system. 
Realizing the general effectiveness of extended finite state machine (EFSM) in formal verification 
of embedded software systems and its incapability to meet real-time requirements of the ASCS, 
this work introduced a real-time extension of EFSM, named RT-EFSM. 
 The developed RT-EFSM model is used to describe the following properties of ASCS: (1) 
behavior (static and dynamic); (2) real-time characteristics; (3) complex state transition. The same 
model is also used to solve the state explosion problem and ensure the consistency of ASCS 
models. 
 The validation of RT-EFSM involves checking of several critical properties of the model, 
as shown in Figure 10. Once validated, the model can be used to generate valuable test sequence. 
A time extended unique input/output (UIO) sequence was introduced to accommodate the real 
time system. During the test sequence generation, depth-first search tree is constructed for easy 
traversing and improving test coverage. 
 The developed formal approach was applied to an aircraft inertia/satellite navigation 
system. It is reported that the verification methodology is very effective for this application.   
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Figure 10.  RT-EFSM based verification for ASCS. 
 
2.3 Conclusion 
 
 Formal verification has been used in many applications as an alternative to traditional 
testing approaches – simulation for hardware designs and dynamic testing for software systems. 
With the extreme requirements of the reliability of mission-critical and safety-critical systems, the 
ability to effectively verify the design throughout the design cycle is highly desirable.  
 The cases studied include both hardware systems and software systems. For hardware 
systems, the survey focuses on designs implemented with FPGA, because of its flexibility, 
reconfigurability, and growing popularity in the targeted applications. The surveyed cases applied 
various formal methodologies to accommodate different applications, including both equivalence 
checking and formal model checking. 
 Additional application of formal verification in safety-critical systems include railway 
interlocking systems [15], hybrid emergency control components [13], medical device software 
systems [12] etc. 
 As formal methods research advances, more examples of success will be published. More 
advanced formal tools are also expected from the Electronic Design Automation (EDA) industry 
to further enhance verification. A recent success story is the joint effort between Northrop 
Grumman Italia and Mentor Graphics to achieve DO-254 compliance [18]. 
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3. COMPLETE FORMAL VERIFICATION OF STATEFUL DESIGNS FOR 

HIGH-CONSEQUENCE SYSTEMS  
 
 In certain high consequence systems, the requirement that safety and liveness properties 
are upheld is of paramount importance.  The most common method for determining whether a 
system implementation is working to spec is simulation based validation.  A large set of test 
inputs and expected outputs must be created in an attempt to cover all runtime paths that the 
system may exhibit.  The system is then run on the given inputs and checked.  Correct operation 
during validation is then used to claim that the system works correctly and is ready to be put into 
production.  However, such tests cannot feasibly be exhaustive, and the reliance upon simulation 
based validation for producing high consequence systems is known to be a costly mistake 
[29][31]. 
 Formal verification aims to eliminate these consequences by offering mathematically and 
logically sound techniques for determining whether a design implementation is specification 
adherent.  Since its inception, two approaches have taken hold as viable techniques for formal 
verification: Model Checking (MC) and Automated Theorem Proving (ATP). MC is the 
exhaustive examination of a system’s reachable states that ensures desired properties hold. ATP is 
the logical derivation of desired properties from a mathematical definition of the system 
implementation and a collection of known axioms.  Each technique has its own strengths and 
weaknesses (as shown in Table I) and neither can really be considered a cure-all for the formal 
verification problem. 
 

Table 6.  Automated Theorem Proving vs. Model Checking 

 

 Automated Theorem 

Proving 
Model Checking 

Strengths 

 Ability  to handle very 
complex systems 

 Expressive logic 
 Generation of machine 

checkable proof 

 Easy generation of  model 
from HDL source 

 Automatic verification 
 Generation of counter 

examples 

Weaknesses 
 Requires human input  
 No counter example 
 Not automated 

 Design size limitation 
 Not feasible for complex 

data path 
 

  
 A key observation made when comparing ATP and MC is that one’s weakness is the 
other’s strength.  Where ATP is unable to perform without human intervention, MC requires no 
human oversight; and where MC cannot handle complex systems, ATP is not limited by the 
system’s complexity.  Since these two techniques are complementary, an obvious solution would 
be to combine the best features of each and create a completely automatable verifier that is not 
limited to simple systems. 
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 Much work has been done to this end, and while progress has been made to combine the 
techniques of ATP and MC into a hybrid verification tool, success has been limited to problems 
that are not easily generalized. 
 Very early work in combing ATP and MC attempted to partition a system into properties 
that are control intensive (to be used with MC) and data intensive (to be used with ATP) [35]. The 
limitation of such an approach is that most systems, especially high consequence systems, have 
very complex interactions between these two categories, making partitioning infeasible or very 
hard. Some alternative approaches emerged to supplement model checking with proof assistants 
that aim to decompose a complete verification into several model-checkable subtasks [33]. 
Examples of decomposition rules include temporal splitting, data abstraction, and compositional 
verification. Among the listed, abstraction is a commonly used technique that can reduce the 
verification of a complete system to the verification of an abstract system. 
 Another verification approach aims to loosely integrate MC and ATP under into deductive 
environment [36]. This environment provides capabilities such as modular debugging and 
verification through abstraction and MC. The major obstacle for a tight integration of MC and 
ATP is the successful abstraction across domains and discovery of good abstract representations. 
The approach takes advantage of the automation of MC in combinatorial logic from NuSMV and 
avoids the state explosion problem by decomposing the model into small function preserving 
partitions. In order to maintain soundness, a theorem prover (ACL2) is employed and 
consequently, the verification results are able to be scaled up to arbitrarily large models. This 
approach is general enough that it can be applied to other digital systems. 
 RAM is chosen as a case study because of its wide application, especially in high 
consequence systems. With state-of-the-art semiconductor process technology, memory design 
and verification has drawn a lot of attention in both analog and digital aspects [32]. Verification of 
memory has been an important and challenging problem. Memory is unique because (1) there are 
normally a very large number of cells; (2) each of these cells has identical functionality and 
controlled by the same control signals; and 3) there are generally many structural symmetries in 
RAM architectures. 
 Verification of memory started with switch-level simulation [28], which works very well 
for small sized memories. Later on different techniques have been published, such as symbolic 
trajectory evaluation (STE) of memory arrays [34] and bounded model checking of embedded 
memories [30]. The STE based verification is essentially a form of symbolic simulation and is 
able to overcome the infeasible simulation coverage issue by reducing the system model – taking 
advantage of the structural symmetry of RAM. Bounded model checking (BMC) made the 
handling of large embedded memory designs feasible through an effective abstract model [30]. In 
this approach, each memory bit is abstracted and constraints are added at every analysis step. 
 However, because BMC is employed, soundness is not guaranteed for general systems.  
This work create a novel framework for verification of stateful hardware systems and employ its 
utility in verifying a RAM design, emphasizing the importance of automation and soundness.   
 In section 3.1, a RAM model is formally define as a Kripke structure and demonstrate the 
pitfalls of straight forward MC.  In section 3.2, a decomposition approach is presented and its 
soundness is proven.  Verification results are presented in section 3.3 and section 3.4 concludes 
with suggested future research in. 
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3.1 Random Access Memory (RAM) 
 
  
 Before discussing the formal verification of a RAM system, the system has to be formally 

defined in a way that is easy to understand. 
 

3.1.1 Definitions 
  
 A Kripke structure that reflects the semantics of a generic RAM implementation is used.  
 

Figure 11 formally describes the finite state -automaton that is used in model checking.  A state 
is defined as a 5-tuple  where  represents the input value,  the input address,  the 
Read/Write control bit,  the output value, and  an ordered -length list of -bit values 
representing the values being stored within the RAM. 
 

 

 
 

Figure 11.  Formal definition for RAM Kripke structure. 
 
 

  
 
 
 
 
 

 
 

 

 
 

 

 
, Where “&” is the bitwise “AND” operation. 
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 The transition relation between states is defined by the Boolean relations  and . 
 

1) Read.  For the  relation, two states  and  are related if the following three statements 
hold: 

1.  
2.  
3.  

 
 Semantically, the  relation ensures that when a state transition is initiated by a read 
operation, the next state must (1) maintain the integrity of values being stored and should update 
the output value to either (2) reflect the value being stored in memory if the address is valid or (3) 
to 0 if the address line is not valid. 
 
2) Write.  For the  relation to hold, two states  and  must satisfy the following 
expressions: 

1.  
2.  
3.  

  
 These rules ensure t hat when a state transition is initiated by a write operation, the next 
state should (1) maintain integrity of values  where , (2) update the value  where  to 

, and (3) ensure that the output  value does not change.   Notice that these rules were 
crafted in order to preserve the safety of the system.  That is, the  function ensures that only 
values of the proper bit -width are stored in memory, and the update step implicitly ensures  that 
writes to illegal addresses do not corrupt the memory content. 
 
3.1.2 Specifications 

  
 Next the formal specifications that  the model checker verifies is described. Here, the 
naive specifications expressed in Computation Tree Logic (CTL) is presented.  Optimizations for 
reducing complexity will be presented in  the next section.  T wo liveness and one safety 
properties are enforced: 
 
1) Liveness.  The first liveness property checked is whether the implementation correctly 
implements the read operation.  T he property Read Liveness (RL) is defined to be: If the status 
bit =  and the address = , then in the next state, the output should be . 
 
 

 
 

 
 The second liveness property ensures that the write operation is correct.  Write Liveness 
(WL) is defined as: If the status bit =  and the address =  and the masked_input = , then 
if  is a valid address, in the next state  will be true.  Furthermore, if address   then in 
the next state,  will equal the current value of . 
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2) Safety. The only safety  property enforced is that at all states, the values stored in memory 
should be members of a specified range of integers defined by the value  in the definition.  In 
the specifications, Safety is stated to be: For each memory address A, the value stored at Y[A] 
should be in the range of values 0 to . 
 

 
 

3.1.3 Optimized specifications 
 
 In order to obtain viable runtime results for model checking, Write Liveness property 
needs to be rewritten to avoid  specifications.  This is accomplished by performing a bit-
level comparison across the  bits of data values.  The impro ved specifications are shown in  
Figure 12. Using this optimization, the same properties in  specifications can be covered. 
 
 

 
Figure 12.  Optimized liveness specification for memory writes . 
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3.1.4 Limitations 
 

 Despite the efforts to express the RAM model in a way that would make the model 
checking problem tractable, the fact of the matter remains that RAM is a stateful system and 
subject to the state explosion problem. Unable to model check RAM of size larger than 100 bytes, 
other approaches are investigated to solve the problem. Using a theorem prover, it would be trivial  
to verify the properties, however, as a completely automatable system is required, and thus direct 
theorem proving would not suffice. 
 Based on the thinking of a hybrid approach, an idea was developed or decomposing RAM 
into smaller pieces and model checking the pieces individually.  While this seems trivial, the 
implications of being able to reduce an intractable problem into smaller tractable parts were very 
appealing.  The first step would be to formally prove that such an approach would be work. 

 
 
3.2 Decomposition of RAM for Formal Verification 
 
 The decomposition used to abstract the RAM model is fairly straig htforward. Given a 
RAM, it is divided into arbitrarily small pieces and model check each piece individually. It is  
conjectured that the conjunction of results from these smaller pieces is equivalent to the overall 
result that would be obtained from model checking the original RAM.  
  
 In order to maintain soundness in the RAM verifier while taking advantage of a 
decomposition property, it was necessary to first ensure that the decomposition step was sound 
and did not affect t he system’s validity.  T he ACL2[26] theorem prover is used to prove the 
conjecture.  Furthermore, it is proved that two smaller RAMs that satisfy the properties could be 
concatenated together and the resulting RAM would also satisfy the p roperties.  Finally, the 
mapping for  and  operations from the large RAM onto the decomposed pieces is 
defined and their semantic equivalence is proven. 
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3.2.1 Decomposition Proof 
 

 

  
 Figure 13.  Syntax and operational semantics for RAM as modeled in ACL2. 

 
 In ACL2, memory is modeled as a 3-tuple  where  is an ordered list of size  and 
 is the value mask that is applied upon memory writes. 

 The syntax and operational semantics for the model are defined in Figure 13.  In the 
remainder of this section, 1) property adherence for the model is proven, 2) the equivalence of the 
decomposed operations with their corresponding simple operations on the original memory is 
proven, and 3) a soundness proof for decomposed property verification  is concluded.  In the 
following theorems, letfollowing theorems, let . 
 
Theorem 1 (Liveness for Read and Write). If the read operation is invoked with a valid memory 
address, then the resulting output should be the corresponding value located in memory.  
Similarly, if the write operation is invoked with a valid memory address, then the resulting 
memory should be identical to the original with the exception that the value at the de signated 
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 mask 
 size 

 Initial RAM 
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memory address has been updated to reflect the input value. 
 
Proof.  The proof of this theorem is a straight -forward application of the definitions for Read and 
Write operations. 

 
Theorem  2 (Safety for Read and Write).  When a write operation is performed on a RAM with a 
valid memory address, given that the RAM is initially safe, the resulting RAM will also be safe.  
Here, safety is defined as in section III, namely that after every read or write operation, every 
value being stored should be within a specified range.  
 
Proof.  For this theorem, an exhaustive proof across operations (namely read and write)  is 
performed.  For read operations, the proof is trivial since reads have no effects on the values 
stored in memory, as shown in the operational semantics.  Writes performed, however, do affect 
the memory store.  Let  be a RAM that satisfies safety with respect to the system 
parameter .  The goal is to prove the safety of .  Consider that  is 
safe iff  is in the range .  By definition,  is in the range .  Since  is 
given to be safe, it follows that   and that safety is preserved. 

 
Theorem 3 (Decomposition and Inverse).  W hen memory is decomposed into two partitions, 
these partitions can each be classified as a RAM by definition.  Furthermore, the composition of 
two RAMs sharing the same mask value into a single memory yields a RAM.  Finally, the ordered 
composition of part itions resulting from decomposition of a RAM results in a RAM that is 
semantically equivalent to the original.  
 

 
 

Theorem 4 (Decomposed Read Liveness).  If a decomposed read operation is performed on two 
partitions of RAM, the resulting output is the same as that of the read operation performed on the 
parent RAM.   

 
 

 
 
Theorem 5 (Decomposed Write Liveness).  When a decomposed write operation is performed on 
two partitions of a parent RAM, the resulting partitions are equivalent to those resulting from t he 
decomposition of the updated RAM.  

 
 

 
 

Proof.  Proofs of theorems 3 – 5 follow from a straightforward application of definitions from 
Figure 13. 
 
Theorem 6 (Decomposition Soundness).  If a RAM is decomposed in to partitions, and those 
partitions satisfy the safety and liveness properties for RAM stated in section III.B, then the 
original RAM also satisfies these properties. 
 
Proof.  For de composition soundness, each property is proven separately as its own lemma , 
namely Read Liveness (RL), Write Liveness (WL), and Safety.  In the following lemmas, let 
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. 
 

Lemma 1. . 
 
Proof.  Let R_0^'=(µ_0,k,p).  By definition, 
 

RL(R_0^' )≡ AG (addr=i∧status=R)→AX output=µ_0 [i];i∈Z_p. 
 
Similarly, let  

R_1^'=(µ_1,k,s-p). 
 
Again, by definition, this time taking the offset p into account  

RL(R_1^' )=AG (addr=(i-p)∧status=R)→AX output=µ_2 [i-p];i∈Z_s⁄Z_p . 
 
From here, it follows  
 

RL(R_0^' )∧RL(R_1^' )≡ AG (addr=i∧status=R)→AX output=mem[i];i∈Z_(p+(s-p) )=Z_s=RL(R). 
 

 
Lemma 2. . 
 
Lemma 3. . 
 
Proof. For Lemmas 2 and 3, the proof takes a similar form to the proof given in Lemma 1.  The 
underlying property that allows decomposition soundness to hold is the fact that all semantics of 
RAM can be described in a piecewise fashion and that each property is enforced over these 
individual pieces. 
From these soundness lemmas, it is concluded that decomposition is sound with respect to the 
properties. 
 
3.2.2 Implications 
 
 The utility of such a decompos ition property is an obvious advantage to model checking 
as it allows one to convert a problem of size  into  problems of size  .  
Furthermore, because the transition space of such a graph is sparse, the construction of an 
efficient Binary Decision Diagram (BDD) is easy, further reducing the problem’s complexity into 
something computable on commodity hardware. 
 In addition to reduced complexity, the division of one problem into  problems is an 
obvious candidate for parallel computing, thus yielding further computational benefits. 
 
 
3.3 Formal Verification of Decomposed RAM with NuSMV 

 
 In this se ction, the run-time performance for the verification system is described.  The 
runtime analysis begins with using a m odel checker only.  NuSMV, an open source symbolic 
model checker, is chosen  as the base line for measuring performance.  
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3.3.1 NuSMV Model Checking 
 
 NuSMV’s performance is captured for increasingly large memory size.  As defined in the 
model,  is the word width and  is the number of words being modeled in the RAM.  Through 
experiments, the best performance can be achieved when running with coi, df, and dynamic flags 
enabled (cone-of-influence, do-not-compute-reachable-set, and dynam ic-variable-reordering 
respectively).  All results here were obtained on a Windows 7 64 -bit PC with an Intel Core i5 -
2500 3.3GHz CPU and 8GB of RAM. 
 A runtime comparison is first looked at by using the initial set of naïve specifications that 
included some Linear Temporal Logic (LTL) specifications not mentioned here  (Figure 14). 
Sampling ten runs per data point, the importance of efficient specifications is demonstrated and a 
conclusion is drawn  that beyond a memory size of about  12 words, this approach would not 
complete in a reasonable amount of time (execution was terminated at 3 days for M=16). 

 
3.3.2 Hybrid Verifier 
 
 Next runtimes across two verification approaches  are compared – first on NuSMV with 
optimized specifications, and then in the hybrid approach (Figure 15).  The performance gain from 
efficient specifications is obvious, however, state explosion is seen again beyond about 600 bits of 
RAM.  This success of model checking  states can be attributed to NuSMV’s efficient BDD 
representation for the model, but reiterate that most modern digital systems have more than 100 
bytes of RAM. 
 The hybrid verifier performed the best over -all.  In the graph, the total decomposition 
runtime is computed as the time required to verify the proof in ACL2 + the time required to run  
instances of decomposed RAM in NuSMV.  The linear growth is expected to continue well 
beyond the point where simple model checking fails.  Furthermore, it is speculated that 
parallelization would yield even better runtimes, and it is noted that the re -verification of the 
machine proof is actually a one-time cost. It is included for completeness. 
 

 
 
 

Figure 14.  Run time explosion for naïve NuSMV verification. 
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Figure 15.  Run time comparison for decomposed and unaltered verification. 
 
 
3.4 Conclusion 
 
 In this section a novel approach to formally verifying the subset of stateful digital 
systems that exhibits the deco mposition property as defined is presented. When utilized, this 
property allows a verifier to model check partitions of the system individually, eliminating the 
unnecessary overhead of checking specifications in states that are inconsequential to the 
specification’s validity and avoiding the state explosion problem. 
 The emphasis in designing this framework is aimed to maximize automation – a key 
feature in promoting its use in design verification.  Furthermore, because of the integrated use of 
a theorem prover to validate the decomposition property, the verifier is sound. 
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4. PRACTICAL INTEGRATION OF SIMULATION AND EARLY FORMAL 

VERIFICATION 
 
 Another important component of this work is a practical integration of simulation and 
early formal verification of embedded systems through library module pairing. Embedded 
systems are designed for various applications in the NW space, thus the capability of formally 
verifying these systems are of great value. 
 An inhibiting factor in formal verification of embedded systems is the time, effort, and 
expertise required in correctly applying its use.  Furthermore, due to the state explosion problem, 
verification of complex systems requires abstractions that are often not straight forward.  Thus, 
the goal is to integrate formal verification into the current design and test cycle in a way that is 
most practical for use by system engineers, maximizing automation and ease of use and 
minimizing redundancy. 
 This work is built upon Orchestra, a Java based timing-based timing-accurate, event-
driven simulator. The first goal is to produce hierarchical model skeleton representations of 
abstract designs. Then a GUI interface is provided for users to systematically flesh out high level 
designs into formal modules by “plugging-in” pre-constructed library modules.  From here, 
embedded systems are verified as a whole or in parts using the NuSMV model checker. 
 The verification system is presented here and a detailed description of the library module 
macro language is given. The difficulties of bridging the multiple layers of abstraction from high 
level Java objects to NuSMV modules is discussed. The practicality of the system is 
demonstrated with an example. 
 The importance of the early discovery of system design errors is well known.  As the 
complexity of hardware and software designs grow at an accelerating pace, so grows the need for 
efficient and effective verification techniques.  Furthermore, because bugs are much more 
expensive to fix at later stages of system development, discovering design errors at an early stage 
is of great interest, both in academia and industry [40]. 
 Traditionally, verification of embedded systems has been accomplished through 
simulation – high test coverage indicating high assurance of system correctness.  However, 
because successful testing in general does not imply functional correctness, system bugs are still 
possible [29][32].  In more formal approaches, on the other hand, verification of embedded 
systems is performed through mathematically sound logic and reasoning techniques (such as 
theorem proving and model checking).  In this case, because verification is performed on the 
system as a whole, success implies system-wide policy adherence [4].   
 In hardware designs especially, the use of formal verification has enjoyed increased use 
for more than a decade [37].  Unfortunately, in software the application of formal verification 
techniques is difficult, requiring a significant amount of time and expertise.  Furthermore, the 
well-known state explosion problem prevents hands-free verification of moderately complex 
systems from being feasible.  In such cases, abstractions that reduce the overall complexity of a 
design are invoked – the proper use of which is an open area of research [48].   
 Much effort has been put into creating embedded system development environments that 
promote the early detection of bugs through formal verification [41][45][46][47].  In these 
approaches, a system must be represented at the correct level of abstraction to reduce complexity 
for the model checker, a problem to which many solutions have been proposed [44]. 
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 In one solution, compositional development, functional building blocks are 
interconnected to achieve a desired behavior.  These components can be represented at varying 
levels of abstraction, promoting rapid development and allowing simulation without unnecessary 
design complexity [38][39][45].  Additionally, research geared toward verification of models 
across multiple layers of abstraction has further demonstrated the utility of this approach 
[38][39][42][43]. 
 The verification system focus on the detection of bugs at the conceptual design phase.  
The goal is to integrate into a Java based compositional development environment to extract 
hierarchical system information and allow developers to formally verify behavioral properties 
through an intuitive library module pairing procedure. 
 This work differs from prior attempts to formally verify abstract systems in that full 
unrestricted access to the Java API is allowed when developing and simulating a system design.  
Furthermore, the pairing technique promotes the separation of formal model creation and system 
development, allowing current hardware developers to take advantage of the verification tools 
without expertise in formal verification. 
 The remainder of this work is arranged as follows.  Section 4.1 is an overview of the 
background components of the verification system – Orchestra and NuSMV.  Section 4.2 
describes the formal verification system, detailing the design choices and demonstrating the 
library module macro language.  Section 4.3 gives a demonstration of the system’s practicality 
while simultaneously describing the underlying verification process and graphical user interface.  
Section 4.4 concludes this work with a summary of the work and areas for improvement. 

 
 
4.1 Background 
 
 An overview of the tools that are used is presented before discussing the verification 
system.  The system is integrated into the Orchestra simulation environment and makes extensive 
use of NuSMV model checker. 
 
4.1.1 Orchestra 

 

 In order to minimize the added effort required for designers wishing to integrate formal 
verification into their system’s design cycle, a verification system is built into the Orchestra 
simulation environment already in use.   

 

4.1.1.1 Description 

 
 Orchestra is a timing-accurate, Java-based simulator and design assistant that allows 
system engineers to simulate their implementations at all stages of the development process, 
across various levels of abstraction. 
 The three basic constructs within an Orchestra model are: modules, connections, and 
ports.  Modules are used to represent a block with some specific behavior, connections represent 
communications conduit between modules, and ports provide an interface from module to a 
connection.   
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 These basic simulation constructs are non-specific to any level of abstraction.  For 
example, a module can faithfully represent the behavior of a digital logic ‘and’ gate (VHDL), a 
class structure (UML), or a high level system such as a stop light at an intersection.  This 
flexibility also extends to connections and ports.  As a result, Orchestra can be used to model and 
simulate interactions of ‘components’ at varying levels of abstraction all within a single 
environment. 
 Also, because Orchestra is based on the Java programming language, developers are 
encouraged to make use its API libraries where convenient.  For example, one may model a 
memory module using a Java ArrayList as the storage structure rather than logic gates.  This 
effectively allows the developer to abstract away any details that are unnecessary for simulation 
and saves time in the process. 
 Once a system has been conceptually mapped out, the specific parts that the developer is 
responsible for can be migrated down to high levels of fidelity, leaving other parts abstract.  A 
clarifying example is given in the next section. 

 

4.1.1.2 Example Use 

 
 Consider that a developer is responsible for delivering a controller module that controls 
all of the traffic lights at an intersection and accepts commands from a central controller that 
manages all intersections within the city.   
 The developer would first model the stop lights at an intersection, the controller, and the 
central control system as very abstract modules in Orchestra, capturing only the critical aspects 
of the system (state, data, communication, operation sequences, etc.).   
 Next, the developer would have the option of creating interactive GUI controls through 
the Java Swing API either to initiate commands sent from the central control system or to 
provide a visual representation for the state of a traffic light.   
 From here, the developer can simulate the model through all required operational 
scenarios and error conditions to ensure the overall architecture and concept satisfies all system 
requirements. 
 Satisfied with the concept, the developer then inserts a processor model in place of the 
stop light controller module.  The original abstract testing infrastructure can now be used to test 
the actual application software implementation. 
 

4.1.1.3 Advantages and Disadvantages 

 
 Because the conceptual infrastructure occurs at such a high level of abstraction, the 
conceptual phase of model development proceeds relatively fast.  Additionally, developers are 
given the option of providing multiple visual interpretations of the system state by taking 
advantage of Java’s Swing API (e.g. a traffic light graphic or a wave form viewer). Furthermore, 
since Orchestra is able to operate across levels of abstraction, developers can reuse their 
conceptual testing environments for later phases of development where certain modules would 
be exchanged for more detailed versions. 
 While Orchestra provides for rapid progression through the initial development phases, 
there is currently no way to translate an Orchestra model one-to-one into an RTL model.  This 
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fact holds true in general for simulation environments and is partially what makes integration of 
formal verification into the early design phase especially difficult. 
 

4.1.2 NuSMV Model Checker 
 
 The NuSMV model checker is employed for verifying the models in order to maximize 
system automation and provide useful feedback to users wishing to verify their implementations. 
 
4.1.2.1 Description 

  
 NuSMV is an open source symbolic model checker based on SMV, a BDD-based model 
checker [27].  It operates on models as finite state automata and has syntax very similar to 
Verilog.  When provided with specifications written in computation tree logic (CTL) or linear 
temporal logic (LTL), the NuSMV engine   computes whether or not the specifications hold for 
the model.  In the event that a specification does not hold, a counter-example is provided.  This is 
especially useful for developers and allows them to pinpoint errors without additional much 
effort. 
 
 
4.2 Orchestra-based Formal Verification System 
 
 The over-arching goal though-out this work has been to maximize the feasibility of using 
formal verification at an early stage of the hardware design cycle.  To achieve this goal, the 
benefits of formal verification must outweigh the time and effort costs required to actually 
perform the verification.  In this section, design choices, the difficulties encountered, and 
solutions are discussed. 
 
4.2.1 Design 
 
 In the design, it is assumed that the user has constructed an Orchestra model and is ready 
to verify its functionality.  No assumption is made about the abstraction level of the model or the 
system’s state of completeness. 
 The system is implemented as a Java add-on to Orchestra, allowing it full access to 
Orchestra’s module, port, and connection data structures as well as to the details of the model to 
be verified.  When the verification procedure is invoked, a formal NuSMV model is constructed 
and the user is presented with a verification console.  The model has two components: the state 
variable and module hierarchy, and the logic relations between states. 
 
4.2.1.1 Hierarchy Extraction 

  
 The first and easier step is to extract hierarchical information from the model.  This is 
done by performing a depth first search through the collection of modules that make up the 
Orchestra model and gathering information about how the modules are connected.  From this 
step, information regarding state variables that may reside in each module is also extracted.  
Because the model can be abstract, the connections may not have a bus width specified, and thus 
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the state variables remain type -less.  In these cases, the state variable to be revisited later  is 
marked. 
 
 
4.2.1.2 Logic Extraction 
 
 
 The next and harder step is to extract logic level information from the model.  Because 
NuSMV operates at the RTL, equivalent logic level semantics for whatever a bstract behavior is 
being represented must be developed.  This problem is hard because the language that the model 
is written in (Java) exists at a much higher level of abstraction than the HDL -like language on 
which NuSMV operates.  Furthermore, since NuS MV does not have control structures such as 
loops, it is not guaranteed that the Orchestra source can always be parsed into NuSMV code. 
 Thus, the first approach would be to simply have the developer fill in the blanks for logic 
level operations.  This was  not optimal, however, as it required the developer to waste time 
writing NuSMV code when they could alternatively just write the Verilog code and verify that. 
Next, it is attempted to provide a template for the user to specify program logic in the form of  
Java annotations within the source itself.  This, however, would require developers to go back 
and modify source code to any existing modules that they would want to verify.  Also, the 
annotations themselves required a fairly complex syntax in order to co ver the full range of 
operations within NuSMV, again making the alternative of simply writing the Verilog source 
sound more appealing. 
 Finally, the idea of library modules is chosen.  By compiling a list of the most commonly 
used modules and writing the c orresponding NuSMV code for them, developers could be 
allowed to simply pair off these modules with their Orchestra modules and avoid the problem of 
parsing logic level operations from Java source. 
 Alternatively, developers could be forced  to specify thei r models at a logic level, 
enabling the easy extract state transition information; however, the goal is to provide early 
verification in the embedded systems design cycle, so the ability to handle abstract conceptual 
designs is important. 
 
4.2.2 Library modules 
 
4.2.2.1 Benefits 

 
 The key advantage to maintaining a library of commonly used modules is the trade -off of 
paying a one-time programming cost to receive a repeated benefit.  Developers pay a one -time 
cost of writing the library module and then are able to reuse that module later in future designs. 
 Furthermore, in order to increase the amount of reuse, developers are able to use special 
generic variables when they write their library modules that allow the module to be instantiated 
in various capacities.  These ge neric variables can represent the bus width of a register or the 
number of input lines to a module.  As an example, consider a multiplexor.  In general, a mux is 
made up of  input lines each having the same bus width , a control l ine with width at least 

, and an output also of width .  In a single library module (as will be shown later), all 
possible instantiations of this multiplexor can be covered, yielding obvious time benefits. 
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 Generic library modules pose added benefits in that they provide a level of abstraction 
that can be extremely advantageous during verification.  This is done by making it easy to 
abstract large state variables into smaller ones when they are irrelevant to the specification being 
tested.  For example, to test whether or not a communication protocol only operates when certain 
“enabled” bits are on, it may not be necessary to model the actual communication channel as a 
16-bit bus.  This leads to improved performance during verification since the complexity of a 
given model’s state space is exponential in the total number of state bits. 
 
4.2.2.2 Syntax 

 
 The language for specifying library modules is similar to NuSMV with the addition of 
generic variables and macros, as well as supplemental input/output type information (Figure 16). 
 

  
Figure 16.  Syntax for the Library Module Macro Language. 

 
 As mentioned above, generic variables allow a developer to cover multiple instantiations 
of the same module in a single generic module.  The supplemental input/output type information 
will be useful later when it comes time to instantiate the module.  Macros are expanded during 
instantiation and reduce the total number of lines within a module by allowing developers to 
identify repeated logic structures and replace them with a single macro function. 

LIBRARY MACRO MODULE GRAMMAR 

MODULE := "MODULE" + name + params? + "(" + args + ")" + "=>" + outs + "{" + body + "}" 

params := "<" + var + ("," var)* + ">" 

name := [-a-z_A-Z][-a-z_A-Z0-9]*  

args := arg + ("," + arg)* 

arg := [-a-z_A-Z][-a-z_A-Z0-9]* + namefunc? + "[" + value + "]" 

namefunc := "#(" + expression + ")" //Variable number of inputs/outputs  

outs := out + ("," + out)* 

out := [a-z][a-z0-9]* + namefunc 

body := ("VAR" + text)? + ("ASSIGN" + text)? + ("DEFINE" + text)? 

expression := expression "+" factor | expression "-" factor | factor 

factor := factor * value | factor / value | lg(expression) | (expression) | value 

value := var | num | "[::" + expression + "::]" 

var := "%" + [a-z_A-Z][a-z_A-Z0-9]* 

num := [0-9]+ 

text := ([-a-z_A-Z0-9 !@^&*+=()[];:{}<>/] | var | "[**" + textgen + "**]") | "[::" + expression + 

"::]")* 

textgen := for-func 

for-func := "for(" + var + "," + expression + "," + expression + "," + text + ")" 

comment := ";;" .* "\n" 

 



45 

 Macros are especially powerful when combined with generics.  Consider again the 
multiplexor example.  In order to correctly instantiate the logic behind an  inputs  bus width 
mux, a construct is needed that allows user to specify the correct logic for the output line.  With 
macros, this is done easily in a single for-statement as demonstrated below: 
 

 
   
4.2.2.3 Instantiation 
 
 When a library module is instantiated, first, each type variable listed outside of the body 
is replaced with the provided instantiation value.  Next, expressions inside the “[::” -brackets are 
evaluated.  Finally, name -functions (e.g. variable numbered inputs) and text -gen functions (i.e. 
text generation macros such as for -func) are expanded.  The result is a NuSMV module with the 
added input/output type information stored for later use.  Here, an instantiation of the mux 
module with  and  is shown: 
 

 
4.2.3 GUI 
 

MODULE sync-mux(in#(%N)[%M], 

select[[::lg(%N)::]]) => out[%M]{ 

  VAR 

    out : word[%M]; 

  ASSIGN 

    init(out) := 0b%M_0; 

    next(out) := case 

      [**for(%i,0,%N, select = 

0d[::lg(%N)::]_%i : in%i; 

      )**] 

    esac; 

} 

MODULE sync-mux_N4_M16(in0, in1, 

in2, in3, select) 

VAR 

    out : word[16]; 

  DEFINE 

  ASSIGN 

    init(out) := 0b16_0; 

    next(out) := case 

      select = 0d2_0 : in0; 

      select = 0d2_1 : in1; 

      select = 0d2_2 : in2; 

      select = 0d2_3 : in3; 

    esac; 

 

 



46 

 Finally, a graphical user interface (GUI) is provided for making the connections between 
library modules and their Orchestra counterparts.  The GUI was designed to provide developers 
with complete control over the library modules in a way that is intuitive and easy to use.  In 
Figure 17, a screen capture of the GUI is given and will be referred to repeatedly in the next 
section as its use is demonstrated. 

 

 

 
Figure 17. Verification GUI for pairing Orchestra and Library modules. 

 
 
 
4.3 Example 

 

 To better illustrate the practicality of the system, an example is provided that 
demonstrates its use.  A toy Ping Pong system is considered.  In the Ping Pong system, it is 
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required to create two components that each take one input and one output, and, on each clock 
cycle, echo’s the current input to its output line.  The components are synchronized such that the 
initial values simply bounce back and forth between the components.  The module is first 
presented with a synchronicity error and then illustrate how to correct it. 
 In the following subsections, Figure 17 and Figure 18 will be extensively used, referring 
to the labeled areas as they are discussed. 
 
 

 
 

Figure 18. NuSMV Console for performing verification. 
 
 
4.3.1 Instantiating the Modules 
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 The first step is to pair up each Orchestra module with a corresponding library module.  
In the GUI, the list of Orchestra modules is presented in area 1.  As a developer selects a module 
from this list, the information in areas 3 and 5 are updated to reflect the new module of interest.  
In the example, there is only one module of interest, so the PingPongModule is selected  from 
the Orchestra module list. 
 Once a module has been selected for pairing, the developer selects a corresponding 
library module from area 2 that reflects the functionality of the Orchestra module. Similarly, 
when the developer selects a module from the library list, areas 4, 6, and 7 are updated to display 
information pertaining to the selected module. 
 If no library module is an exact match for the current Orchestra module, then the user has 
the option of creating a new library module or modifying an existing one.  In either case, the 
developer will be presented with an editor window to build or make changes to the given 
module.  Once modifications have been completed, the module will be checked for syntax errors 
and the developer will be given the option to save the new module to the library for future use. 
 In the Ping Pong example, there is no module that acts as a pass-through, so one is 
created easily: 
 

 Satisfied with the selected library module, the developer instantiates it.  This is done by 
providing assignments to the each of the parameters in area 7 and hitting commit.  Once 
committed, the library module is locked in focus and area 6 is updated to show the resulting 
NuSMV code.  At this point the developer may make further modifications to the module if 
needed, this time using NuSMV to verify the syntactical correctness. 
 
 
4.3.2 Pairing the Modules 
 
 Once the library module has been instantiated, the developer pairs the corresponding 
inputs and outputs using the dropdown menus in area 5.  In the example, there is only one input 
and one output, so the pairings are made for us. 
 Finally, the developer selects “Commit Association”.  This stores the association between 
the Orchestra module and the library module and replaces the description text of the Orchestra 
module with the instantiated form.  Optionally, the developer can also save the association for 
future user.  This way, at a later date, the developer uses the same Orchestra module, the system 
will be able to automatically associated it with the correct library module.  Of course, at any 
time, the developer can also un-associate the module, at which point it is reverted to its original 
state. 
 The developer continues instantiating and pairing modules until all Orchestra modules 
requiring logic state transition information have been paired. 
 

MODULE 

passthroughAsync(in1[%N])=>out1[%

N]{ 

 DEFINE 

  out1 := in1; 

} 
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4.3.3 Verification 
 
 Once all required pairings have been made, the developer selects “Generate NuSMV 
File.”  Since in NuSMV, bus width information is contained in the parent node, separate from the 
child node that performs the logic, this information must be passed up.  The system now fills 
these gaps by passing type information up the module hierarchy from child to parent until all bus 
widths have been well defined. 
 Next, the NuSMV console is displayed as shown in Figure 18.  Here, the result of 
translating the full Orchestra model is written out as a NuSMV model and is ready for 
verification. 
 The first step of verification is to determine whether the model is valid.  To do this, the 
developer simply selects “Run” while no specifications are shown.  In this example, invoking run 
yields an error stating that variables have been recursively defined.  This occurs because in the 
original extraction from Orchestra, it was not possible to extract information about the 
synchronicity of the PingPong module due to an error in the model.  After correcting the error, 
the updated module is as follows: 
 

 
 
 With the delay added between input and output logic, for the rerun, NuSMV responds 
with “Successful termination.” 
 
 At this point, the developer is able to test specifications just as they would be able to 
when verifying a model with NuSMV.  For example, it is possible to specify that if 
Ping_to_Pong is 1 at any given state, then in the next state, Pong_to_Ping should be 1 by the 
following specification (to which NuSMV will reply “true”): 
 
CTLSPEC AG PingPongCommExample.Ping_to_Pong = 0b16_1 -> AX 

PingPongCommExample.Pong_to_Ping = 0b16_1; 

 

 

 Alternatively, it is possible to test whether at all states, Ping_to_Pong and Pong_to_Ping 
are equal (to which NuSMV will reply false and give a counter example): 
 
CTLSPEC AG PingPongCommExample.Ping_to_Pong = 

PingPongCommExample.Pong_to_Ping; 

 

MODULE example-pingpong2-

PingPongModule2(incoming) 

  VAR 

    outgoing : word[16]; 

  DEFINE 

  ASSIGN 

    next(outgoing) := incoming; 
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 For more complex models, NuSMV provides options to drastically increase its 
performance.  Three options are included three (-df, -dynamic, and -coi) to be easily enabled or 
disabled by the developer. 
 At this point, the developer is able to correct any problems discovered early in the design 
phase.  Once the model is able to successfully pass all requirement specifications, the developer 
can then move forward in development with a the strong sense that the system will be completed 
correctly to specification. 
 

 
4.4 Conclusion 
 
 In this work, a verification system is presented that utilizes module libraries in order to 
promote the early detection of system design flaws in an unrestricted Java simulation 
environment.  Through the system, the use of formal verification can be promoted while 
minimizing the time and expertise costs generally associated with it.   
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5. SUMMARY 

 
 During the course of this work, extensive research of Formal Verification (FV) in 
mission-critical, high-consequence applications was first conducted. Several case studies (e.g. 
NASA’s aircraft controller) that demonstrate the effectiveness of FV have been analyzed. 
 Within the Sandia domain,  this S&T was brought to the attention of several 
organizations that focus on digital system designs with FPGAs or ASICs. The finding confirmed 
that Sandia is lacking in an area where such techniques are commonplace in applications for 
which faults and vulnerabilities are arguably of less consequence. Currently Sandia’s approach to 
system surety is limited to simulation-based verification.  
 Popular tools have been investigated for formally verifying FPGA-based designs, 
including open source tools and commercial tools. Each of them has advantages and 
disadvantages, with none that is tailored for NW specific requirements. By meeting with various 
organizations within Sandia, several candidate designs have been identified as case studies, from 
simple block level designs to complex designs such as an Intellectual Property (IP) core. 
 A decomposition approach was created and implemented to solve the challenging 
problem of formally verifying RAM, a commonly used digital component in the NW space. 
Traditional model checking has a significant limitation on the size of the memory due to the 
known state explosion problem. An novel approach was developed to combine the two major 
formal verification techniques, model checking and automatic theorem proving. The combined 
approach successfully solved the RAM verification challenge, by achieving almost constant 
(instead of exponentially increased) runtime.  
 In the future, it is possible to include other digital systems in this class of decomposable 
designs and possibly build a classifier that is able to automatically determine when a state space 
can be partitioned without compromising soundness. Such an automated system would prove 
invaluable in promoting the use of formal verification for creating provably secure systems. 
 Another major contribution of this work is the creation of a practical framework for 
integrating an existing event-driven simulator (Orchestra) with an advanced symbolic model 
checker (NuSMV) to meet the vision of Sandia’s future digital design methodology. The 
developed verification system is built upon a library module macro language. The system and 
library approach was proven with a real design example. 
 In the future, the system’s automation can be improved through guided specification 
generation and more robust model checking. 
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