

SANDIA REPORT
SAND2012-7926
Unlimited Release
September 2012

Exploring Formal Verification
Methodology for FPGA-based Digital
Systems

Yalin Hu

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 945 50

Sandia National Laboratories is a multi -program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contra ct DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepa red as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

3

SAND2012-7926
Unlimited Release
September 2012

Yalin Hu
Cyber Physical Systems

Sandia National Laboratories
P.O. Box 969

Livermore, CA 94550

Abstract

With the Life Extension Programs (LEPs), many nuclear weapon (NW) analog
electronic components are being replaced by modern digital devices, increasing
system complexities dramatically. Ensuring the reliability, security, and robustness of
these upgraded systems is critically important. Many custom hardware systems
throughout the NW operations space rely on Field-Programmable Gate Arrays
(FPGAs) to implement sophisticated logic. Effective verification, while increasing
confidence, can reduce the overall effort in system debugging and testing.

This work explored Formal Verification (FV) of trusted FPGA-based hardware
designs through the use of novel algorithms. The algorithms developed support the
analysis of critical digital components, such as memory, with mathematical reasoning
from automated theorem proving and model checking. Such verification will detect
race conditions and corner cases at an early stage, eliminating system failure and
instability during operation.

This work was funded by the Laboratory Directed Research and Development
(LDRD) office at Sandia National Laboratories.

Exploring Formal Verification Methodology for FPGA-based Digital Systems

4

ACKNOWLEDGMENTS

The author would like to thank the LDRD office at Sandia National Laboratories for funding this
work, and for helpful feedback during the course of the work.

I would like to thank Mary Gonzales, my project manager, for all the effort she has made to
support this work.

I would also like to thank Robert Mariano and Michael Forman for their managerial support,
Robert Armstrong, William Ballard, and Lyndon Pierson for their mentorship, Kevin Hulin for
his contribution on implementing integrated formal verification approach, Douglas Demming
and Gregory Wickstrom for their consulting on Orchestra, Vincent LoPresti for his effort
promoting this work at the CTO’s website and the 2012 NNSA LDRD Trilab Symposium.

5

CONTENTS

1. Introduction .. 9
1.1. Formal Verification .. 9
1.2. Digital Design with FPGAs – Simulation vs. Formal Verification 10

2. Formal Verification in High-consequence Applications .. 13
2.1 Design and Verification of High-consequence Systems ... 15
2.2 Case Studies .. 16

2.2.1 FPGA-based Aerospace hydraulic Monitoring System 16
2.2.2 Multi-thread Control Module for Space Craft .. 18
2.2.3 Model Checking for Fault Tolerant Systems .. 20
2.2.4 Cryptographic Applications .. 21

2.2.5 Control Software for B-2Test Program... 22
2.2.6 Formal Modeling and Analysis Military Avionics Systems 23
2.2.7 Aircraft Safety-critical Software ... 24

2.3 Conclusion .. 25

3. Complete Formal Verification of Stateful Designs for High-consequence Systems ... 27
3.1 Random Access Memory (RAM) ... 29

3.1.1 Definitions... 29
3.1.2 Specifications .. 30
3.1.3 Optimized specifications ... 31
3.1.4 Limitations .. 32

3.2 Decomposition of RAM for Formal Verification ... 32
3.2.1 Decomposition Proof .. 33

3.2.2 Implications... 35
3.3 Formal Verification of Decomposed RAM with NuSMV .. 35

3.3.1 NuSMV Model Checking ... 36
3.3.2 Hybrid Verifier.. 36

3.4 Conclusion .. 37

4. Practical Integration of Simulation and Early Formal Verification 39

4.1 Background ... 40
4.1.1 Orchestra ... 40
4.1.2 NuSMV Model Checker ... 42

4.2 Orchestra-based Formal Verification System ... 42
4.2.1 Design ... 42

4.2.2 Library modules .. 43

4.2.3 GUI ... 45

4.3 Example .. 46
4.3.1 Instantiating the Modules .. 47
4.3.2 Pairing the Modules .. 48
4.3.3 Verification ... 49

4.4 Conclusion .. 50

5. Summary .. 51

6. References .. 53

6

Distribution ... 57

FIGURES

Figure 1. A typical FPGA-based design flow. ... 10
Figure 2. A simple n-bit adder circuit. ... 11
Figure 3. A typical design process with formal verification. ... 15
Figure 4. Hardware/software co-verification model. ... 18
Figure 5. Verification scheme of control module (red stars indicate identified violations). 19
Figure 6. Fault injection model (red stars indicate identified faults). ... 20
Figure 7. Co-design and verification process. .. 21
Figure 8. Design/verification flow provided by Cryptol. ... 22

Figure 9. TCAMS design process coupled with formal methods. .. 23
Figure 10. RT-EFSM based verification for ASCS. .. 25
Figure 11. Formal definition for RAM Kripke structure. .. 29
Figure 12. Optimized liveness specification for memory writes 31
Figure 13. Syntax and operational semantics for RAM as modeled in ACL2. 33
Figure 14. Run time explosion for naïve NuSMV verification. .. 36
Figure 15. Run time comparison for decomposed and unaltered verification. 37
Figure 16. Syntax for the Library Module Macro Language. .. 44
Figure 17. Verification GUI for pairing Orchestra and Library modules. 46
Figure 18. NuSMV Console for performing verification. .. 47

TABLES

Table 1. Complete simulation runtime as adder size increases ... 11
Table 2. Safety-related hardware/software design standards ... 13
Table 3. System availability and downtime ... 14
Table 4. Common Formal Specification Language ... 16
Table 5. Common Formal Verification Framework .. 16
Table 6. Automated Theorem Proving vs. Model Checking ... 27

7

NOMENCLATURE

ASIC Application Specific Integrated Circuit
BDD Binary Decision Diagram
EDA Electronic Design Automation
FPGA Field-Programmable Gate Arrays
FSM Finite State Machine
FTA Fault Tree Analysis
FV Formal Verification
GUI Graphic User Interface
IC Integrated Circuit
NW Nuclear Weapon
RAM Random Access Memory

8

This page intentionally left blank.

9

1. INTRODUCTION

 Formal verification (FV) emerged as an alternative approach to traditional validation techniques,
such as random simulation and directed testing, for ensuring correctness of hardware designs. While FV
has been successful in many applications, such as aircraft navigation systems, cryptography, and medical
devices, there has been little work at Sandia in this field for NW-related hardware systems.
 Formal Verification is the act of proving or disproving the correctness of intended algorithms
underlying a system with respect to a certain formal specification (property), using formal mathematical
methods. For digital hardware designs, formal verification is the process of checking that the intent of the
design is preserved in its implementation.

1.1. Formal Verification

 Formal verification uses mathematical techniques to ensure that a given hardware design
conforms to a set of precisely expressed notions of functional correctness. The basic goals are to verify
that the design (1) does everything it is supposed to do, and (2) does not do anything that it is not
supposed to do. Below is a list of properties that can be specified:

 Functional properties
 Timing properties
 Structure properties
 Fault tolerance properties
 Equivalence at various design stages

 The two main aspects to formal verification in any design process are the formal framework and
the verification techniques. The formal framework is used to specify desired and expected properties of a
design. The verification techniques are used to reason about the relationship between a specification and a
corresponding implementation. As a widely adopted technology to ensure correct functionality of digital
systems in the Electronic Design Automation (EDA) industry, formal verification operates on (1) a design
model, (2) a specification of the operational environment, and (3) a specification of the properties that the
given design is intended to fulfill.

 Commonly used FV techniques include:

 Equivalence checking (whether two representations of a design is equivalent)
 Model checking (whether a modeled design meets specification)
 Symbolic model checking (build propositional logic instead of graph for FSM)
 Automated theorem proving (proving of mathematical theorems with computer programs)

 These techniques are targeting domain-specific problems relevant to systems in Sandia’s mission
areas, including NW and Energy, Climate, and Infrastructure Security (ECIS). However, the currently
published and employed domain-specific verification algorithms for such applications ([14]) do not have
the capability to verify critical components, such as memory blocks, of existing and future hardware
designs in the NW space. The verification algorithms developed by this work support the analysis of such
critical digital components with mathematical reasoning from automated theorem proving and model
checking.

10

1.2. Digital Design with FPGAs – Simulation vs. Formal Verification

 A typical flow for designing with FPGAs is shown in Figure 1.

Figure 1. A typical FPGA-based design flow.

 While simulation dynamically demonstrate that the design generates correct output given
certain stimulus by proving correctness, formal verification statically proves that the
implementation satisfies the requirements by catching fault. A simple comparison of the two
techniques can be given as:

 Simulation
o Fact: potentially identify the presence of a bug
o Challenge: does not ensure the absence of a bug

 Formal verification
o Fact: exhaustive explore all state space to uncover all incorrect behaviors
o Challenge: identify enough properties to check

 A simple adder circuit, shown in Figure 2, is used to demonstrate the feasibility of
“complete simulation”, that would test every single possible input case. Table 2 lists the time it
takes to achieve a complete simulation for different sized adders, assuming the simulator can

Design Entry

Synthesis/Logic Optimization

Technology Mapping

Place & Route

Design Verification

Device Configuration

Simulation

Timing Analysis

Formal Verification

11

execute one event per microsecond (capability of current state of the art simulator). It is clearly
not a feasible solution to completely simulate a 32-bit adder, which is a very simple circuit. This
example demonstrates the need for an alternative way to verify the design’s correctness.

Figure 2. A simple n-bit adder circuit.

Table 1. Complete simulation runtime as adder size increases

n Simulation run time

1 4 us

2 16 us

4 256 us

8 65 ms

16 1.2 hr

32 584,942 yr

A(n)

B(n)

Sum(n)

Cout(1)

12

This page intentionally left blank.

13

2. FORMAL VERIFICATION IN HIGH-CONSEQUENCE APPLICATIONS

 Design and verification of highly complex, trustworthy hardware and software systems
have always been a challenge. The use of formal verification techniques in such systems has
been increasing in recent years. This paper presents a survey of the methodologies and
applications that are targeted.
 Mission-critical designs are those that have to work, otherwise a catastrophe could occur.
Examples of such systems include: nuclear reactor control systems, automotive safety and
control systems, aerospace control systems, spacecraft controllers, military communication
systems, etc. [23]. Any fault in a mission-critical system leads to high consequence, and should
be avoided even at significant costs. Other safety-critical systems, such as railroad/subway
control systems and medical devices, also have very high requirements for reliability and
stability. A fault in safety-critical systems could lead to the loss of human life or dramatic
damage to the environment. Thus there are some similarities when applying formal verification
techniques to mission-critical and safety-critical systems. Most of the time, these systems are
required to go through stringent certification and assurance process, which is not required for
pedestrian consumer products. Table 2 lists some of the widely followed safety standards for
hardware and software systems. For high-consequence systems, high reliability leads to
functional correctness, and high availability leads to low downtime of the system. Table 3 lists
the system availability in terms of “9”s and the actual downtime to be expected.

Table 2. Safety-related hardware/software design standards

Standard

Applicati

on
Industry Created By H

W SW

DO-178B √ Aerospace &
Defense

Radio Technical Commission for
Aeronautics (RTCA)

DO-254 √ Aerospace &
Defense RTCA

EN 50128 √
Railway
Transportation

European Committee for
Electrotechnical Standardization
(CENELEC)

FSDA √ Cryptographic
Equipment National Security Agency (NSA)

IEC 60601 √ Medical
Equipment

International Electrotechnical
Commission (IEC)

IEC 60880 √ Nuclear Power IEC

IEC 61508 √ √
Heavy
Equipment and
Energy

IEC

ISO 26262 √ √ Automotive
Electronics

International Organization for
Standardization (ISO)

14

 Table 3. System availability and downtime

Availability (%) Downtime

 Weekly Monthly Annually

90% “one 9” 16.8 hours 72 hours 36.5 days

99% “two 9s” 1.68 hours 7.2 hours 3.65 days

99.9% “three 9s” 10.1 minutes 43.2 minutes 8.76 hours

99.99% “four 9s” 1.01 minutes 4.32 minutes 52.56 minutes

99.999% “five 9s” 6.05 seconds 25.9 seconds 5.256 minutes

99.9999% “six 9s” 0.605 seconds 2.59 seconds 31.5 seconds

 The complexity of mission-critical systems is continually increasing. In order to meet
new challenges the systems need to be very robust and reliable. With the emergent technology in
Integrated Circuits (IC), Field Programmable Gate Arrays (FPGAs) are becoming more and
more popular, both in traditional digital systems designs, and in mission-critical system
components [11][24]. Currently FPGAs can be delivered in 28nm node, with programmable
logic blocks, configurable memory blocks, complex peripherals, and even embedded hardware
Intellectual Property (IP) blocks. FPGAs are attractive because they are flexible, reconfigurable,
and easily to designed with vendor-provided tool software.
 To ensure security of mission-critical systems, sensitive Intellectual Properties (IPs) can
be protected better with FPGAs compared to custom hardware. It is harder for attackers to target
a specific IP or design, if the IP or design is not loaded onto the device until after it is
manufactured. One challenge for ensuring system security with FPGA designs is the introduction
of vulnerabilities. Often there are design “hooks” which are intended for future enhancement and
possible optimization. But they can be used to introduce unintended functionalities, sometimes
could be malicious. Other possibilities include design-tool subversion, trustworthiness of
foundries, and at the final physical netlist protection.
 Mission-critical systems often need to operate in harsh environment involving extreme
temperature and radiation. Such hostile environment makes it infeasible to do a dynamic test of
the design. At the same time when silicon becomes denser with smaller transistors, they are more
sensitive to lower level of radiation. This trend has led to the need of more robust radiation-
hardand radiation-tolerant designs. Technologies such as Triple Modular Redundancy (TMR) are
introduced to mitigate radiation-induced errors. Being able to formally verify designs facing such
environment is still a challenge.
 In addition to rad-tolerant characteristics, mission-critical systems also need to be fault-
tolerant under various circumstances. Frequently, faults are non-deterministic, making
exhaustive testing infeasible and the verification task harder.
 Traditionally, hardware designs are validated through simulation and emulation, while
software systems are validated through code reviews and dynamic testing. As a mature
technology, a good simulation test bench could demonstrate the presence of a design bug (i.e.

15

assure the design does what it is supposed to do), but can never ensure the absence of a design
bug (i.e. assure the design does not do what it is not supposed to do).
 Formal verification for both hardware and software systems provides high level of
confidence, automation, and efficiency. As an example, NASA [20] highly recommends
applying formal methods for safety-critical software development and verification.

2.1 Design and Verification of High-consequence Systems

 A typical design flow that involves formal verification is shown in Figure 3Error!
Reference source not found.. Specifications (system, functional, property) are normally
described in plain text along with block diagrams. Implementation is done in two general ways:
hardware description language such as Verilog and VHDL, software programming language such
as C/C++. Property modeling can be done with formal semantics. The verification framework
then generates the result, which can be used to modify the implementation or specification.
Mission-critical and safety-critical systems have much rigorous requirement to be satisfiable
[1][10][19].

System Specification

Property SpecificationFunction
Specification

Implementation Property Modeling

Satisfiable?

Verification
Framework

Figure 3. A typical design process with formal verification.

16

Table 4. Common Formal Specification Language

Formal Language Description Application

Cryptol [2] Domain Specific
Language (DSL) Cryptography

Esterel [6]
Synchronous
language with
formal semantics

Aerospace

LOTOS [4]
Language of
temporal ordering
specification

Communication Protocols

Promela [4][6] Process meta
language

Aerospace, Medical Devices,
Spacecraft

SIGNAL [5]
Block-diagram
based synchronous
language

Real-time System Design

SMV [4][17] Synchronous
language Rail Transportation

Table 5. Common Formal Verification Framework

Formal

Framework
Description

Supported

Language

Cadence SMV Deterministic SMV, Verilog
CADP Probabilistic LOTOS
Cryptol Tool Deterministic Cryptol language
SCADE Deterministic Esterel
NuSMV Deterministic SMV
ROMEO Deterministic Time Petri Nets
SPIN Deterministic Promela

2.2 Case Studies

 This section presents several case studies to demonstrate the application of formal
methods and formal verification for mission-critical and safety-critical systems. There are both
hardware and software applications and each one is summarized for their modeling language,
formal framework, unique contribution, and the impact on the applications.

2.2.1 FPGA-based Aerospace hydraulic Monitoring System

 Hammarberg and Nadjm-Tehrani [6] published an application of formal verification in an
aerospace hydraulic monitoring system. The system detects hydraulic leakage inside a JAS 39

17

Gripen multi-role aircraft. This is a critical system, because an electrical fault could lead to the
complete loss of control of the aircraft in worst case.
 The co-designed system contains one software component and two FPGA-based
hardware components. The purpose of using two separate FPGA devices is to increase
redundancy in the system, making it more fault-tolerant.
 Traditional Fault Tree Analysis (FTA) was not tractable for such a complex system, a
formal verification based design model was implemented as shown in Figure 4. Esterel Studio
provides two model checkers, one based on Binary Decision Diagrams (BDD) and another one
based on propositional satisfiability (SAT). The SAT based solver was chosen for this particular
design. The main goals of this verification are (1) verify single fault tolerance of the system, and
(2) identify potential double fault combinations.
 In order to achieve co-design and co-verification, all three components and nets that
connect them are modeled in Esterel. The top level structure of a developed verification bench is
shown in Figure 4. The highlighted verification bench is written as plug-in modules. These
modules are solely for verification purposes, and are ignored during design code generation and
system implementation. The output from the verification bench (“Alarm Signal”) indicates
whether there is a fault detected or not.
 Possible hardware faults, such as bit flipping on silicon (FPGA or processor) can be
caused by environmental factors, such as radiation, extreme temperature, and sudden power
change. A fault switch is inserted to serve as a fault injector. The objective of such fault switch is
to indicate whether a formally verified safety-related property would hold if an environment fault
presents. An example of environmental fault modeled in this application is the arbitrary
malfunction in either of the FPGA devices.
 Esterel’s built-in model checker does a good job in this application, especially with the
support of user-provided constraints. The verification results are impressive by proving: (1) the
components do not contain design faults causing violation of the safety property; (2) no
combination of the potential faults can cause violation of the property; (3) no single random fault
can cause violation of the property; and (4) the only double fault violating the property is when
the software component and one of the FPGA component are faulty.

18

Black boxed
software

component

Black boxed
hardware

component

Physical component
model

System observer

System In System In

System OutSystem Out

Alarm
Signal

Figure 4. Hardware/software co-verification model.

 Another advantage of this approach is the short run time. The model checking takes a few
second to run, while a simulation test bench with descent coverage can easily run in hours, even
days for such a complex system.
 The authors also demonstrated a comparison between manually created and automatically
generated VHDL design for another smaller safety-critical application. The example is the PID
controller used in a brake control system for an aircraft arrester system. The same design is
implemented in two ways: (1) manually created a VHDL design, and (2) automatically generated
VHDL code from Esterel model. Both designs are then run through the FPGA design flow
(synthesis, place & route, timing analysis). The manual design wins in both area (logic usage on
device) and speed (Fmax of the design). However, Esterel generated VHDL design has smaller
size (lines of code) in general.
 This is a case study that demonstrates a practical design process for mission-critical
system. The design is specified at a high abstraction level, which is implementation independent.
With the built-in verification bench, it successfully detected random faults that are of high-
consequence. The tradeoff is the implementation efficiency, which could lead to the need of a
bigger and faster FPGA device. This tradeoff, however, can be easily justified for such
applications.

2.2.2 Multi-thread Control Module for Space Craft

 Havelund, Lowry and Penix [8] published a formal analysis case study of a space craft
controller. The software to be verified is a component of NASA’s Remote Agent (RA), an
artificial intelligence (AI) based space craft control system architecture. The module is developed
in LISP programming language and is multi-threaded. The Remote Agent itself is a mission-

19

critical application as it is the first AI based software that demonstrated the complete control of a
space craft.

 SPIN is chosen to be the model checker for this application, as it supports verification of
finite state asynchronous process systems. A domain specific language (DSL) named Executive
Support language (ESL) is used to specify the bottom layer of the module. The verification
scheme is shown in

Figure 5. By abstraction, the original LISP program is reduced to a finite state system described
in Promela, which is a C-like programming language used by SPIN. This abstraction is a critical
step for efficient verification, as it makes feasible to create bounded state space. Two properties
are fed into SPIN, described either as Promela assertion or Linear Temporal Logic (LTL)
formulae. SPIN is then run to verify if both properties are satisfied.
 Outputs from SPIN indicate both properties are not satisfied, with four software errors
being identified immediately. With the error trace provided by SPIN for the four bugs, a design
flaw (duplicated execution) is also identified. The result is the discovery of five hard-to-find
errors, which would manifest themselves only under very particular circumstances involving
precise timing. However, these errors are also of very high consequence. A real incident happened
during an operation of RA in space, where the thrusting did not turn off as requested, resulting in
an immediate action to put the space craft in stand-by mode. This happened when RA was
onboard the DEEP_SPACE 1 space craft. It turned out the cause of the failure was an identical
error identified by SPIN, but it existed in another module that was not formally analyzed.

ESL Program

Promela model

SPIN
Property 1
(Assertion)

Property 2
(LTL)

 Abstraction

Figure 5. Verification scheme of control module (red stars indicate identified violations).

 This work focused on the development of Promela model. The longest run time of SPIN is
less than 1 minute. The result from this work had a major impact on the RA design team, with
increased confidence of the delivered software.
 This case study demonstrates a very successful application of SPIN’s partial order
reduction algorithm and state compression.
 A related work is reported in [9] that formally analyzes the concurrent software system
before and after flight.

20

2.2.3 Model Checking for Fault Tolerant Systems

 Schneider, Easterbrook, Callahan, and Holzmann [22] published a model checking case
study to verify a fault-tolerant embedded space craft controller, which is a real-time control
system handling critical control sequences. The key contribution of their work is the effective
verification based on partial specification. The higher abstraction level is achieved by ignoring
unnecessary details, while keeping main properties. Due to the complexity of this application,
reducing the state space is crucial to ensure the feasibility of model checking for critical system
requirements.

 The implementation of this verification scheme is shown in
Figure 6. A critical sequence is executed on a deterministic model, with non-deterministic

faults injected. Three unrecoverable faults, each indicating a design problem, were identified by
this verification scheme.

Deterministic System
Model

Non-deterministic fault
injection

Critical Control
Sequence

Figure 6. Fault injection model (red stars indicate identified faults).

 With proper modeling, selection of reliable model checker (SPIN), and effective state
space reduction, this case study delivered good results in very short run time. The exhaustive
examination of selected partial specification runs for about 3 minutes, whereas the run time for
full specification is estimated to be 10 12 years. The three design problems identified could lead to
potential fault control sequence. Another notable contribution of this case study is the parallel
design-verification process, which allows prompt feedback and dynamic modification of both
design and specification, as shown in Figure 7.

21

Model Checking Scheme

Development Team

Verification & Validation Team

Final Specification

Evolving
Specification

Final Design

Evolving
Design

SPIN

Figure 7. Co-design and verification process.

2.2.4 Cryptographic Applications

 Cryptographic applications require very high level of assurance, performance, reliability,
and security. Historically programmable logic has not been widely used because of the challenge
to support multiple levels of security and handle isolated redundancy. FPGAs are suitable for
implementing cryptographic algorithms because there are a lot of bit-level operations, such as
shifting and permutation. With the growing logic density and performance of FPGA devices and
development tools [2][7][16], it is now feasible to implement a cryptographic system (even Type
I) on a single FPGA chip. However, such designs have to be partitioned in a way that isolated
subsystems do not leak information to each other. For example, strong isolation is expected to
segregate plain text (red text) and cipher text (black text). The communication between these
partitions has to be tightly controlled to meet the National Security Agency’s (NSA) Fail Safe
Design Assurance (FSDA) requirements.
 The primary goal of verifying a cryptographic system is to ensure the risk of
compromising its integrity caused by a hardware fault is minimized. Lewis, Hoffman, and
Browning [14] published a design and verification flow for implementing a single FPGA-based
cryptographic system. This flow leverages a Domain Specific Language (DSL) named Cryptol
and tools to support it. Cryptol is a functional description language designed for the NSA as a
public standard for cryptographic algorithm specification. It allows the user to create
specifications at a much higher level of abstraction compared to structural or behavioral
description of digital systems. Even the final implementation is physically on a FPGA, the design
process is independent of hardware features and detailed configuration. Compared to any
hardware design language (HDL) such as Verilog or VHDL, Cryptol enables the designers to
focus on the functional level.
 The formal verification feature provided by Cryptol tools focus on equivalence checking.
Based on SAT and Satisfiability Modulo Theories (SMT), equivalence checking can be done at
various design stages throughout the design process. Similar to Esterel used in an earlier cast
study, Cryptol can also generate lower level VHDL designs, which can then be synthesized,
placed and routed on a FPGA device. One attractive feature of Cryptol is that the generated
VHDL code comes with a formal proof to ensure the functional equivalence. Results have shown

22

that the auto-generated implementations are comparable or better compared to manually written
Verilog/VHDL implementation, in terms of area and speed. With the introduction of Signal-
Processing Intermediate Representation (SPIR) model, Cryptol provides a nice mixture of easy
development at higher level and easy access to lower detailed implementation information. An
overview of the design and verification flow for Cryptol is shown in Figure 8.
 This case study demonstrates an effective co-design/verification flow for systems with
very high-assurance and high-reliability.

Reference
Specification

DSL
Specification

Reference
Model

DSL Model

RTL
Implementation SPIR Model

Synthesized
Netlist

Post P&R
Netlist

Programming
Bitstream

Cryptol

Manual

Cryptol

Cryptol

FPGA Tool

Equivalence
Checker

FPGA Tool

FPGA Tool

Figure 8. Design/verification flow provided by Cryptol.

2.2.5 Control Software for B-2Test Program

 Chang et al. [3] published a case study in which formal method has made significant
contribution to the verification of a mission-critical software system. The targeted application is
the Tape Copy and Management System (TCAMS) built for United States Air Force. TCAMS is
an important part of the B-2 bomber testing program, which handles enormous amount of flight
data during testing. Due to the complexity and extreme requirements of B-2, TCAMS has to be
exceptionally reliable.
 The overall process of this application is shown in Figure 9. Continuous software
verification was made possible through a matrix development model [Tomayko96]. At the
requirement analysis stage, formal method was combined with object-oriented analysis to model

23

system specification. At the high level design stage, formal method was used to describe data
flow, serial processing ordering, and process parallelization. At the integrated test stage, formal
methods were used to create test procedures and validation criteria.
 Without giving the details of applied the formal method and formal verification technique,
the authors confirmed that verification of the system was enhanced. The final delivered system
achieved exceptional quality and reliability, proven by continuous successful operation upon
deployment.

Requirement AnalysisFM

High Level Design

Implementation

Integrated Test FM

FM

Figure 9. TCAMS design process coupled with formal methods.

2.2.6 Formal Modeling and Analysis Military Avionics Systems

 A collaborative research project between the University of South Australia and Australia’s
Defense Science and Technology Organization aiming at modeling and analyzing avionics
mission systems is another success story [21]. The application is an avionics mission system
(AMS) for AP-3C Orion maritime surveillance aircraft. The complexity of such systems comes
from the large number of hardware and software components, and their integration.
 The key contribution of this work is to combine state space methods and Colored Petri
Nets (CPN) to reason system properties. Due to the vast number of subsystems and components,
complexity can only be managed by higher level of abstraction. CPN was chosen because (1) it
provides primitives for modeling concurrency and synchronization; (2) it provides primitives for
modeling data manipulation; (3) it is parameterized and can easily be shared for different systems;
(4) it supports hierarchical design specification; and (5) it is executable thus can be simulated. In
this case study, CPN was used to model different levels of abstraction, allowing formal
specification of communications between various subsystems and the avionics bus.
 The most challenging tasks for AMS is task scheduling and data transfer management.
Task scheduling problem was handled by a state space search approach in this application. If a
path from an initial state to a final state is found, then a schedule has been successfully identified.
Compared to traditional scheduling algorithms, this approach creates a single model that can be
used for both task scheduling and property specification.

24

 All data transfer in this case study happen on a shared data bus, making it critical to ensure
the safety and accuracy of data. In this system, data can be transferred between sensors, central
control unit, display and storage. The CPN model allows a high level description of the entire data
management network.
 A remaining challenge for this cast study was the state space explosion problem. As the
number of system tasks increase, the state space of the CPN model grows significantly. In the
original publication, the author proposed to investigate more advanced methods for reducing the
state space in similar models.
 Overall, this case study represents an effective formal modeling and analysis approach for
a real mission-critical application. The result of this work was the high confidence level of the
AP-3C aircraft mission system, which contributes to the aircraft’s major missions,, including anti-
subsurface/surface warfare, surveillance, search/rescue, and maritime strike.

2.2.7 Aircraft Safety-critical Software

 A recent publication by Yin, Liu, and Su [25] reported a formal verification technique for
an aircraft safety-critical software (ASCS) – an aircraft inertia/satellite navigation system.
Realizing the general effectiveness of extended finite state machine (EFSM) in formal verification
of embedded software systems and its incapability to meet real-time requirements of the ASCS,
this work introduced a real-time extension of EFSM, named RT-EFSM.
 The developed RT-EFSM model is used to describe the following properties of ASCS: (1)
behavior (static and dynamic); (2) real-time characteristics; (3) complex state transition. The same
model is also used to solve the state explosion problem and ensure the consistency of ASCS
models.
 The validation of RT-EFSM involves checking of several critical properties of the model,
as shown in Figure 10. Once validated, the model can be used to generate valuable test sequence.
A time extended unique input/output (UIO) sequence was introduced to accommodate the real
time system. During the test sequence generation, depth-first search tree is constructed for easy
traversing and improving test coverage.
 The developed formal approach was applied to an aircraft inertia/satellite navigation
system. It is reported that the verification methodology is very effective for this application.

25

ASCS schematic

RT-EFSM model

Optimized &
validated RT-EFSM

model

Generated test
sequence

Determinacy?

Reachability?

Consistency?

Figure 10. RT-EFSM based verification for ASCS.

2.3 Conclusion

 Formal verification has been used in many applications as an alternative to traditional
testing approaches – simulation for hardware designs and dynamic testing for software systems.
With the extreme requirements of the reliability of mission-critical and safety-critical systems, the
ability to effectively verify the design throughout the design cycle is highly desirable.
 The cases studied include both hardware systems and software systems. For hardware
systems, the survey focuses on designs implemented with FPGA, because of its flexibility,
reconfigurability, and growing popularity in the targeted applications. The surveyed cases applied
various formal methodologies to accommodate different applications, including both equivalence
checking and formal model checking.
 Additional application of formal verification in safety-critical systems include railway
interlocking systems [15], hybrid emergency control components [13], medical device software
systems [12] etc.
 As formal methods research advances, more examples of success will be published. More
advanced formal tools are also expected from the Electronic Design Automation (EDA) industry
to further enhance verification. A recent success story is the joint effort between Northrop
Grumman Italia and Mentor Graphics to achieve DO-254 compliance [18].

26

This page intentionally left blank.

27

3. COMPLETE FORMAL VERIFICATION OF STATEFUL DESIGNS FOR

HIGH-CONSEQUENCE SYSTEMS

 In certain high consequence systems, the requirement that safety and liveness properties
are upheld is of paramount importance. The most common method for determining whether a
system implementation is working to spec is simulation based validation. A large set of test
inputs and expected outputs must be created in an attempt to cover all runtime paths that the
system may exhibit. The system is then run on the given inputs and checked. Correct operation
during validation is then used to claim that the system works correctly and is ready to be put into
production. However, such tests cannot feasibly be exhaustive, and the reliance upon simulation
based validation for producing high consequence systems is known to be a costly mistake
[29][31].
 Formal verification aims to eliminate these consequences by offering mathematically and
logically sound techniques for determining whether a design implementation is specification
adherent. Since its inception, two approaches have taken hold as viable techniques for formal
verification: Model Checking (MC) and Automated Theorem Proving (ATP). MC is the
exhaustive examination of a system’s reachable states that ensures desired properties hold. ATP is
the logical derivation of desired properties from a mathematical definition of the system
implementation and a collection of known axioms. Each technique has its own strengths and
weaknesses (as shown in Table I) and neither can really be considered a cure-all for the formal
verification problem.

Table 6. Automated Theorem Proving vs. Model Checking

 Automated Theorem

Proving
Model Checking

Strengths

 Ability to handle very
complex systems

 Expressive logic
 Generation of machine

checkable proof

 Easy generation of model
from HDL source

 Automatic verification
 Generation of counter

examples

Weaknesses
 Requires human input
 No counter example
 Not automated

 Design size limitation
 Not feasible for complex

data path

 A key observation made when comparing ATP and MC is that one’s weakness is the
other’s strength. Where ATP is unable to perform without human intervention, MC requires no
human oversight; and where MC cannot handle complex systems, ATP is not limited by the
system’s complexity. Since these two techniques are complementary, an obvious solution would
be to combine the best features of each and create a completely automatable verifier that is not
limited to simple systems.

28

 Much work has been done to this end, and while progress has been made to combine the
techniques of ATP and MC into a hybrid verification tool, success has been limited to problems
that are not easily generalized.
 Very early work in combing ATP and MC attempted to partition a system into properties
that are control intensive (to be used with MC) and data intensive (to be used with ATP) [35]. The
limitation of such an approach is that most systems, especially high consequence systems, have
very complex interactions between these two categories, making partitioning infeasible or very
hard. Some alternative approaches emerged to supplement model checking with proof assistants
that aim to decompose a complete verification into several model-checkable subtasks [33].
Examples of decomposition rules include temporal splitting, data abstraction, and compositional
verification. Among the listed, abstraction is a commonly used technique that can reduce the
verification of a complete system to the verification of an abstract system.
 Another verification approach aims to loosely integrate MC and ATP under into deductive
environment [36]. This environment provides capabilities such as modular debugging and
verification through abstraction and MC. The major obstacle for a tight integration of MC and
ATP is the successful abstraction across domains and discovery of good abstract representations.
The approach takes advantage of the automation of MC in combinatorial logic from NuSMV and
avoids the state explosion problem by decomposing the model into small function preserving
partitions. In order to maintain soundness, a theorem prover (ACL2) is employed and
consequently, the verification results are able to be scaled up to arbitrarily large models. This
approach is general enough that it can be applied to other digital systems.
 RAM is chosen as a case study because of its wide application, especially in high
consequence systems. With state-of-the-art semiconductor process technology, memory design
and verification has drawn a lot of attention in both analog and digital aspects [32]. Verification of
memory has been an important and challenging problem. Memory is unique because (1) there are
normally a very large number of cells; (2) each of these cells has identical functionality and
controlled by the same control signals; and 3) there are generally many structural symmetries in
RAM architectures.
 Verification of memory started with switch-level simulation [28], which works very well
for small sized memories. Later on different techniques have been published, such as symbolic
trajectory evaluation (STE) of memory arrays [34] and bounded model checking of embedded
memories [30]. The STE based verification is essentially a form of symbolic simulation and is
able to overcome the infeasible simulation coverage issue by reducing the system model – taking
advantage of the structural symmetry of RAM. Bounded model checking (BMC) made the
handling of large embedded memory designs feasible through an effective abstract model [30]. In
this approach, each memory bit is abstracted and constraints are added at every analysis step.
 However, because BMC is employed, soundness is not guaranteed for general systems.
This work create a novel framework for verification of stateful hardware systems and employ its
utility in verifying a RAM design, emphasizing the importance of automation and soundness.
 In section 3.1, a RAM model is formally define as a Kripke structure and demonstrate the
pitfalls of straight forward MC. In section 3.2, a decomposition approach is presented and its
soundness is proven. Verification results are presented in section 3.3 and section 3.4 concludes
with suggested future research in.

29

3.1 Random Access Memory (RAM)

 Before discussing the formal verification of a RAM system, the system has to be formally

defined in a way that is easy to understand.

3.1.1 Definitions

 A Kripke structure that reflects the semantics of a generic RAM implementation is used.

Figure 11 formally describes the finite state -automaton that is used in model checking. A state
is defined as a 5-tuple where represents the input value, the input address, the
Read/Write control bit, the output value, and an ordered -length list of -bit values
representing the values being stored within the RAM.

Figure 11. Formal definition for RAM Kripke structure.

, Where “&” is the bitwise “AND” operation.

30

 The transition relation between states is defined by the Boolean relations and .

1) Read. For the relation, two states and are related if the following three statements
hold:

1.
2.
3.

 Semantically, the relation ensures that when a state transition is initiated by a read
operation, the next state must (1) maintain the integrity of values being stored and should update
the output value to either (2) reflect the value being stored in memory if the address is valid or (3)
to 0 if the address line is not valid.

2) Write. For the relation to hold, two states and must satisfy the following
expressions:

1.
2.
3.

 These rules ensure t hat when a state transition is initiated by a write operation, the next
state should (1) maintain integrity of values where , (2) update the value where to

, and (3) ensure that the output value does not change. Notice that these rules were
crafted in order to preserve the safety of the system. That is, the function ensures that only
values of the proper bit -width are stored in memory, and the update step implicitly ensures that
writes to illegal addresses do not corrupt the memory content.

3.1.2 Specifications

 Next the formal specifications that the model checker verifies is described. Here, the
naive specifications expressed in Computation Tree Logic (CTL) is presented. Optimizations for
reducing complexity will be presented in the next section. T wo liveness and one safety
properties are enforced:

1) Liveness. The first liveness property checked is whether the implementation correctly
implements the read operation. T he property Read Liveness (RL) is defined to be: If the status
bit = and the address = , then in the next state, the output should be .

 The second liveness property ensures that the write operation is correct. Write Liveness
(WL) is defined as: If the status bit = and the address = and the masked_input = , then
if is a valid address, in the next state will be true. Furthermore, if address then in
the next state, will equal the current value of .

31

2) Safety. The only safety property enforced is that at all states, the values stored in memory
should be members of a specified range of integers defined by the value in the definition. In
the specifications, Safety is stated to be: For each memory address A, the value stored at Y[A]
should be in the range of values 0 to .

3.1.3 Optimized specifications

 In order to obtain viable runtime results for model checking, Write Liveness property
needs to be rewritten to avoid specifications. This is accomplished by performing a bit-
level comparison across the bits of data values. The impro ved specifications are shown in
Figure 12. Using this optimization, the same properties in specifications can be covered.

Figure 12. Optimized liveness specification for memory writes .

	
	

	
	

	
	

	

32

3.1.4 Limitations

 Despite the efforts to express the RAM model in a way that would make the model
checking problem tractable, the fact of the matter remains that RAM is a stateful system and
subject to the state explosion problem. Unable to model check RAM of size larger than 100 bytes,
other approaches are investigated to solve the problem. Using a theorem prover, it would be trivial
to verify the properties, however, as a completely automatable system is required, and thus direct
theorem proving would not suffice.
 Based on the thinking of a hybrid approach, an idea was developed or decomposing RAM
into smaller pieces and model checking the pieces individually. While this seems trivial, the
implications of being able to reduce an intractable problem into smaller tractable parts were very
appealing. The first step would be to formally prove that such an approach would be work.

3.2 Decomposition of RAM for Formal Verification

 The decomposition used to abstract the RAM model is fairly straig htforward. Given a
RAM, it is divided into arbitrarily small pieces and model check each piece individually. It is
conjectured that the conjunction of results from these smaller pieces is equivalent to the overall
result that would be obtained from model checking the original RAM.

 In order to maintain soundness in the RAM verifier while taking advantage of a
decomposition property, it was necessary to first ensure that the decomposition step was sound
and did not affect t he system’s validity. T he ACL2[26] theorem prover is used to prove the
conjecture. Furthermore, it is proved that two smaller RAMs that satisfy the properties could be
concatenated together and the resulting RAM would also satisfy the p roperties. Finally, the
mapping for and operations from the large RAM onto the decomposed pieces is
defined and their semantic equivalence is proven.

33

3.2.1 Decomposition Proof

 Figure 13. Syntax and operational semantics for RAM as modeled in ACL2.

 In ACL2, memory is modeled as a 3-tuple where is an ordered list of size and
 is the value mask that is applied upon memory writes.

 The syntax and operational semantics for the model are defined in Figure 13. In the
remainder of this section, 1) property adherence for the model is proven, 2) the equivalence of the
decomposed operations with their corresponding simple operations on the original memory is
proven, and 3) a soundness proof for decomposed property verification is concluded. In the
following theorems, letfollowing theorems, let .

Theorem 1 (Liveness for Read and Write). If the read operation is invoked with a valid memory
address, then the resulting output should be the corresponding value located in memory.
Similarly, if the write operation is invoked with a valid memory address, then the resulting
memory should be identical to the original with the exception that the value at the de signated

 RAM

 mask
 size

 Initial RAM

34

memory address has been updated to reflect the input value.

Proof. The proof of this theorem is a straight -forward application of the definitions for Read and
Write operations.

Theorem 2 (Safety for Read and Write). When a write operation is performed on a RAM with a
valid memory address, given that the RAM is initially safe, the resulting RAM will also be safe.
Here, safety is defined as in section III, namely that after every read or write operation, every
value being stored should be within a specified range.

Proof. For this theorem, an exhaustive proof across operations (namely read and write) is
performed. For read operations, the proof is trivial since reads have no effects on the values
stored in memory, as shown in the operational semantics. Writes performed, however, do affect
the memory store. Let be a RAM that satisfies safety with respect to the system
parameter . The goal is to prove the safety of . Consider that is
safe iff is in the range . By definition, is in the range . Since is
given to be safe, it follows that and that safety is preserved.

Theorem 3 (Decomposition and Inverse). W hen memory is decomposed into two partitions,
these partitions can each be classified as a RAM by definition. Furthermore, the composition of
two RAMs sharing the same mask value into a single memory yields a RAM. Finally, the ordered
composition of part itions resulting from decomposition of a RAM results in a RAM that is
semantically equivalent to the original.

Theorem 4 (Decomposed Read Liveness). If a decomposed read operation is performed on two
partitions of RAM, the resulting output is the same as that of the read operation performed on the
parent RAM.

Theorem 5 (Decomposed Write Liveness). When a decomposed write operation is performed on
two partitions of a parent RAM, the resulting partitions are equivalent to those resulting from t he
decomposition of the updated RAM.

Proof. Proofs of theorems 3 – 5 follow from a straightforward application of definitions from
Figure 13.

Theorem 6 (Decomposition Soundness). If a RAM is decomposed in to partitions, and those
partitions satisfy the safety and liveness properties for RAM stated in section III.B, then the
original RAM also satisfies these properties.

Proof. For de composition soundness, each property is proven separately as its own lemma ,
namely Read Liveness (RL), Write Liveness (WL), and Safety. In the following lemmas, let

35

.

Lemma 1. .

Proof. Let R_0^'=(µ_0,k,p). By definition,

RL(R_0^')≡ AG (addr=i∧status=R)→AX output=µ_0 [i];i∈Z_p.

Similarly, let

R_1^'=(µ_1,k,s-p).

Again, by definition, this time taking the offset p into account

RL(R_1^')=AG (addr=(i-p)∧status=R)→AX output=µ_2 [i-p];i∈Z_s⁄Z_p .

From here, it follows

RL(R_0^')∧RL(R_1^')≡ AG (addr=i∧status=R)→AX output=mem[i];i∈Z_(p+(s-p))=Z_s=RL(R).

Lemma 2. .

Lemma 3. .

Proof. For Lemmas 2 and 3, the proof takes a similar form to the proof given in Lemma 1. The
underlying property that allows decomposition soundness to hold is the fact that all semantics of
RAM can be described in a piecewise fashion and that each property is enforced over these
individual pieces.
From these soundness lemmas, it is concluded that decomposition is sound with respect to the
properties.

3.2.2 Implications

 The utility of such a decompos ition property is an obvious advantage to model checking
as it allows one to convert a problem of size into problems of size .
Furthermore, because the transition space of such a graph is sparse, the construction of an
efficient Binary Decision Diagram (BDD) is easy, further reducing the problem’s complexity into
something computable on commodity hardware.
 In addition to reduced complexity, the division of one problem into problems is an
obvious candidate for parallel computing, thus yielding further computational benefits.

3.3 Formal Verification of Decomposed RAM with NuSMV

 In this se ction, the run-time performance for the verification system is described. The
runtime analysis begins with using a m odel checker only. NuSMV, an open source symbolic
model checker, is chosen as the base line for measuring performance.

36

3.3.1 NuSMV Model Checking

 NuSMV’s performance is captured for increasingly large memory size. As defined in the
model, is the word width and is the number of words being modeled in the RAM. Through
experiments, the best performance can be achieved when running with coi, df, and dynamic flags
enabled (cone-of-influence, do-not-compute-reachable-set, and dynam ic-variable-reordering
respectively). All results here were obtained on a Windows 7 64 -bit PC with an Intel Core i5 -
2500 3.3GHz CPU and 8GB of RAM.
 A runtime comparison is first looked at by using the initial set of naïve specifications that
included some Linear Temporal Logic (LTL) specifications not mentioned here (Figure 14).
Sampling ten runs per data point, the importance of efficient specifications is demonstrated and a
conclusion is drawn that beyond a memory size of about 12 words, this approach would not
complete in a reasonable amount of time (execution was terminated at 3 days for M=16).

3.3.2 Hybrid Verifier

 Next runtimes across two verification approaches are compared – first on NuSMV with
optimized specifications, and then in the hybrid approach (Figure 15). The performance gain from
efficient specifications is obvious, however, state explosion is seen again beyond about 600 bits of
RAM. This success of model checking states can be attributed to NuSMV’s efficient BDD
representation for the model, but reiterate that most modern digital systems have more than 100
bytes of RAM.
 The hybrid verifier performed the best over -all. In the graph, the total decomposition
runtime is computed as the time required to verify the proof in ACL2 + the time required to run
instances of decomposed RAM in NuSMV. The linear growth is expected to continue well
beyond the point where simple model checking fails. Furthermore, it is speculated that
parallelization would yield even better runtimes, and it is noted that the re -verification of the
machine proof is actually a one-time cost. It is included for completeness.

Figure 14. Run time explosion for naïve NuSMV verification.

37

Figure 15. Run time comparison for decomposed and unaltered verification.

3.4 Conclusion

 In this section a novel approach to formally verifying the subset of stateful digital
systems that exhibits the deco mposition property as defined is presented. When utilized, this
property allows a verifier to model check partitions of the system individually, eliminating the
unnecessary overhead of checking specifications in states that are inconsequential to the
specification’s validity and avoiding the state explosion problem.
 The emphasis in designing this framework is aimed to maximize automation – a key
feature in promoting its use in design verification. Furthermore, because of the integrated use of
a theorem prover to validate the decomposition property, the verifier is sound.

38

This page intentionally left blank.

39

4. PRACTICAL INTEGRATION OF SIMULATION AND EARLY FORMAL

VERIFICATION

 Another important component of this work is a practical integration of simulation and
early formal verification of embedded systems through library module pairing. Embedded
systems are designed for various applications in the NW space, thus the capability of formally
verifying these systems are of great value.
 An inhibiting factor in formal verification of embedded systems is the time, effort, and
expertise required in correctly applying its use. Furthermore, due to the state explosion problem,
verification of complex systems requires abstractions that are often not straight forward. Thus,
the goal is to integrate formal verification into the current design and test cycle in a way that is
most practical for use by system engineers, maximizing automation and ease of use and
minimizing redundancy.
 This work is built upon Orchestra, a Java based timing-based timing-accurate, event-
driven simulator. The first goal is to produce hierarchical model skeleton representations of
abstract designs. Then a GUI interface is provided for users to systematically flesh out high level
designs into formal modules by “plugging-in” pre-constructed library modules. From here,
embedded systems are verified as a whole or in parts using the NuSMV model checker.
 The verification system is presented here and a detailed description of the library module
macro language is given. The difficulties of bridging the multiple layers of abstraction from high
level Java objects to NuSMV modules is discussed. The practicality of the system is
demonstrated with an example.
 The importance of the early discovery of system design errors is well known. As the
complexity of hardware and software designs grow at an accelerating pace, so grows the need for
efficient and effective verification techniques. Furthermore, because bugs are much more
expensive to fix at later stages of system development, discovering design errors at an early stage
is of great interest, both in academia and industry [40].
 Traditionally, verification of embedded systems has been accomplished through
simulation – high test coverage indicating high assurance of system correctness. However,
because successful testing in general does not imply functional correctness, system bugs are still
possible [29][32]. In more formal approaches, on the other hand, verification of embedded
systems is performed through mathematically sound logic and reasoning techniques (such as
theorem proving and model checking). In this case, because verification is performed on the
system as a whole, success implies system-wide policy adherence [4].
 In hardware designs especially, the use of formal verification has enjoyed increased use
for more than a decade [37]. Unfortunately, in software the application of formal verification
techniques is difficult, requiring a significant amount of time and expertise. Furthermore, the
well-known state explosion problem prevents hands-free verification of moderately complex
systems from being feasible. In such cases, abstractions that reduce the overall complexity of a
design are invoked – the proper use of which is an open area of research [48].
 Much effort has been put into creating embedded system development environments that
promote the early detection of bugs through formal verification [41][45][46][47]. In these
approaches, a system must be represented at the correct level of abstraction to reduce complexity
for the model checker, a problem to which many solutions have been proposed [44].

40

 In one solution, compositional development, functional building blocks are
interconnected to achieve a desired behavior. These components can be represented at varying
levels of abstraction, promoting rapid development and allowing simulation without unnecessary
design complexity [38][39][45]. Additionally, research geared toward verification of models
across multiple layers of abstraction has further demonstrated the utility of this approach
[38][39][42][43].
 The verification system focus on the detection of bugs at the conceptual design phase.
The goal is to integrate into a Java based compositional development environment to extract
hierarchical system information and allow developers to formally verify behavioral properties
through an intuitive library module pairing procedure.
 This work differs from prior attempts to formally verify abstract systems in that full
unrestricted access to the Java API is allowed when developing and simulating a system design.
Furthermore, the pairing technique promotes the separation of formal model creation and system
development, allowing current hardware developers to take advantage of the verification tools
without expertise in formal verification.
 The remainder of this work is arranged as follows. Section 4.1 is an overview of the
background components of the verification system – Orchestra and NuSMV. Section 4.2
describes the formal verification system, detailing the design choices and demonstrating the
library module macro language. Section 4.3 gives a demonstration of the system’s practicality
while simultaneously describing the underlying verification process and graphical user interface.
Section 4.4 concludes this work with a summary of the work and areas for improvement.

4.1 Background

 An overview of the tools that are used is presented before discussing the verification
system. The system is integrated into the Orchestra simulation environment and makes extensive
use of NuSMV model checker.

4.1.1 Orchestra

 In order to minimize the added effort required for designers wishing to integrate formal
verification into their system’s design cycle, a verification system is built into the Orchestra
simulation environment already in use.

4.1.1.1 Description

 Orchestra is a timing-accurate, Java-based simulator and design assistant that allows
system engineers to simulate their implementations at all stages of the development process,
across various levels of abstraction.
 The three basic constructs within an Orchestra model are: modules, connections, and
ports. Modules are used to represent a block with some specific behavior, connections represent
communications conduit between modules, and ports provide an interface from module to a
connection.

41

 These basic simulation constructs are non-specific to any level of abstraction. For
example, a module can faithfully represent the behavior of a digital logic ‘and’ gate (VHDL), a
class structure (UML), or a high level system such as a stop light at an intersection. This
flexibility also extends to connections and ports. As a result, Orchestra can be used to model and
simulate interactions of ‘components’ at varying levels of abstraction all within a single
environment.
 Also, because Orchestra is based on the Java programming language, developers are
encouraged to make use its API libraries where convenient. For example, one may model a
memory module using a Java ArrayList as the storage structure rather than logic gates. This
effectively allows the developer to abstract away any details that are unnecessary for simulation
and saves time in the process.
 Once a system has been conceptually mapped out, the specific parts that the developer is
responsible for can be migrated down to high levels of fidelity, leaving other parts abstract. A
clarifying example is given in the next section.

4.1.1.2 Example Use

 Consider that a developer is responsible for delivering a controller module that controls
all of the traffic lights at an intersection and accepts commands from a central controller that
manages all intersections within the city.
 The developer would first model the stop lights at an intersection, the controller, and the
central control system as very abstract modules in Orchestra, capturing only the critical aspects
of the system (state, data, communication, operation sequences, etc.).
 Next, the developer would have the option of creating interactive GUI controls through
the Java Swing API either to initiate commands sent from the central control system or to
provide a visual representation for the state of a traffic light.
 From here, the developer can simulate the model through all required operational
scenarios and error conditions to ensure the overall architecture and concept satisfies all system
requirements.
 Satisfied with the concept, the developer then inserts a processor model in place of the
stop light controller module. The original abstract testing infrastructure can now be used to test
the actual application software implementation.

4.1.1.3 Advantages and Disadvantages

 Because the conceptual infrastructure occurs at such a high level of abstraction, the
conceptual phase of model development proceeds relatively fast. Additionally, developers are
given the option of providing multiple visual interpretations of the system state by taking
advantage of Java’s Swing API (e.g. a traffic light graphic or a wave form viewer). Furthermore,
since Orchestra is able to operate across levels of abstraction, developers can reuse their
conceptual testing environments for later phases of development where certain modules would
be exchanged for more detailed versions.
 While Orchestra provides for rapid progression through the initial development phases,
there is currently no way to translate an Orchestra model one-to-one into an RTL model. This

42

fact holds true in general for simulation environments and is partially what makes integration of
formal verification into the early design phase especially difficult.

4.1.2 NuSMV Model Checker

 The NuSMV model checker is employed for verifying the models in order to maximize
system automation and provide useful feedback to users wishing to verify their implementations.

4.1.2.1 Description

 NuSMV is an open source symbolic model checker based on SMV, a BDD-based model
checker [27]. It operates on models as finite state automata and has syntax very similar to
Verilog. When provided with specifications written in computation tree logic (CTL) or linear
temporal logic (LTL), the NuSMV engine computes whether or not the specifications hold for
the model. In the event that a specification does not hold, a counter-example is provided. This is
especially useful for developers and allows them to pinpoint errors without additional much
effort.

4.2 Orchestra-based Formal Verification System

 The over-arching goal though-out this work has been to maximize the feasibility of using
formal verification at an early stage of the hardware design cycle. To achieve this goal, the
benefits of formal verification must outweigh the time and effort costs required to actually
perform the verification. In this section, design choices, the difficulties encountered, and
solutions are discussed.

4.2.1 Design

 In the design, it is assumed that the user has constructed an Orchestra model and is ready
to verify its functionality. No assumption is made about the abstraction level of the model or the
system’s state of completeness.
 The system is implemented as a Java add-on to Orchestra, allowing it full access to
Orchestra’s module, port, and connection data structures as well as to the details of the model to
be verified. When the verification procedure is invoked, a formal NuSMV model is constructed
and the user is presented with a verification console. The model has two components: the state
variable and module hierarchy, and the logic relations between states.

4.2.1.1 Hierarchy Extraction

 The first and easier step is to extract hierarchical information from the model. This is
done by performing a depth first search through the collection of modules that make up the
Orchestra model and gathering information about how the modules are connected. From this
step, information regarding state variables that may reside in each module is also extracted.
Because the model can be abstract, the connections may not have a bus width specified, and thus

43

the state variables remain type -less. In these cases, the state variable to be revisited later is
marked.

4.2.1.2 Logic Extraction

 The next and harder step is to extract logic level information from the model. Because
NuSMV operates at the RTL, equivalent logic level semantics for whatever a bstract behavior is
being represented must be developed. This problem is hard because the language that the model
is written in (Java) exists at a much higher level of abstraction than the HDL -like language on
which NuSMV operates. Furthermore, since NuS MV does not have control structures such as
loops, it is not guaranteed that the Orchestra source can always be parsed into NuSMV code.
 Thus, the first approach would be to simply have the developer fill in the blanks for logic
level operations. This was not optimal, however, as it required the developer to waste time
writing NuSMV code when they could alternatively just write the Verilog code and verify that.
Next, it is attempted to provide a template for the user to specify program logic in the form of
Java annotations within the source itself. This, however, would require developers to go back
and modify source code to any existing modules that they would want to verify. Also, the
annotations themselves required a fairly complex syntax in order to co ver the full range of
operations within NuSMV, again making the alternative of simply writing the Verilog source
sound more appealing.
 Finally, the idea of library modules is chosen. By compiling a list of the most commonly
used modules and writing the c orresponding NuSMV code for them, developers could be
allowed to simply pair off these modules with their Orchestra modules and avoid the problem of
parsing logic level operations from Java source.
 Alternatively, developers could be forced to specify thei r models at a logic level,
enabling the easy extract state transition information; however, the goal is to provide early
verification in the embedded systems design cycle, so the ability to handle abstract conceptual
designs is important.

4.2.2 Library modules

4.2.2.1 Benefits

 The key advantage to maintaining a library of commonly used modules is the trade -off of
paying a one-time programming cost to receive a repeated benefit. Developers pay a one -time
cost of writing the library module and then are able to reuse that module later in future designs.
 Furthermore, in order to increase the amount of reuse, developers are able to use special
generic variables when they write their library modules that allow the module to be instantiated
in various capacities. These ge neric variables can represent the bus width of a register or the
number of input lines to a module. As an example, consider a multiplexor. In general, a mux is
made up of input lines each having the same bus width , a control l ine with width at least

, and an output also of width . In a single library module (as will be shown later), all
possible instantiations of this multiplexor can be covered, yielding obvious time benefits.

44

 Generic library modules pose added benefits in that they provide a level of abstraction
that can be extremely advantageous during verification. This is done by making it easy to
abstract large state variables into smaller ones when they are irrelevant to the specification being
tested. For example, to test whether or not a communication protocol only operates when certain
“enabled” bits are on, it may not be necessary to model the actual communication channel as a
16-bit bus. This leads to improved performance during verification since the complexity of a
given model’s state space is exponential in the total number of state bits.

4.2.2.2 Syntax

 The language for specifying library modules is similar to NuSMV with the addition of
generic variables and macros, as well as supplemental input/output type information (Figure 16).

Figure 16. Syntax for the Library Module Macro Language.

 As mentioned above, generic variables allow a developer to cover multiple instantiations
of the same module in a single generic module. The supplemental input/output type information
will be useful later when it comes time to instantiate the module. Macros are expanded during
instantiation and reduce the total number of lines within a module by allowing developers to
identify repeated logic structures and replace them with a single macro function.

LIBRARY MACRO MODULE GRAMMAR

MODULE := "MODULE" + name + params? + "(" + args + ")" + "=>" + outs + "{" + body + "}"

params := "<" + var + ("," var)* + ">"

name := [-a-z_A-Z][-a-z_A-Z0-9]*

args := arg + ("," + arg)*

arg := [-a-z_A-Z][-a-z_A-Z0-9]* + namefunc? + "[" + value + "]"

namefunc := "#(" + expression + ")" //Variable number of inputs/outputs

outs := out + ("," + out)*

out := [a-z][a-z0-9]* + namefunc

body := ("VAR" + text)? + ("ASSIGN" + text)? + ("DEFINE" + text)?

expression := expression "+" factor | expression "-" factor | factor

factor := factor * value | factor / value | lg(expression) | (expression) | value

value := var | num | "[::" + expression + "::]"

var := "%" + [a-z_A-Z][a-z_A-Z0-9]*

num := [0-9]+

text := ([-a-z_A-Z0-9 !@^&*+=()[];:{}<>/] | var | "[**" + textgen + "**]") | "[::" + expression +

"::]")*

textgen := for-func

for-func := "for(" + var + "," + expression + "," + expression + "," + text + ")"

comment := ";;" .* "\n"

45

 Macros are especially powerful when combined with generics. Consider again the
multiplexor example. In order to correctly instantiate the logic behind an inputs bus width
mux, a construct is needed that allows user to specify the correct logic for the output line. With
macros, this is done easily in a single for-statement as demonstrated below:

4.2.2.3 Instantiation

 When a library module is instantiated, first, each type variable listed outside of the body
is replaced with the provided instantiation value. Next, expressions inside the “[::” -brackets are
evaluated. Finally, name -functions (e.g. variable numbered inputs) and text -gen functions (i.e.
text generation macros such as for -func) are expanded. The result is a NuSMV module with the
added input/output type information stored for later use. Here, an instantiation of the mux
module with and is shown:

4.2.3 GUI

MODULE sync-mux(in#(%N)[%M],

select[[::lg(%N)::]]) => out[%M]{

 VAR

 out : word[%M];

 ASSIGN

 init(out) := 0b%M_0;

 next(out) := case

 [**for(%i,0,%N, select =

0d[::lg(%N)::]_%i : in%i;

)**]

 esac;

}

MODULE sync-mux_N4_M16(in0, in1,

in2, in3, select)

VAR

 out : word[16];

 DEFINE

 ASSIGN

 init(out) := 0b16_0;

 next(out) := case

 select = 0d2_0 : in0;

 select = 0d2_1 : in1;

 select = 0d2_2 : in2;

 select = 0d2_3 : in3;

 esac;

46

 Finally, a graphical user interface (GUI) is provided for making the connections between
library modules and their Orchestra counterparts. The GUI was designed to provide developers
with complete control over the library modules in a way that is intuitive and easy to use. In
Figure 17, a screen capture of the GUI is given and will be referred to repeatedly in the next
section as its use is demonstrated.

Figure 17. Verification GUI for pairing Orchestra and Library modules.

4.3 Example

 To better illustrate the practicality of the system, an example is provided that
demonstrates its use. A toy Ping Pong system is considered. In the Ping Pong system, it is

1 2

3
4

5
6

7

8

47

required to create two components that each take one input and one output, and, on each clock
cycle, echo’s the current input to its output line. The components are synchronized such that the
initial values simply bounce back and forth between the components. The module is first
presented with a synchronicity error and then illustrate how to correct it.
 In the following subsections, Figure 17 and Figure 18 will be extensively used, referring
to the labeled areas as they are discussed.

Figure 18. NuSMV Console for performing verification.

4.3.1 Instantiating the Modules

48

 The first step is to pair up each Orchestra module with a corresponding library module.
In the GUI, the list of Orchestra modules is presented in area 1. As a developer selects a module
from this list, the information in areas 3 and 5 are updated to reflect the new module of interest.
In the example, there is only one module of interest, so the PingPongModule is selected from
the Orchestra module list.
 Once a module has been selected for pairing, the developer selects a corresponding
library module from area 2 that reflects the functionality of the Orchestra module. Similarly,
when the developer selects a module from the library list, areas 4, 6, and 7 are updated to display
information pertaining to the selected module.
 If no library module is an exact match for the current Orchestra module, then the user has
the option of creating a new library module or modifying an existing one. In either case, the
developer will be presented with an editor window to build or make changes to the given
module. Once modifications have been completed, the module will be checked for syntax errors
and the developer will be given the option to save the new module to the library for future use.
 In the Ping Pong example, there is no module that acts as a pass-through, so one is
created easily:

 Satisfied with the selected library module, the developer instantiates it. This is done by
providing assignments to the each of the parameters in area 7 and hitting commit. Once
committed, the library module is locked in focus and area 6 is updated to show the resulting
NuSMV code. At this point the developer may make further modifications to the module if
needed, this time using NuSMV to verify the syntactical correctness.

4.3.2 Pairing the Modules

 Once the library module has been instantiated, the developer pairs the corresponding
inputs and outputs using the dropdown menus in area 5. In the example, there is only one input
and one output, so the pairings are made for us.
 Finally, the developer selects “Commit Association”. This stores the association between
the Orchestra module and the library module and replaces the description text of the Orchestra
module with the instantiated form. Optionally, the developer can also save the association for
future user. This way, at a later date, the developer uses the same Orchestra module, the system
will be able to automatically associated it with the correct library module. Of course, at any
time, the developer can also un-associate the module, at which point it is reverted to its original
state.
 The developer continues instantiating and pairing modules until all Orchestra modules
requiring logic state transition information have been paired.

MODULE

passthroughAsync(in1[%N])=>out1[%

N]{

 DEFINE

 out1 := in1;

}

49

4.3.3 Verification

 Once all required pairings have been made, the developer selects “Generate NuSMV
File.” Since in NuSMV, bus width information is contained in the parent node, separate from the
child node that performs the logic, this information must be passed up. The system now fills
these gaps by passing type information up the module hierarchy from child to parent until all bus
widths have been well defined.
 Next, the NuSMV console is displayed as shown in Figure 18. Here, the result of
translating the full Orchestra model is written out as a NuSMV model and is ready for
verification.
 The first step of verification is to determine whether the model is valid. To do this, the
developer simply selects “Run” while no specifications are shown. In this example, invoking run
yields an error stating that variables have been recursively defined. This occurs because in the
original extraction from Orchestra, it was not possible to extract information about the
synchronicity of the PingPong module due to an error in the model. After correcting the error,
the updated module is as follows:

 With the delay added between input and output logic, for the rerun, NuSMV responds
with “Successful termination.”

 At this point, the developer is able to test specifications just as they would be able to
when verifying a model with NuSMV. For example, it is possible to specify that if
Ping_to_Pong is 1 at any given state, then in the next state, Pong_to_Ping should be 1 by the
following specification (to which NuSMV will reply “true”):

CTLSPEC AG PingPongCommExample.Ping_to_Pong = 0b16_1 -> AX

PingPongCommExample.Pong_to_Ping = 0b16_1;

 Alternatively, it is possible to test whether at all states, Ping_to_Pong and Pong_to_Ping
are equal (to which NuSMV will reply false and give a counter example):

CTLSPEC AG PingPongCommExample.Ping_to_Pong =

PingPongCommExample.Pong_to_Ping;

MODULE example-pingpong2-

PingPongModule2(incoming)

 VAR

 outgoing : word[16];

 DEFINE

 ASSIGN

 next(outgoing) := incoming;

50

 For more complex models, NuSMV provides options to drastically increase its
performance. Three options are included three (-df, -dynamic, and -coi) to be easily enabled or
disabled by the developer.
 At this point, the developer is able to correct any problems discovered early in the design
phase. Once the model is able to successfully pass all requirement specifications, the developer
can then move forward in development with a the strong sense that the system will be completed
correctly to specification.

4.4 Conclusion

 In this work, a verification system is presented that utilizes module libraries in order to
promote the early detection of system design flaws in an unrestricted Java simulation
environment. Through the system, the use of formal verification can be promoted while
minimizing the time and expertise costs generally associated with it.

51

5. SUMMARY

 During the course of this work, extensive research of Formal Verification (FV) in
mission-critical, high-consequence applications was first conducted. Several case studies (e.g.
NASA’s aircraft controller) that demonstrate the effectiveness of FV have been analyzed.
 Within the Sandia domain, this S&T was brought to the attention of several
organizations that focus on digital system designs with FPGAs or ASICs. The finding confirmed
that Sandia is lacking in an area where such techniques are commonplace in applications for
which faults and vulnerabilities are arguably of less consequence. Currently Sandia’s approach to
system surety is limited to simulation-based verification.
 Popular tools have been investigated for formally verifying FPGA-based designs,
including open source tools and commercial tools. Each of them has advantages and
disadvantages, with none that is tailored for NW specific requirements. By meeting with various
organizations within Sandia, several candidate designs have been identified as case studies, from
simple block level designs to complex designs such as an Intellectual Property (IP) core.
 A decomposition approach was created and implemented to solve the challenging
problem of formally verifying RAM, a commonly used digital component in the NW space.
Traditional model checking has a significant limitation on the size of the memory due to the
known state explosion problem. An novel approach was developed to combine the two major
formal verification techniques, model checking and automatic theorem proving. The combined
approach successfully solved the RAM verification challenge, by achieving almost constant
(instead of exponentially increased) runtime.
 In the future, it is possible to include other digital systems in this class of decomposable
designs and possibly build a classifier that is able to automatically determine when a state space
can be partitioned without compromising soundness. Such an automated system would prove
invaluable in promoting the use of formal verification for creating provably secure systems.
 Another major contribution of this work is the creation of a practical framework for
integrating an existing event-driven simulator (Orchestra) with an advanced symbolic model
checker (NuSMV) to meet the vision of Sandia’s future digital design methodology. The
developed verification system is built upon a library module macro language. The system and
library approach was proven with a real design example.
 In the future, the system’s automation can be improved through guided specification
generation and more robust model checking.

52

This page intentionally left blank.

53

6. REFERENCES

1. O. Åkerlund, S. Nadjm-Tehrani, and G. Stålmarck “Integration of formal methods into

system safety and reliability analysis”, Proc. 17th Internatinoal Conference on System Safety,
September 1999.

2. S. Browning, M. Carlsson, L. Erkök, J. Matthews, B. Martin, and S. Weaver, “The next
wave”, in press.

3. T. Chang, A. Danylyzsn, S. Norimatsu, J. Rivera, D. Shepard, A. Lattanze, and J. Tomayko,
“Continuous verification in mission critical software development”, Proc. Thirtieth Hawaii
International Conference on System Science, vol.5, pp 273-284, January 1997, doi:
10.1109/HICCS.1997.663184.

4. E.M. Clarke, O. Grumberg, and D.A. Peled, “Model checking”, The MIT Press, 1999.
5. P. Guernic, T. Gautier, M. Borgne, and C. Maire, “Programming real-time applications with

SIGNAL”, Proc. IEEE, vol. 79, No. 9, pp. 1321-1336, September 1991.
6. J. Hammarberg and S. Nadjm-Tehrani, “Formal verification of falut tolerance in safety-

critical reconfigurable modules”, International Journal on Software Tools for Technology
Transfer (STTT) – Special section on formal methods for industrial critical systems, vol. 7,
Issue 3, June 2005.

7. D.S.Hardin, ed. Design and verification of microprocessor systems for high-assurance
applications, Springer 2010.

8. K. Havelund, M. Lowry, and J. Penix, “Formal analysis of a space craft controller using
SPIN”, IEEE Transactions on Software Engineering, vol. 27, Issue 8, August 2001.

9. K. Havelund, M. Lowry,S. Park, C. Pecheur, J. Penix, W. Visser, and J. White, “Formal
analysis of the remote agent before and after flight”, Proc. 5th NASA Langley Formal
Methods Workshop, Williamsburg, VA., June 2000.

10. K.L. Heninger, “Specifying software requiremetns for complex systems: new techniques and
their application”, IEEE Transactions on Software Engineering, vol. 6, pp. 2-13, 1980.

11. T. Huffmire, B. Brotherton, T. Sherwood, R. Kastner, T. Levin, T. Nguyen, and C. Irvine,
“Managing security in FPGA-based embedded systems”, IEEE Design & Test of Computers,
vol. 25, Issue 6, pp 590-598, November-December 2008, doi: 10.1109/MDT.2008.166.

12. P. Jones, R. Jetley, and J. Abraham, “A formal methods-based verification approach to
medical device software analysis”, Electronic Engineering (EE) Times, 2/9/ 2010.

13. C. Livadas and N. Lynch, “Formal verification of safety-critical hybrid systems”, Proc. 1st
International Workshop, Hybris Systems: Computation and Control (HSCC’98), vol. 1386,
April 1998.

14. J.R. Lewis and B. Martin, “Cryptol: high assurance, retargetable crypto development aand
validation”, IEEE Military Communications Conference, vol. 2, pp. 820-825, October 2003.

15. W. Ma and X. Hei, “An approach for design and formal verification of safety-critical
software”, Proc. 2010 International Conference on Computer Application and System
Modeling (ICCASM), vol. 4, pp264-268, October 2010, doi:
10.1109/ICCAM.2010.5620084.

16. M. McLean and J. Moore, “FPGA-based single chip cryptographic solution”, Military
Embedded Systems, Msrch 2007.

54

17. K.L. McMillan, “Symbolic model checking: an approach to the state explosion problem”,
Kluwer Academics, 1993.

18. Mentor Graphics’ Website published success story,
http://www.mentor.com/products/fpga/success/northrop-grumman.

19. L. Moser and P.M. Melliar-Smith, “Formal verification of safety-critical systems”,
Software—Practice and Experience, vol. 20, issue 8, pp. 799-821, August 1990.

20. NASA Software Safety Guidebook[C], NASA-GB-8719.13, NASA 2004.
21. Z. Qureshi, “Formal modelling and analysis of mission-critical software in military avionics

systems”, Proc. 11th Australian Workshop on Safety Related Programmable Systems
(SCS’06), Conference in Research and Practice in Information Technology, vol. 69, pp. 67-
77,

22. F. Schneider, S. Easterbrook, J. Callahan, and G. Holzmann, “Validating requirements for
fault tolerant systems using model checking”, Proc. Third International Conference on
Requirements Engineering, 1998, pp. 4-13, doi: 10.1109/ICRE.1998.667803.

23. A. Sutton, “No room for error: creating highly reliable, high-availability FPGA designs”,
Synopsys Inc. White Paper, November 2010.

24. P. Taylor, “Using FPGA in mission-critical systems”, Electronic Engineering (EE) Times,
12/6/2010.

25. Y. Yin and B. Liu, “Research on formal verification techniques for aircraft safety-critical
software”, Journal of Computers, vol. 5, No. 8, pp1152 -1159, August 2010, doi:
10.4304/jcp.5.8.

26. ACL2 Automated Theorem Proving Tool (http://www.cs.utexas.edu/~moore/acl2/).
27. NuSMV Model Checking Tool (http://nusmv.fbk.eu/)
28. R.E. Bryant, “Formal verification of memory circuits by switch-level simulation”, IEEE

Transactions on Computer-Aided Design, vol 10, No. 1, January 1991.
29. Intel Corporation, Statistical Analysis of Floating Point Flaw, FDIV Replacement Program,

November 1994.
30. M. Ganai, A. Gupta, and P. Ashar, “Efficient modeling of embedded memories in bounded

model checking”, Proceedings of CAV’2004, pp 440-452, 2004.
31. J.L. Lions, Report by the Inquiry Board, Ariane 5 Flight 501 Failure, July 1996.
32. B. McGaughy, S. Wuensche, and KK Hung, “Advanced simulation technology and its

application in memory design and verification”, 2005 IEEE International Workshop on
Memory Technology, Design, and Testing.

33. K.L. McMillan, “Verification of infinite state systems by compositional model checking”,
Correct Hardware Design and Verification Method, LNCS 1703, pp 219-233, Springer
Verlag 1999.

34. M. Pandey and R.E. Bryant, “Formal verification of memory arrays using symbolic trajectory
evaluation”, Proceedings of International Workshop on Memory Technology, Design and
Testing, pp 42-49, 1997.

35. N. Shankar, “Combining Theorem Proving and Model Checking through Symbolic
Analysis”, CONCUR 2000, LNCS 1877, pp 1-16, Springer Verlag 2000.

36. T. Uribe, “Combinations of model checking and theorem proving”, FroCos 2000, LNAI
1794, pp 151-170, Springer Verlag 2000.

http://www.cs.utexas.edu/~moore/acl2/

55

37. Edmund M. Clarke and Jeannette M. Wing. 1996. Formal methods: state of the art and future
directions. ACM Comput. Surv. 28, 4 (December 1996), 626-643.
DOI=10.1145/242223.242257 http://doi.acm.org/10.1145/242223.242257

38. Shangzhu Wang, George S. Avrunin, and Lori A. Clarke. 2008. Plug-and-Play Architectural
Design and Verification. In Architecting Dependable Systems V, Rogerio Lemos, Felicita
Giandomenico, Cristina Gacek, Henry Muccini, and Marlon Vieira (Eds.). Lecture Notes In
Computer Science, Vol. 5135. Springer-Verlag, Berlin, Heidelberg 273-297.
DOI=10.1007/978-3-540-85571-2_12 http://dx.doi.org/10.1007/978-3-540-85571-2_12

39. Shangzhu Wang, George S. Avrunin, and Lori A. Clarke. 2006. Verification support for
plug-and-play architectural design. In Proceedings of the ISSTA 2006 workshop on Role of
software architecture for testing and analysis (ROSATEA '06). ACM, New York, NY, USA,
49-50. DOI=10.1145/1147249.1147255 http://doi.acm.org/10.1145/1147249.1147255

40. Mirko Loghi, Tiziana Margaria, Graziano Pravadelli, and Bernhard Steffen. 2005. Dynamic
and formal verification of embedded systems: a comparative survey. Int. J. Parallel
Program. 33, 6 (December 2005), 585-611. DOI=10.1007/s10766-005-8911-2
http://dx.doi.org/10.1007/s10766-005-8911-2

41. Iskander Kort, Sofiene Tahar, and Paul Curzon. 2001. Hierarchical Verification Using an
MDG-HOL Hybrid Tool. In Proceedings of the 11th IFIP WG 10.5 Advanced Research
Working Conference on Correct Hardware Design and Verification Methods (CHARME
'01), Tiziana Margaria and Thomas F. Melham (Eds.). Springer-Verlag, London, UK, 244-
258.

42. Xi Chen, Harry Hsieh, Felice Balarin, and Yosinori Watanabe. 2003. Case Studies of Model
Checking for Embedded System Designs. In Proceedings of the Third International
Conference on Application of Concurrency to System Design (ACSD '03). IEEE Computer
Society, Washington, DC, USA, 20-.

43. Xi Chen, Fang Chen, H. Hsieh, F. Balarin, and Y. Watanabe. 2002. Formal verification of
embedded system designs at multiple levels of abstraction. In Proceedings of the Seventh
IEEE International High-Level Design Validation and Test Workshop (HLDVT '02). IEEE
Computer Society, Washington, DC, USA, 125-.

44. Robert John Allen. 1997. A Formal Approach to Software Architecture. Ph.D. Dissertation.
Carnegie Mellon Univ., Pittsburgh, PA, USA. AAI9813815.

45. Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno, Claudio Passerone, and
Alberto Sangiovanni-Vincentelli. 2003. Metropolis: An Integrated Electronic System Design
Environment. Computer 36, 4 (April 2003), 45-52. DOI=10.1109/MC.2003.1193228
http://dx.doi.org/10.1109/MC.2003.1193228

46. Marco A. Wehrmeister, Joao G. Packer, and Luis M. Ceron. 2011. Framework to Simulate
the Behavior of Embedded Real-Time Systems Specified in UML Models. In Proceedings of
the 2011 Brazilian Symposium on Computing System Engineering (SBESC '11). IEEE
Computer Society, Washington, DC, USA, 1-7. DOI=10.1109/SBESC.2011.47
http://dx.doi.org/10.1109/SBESC.2011.47

47. Popovici, K.; Lalo, M. 2009. Formal model and code verification in Model-Based Design.
Circuits and Systems and TAISA Conference, 2009. NEWCAS-TAISA '09. Joint IEEE
North-East Workshop on , vol., no., pp.1-4, June 28 2009-July 1 2009
DOI=10.1109/NEWCAS.2009.5290500

http://doi.acm.org/10.1145/242223.242257
http://dx.doi.org/10.1007/978-3-540-85571-2_12
http://doi.acm.org/10.1145/1147249.1147255
http://dx.doi.org/10.1007/s10766-005-8911-2
http://dx.doi.org/10.1109/MC.2003.1193228
http://dx.doi.org/10.1109/SBESC.2011.47

56

48. Ranjit Jhala and Rupak Majumdar. 2009. Software model checking. ACM Comput. Surv. 41,
4, Article 21 (October 2009), 54 pages. DOI=10.1145/1592434.1592438
http://doi.acm.org/10.1145/1592434.1592438

http://doi.acm.org/10.1145/1592434.1592438

57

DISTRIBUTION

1 MS1327 Hart, William 1464
1 MS9001 Mariano, Robert 8005
1 MS9042 Gonzales, Mary 8250
1 MS9102 Forman, Michael 8136
1 MS9102 Hu, Yalin 8136
1 MS9154 Ballard, William 8200
1 MS9158 Armstrong, Robert 8961

1 MS0899 Technical Library 9536 (electronic copy)

1 MS0359 D. Chavez, LDRD Office 1911

