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Abstract 
 

This paper proposes the use of statistical tolerance interval methodology as an approach to 
quantification of margins and uncertainties (QMU) for physical simulation data.  We review 
the standard ݇-factor methodologies and discuss potential limitations.  The tolerance interval 
methodology is introduced and demonstrated with several examples.  A new figure-of-merit 
is proposed and its properties are explored.  These methodologies are intended for a 
performance characteristic that has shown the potential for low margin or margin that is 
changing with age.  Hence, we require a well-understood dataset that has been through a 
comprehensive engineering analysis.  This paper provides recommendations for an 
engineering analysis that will result in a dataset that is eligible for a rigorous analysis using 
these proposed methodologies.  Finally, we present an overview of the probability of 
frequency approach commonly used in computational simulation QMU applications to 
highlight the similarities with this proposed methodology for physical simulation QMU 
applications. 
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NOMENCLATURE 
 
 
CA  component age 
CD  compatibility definition 
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CF  confidence factor 
CV  critical value 
FMEA  failure modes and effects analysis 
݇   ݇-factor 
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QMU  quantification of margins and uncertainties 
ܳ௥   ݎth percentile 
RMI  requirements modernization and integration 
PC  performance characteristic 
PDF  probability distribution function 
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௥ܲ௘௤   maximum allowable probability of failure 

PS  product specification 
TR  tolerance ratio 
U  uncertainty 
UPR  upper performance requirement 
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1. INTRODUCTION 
 
 
Historically, Quantification of Margins and Uncertainties (QMU) for physical simulation test data has 
been centered on the calculation of a ݇-factor and/or a regression analysis of the ݇-factor against age.  
The ݇-factor, in general, is defined as margin divided by uncertainty.  The most common interpretation of 
this definition, employed in a data rich environment, is where the margin is estimated by the difference 
between a defined requirement and the average response of the data and the uncertainty is estimated by 
the sample standard deviation of the data.  These definitions are captured in the Annual Assessment RMI 
and are shown below. 
 

 Metric: a characteristic of system or subsystem operation or performance that is, in principle, 
measurable. 

 
 Threshold: a minimum or maximum allowable value of a given metric set by the responsible 

Laboratory. 
 

 Best estimate: an assessed value of a given metric based on simulation, theory, or experiment. 
 

 Margin: difference between the best estimate and the threshold for a given metric. 
 

 Uncertainty: the range of potential values around a best estimate of a particular metric or 
threshold. 

 
 K factor: figure-of-merit obtained from the ratio of component margins and their respective 

uncertainties based on standard deviations in data rich situations. 
 
In a data rich environment most often the metric, as defined above, is interpreted to be the mean of the 
distribution of the system or subsystem operation or performance.  The threshold is commonly defined to 
be a fixed requirement as defined in a product acceptance specification (PS) or a compatibility definition 
(CD).  With this definition, one can then equate a computed ݇-factor directly to a probability that the 
system or subsystem will fail to meet its requirements (threshold) provided the distribution of the 
system or subsystem operation or performance follows a Normal or Gaussian distribution.  
Therefore, decisions are often driven by the size of the ݇-factor where cutoff or critical values are 
specified by percentiles of a Normal distribution.  For example if ݇ ൐ 2.576 one could conclude that 
there is evidence that the probability that the system or subsystem will fail to meet its requirements is at 
most 0.005, since the 0.5th (or the 99.5th) percentile from a Normal distribution is 2.576 standard 
deviations from the mean.  There are several issues with this definition of margin and hence the definition 
of the ݇-factor.  Most notably, if there is a deviation from Normality the ݇-factor no longer relates directly 
to a probability of exceeding performance thresholds.  The ݇-factor methodology can be a conceptual 
deviation from the general approach in a computational simulation framework and can fail to meet the 
key elements of applying a QMU methodology as defined in the Sandia Guidance Document on QMU [1] 
when the distribution of the system or subsystem operation or performance does not follow a Normal 
distribution.   
 
The methodology proposed here is intended for a performance characteristic that has shown the potential 
for low margin or has shown that the margin is changing with age.  This methodology shifts the focus of 
the analysis from the mean of the performance distribution to a meaningful percentile of the distribution.  
The percentile is chosen to correspond to a value that contains a certain acceptable proportion of the 
population units.  This prompts the notion of margin to shift from the difference between the mean of a 
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performance characteristic (PC) and its performance requirement (PR) to the difference between a 
meaningful percentile of the distribution of the performance characteristic and its performance 
requirement.  It is also proposed to quantify uncertainty through the computation of a statistical 
confidence bound on the best estimate of the chosen percentile rather than by a sample standard deviation, 
which does not account for sampling variability.  This is accomplished by computing a statistical 
tolerance interval.  The tolerance interval differs from a confidence interval in that the confidence interval 
bounds a single-valued population parameter (the mean or the variance, for example) with some 
confidence, while the tolerance interval bounds the range of data values that includes a specific proportion 
of the population, with some level of confidence.  A confidence interval’s size is entirely due to sampling 
error, whereas a tolerance interval’s size is due partly to sampling error and partly to actual variance in 
the population, and will approach the population’s probability interval as sample size increases.  The 
tolerance interval is also related to a prediction interval in that both put bounds on variation in future 
samples.  The prediction interval only bounds a single future sample unlike a tolerance interval, which 
bounds the entire population (multiple future samples).  
 
The remainder of this paper details a number of the limitations of the standard ݇-factor methodology and 
provides the details for an analysis using the newly proposed methodology.  Examples are presented to 
reinforce these ideas.  The proposed methodologies are intended for a thoroughly understood dataset with 
a performance characteristic that relates to component and/or system function and a well understood 
performance requirement.  Much work is often needed to arrive at this state.  This paper also outlines 
recommendations for an Engineering Data Analysis that will result in a dataset that is eligible for a 
rigorous QMU analysis.  In addition, the proposed methodology is shown to be more consistent with the 
standard QMU methodologies for computational simulation applications. 
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2. K-FACTOR METHODOLOGY FOR PHYSICAL SIMULATION DATA 
 
 
This section reviews the standard ݇-factor QMU methodology for physical simulation data.  Here we 
solely focus on the statistical methodologies applied to a well-understood data set.  There is a substantial 
amount of work involved in a preliminary graphical analysis, and in an engineering analysis of the data, 
that is omitted here.  The engineering analysis is an essential step required to ensure the collected data 
sample includes measurements that may be used to infer performance in actual use.  Some 
recommendations for an engineering analysis are presented in Section 5, and it is recommended that much 
greater emphasis be placed on doing this examination of the data well before the data analysis discussed 
here commences to ensure that both appropriate data and analysis techniques are used.   
 
We assume that the measurement of the performance characteristics, as well as comparison to specified 
performance requirements, is sufficient to determine whether the component would have performed its 
intended function in actual use.  Therefore, the performance requirement should be an accurate indication 
of a performance threshold.  In the following discussion, we assume that there has been sufficient critical 
scrutiny (engineering analysis) performed to understand the performance characteristic and how it relates 
to component performance, the presented data set, and its representativeness of the larger population, and 
the performance requirements and their relationship to a performance threshold.  For examples of the 
graphical analyses, engineering analysis, and the concepts discussed here refer to the QMU 101 course 
slides [2]. 
 
There are two main types of analyses performed that support QMU on physical simulation data.  The first 
is a “point-in-time” analysis where the goal is to quantify the current amount of margin.  This type of 
analysis is appropriate if data is collected at a single point in time, such as at product acceptance, or if 
data is collected over a range of component ages and there is no evidence of performance trending with 
age.  If an age trend is detected then the second type of analysis is a “݇-factor regression analysis” where 
the goal is to model the aging trend via statistical regression and identify an alarm age.  The alarm age is 
defined to be the age at which the ݇-factor is no longer sufficiently large to assert that a desired 
proportion of components will be within the performance requirements with a given level of confidence.  
The following is an overview of each analysis. 
 

2.1. Point in Time Analysis 
 
A point in time analysis is performed if data is collected at a single point in time, such as at product 
acceptance, or if no trend is detected in the data.  The goal of this analysis is to infer if there is a non-
negligible probability that a component will fail to meet its performance requirements.  Throughout this 
document, we refer to a Maximum Probability of Failure, denoted by ࢗࢋ࢘ࡼ.  This probability of failure 
specifically refers to a failure to meet performance requirements (margin failures), however we will 
simply use the terminology maximum probability of failure or ௥ܲ௘௤.  This inference requires the 
quantification of the margin and uncertainty of the measured performance characteristic (PC) relative to 
an upper or lower performance requirement (UPR or LPR) at that point in time.   
 
In the standard ݇-factor methodology, the margin is defined as the difference between the mean of the 
data and the performance requirement, ܯ ൌ ߤ െ ܯ or ܴܲܮ ൌ ܷܴܲ െ  The uncertainty, ܷ, in a data  .ߤ
rich environment is often dominated by aleatory uncertainty (stochastic variability) and therefore is 
quantified by the standard deviation, ߪ, of the performance characteristic.  In a data rich environment 
these two metrics, ܯ and ܷ, are can be characterized statistically by a probability density function (PDF) 
and its location relative to the performance requirement.  Figure 2.1 below depicts these metrics relative 
to a Normal distribution function.  These metrics are defined in the figures below, and the equations that 
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follow, relative to the lower performance requirement (LPR) for reference.  For an upper bound, the 
metrics could be appropriately adjusted.   
 

 

Figure 2.1.  Graphical Depiction of M and U Relative to a Normally Distributed PC.  
 
To estimate these quantities a representative random set of data is collected.  Figure 2.2 and Figure 2.3 
below show an example of a measured performance characteristic for a sample of units (Example Dataset 
1) relative to a lower performance requirement (LPR).   
 
The scatter plot in Figure 2.2 is a useful tool to assess if an age trend is present.  The green dashed line 
represents an estimated regression fit on the data.  Although the data appears to trend slightly upward, the 
slope of the regression fit is not significantly different from zero (݌-value1 = 0.575).  Since there is not a 
statistically significant trend, a point-in-time analysis is appropriate.  Another useful plot, when no trend 
is present, is a histogram of the observed performance characteristic (Figure 2.3).  This plot provides a 
snapshot of the distribution of the performance characteristic and is useful in assessing (at least visually) 
if Normality is a viable assumption.   
 
 
 
 
 

                                                      
1 In hypothesis testing, a ݌-value represents the probability of a test statistic obtaining a value at least as extreme as 
the observed value derived from a sample.  When a ݌-value is lower than the significance level of a test, the test is 
considered to be significant and the null hypothesis is rejected. 
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Figure 2.2.  Scatter Plot of Example Dataset 1 Showing No Aging. 
 
 

 

Figure 2.3.  Histogram of Example Dataset 1 Showing the K-factor QMU Metrics. 
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To assess overall margin relative to the performance requirement and uncertainty the figure of merit for a 
point-in-time analysis is the ݇-factor.  The ݇-factor is defined as the ratio of the margin to the uncertainty, 
 

݇ ൌ
ܯ
ܷ
ൌ
ߤ െ  ܴܲܮ

ߪ
. 

 
Given a sample of data the mean and standard deviation can be estimated by the sample mean, ݔҧ, and 
sample standard deviation, ݏ.  For a sample of size ݊ these are defined as, 
 

ҧݔ ൌ
1
݊
෍ݔ௜

௡

௜ୀଵ

   and   ݏଶ ൌ
1

݊ െ 1
෍ሺݔ௜ െ ҧሻଶݔ
௡

௜ୀଵ

. 

 
Hence, the best estimate of the ݇-factor is given by, 
 

෠݇ ൌ
෡ܯ

෡ܷ ൌ
ҧݔ െ  ܴܲܮ

ݏ
. 

 
This estimate gives a measure of the estimated margin relative to the performance requirement in terms of 
the estimated standard deviation.  For the data shown in Figure 2.3 there were 65 observations yielding an 
estimated mean and standard deviation of ݔҧ ൌ  9.993 and ݏ ൌ  0.241.  Therefore, the estimated ݇-factor 
for this data, relative to a lower performance requirement of 9 is 
 

෠݇ ൌ
ҧݔ െ  ܴܲܮ

ݏ
ൌ
9.993 െ 9 
0.241

ൌ 4.12. 

 
The ݇-factor itself does not directly estimate the probability of a performance characteristic failing to 
meet the performance requirements.  However, for a Normal or Gaussian population the ݇-factor can be 
used to estimate the probability of failing to meet the lower performance requirement by,  
 

ܲ ൌ ܥሺܾܲ݋ݎܲ ൏ ܴܲሻ ൌ Φ൬
ܴܲܮ െ ҧݔ

ݏ
൰ ൌ 1 െ Φ൫෠݇൯, 

 
where Φሺ·ሻ is the cumulative probability function for a standard Normal distribution (ߤ ൌ ߪ ,0 ൌ 1).  
Suppose there is a requirement that this probability ܲ must be less than a specified maximum probability 
of failure, ௥ܲ௘௤.  This gives us the following relationship, 
 

ܲ ൌ 1 െ Φ൫෠݇൯ ൏ ௥ܲ௘௤ ֞ ෠݇ ൐ Φିଵ൫1 െ ௥ܲ௘௤൯. 
 
For example, suppose we require ܲ ൏ ௥ܲ௘௤ ൌ 0.005, then the critical value ሺܸܥሻ for the ݇-factor is given 
by ܸܥ ൌ Φିଵሺ0.995ሻ ൌ 2.576.  Therefore, if the estimated ݇-factor is greater than 2.576 we can 
conclude that there is evidence that the probability of obtaining a performance characteristic less than the 
performance requirement is at most 0.005.  A similar calculation can be performed for an upper 
performance requirement.  For Example Dataset 1, we estimated the ݇-factor to be ෠݇ ൌ  4.12.  Since 4.12 
> 2.576 we conclude there is evidence that the probability of obtaining a performance characteristic less 
than the lower performance requirement of 9 is at most 0.005.  Similarly, the probability that an observed 
performance characteristic will be greater than the requirement of 9 is estimated to be at least 0.995.   
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This evidence however is based on a single sample of data from a larger population.  Since the goal of 
QMU is generally to estimate the probability of failing to meet the performance requirements with a 
specified level of statistical confidence, to account for the uncertainty from the sample itself one should 
calculate a statistical lower confidence bound on the ݇-factor.  Then, if the ߛ · 100% lower confidence 
bound on the ݇-factor, denoted by ෠݇ఊ, is greater than ܸܥ we could conclude that we are ߛ · 100% 
confident that the probability of obtaining a performance characteristic less than the performance 
requirement is at most ௥ܲ௘௤.  Several methods for obtaining confidence bounds on the ݇-factor are 
available and are presented in the QMU 102 course material [3].  These methods in general assume that 
the data are a random sample from a Normal population.  Issues arising due to a deviation from this 
assumption are discussed in Section 3.1.  For Example Dataset 1, for which Normality is a reasonable 
assumption, an estimated 95% lower confidence bound on the ݇-factor is ෠݇଴.ଽହ ൌ 3.48.  Since 3.48 > 
2.576  we can assert that we have 95% confidence that the probability of obtaining a performance 
characteristic less than the lower performance requirement of 9 is at most 0.005.   
 

2.2. K-Factor Regression Analysis 
 
A ݇-factor regression analysis is performed if the observed data appears to be trending with age.  Again, 
the identification of the age trend, along with a determination that the trend is due to an aging effect and 
not some other known or unknown factor, should be done during the engineering analysis of the dataset.  
Note that a performance characteristic may also trend with respect to other factors, such as temperature, 
voltage, etc.  The methodologies discussed here could be applied to these factors as well, however we will 
only focus on an aging trend for example purposes.  
 
This section describes the statistical analysis needed to estimate an alarm age.  The Alarm Age is defined 
as the component age at which we estimate certain percentage of the population is no longer contained by 
the performance requirement, with a given level of confidence.  Measured values of a performance 
characteristic may trend up or down, or the range of values may grow larger or smaller as components 
age.  We are most concerned if the measured values trend toward a performance requirement or if the 
range of measured values expands toward the limit.  Figure 2.4 shows a notional plot of the mean 
performance characteristic versus component age ሺܣܥሻ.  Here the mean, ߤሺܣܥሻ, and the margin, 
ሻܣܥሺܯ ൌ ሻܣܥሺߤ| െ ܴܲ|, are functions of the component age.  The uncertainty is quantified by the 
standard deviation around the fitted regression line, ߪோ, which may also be a function of the component 
age.  The notional data in Figure 2.4 depicts a downward trend and increasing measurement error bars 
with increasing component age.  The LPR is shown by the red dashed line.  The plot thus demonstrates an 
example of decreasing performance with increasing variability, suggesting possible failure at some point 
in the future.  Note, the case of increasing variability with age is shown here for example purposes only.  
The regression analyses described throughout this paper assume a constant variance.  For data that 
exhibits increasing variability with age, a statistician should be consulted to determine the appropriate 
methodology to apply. 
 
As discussed in Section 2.1, a scatter plot is a useful tool to assess if an aging trend is present.  Figure 2.5 
shows a scatter plot of Example Dataset 2 with an aging trend.  It is possible that an observed visual trend 
will not be statistically significant.  That is, the slope of the fitted regression line may not be significantly 
different from zero or the variability in the data may be too large to conclude with confidence that the 
trend is present.  The green dashed line in Figure 2.5 is the estimated regression line for Example Dataset 
2.  For simplicity we will only explore a linear regression model with the component age (ܣܥ) as a single 
independent variable.  The regression model is given by, 
 

ܥܲ ൌ ଴ߚ  ൅ ଵߚ · ܣܥ ൅  ,ߝ
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where ܲܥ is the performance characteristic, ߚ଴ and ߚଵare the model parameters to be estimated, and ߝ is a 
random error assumed to follow a Normal distribution with mean zero and standard deviation ߪோ.   
 

 

Figure 2.4.  Graphical Depiction of Margin and Uncertainty with a Linear Aging Trend. 
 
For Example Dataset 2, shown in Figure 2.5, the model parameters are estimated to be ߚመ଴ ൌ 10.493 and 
መଵߚ ൌ െ0.031 which gives the estimated regression line for the mean performance characteristic at age 
CA, shown by the dashed green line, to be ܲܥ෢ ൌ  10.493 െ 0.031 ·  A statistical test can be  .ܣܥ
performed to assess if the estimated slope ߚመଵ is significantly different from zero (i.e. the aging trend is 
statistically significant).  For Example Dataset 2, the test yields a ݌-value of 0.001, which indicates that 
the slope is significantly different from zero.  Further, we can obtain an estimate of ߪோ which is the 
standard deviation around the regression line or the standard deviation of the residuals2 of the regression 
fit.  For a dataset with an aging trend and constant variance, this is the measure of uncertainty.  Example 
Dataset 2 yields an estimate of ߪොோ ൌ 0.246.  This initial regression analysis is performed to assess the 
significance of the aging trend and to obtain an estimate of uncertainty given the assumed linear 
regression model.   
 
 
 

                                                      
2 The residuals are observed errors of the fitted regression model, ܲܥ௜ െ  ෢௜, which are empirical estimates of theܥܲ
regression model errors, ߝ௜, which are not observed. 
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Figure 2.5.  Plot of Example Dataset 2 Showing and Aging Trend and Regression Fit. 
 
The second step is to perform a regression on the ݇-factor.  First we must transform the dataset to a 
standardized ݇-factor scale.  This is accomplished in a similar fashion to the computation of the estimate 
of the ݇-factor in a point-in-time analysis, however here the calculation is performed on each individual 
data point.  Therefore, we call these standardized quantities “individual ݇-factors” and they are defined 
for a lower requirement as, 
 

݇௜ ൌ
௜ܥܲ െ ܴܲܮ

ොோߪ
, 

 
where the subscript ݅  denotes the ݅th observation or unit.  These factors, by their very nature, are 
population related; that is, the standardization by the population statistic ߪොோ means that these quantities 
are summaries of population characteristics.  These standardized quantities can be referenced to 
probability-of-compliance levels through the assumption that the distribution of the responses is 
approximately Normal around the age-regressed mean. 
 
Recall, we have defined the alarm age to be the component age at which we estimate certain percentage 
of the population is no longer contained by the performance requirement, with a given level of 
confidence.  This is accomplished by estimating a confidence interval around the mean regression line 
with respect to the age-trended individual ݇-factors.  Again, a critical value ሺܸܥሻ must be chosen to 
correspond to a maximum probability of failing to meet the performance requirement.  For this example 
we again assume the requirement ܲ ൏ ௥ܲ௘௤ ൌ 0.005 and the critical value for the ݇-factor is given by 
ܸܥ ൌ Φିଵሺ0.995ሻ ൌ 2.576.  Figure 2.6 shows the regression analysis of the individual ݇-factors versus 
age with an estimated 90% confidence interval (red dashed lines) around the mean ݇-factor regression 
line (green dashed line).   
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Figure 2.6.  K-factor Regression of Example Dataset 2. 
 
The mean line in Figure 2.6 (shown in green) is interpreted as the expected value of the ݇-factor as a 
function of age.  The predicted alarm age, ܣመ, is calculated by determining the age at which the mean trend 
line crosses the critical value  line (red solid line).  The ages at which the confidence bounds cross the 
reference line provide confidence bounds for the predicted alarm age.  These confidence bounds are 
denoted by the interval (ܣ௅஻, መܣ ,௎஻).  For Example Dataset 2ܣ ൌ 27.3 years, and the confidence bounds 
are (ܣ௅஻,  ௅஻, is aܣ ,௎஻) = (21.3 years, 43.2 years).  The lower bound of the 90% confidence intervalܣ 
one sided 95% lower confidence bound for the predicted alarm age.  This is the age at which it is 
predicted that ෠݇଴.ଽହ ൌ 2.576.  Therefore, for components with ages greater than ܣ௅஻ ൌ 21.3 we cannot 
assert that we have 95% confidence that the probability of obtaining a performance characteristic greater 
than the lower performance requirement of 9 is at least 0.995.  Figure 2.6 can be difficult to explain to 
customers.  Further, the confidence bounds on the ݇-factor regression line do not translate back to the 
engineering unit scale easily.  Therefore, it has been common practice to show an additional graphic of 
the original regression line with Prediction Intervals.  This is shown in Figure 2.7 below.  In cases with 
large sample sizes the point at which the lower prediction interval crosses the lower performance 
requirement can be similar to the alarm age estimate from the ݇-factor regression line.  These intervals 
however, do not relate to the confidence intervals on the ݇-factor regression line (as can be seen by 
comparing Figure 2.6 and Figure 2.7) and can add further confusion.  This will be discussed further in 
Section 3.2. 
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Figure 2.7.  Plot of PC vs. CA with Regression Fit and 90% Prediction Interval 
 
This methodology, and the new methodology proposed in Section 4, requires a projection of the 
regression line beyond the range of observed component ages.  This should be done cautiously and ideally 
only when the aging trend is understood well enough, that we believe the linear model to be justified 
beyond the timeframe for which the data are available. It should also be noted that the computation of the 
confidence bounds in the age trend methodology are confidence bounds on the mean ݇-factor regression 
line and do not account for the uncertainty in the estimation of the standard deviation around the 
regression line (which feeds into the estimation of the individual ݇-factors).  This issue will be discussed 
in more detail in Section 3.4.  The new methodology proposed in Section 4 gives an approach that 
accounts for the uncertainty in the estimation of both the mean and standard deviation.  
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3. LIMITATIONS OF THE K-FACTOR METHODOLOGY 
 
 
This section discusses several issues and concerns with the standard ݇-factor QMU methodology for 
physical simulation data.  Most issues apply to both the point-in-time analysis and the ݇-factor regression 
analyses; however we will only illustrate the issues using the point-in-time analysis.   
 

3.1. Non-Normal Data 
 
One of the main difficulties with the ݇-factor methodology arises when the assumption of Normality is 
violated.  When this situation arises, the ݇-factor is no longer a good indicator of the probability of failing 
to meet performance requirements (i.e. the demonstrated performance).  This is illustrated in Figure 3.1 
below, which shows a Normal distribution function compared to a Weibull distribution function with 
exactly the same mean and standard deviation.  Therefore, the estimated ݇-factors would be the same for 
these two distributions.  It is clear however that the tails of these distributions at the lower requirement are 
quite different.  If we incorrectly use the Normal distribution, we would underestimate the probability of 
failure (area under the curve to the left of the lower performance requirement).  Moreover, for inferences 
with respect to the upper tails the Normal distribution may overestimate a probability of failure for an 
upper requirement.  
 

 

Figure 3.1.  Normal and Weibull Distributions with the Same Mean and Standard Deviation. 
 
For example, consider the data shown in Figure 3.2 below (Example Dataset 3).  Clearly, the assumption 
of Normality is not valid and the data appear to be skewed toward the lower performance requirement. 
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Figure 3.2.  Histogram of Example Dataset 3 Showing Non-Normality. 
 
Example Dataset 3 consists of 65 observations of the performance characteristic yielding an estimated 
mean and standard deviation of ݔҧ ൌ  10.027 and ݏ ൌ  0.257.  Therefore, the estimated ݇-factor for these 
data, relative to a lower performance requirement of 9 is estimated to be, 
 

෠݇ ൌ
ҧݔ െ  ܴܲܮ

ݏ
ൌ
10.027 െ 9 

0.257
ൌ 3.99. 

 
Further, a 95% lower confidence bound on the ݇-factor is estimated to be ෠݇଴.ଽହ ൌ 3.38.  Since 3.38 > 
2.576 we could assert that we have 95% confidence that the probability of obtaining a performance 
characteristic less than the lower performance requirement of 9 is at most 0.005.  This assertion however 
requires that we assume that the data follow a Normal distribution.  Figure 3.2 clearly shows that the 
Normal distribution fit is not appropriate and the lower tail of the fitted distribution is smaller than the 
observed data.  We will show using the new methodology that the ݇-factor and confidence bound 
estimated on this dataset are overly optimistic and ultimately lead to incorrect conclusions.   
 
To verify or refute an assumption of Normality, one could produce a Normal probability plot for the data 
in Figure 3.2.  Figure 3.3 below shows several probability plots that reinforce that Normality is not a valid 
assumption.  A common approach that analysts take when the Normality assumption is violated is to 
transform the data to Normality and then analyze the transformed data.  Figure 3.3 indicates that the 
Weibull or Smallest Extreme Value distributions or a Johnson Transformation [4] might be appropriate 
choices for this dataset.  Since the Weibull and Extreme Value distributions do not have a one-to-one 
relationship with the Normal distribution, the Johnson Transformation is often used for its convenience.     
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Figure 3.3.  Probability Plots for the Non-Normality Example Dataset 3. 
 
The best fit Johnson Transformation for this dataset is given by, 
 

்ܺ ൌ െ1.098 ൅ 0.990 · ln ൬
ܺ െ 8.983
10.435 െ ܺ

൰. 

 
Therefore, a ݇-factor and confidence bound can be computed on the transformed data relative to a 
transformed lower performance requirement of 
 

்ܴܲܮ ൌ െ1.098 ൅ 0.990 · ln ൬
ܴܲܮ െ 8.983
10.435 െ ܴܲܮ

൰ ൌ െ5.47. 

 
Figure 3.4 shows the transformed data and transformed lower performance requirement.  From the 
transformed data one can get a revised estimate of the ݇-factor and confidence bounds.  For this 
transformed data set, we obtain an estimated mean and standard deviation of ݔҧ் ൌ 0.024 and ்ݏ ൌ 1.003.  
Therefore, the estimated ݇-factor for this data, relative to a transformed lower performance requirement 
of ‐5.47 is estimated to be, 
 

෠݇
் ൌ

ҧ்ݔ െ  ்ܴܲܮ
்ݏ

ൌ
0.024 െ ሺെ5.47ሻ 

1.003
ൌ 5.48. 

 
Further, a 95% lower confidence bound on the transformed ݇-factor is estimated to be ෠݇଴.ଽହ,் ൌ 4.65.  
Since 4.65  >  2.576 we could assert that we have 95% confidence that the probability of obtaining a 
transformed performance characteristic less than the transformed lower performance requirement of 
െ5.47  is at most 0.005.  Although in some cases this may give us a better estimate of the demonstrated 
performance, it does not directly translate to the probability of an observed performance characteristic on 
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the original scale being greater than the original scale lower performance requirement.  That is, ்ܲ ൏
௥ܲ௘௤ ֘ ܲ ൏ ௥ܲ௘௤, where ்ܲ is the probability of obtaining a transformed performance characteristic less 

than the transformed lower performance requirement.  This relationship may hold under some simple 
(e.g. linear) transformations, but in general, the best fitting transformations are of a more complicated 
form (as is the case shown here).  We will show in Section 4.3.2 that this is an overly optimistic and 
misleading result. 
 

 

Figure 3.4.  Histogram of Example Dataset 3 after applying a Johnson Transformation. 
 
If the violation of the Normality is ignored and the data is analyzed on the original scale, the estimate of 
the ݇-factor no longer gives an accurate measure of demonstrated performance and can be misleading and 
result in erroneous conclusions.  The new methodologies, presented in Section 4, provide a way to 
estimate the demonstrated performance directly and present the results and conclusions all on the original 
engineering unit scale. 
 

3.2. Interpretability 
 
Another limitation of the ݇-factor methodology, especially when the assumption of Normality is violated, 
is that the interpretability becomes extremely compromised.  The ݇-factor estimated from transformed 
data does not translate back to the original scale and therefore is difficult to explain.  Further, by 
transforming the data and presenting results on a transformed scale, useful information about the shape of 
the distribution can be lost.  Presenting graphics, such as the one in Figure 3.4, to customers and decision 
makers can be misleading and difficult to explain properly.  This leads to a decreased understanding of 
the conclusions, their impact to performance, and the assumptions that are required to make those 
conclusions. 
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Another misleading graphic is the ݇-factor regression plot shown in Figure 2.6.  There are several metrics 
included on this regression plot that are difficult to understand and explain to customers and decision 
makers.  First, the individual ݇-factors are population quantities due to the nature of their computation; 
however, they take the appearance of individual observations.  Because of this, the ݇-factor regression is 
always decreasing with component age, even if the performance characteristic distribution is increasing 
(toward an upper requirement).  This can be conceptually confusing.  Further, the critical value shown on 
this plot is merely a percentile of a standard Normal distribution and has no relationship to the 
performance requirement.  The performance requirement rather is captured in the individual ݇-factors, 
which further complicates the explanation of this graphic.  Finally, the confidence bounds on the ݇-factor 
regression line, which are used to estimate uncertainty in the estimate of the alarm age, do not translate 
back to the engineering unit scale easily.  Therefore, a second graphic, shown in Figure 2.7, is often 
presented to customers and decision makers to demonstrate these results on the engineering unit scale.  
The point at which the prediction limit crosses the lower performance requirement is sometimes used as 
an estimate for the alarm age, and this value can be quite similar to the ݇-factor regression estimate of the 
alarm age in cases with large sample sizes.  However, the interpretation of this estimate from a 
prediction interval is for a single future observation and not for the population.  Further, the 
prediction interval technique does not provide a way to obtain confidence bounds on the alarm age.  The 
similarities and differences in these two intervals is difficult to explain and can be misleading.  Further, as 
mentioned in Section 1, the prediction interval only captures information about a single future 
observation.  In Section 4, we introduce a new methodology based on the computation of a statistical 
tolerance interval.  A tolerance interval covers a specified proportion of a population with a certain 
confidence level, making the tolerance interval more appropriate if a single interval is intended to bound a 
population of units or multiple future samples.  This interval is computed and presented on the 
engineering unit scale making only a single graphic necessary to present the results and conclusions.  
 

3.3. Critical Value and Decision Rule 
 
Another limitation of the standard ݇-factor methodology is that although the ݇-factor itself is a 
standardized quantity it does not take into account the desired performance that is to be demonstrated (i.e. 
the probability of failing to meet performance requirements should be at most ௥ܲ௘௤).  This rather is 
accomplished by specifying a suitable critical value corresponding to ௥ܲ௘௤.  This is easily demonstrated 

using Example Dataset 1.  Recall for this dataset we had ෠݇ ൌ 4.12 and ෠݇଴.ଽହ ൌ 3.48.  Therefore, if we 
would like to demonstrate that the maximum probability of observing a performance characteristic less 
than the lower performance requirement of 9 is at most ௥ܲ௘௤ ൌ 0.005, then we would use a critical value 
of Φିଵ൫1 െ ௥ܲ௘௤൯ ൌ Φିଵሺ0.995ሻ ൌ 2.576.  Since the assumption of Normality is sufficient for this 

dataset and ෠݇଴.ଽହ ൌ 3.48 ൐ 2.576 we could conclude that we have 95% confidence that the probability of 
obtaining a performance characteristic less than the lower performance requirement of 9 is at most 0.005.  
If we assume however that this performance characteristic must have a more stringent requirement on the 
maximum probability of failure then our critical value will change.  This can occur on components that 
have several potential failure mechanisms that are monitored by several performance characteristics.  
Then, to demonstrate an overall probability of failure each individual performance characteristic must 
demonstrate meeting a more strict maximum probability of failure.  Suppose the requirement for this 
example is that the maximum probability of observing a performance characteristic less than the lower 
performance requirement of 9 is at most ௥ܲ௘௤ ൌ 0.0001.  The critical value for this new requirement 
becomes ܸܥ ൌ Φିଵሺ0.9999ሻ ൌ 3.719.  Given the estimated 95% lower confidence bound on the ݇-
factor of ෠݇଴.ଽହ ൌ 3.48 we cannot claim that we are meeting the requirement with 95% confidence.      
 
It is common for different components to have different requirements and it may even be the case that 
different performance characteristics from the same component could have different requirements.  
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Therefore, it can become quite confusing when ݇-factors from one performance characteristic are 
compared against one critical value while another is compared against a different critical value.  This 
induces the common question about the ݇-factor of “what is large enough” and causes the answer to be 
overly confusing.  Further, this is conceptually very different than the framework in computational 
simulation applications where ܯ/ܷ ൐ 1 indicates that the requirements are being met.  In the 
methodology proposed in Section 4 the required probability of failure is incorporated into the calculation 
of a new margin divided by uncertainty figure-of-merit.  It will be shown that this allows us to use a 
single critical value for all performance characteristics regardless of their requirements. 
 

3.4. Quantification of Sampling Uncertainty 
 
In the standard ݇-factor methodology, the uncertainty is quantified by the sample standard deviation.  
This provides an estimate of the stochastic variability in the measurements of the performance 
characteristic.  This aleatory uncertainty accounts for variability arising from a number of effects (unit-to-
unit differences, lot-to-lot differences, lack of measurement precision, etc.), none of which should alone 
account for the majority of the total stochastic variability.  The estimate of the ݇-factor is a function of the 
estimated margin and uncertainty.  It is, however, just an estimate based on a single sample of data points.  
If a different sample of data were chosen the estimates of margin, uncertainty, and hence ෠݇ would be 
different.  The uncertainty associated with the random variations in the estimates of population 
parameters is referred to as Sampling Uncertainty.  An estimate of the ݇-factor, based upon the mean and 
standard deviation from a single sample of data clearly does not quantify this type of uncertainty.   
 
A range of possible values of a population parameter may be computed from the sample with a defined 
likelihood (a statistical confidence level) of bounding the true population parameter.  This range is called 
a (statistical) confidence interval, and is usually labeled with the confidence level.  Confidence intervals 
for high levels of confidence are wider than confidence intervals for lower levels of confidence.  
Therefore, as discussed in Section 2.1, a lower confidence bound on the ݇-factor should be computed to 
account for this additional uncertainty.  The computation of this confidence bound however is not trivial 
and in most cases requires an approximation or simulation based technique to obtain the bound.  Further, 
these approaches in most cases are only applicable to Normal data.  A commonly used simplification to 
obtain a confidence bound is to assume the standard deviation is a known constant and obtain a 
confidence bound that accounts for uncertainty in the mean only.  This is the case in the ݇-factor age 
trend regression analysis.  The individual ݇-factors are regressed versus age and a confidence interval is 
obtained on the mean ݇-factor.  This requires the assumption that the standard deviation is known and 
hence the confidence interval only accounts for uncertainty in the estimation of the mean of the data.   
 
The approach described in Section 4 defines uncertainty to account for sampling uncertainty.  We will 
also provide an example of how this approach can be easily applied to a distribution other than Normal.  
Finally, the choice of the confidence level will be incorporated into the estimate of the new figure-of-
merit without having to redefine a new critical value.   
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4. A NEW APPROACH TO QMU FOR PHYSICAL SIMULATION DATA 
 
 
The methodology proposed here is intended for a performance characteristic that has shown the potential 
for low margin, a deviation from the assumption of Normality, or that the margin is changing with age.  
This methodology shifts the focus of the analysis from the mean of the performance distribution to a 
meaningful percentile of the distribution.  The percentile is chosen to correspond to a value that contains a 
certain acceptable proportion of the population units.  This prompts the notion of margin to shift from the 
difference between the mean of a performance characteristic (PC) and its performance requirement (PR) 
to the difference between a meaningful percentile of the distribution of the performance characteristic and 
its performance requirement.  It is also proposed to quantify uncertainty through the computation of a 
statistical confidence bound on the best estimate of the chosen percentile rather than by a sample standard 
deviation.  Further, this approach will bridge a current conceptual gap between QMU for physical 
simulation and QMU for computational simulation applications.   
 
Again, the methodologies presented here are intended for a well-understood dataset that has been through 
a comprehensive engineering analysis.  This newly proposed methodology incorporates both the required 
maximum allowable probability of failure and the confidence level into the computation of the new 
margin divided by uncertainty figure-of-merit.  Therefore, these essential pieces of information must be 
discussed in the engineering analysis and documented prior to performing these more rigorous statistical 
analyses.  We assume that a dataset that has been through a rigorous engineering analysis has the 
following properties. 
 

1. A subset of the performance characteristics have been identified to have an impact on 
performance or are meaningful for successful component or system function. 

 
2. The performance requirements for each performance characteristic to be analyzed are known and 

have a meaningful engineering justification. 
 

3. The pedigree and representativeness of the units tested are understood and relate directly to a 
known population of interest.  In addition, the testing procedures are known to be an accurate 
representation of use conditions and component function and should be well documented. 

 
4. The existence and impact of all potential factors (environmental conditions, lot-to-lot differences, 

launch profiles, tester differences, etc.) are known to a degree that allows one to account for them 
properly in the analysis. 

 
5. The sample size and quality of the dataset are sufficient for further analysis.  A dataset with a 

small sample size, unknown factors, or large measurement uncertainty may not be appropriate for 
these methodologies.  A statistician can provide guidance to decide if a dataset meets this 
criterion. 

 
Further, upon completion of the engineering analysis of the data, an Engineering Review should be 
performed by an interdisciplinary team (Systems and Components Engineering, Test Engineers, 
Statisticians and Analysts, etc.) to ensure that the conclusions resulting from the engineering analysis are 
acceptable and the dataset is sufficient for further analysis.  
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4.1. Overview and Definitions 
 
The methodologies proposed in this paper are intended to answer the following questions: 
 

1. Are we ࢅࢅ% certain that at-least ࢄࢄ% of the unit population will yield a response greater than 
the threshold ࢀ?  

 
2. Are we ࢅࢅ% certain that at-least ࢄࢄ% of the unit population will yield a response greater than 

the threshold ࢀ after ࢆ years of life? 
 

3. At which age will we no longer be ࢅࢅ% certain that at-least ࢄࢄ% of the unit population will 
yield a response greater than the threshold ࢀ? 
 

The values of ࢆ ,ࢅࢅ ,ࢄࢄ, and ࢀ and the comparisons ‘at-least’ versus ‘at-most’ and ‘greater than’ 
versus ‘less than’ are all parameters of the requirement.  This requirement reflects a common question 
addressed through QMU.  Note that, in some applications the appropriate metric (ܺܺ) could be defined as 
the median or as the mean (as in the ݇-factor methodology) of the performance characteristic distribution. 
 
A measure of demonstrated performance is a Percentile of the distribution of the performance 
characteristic corresponding to the Maximum Allowable Probability of Failure, ࢗࢋ࢘ࡼ.  As discussed in 
Section 2.1, this probability of failure specifically refers to a failure to meet performance requirements 
(margin failures), however we will simply use the terminology maximum probability of failure or ௥ܲ௘௤.  A 
percentile of a distribution is defined as the value of a variable (here the performance characteristic) 
below which a certain percent of the values for that variable will fall.  We denote a percentile by ܳ௥, 
where ݎ represents the probability that a performance characteristic value will fall below ܳ௥.  That is, 
 

ܥሺܾܲ݋ݎܲ ൏ ܳ௥ሻ ൌ  .ݎ
 
For inferences with respect to a lower requirement, we are generally concerned with the lower tail and 
percentile of the performance characteristic distribution and for inferences with respect to an upper 
requirement, we are concerned with the upper tail and percentile.   
 
We define the Content of a distribution to be the proportion of units that are expected to be within the 
performance requirements (proportion greater than a lower requirement or proportion less than an upper 
requirement) and denote this quantity by lower case ݌.  Recall question 1 above; are we ܻܻ% certain that 
at-least ܺܺ% of the unit population will yield a response less than the threshold ܶ?  Here ܺܺ% 
corresponds to the desired content, ܺܺ%  ൌ ݌  · 100%.  Further, the content is one minus the maximum 
allowable probability of failure, ݌ ൌ 1 െ ௥ܲ௘௤.   
 
We then define the Required Performance of the measured performance characteristic to be the ሺ1 െ ሻ݌ ·
100th percentile, ܳଵି௣, for a lower requirement or the ݌ · 100th percentile, ܳ௣, for an upper requirement.  
This implies that these percentiles relate directly to the maximum probability of failure.  That is, for a 
lower requirement, ܾܲ݋ݎ൫ܲܥ ൏ ܳଵି௣൯ ൌ 1 െ ݌ ൌ ௥ܲ௘௤, and for an upper requirement, ܾܲ݋ݎ൫ܲܥ ൐
ܳ௣ሻ ൌ 1 െ ܥ൫ܾܲ݋ݎܲ ൏ ܳ௣൯ ൌ 1 െ ݌ ൌ ௥ܲ௘௤.  Figure 4.1 below depicts these percentiles and their 
interpretation graphically.   
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Figure 4.1.  Graphical Depiction of the Percentile, the Content, and Preq. 
 
In general, we will not know the distribution of the performance characteristic perfectly, but rather will 
estimate it from a sample of data.  We define the Observed Performance or Assessed Performance as the 
Estimate of the chosen percentile and denote this by either ෠ܳଵି௣ or ෠ܳ௣ for a lower or upper percentile 
respectively.   
 
The observed performance is an estimate of a population parameter based on a sample of data.  To 
account for the sampling uncertainty, the range of possible values of the population parameter may be 
computed from the sample with a defined likelihood (a statistical confidence level) of bounding the true 
population parameter with a Confidence Bound.  Suppose we desire a ߛ · 100% confidence bound on the 
estimated percentile.  For a lower percentile, ෠ܳଵି௣, a lower confidence bound is computed, denoted by 
෠ܳଵି௣,ఊ, and for an upper percentile, ෠ܳ௣, an upper confidence bound is computed, denoted by ෠ܳ௣,ఊ.  The 
confidence bound accounts for the uncertainty in the estimation of the desired percentile and is referred to 
as a Statistical Tolerance Bound [5].  Formally, 
 

ܥ൫ܾܲ݋ݎ൫ܾܲ݋ݎܲ ൏ ෠ܳଵି௣,ఊ൯ ൑ 1 െ ൯݌ ൒ ܥ൫ܾܲ݋ݎ൫ܾܲ݋ݎܲ    or     ߛ ൏ ෠ܳ௣,ఊ൯ ൒ ൯݌ ൒  .ߛ
 
As discussed in Sections 1, the tolerance interval covers a specified proportion of a population with a 
certain confidence level, which is exactly the goal of the QMU questions posed above.  For an analysis 
with respect to a lower requirement ሺܴܲܮሻ, this tolerance bound, ෠ܳଵି௣,ఊ, is the value that ݌ · 100% of the 
performance characteristic values (the content)  will be greater than with ߛ · 100% confidence.  
Therefore, if ෠ܳଵି௣,ఊ ൐ ݌ then we are able to claim that ܴܲܮ · 100% of the performance characteristic 
values will be greater than the lower performance requirement with ߛ · 100% confidence.  This also 
implies that if ෠ܳଵି௣,ఊ ൐ then we can claim that at most ሺ1 ܴܲܮ െ ሻ݌ · 100% ൌ ௥ܲ௘௤ · 100% of the 
performance characteristic values will be less than the lower performance requirement with ߛ · 100% 

ܳଵି௣ ܳ௣ 

ܥ൫ܾܲ݋ݎܲ ൏ ܳଵି௣൯
ൌ ௥ܲ௘௤ ௥ܲ௘௤ ൌ ܥ൫ܾܲ݋ݎܲ ൐ ܳ௣൯ 

݌ ൌ 1 െ ௥ܲ௘௤ 
ൌ ܥ൫ܾܲ݋ݎܲ ൐ ܳଵି௣൯

݌ ൌ 1 െ ௥ܲ௘௤ 

ൌ ܥ൫ܾܲ݋ݎܲ ൏ ܳ௣൯ 
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confidence.  A similar statement could be made for an upper requirement however we would require 
෠ܳ௣,ఊ ൏ ܷܴܲ.  Therefore, the tolerance bound incorporates information about margin and uncertainty and 
can be compared directly to the performance requirement to draw conclusions.  This is appealing because 
all decisions remain on the engineering unit scale, which provides an easily interpreted result.   
 
We also introduce the concept of a Coverage Probability.  The coverage probability is defined as the 
estimated probability that a performance characteristic will be either greater than a lower requirement or 
less than an upper requirement with ߛ · 100% confidence.  That is, the coverage probability is the value 
௖ that satisfies the equation, ෠ܳଵି௣೎,ఊ݌ ൌ for a lower requirement or ෠ܳ௣೎,ఊ ܴܲܮ ൌ ܷܴܲ for an upper 
requirement.  In other words, it is the content value such that the tolerance bound will be exactly equal to 
the performance requirement.  The coverage probability can be calculated by iteratively changing the 
content value until the tolerance bound equals the performance requirement (easily implemented by a 
linear search algorithm).  This metric will be useful in exploring the properties of the new figure-of-merit, 
which is defined in Section 4.2.  The following discussion provides explicit definitions for the 
computation of the margin and uncertainty. 
 
If the estimated lower percentile is greater than the lower performance requirement ሺܴܲܮሻ, we interpret 
this as demonstrating that there is positive margin to the lower performance requirement.  Similarly, if the 
estimated upper percentile is less than the upper performance requirement ሺܷܴܲሻ then this demonstrates 
positive margin to the upper performance requirement.  Formally, the Margin is defined to be the 
difference between the percentile and the performance requirement, ܯ ൌ ܳଵି௣ െ  for a lower ,ܴܲܮ
requirement or, ܯ ൌ ܷܴܲ െ ܳ௣, for an upper requirement.  Similarly, the Estimated Margin is defined to 
be the difference between the estimated percentile and the performance requirement, ܯ෡ ൌ ෠ܳଵି௣ െ  ,ܴܲܮ
for a lower requirement or, ܯ෡ ൌ ܷܴܲ െ ෠ܳ௣, for an upper requirement.  As mentioned above, in some 
applications the appropriate metric could be defined as the median ܳହ଴ or as the mean (as in the ݇-factor 
methodology) of the performance characteristic distribution.  In such cases, the definition of margin 
would still hold as defined here. 
 
Next, we define Uncertainty as the width of the confidence bound (absolute difference between the 
estimated percentile and its confidence bound), ෡ܷ ൌ ෠ܳଵି௣ െ ෠ܳଵି௣,ఊ for a lower requirement, and ෡ܷ ൌ
෠ܳ௣,ఊ െ ෠ܳ௣ for an upper requirement  This definition accounts for the uncertainty in the estimation of the 
desired percentile, which in most cases is a function of both the mean and standard deviation.  Therefore, 
we ultimately account for the uncertainty in the estimation of both of these parameters rather than just the 
mean. 
 
It should be noted that this definition of uncertainty only accounts for the sampling uncertainty in the 
estimation of the chosen percentile.  The confidence bound quantifies the range of potential values for the 
true population parameter around the best estimate of that parameter.  Although the uncertainty defined 
here only accounts for sampling variability, the overall methodology still quantifies the aleatory 
uncertainty from stochastic variability with the definition of margin above.  Once a probability 
distribution function is specified, the stochastic variability is captured by the shape of the assumed 
distribution.  Therefore, the estimation of the desired percentile, which requires a distributional 
assumption, already quantifies the unit-to-unit variability.  Hence, the estimate of margin defined here 
captures the uncertainty from unit-to-unit variability (in addition to information with respect to meeting 
the defined performance requirements) and the estimate of uncertainty defined here captures the 
uncertainty from sampling variability, both of which are forms of aleatory uncertainty.   
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4.2. A New Figure of Merit 
 
We define a new figure-of-merit to be a Tolerance Ratio ሺࡾࢀሻ, which is the ratio of estimated margin 
divided by the estimated uncertainty based on the tolerance bound methodology, 
  

ܴܶ ൌ
෡ܯ

෡ܷ ൌ
෠ܳଵି௣ െ  ܴܲܮ
෠ܳଵି௣ െ ෠ܳଵି௣,ఊ

    or    ܴܶ ൌ
ܷܴܲ െ ෠ܳ௣ 
෠ܳ௣,ఊ െ ෠ܳ௣

. 

 
This figure-of-merit definition incorporates the performance requirement, the maximum allowable 
probability of failure, the statistical confidence level, and the aleatory uncertainty arising from both unit-
to-unit variability and sampling variability.  It does not however account for issues with measurement bias 
or instabilities in the measurement process over time.  If the accuracy of the measurement system is 
flawed, causing a systematic shift or bias to all measurements, then the tolerance ratio could provide 
misleading results.  Therefore, it is assumed that the measurement uncertainty is thoroughly explored 
during a comprehensive engineering analysis as discussed in Section 5.   
 
Recall the decision criteria discussed in Section 4.1 above consisted of a comparison of the tolerance 
bound and the performance requirement. To remain consistent with existing methodologies and make 
decisions based on the margin divided by uncertainty figure-of-merit, we have, if ෠ܳଵି௣,ఊ ൐  then ܴܲܮ
෠ܳଵି௣ െ ෠ܳଵି௣,ఊ ൏ ෠ܳଵି௣ െ  indicates we are meeting the requirement, and hence ܴܲܮ
 

ܴܶ ൌ
෠ܳଵି௣ െ  ܴܲܮ
෠ܳଵି௣ െ ෠ܳଵି௣,ఊ

൐ 1 

 
shows we are meeting the requirements as well.  Therefore, comparing the new tolerance ratio against the 
critical value of 1 is the only decision criteria needed.  We do acknowledge that the computation of this 
metric still requires a decision on the maximum probability of failure to demonstrate and the statistical 
confidence level, both of which should be meaningful and documented.  The choice of these values 
should be decided in the engineering analysis of the data prior to any formal analyses.  We believe it is 
more natural to have the estimate of the figure-of-merit, ܴܶ, change based on changes in these two values 
rather than having the critical value or decision rule change.  The Sections 4.3 and 4.4 provide additional 
details of these new methodologies specific to a point-in-time or regression analysis respectively. 
 

4.3. Point in Time Analysis 
 
Recall, a point-in-time analysis is performed if data are collected at a single point in time, such as at 
product acceptance, or if no trend is present in the data.  The goal of this analysis is to quantify the margin 
and uncertainty of the measured performance characteristic (ܲܥ) relative to an upper or lower 
performance requirement (ܷܴܲ or ܴܲܮ) at that point in time.  A point in time analysis attempts to answer 
the following question.  
 

1. Are we ࢅࢅ% certain that at-least ࢄࢄ% of the unit population will yield a response greater than 
the threshold ࢀ?  

 
Further recall, the values of ࢆ ,ࢅࢅ ,ࢄࢄ, and ࢀ and the comparisons ‘at-least’ versus ‘at-most’ and 
‘greater than’ versus ‘less than’ are all parameters of the requirement and will be specific to each 
individual analysis.   
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The estimated margin is defined as the difference between the estimate of the chosen percentile and the 
performance requirement, ܯ෡ ൌ ෠ܳଵି௣ െ  for a lower requirement.  The uncertainty is defined as the ,ܴܲܮ
absolute difference between the estimated percentile and its confidence bound, ෡ܷ ൌ ෠ܳଵି௣ െ ෠ܳଵି௣,ఊ.  
Figure 4.2 depicts these new definitions using a Normal distribution.  The metrics are defined in the 
figures and equations below relative to the lower performance requirement (ܴܲܮ) for reference.  For an 
upper bound, the metrics could be adjusted appropriately.   
 

 

Figure 4.2.  Graphical Depiction of the New Metrics Relative to a Normally Distributed PC. 
 
Although this new methodology does require a distributional assumption, the choice of which should be a 
key part of the analysis process, it can be applied to any standard distribution.  Figure 4.3 demonstrates 
this by depicting these metrics using a Weibull distribution fit.  While the estimation of these metrics will 
be dependent on the chosen distribution, the definition of the metrics, their meaning and interpretation, 
and most importantly the decision criteria and critical value remain the same regardless of the choice of 
distribution.  This provides a consistent and interpretable methodology that can be applied across a wide 
variety of datasets.   
 
The implementation of this methodology and the estimation of the tolerance bounds when the data do not 
follow a Normal distribution may be difficult, especially for a non-statistician.  There are two substantial 
practical hurdles.  First, one must choose the best distributional form to use for the given dataset and next 
one must be able to correctly calculate the tolerance bound for the chosen distribution.  Both steps add 
complexity to the QMU process, however, these steps need only to be applied to a select few performance 
characteristics that are mature enough and have been through a rigorous engineering analysis.  Once a 
dataset arrives at this stage of the QMU process, the component engineers and/or analysts should consult 
with a statistician to decide on the best statistical approach.  Widespread adoption and implementation of 
these methodologies can be achieved through collaboration.    
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Figure 4.3.  Graphical Depiction of the New Metrics Relative to a Weibull Distributed PC. 
 
The remainder of this section provides the technical details for the implementation of this point-in-time 
methodology.  Below we show examples using the Normal distribution (Example Dataset 1), the Weibull 
distribution (Example Dataset 3), and Lognormal distribution (Example Dataset 4).  For more details on 
the implementation of this methodology for other distributions, please refer to reference 5.   
 
4.3.1 Normal Data Analysis 
 
We begin by analyzing Example Dataset 1 using a Normal distribution fit.  For a univariate Normal 
distribution with mean ߤ and standard deviation ߪ, the ݎ · 100th percentile is,  
 

ܳ௥ ൌ ߤ ൅ σ · Φିଵሺݎሻ, 
 
where Φሺ·ሻ is the cumulative distribution function (CDF) for a standard Normal distribution (ߤ ൌ 0, 
ߪ ൌ 1).  That is, Φିଵሺݎሻ is the ݎ · 100th percentile of a standard Normal distribution.  Given a sample of 
data the mean and standard deviation can be estimated by the sample mean, ݔҧ, and sample standard 
deviation, ݏ.  For a sample of size ݊ these are defined as, 
 

ҧݔ ൌ
1
݊
෍ݔ௜

௡

௜ୀଵ

   and   ݏଶ ൌ
1

݊ െ 1
෍ሺݔ௜ െ ҧሻଶݔ
௡

௜ୀଵ

. 

 
The best estimate of this percentile is obtained by replacing the mean and standard deviation with their 
respective best estimates, ݔҧ and ݏ.  Hence, 
 

෠ܳ௥ ൌ ҧݔ ൅ ݏ · Φିଵሺݎሻ. 
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For Example Dataset 1, shown in Figure 4.4 below, there are 65 observations yielding an estimated mean 
and standard deviation of ݔҧ ൌ  9.993 and ݏ ൌ  0.241.  For this dataset there is a lower performance 
requirement of ܴܲܮ ൌ 9.  Further, for example, assume we require ܾܲ݋ݎሺܲܥ ൏ ሻܴܲܮ ൏ ௥ܲ௘௤ ൌ 0.005 
with 95% confidence.  Hence, the content is ݌ ൌ 1 െ ௥ܲ௘௤ ൌ 0.995.  To frame this into the structure of 
question introduced above, we have  
 

1. Are we ૢ૞% certain that at-least ૢૢ. ૞% of the unit population will yield a response greater 
than the threshold ࡾࡼࡸ ൌ ૢ?  

 
Since the analysis is with respect to a lower bound the desired percentile would be the ሺ1 െ ሻ݌ · 100 ൌ 
0.5th percentile, ܳଵି௣ ൌ ܳଵି଴.ଽଽହ ൌ ܳ଴.଴଴ହ, and  Φିଵሺ0.005ሻ ൌ െ2.576.  Therefore, the estimated 0.5th 
percentile for this set of data is, 
 

෠ܳ଴.଴଴ହ ൌ 9.993 ൅ 0.241 · Φିଵሺ0.005ሻ ൌ 9.372. 
 
For data that follows a Normal distribution the estimated lower tolerance bound from a sample of size ݊ is 
of the form, 
 

෠ܳଵି௣,ఊ ൌ ҧݔ െ ݏ · ݇ଵ, 
 
where  
 

݇ଵ ൌ ௡ିଵ,ఊݐ ቀ√݊ · Φିଵሺ݌ሻቁ /√݊ 

 
and ݐௗ௙,ఊሺΔሻ denotes the ߛ · 100th percentile of a non-central ݐ-distribution with ݂݀ degrees of freedom 
and noncentrality parameter Δ.  The value ݇ଵ is commonly referred to as a tolerance factor and should not 
be confused with the ݇-factor discussed in Section 2.  For details on the derivation of this tolerance factor 
and the tolerance bound in general, please refer to reference 5.  Tables of the non-central ݐ-distribution are 
also available in a Sandia Monograph on tolerance intervals [6].  An upper tolerance bound for a Normal 
distribution, computed when the analysis is with respect to an upper limit, is given by, ෠ܳ௣,ఊ ൌ ҧݔ ൅ ݏ · ݇ଵ.   
 
For Example Dataset 1, 
 

݇ଵ ൌ ଺ସ,଴.ଽହݐ ቀ√65 · Φିଵሺ0.995ሻቁ /√65 ൌ 3.072 

 
and 
 

෠ܳ଴.଴଴ହ,଴.ଽହ ൌ 9.993 െ 0.241 · 3.072 ൌ 9.253. 
 
The estimated tolerance bound is greater than the lower performance requirement, which indicates that we 
are meeting the requirement.  Therefore, we can assert that we are 95% confident that at least 99.5% of 
the performance characteristic values will be greater than the lower performance requirement of 9.  The 
following show explicit calculations of the margin, uncertainty, and tolerance ratio and show how the 
same conclusion can be reached via those metrics. 
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Figure 4.4.  Example Dataset 1 Showing the Metrics for the New QMU Methodology. 
 
The estimated margin and uncertainty for this dataset is, ܯ෡ ൌ ෠ܳଵି௣ െ ܴܲܮ ൌ 9.372 െ 9 ൌ 0.372 and 
෡ܷ ൌ ෠ܳ଴.଴଴ହ െ ෠ܳ଴.଴଴ହ,଴.ଽହ ൌ 9.372 െ 9.253 ൌ 0.119.  A depiction of these new metrics applied to 
Example Dataset 1 is shown in Figure 4.4 above.  Finally, the estimate of the tolerance ratio is given by, 
 

ܴܶ ൌ
෡ܯ

෡ܷ ൌ
0.372
0.119

ൌ 3.13. 

 
Since ܴܶ ൌ 3.13 ൐ 1, we can conclude that we are meeting the requirements and can assert that we are 
95% confident that at least 99.5% of the performance characteristic values will be greater than the lower 
performance requirement of 9.  Again, this should be obvious since the estimated tolerance bound, 
෠ܳ଴.଴଴ହ,଴.ଽହ ൌ 9.253, is greater than the lower performance requirement, which indicates that we are 
meeting the requirement.  Further, for a fixed confidence level of 95%, a tolerance bound with a content 
of ݌ ൌ 0.99975 is estimated to be, ෠ܳ଴.ଽଽଽ଻ହ ,଴.ଽହ ൌ 9.  Therefore, the coverage probability is estimated to 
be, ݌௖ ൌ 0.99975.  The magnitude of the tolerance ratio indicated that we could actually make a stronger 
statement, which we have now quantified with the computation of the coverage probability.  We can 
assert that, with 95% confidence, at least 99.975% of the performance characteristic values will be 
greater than the lower performance requirement of 9.  We also note that this conclusion is consistent with 
the conclusion based on the ݇-factor shown in Section 2.1.  This however should be expected for data that 
follows a Normal distribution.  We will see, using the non-normal Example Dataset 3, that this will not 
always be the case.   
 
One main advantage of this new methodology is the interpretability.  If the lower tolerance bound is 
greater than the lower performance requirement then we are meeting our requirements and we will have 
ܴܶ ൐ 1.  If we change our requirements, to say ௥ܲ௘௤ ൌ 0.0001 with 95% confidence, then we would 
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compute a new tolerance ratio but the decision criteria will remain the same.  For Example Dataset 1, 
consider, ݌ ൌ 1 െ ௥ܲ௘௤ ൌ 0.9999.  The estimated percentile and confidence bound are, ෠ܳଵି௣ ൌ ෠ܳ଴.଴଴଴ଵ ൌ
9.993 ൅ 0.241 · Φିଵሺ0.0001ሻ ൌ 9.097 and ෠ܳଵି௣,ఊ ൌ ෠ܳ଴.଴଴଴ଵ,଴.ଽହ ൌ 8.933.  The estimated margin and 
uncertainty are, ܯ෡ ൌ ෠ܳଵି௣ െ ܴܲܮ ൌ 9.097 െ 9 ൌ 0.097, and ෡ܷ ൌ ෠ܳ଴.଴଴଴ଵ െ ෠ܳ଴.଴଴଴ଵ,଴.ଽହ ൌ 9.097 െ
8.933 ൌ 0.1637.  Clearly, the tolerance bound ෠ܳ଴.଴଴଴ଵ,଴.ଽହ ൌ 8.933 is less than the lower performance 
requirement so we are not meeting the requirement and necessarily ܴܶ ൌ 0.593 is less than 1.  We have 
changed the requirement level, producing a new estimate of the figure-of-merit, but still have the same 
decision criteria and critical value.  Therefore, this dataset does not meet the requirement of ௥ܲ௘௤ ൌ
0.0001 with 95% confidence.    
 
4.3.2 Non-Normal Data Analysis 
 
This section presents methodologies for performing a point in time analysis on non-Normal data.  There 
are two different approaches that will be discussed, a transformation approach and a direct parametric 
approach using a standard but non-Normal distribution.  The transformation approach is appropriate when 
the data can be transformed easily (with a one-to-one transformation) to a Normal distribution, for 
example with a log or square root transformation.  If the data fits a non-Normal distribution that does not 
have a one-to-one transformation with a Normal distribution (e.g. a Weibull distribution) then the direct 
parametric approach will be more appropriate.  
 
Transformation Approach 
 
This section describes an approach for non-Normal data when there is a one-to-one transformation 
available to transform the observed data to fit a Normal distribution.  Consider Example Dataset 4 in 
Figure 4.5 with a Lognormal fit to the data.  For this dataset suppose there is a lower performance 
requirement of ܴܲܮ ൌ 0.25.  
 
If the performance characteristic distribution fits a Lognormal distribution then ln ሺܲܥሻ follows a Normal 
distribution.  Suppose, ݕଵ, ,ଶݕ … ,  ௡ are a sample from a Lognormal performance characteristicݕ
distribution with location and scale parameters ߤ and ߪ respectively.  Then, ݔଵ ൌ ln ሺݕଵሻ, ଶݔ ൌ
ln ሺݕଶሻ, … , ௡ݔ ൌ ln ሺݕ௡ሻ is a sample from a Normal distribution with mean and standard deviation ߤ and 
 respectively.  Therefore, the Normal based approaches discussed in Section 4.3.1 can be applied to ߪ
construct tolerance bounds based on the sample ݔଵ, ,ଶݔ … , ௡.  Recall, ෠ܳଵି௣,ఊݔ ൌ ҧݔ െ ݏ · ݇ଵ and ෠ܳ௣,ఊ ൌ
ҧݔ ൅ ݏ · ݇ଵ are lower and upper tolerance bounds respectively for a sample from a Normal distribution 
where, 
 

ҧݔ ൌ
1
݊
෍ݔ௜

௡

௜ୀଵ

ଶݏ   , ൌ
1

݊ െ 1
෍ሺݔ௜ െ ҧሻଶݔ
௡

௜ୀଵ

,   ݇ଵ ൌ
௡ିଵ,ఊݐ ቀ√݊ · Φିଵሺ݌ሻቁ

√݊
, 

 
and ݐௗ௙,ఊሺΔሻ denotes the ߛ · 100th percentile of a non-central ݐ-distribution with ݂݀ degrees of freedom 
and noncentrality parameter Δ.   Therefore, 
 

෠ܳଵି௣,ఊ
כ ൌ ݁ொ෠భష೛,ം ൌ ݁௫ҧି௦·௞భ  and   ෠ܳ௣,ఊכ ൌ ݁ொ෠೛,ം ൌ ݁௫ҧା௦·௞భ  

 
are lower and upper tolerance bounds respectively from the original Lognormal performance 
characteristic distribution.  Furthermore, ܾܲ݋ݎሺܲܥ ൏ ሻܴܲܮ ൌ ሻܥሺlnሺܾܲ݋ݎܲ ൏ lnሺܴܲܮሻሻ, therefore all 
questions posed in Section 4.3.1 based on the Normal distribution can be readily applied. 
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Figure 4.5.  Example Dataset 4 with a Lognormal Distribution Fit. 
 
For Example Dataset 4, the mean and standard deviation of the transformed Normal data are equivalent to 
the location and scale parameters from the original Lognormal distribution which are shown in Figure 4.5.  
Hence, ݔҧ ൌ െ0.113 and ݏ ൌ 0.363 are obtained from a sample of size ݊ ൌ 65.  For example, assume 
there is a requirement that 99% of the units must have a performance characteristic value greater than the 
lower performance requirement with 95% confidence.  The formal QMU question is then, 
 

1. Are we ૢ૞% certain that at-least ૢૢ% of the unit population will yield a response greater than 
the threshold ࡾࡼࡸ ൌ ૙. ૛૞?  
 

The question posed requires ܾܲ݋ݎሺܲܥ ൏ ሻܴܲܮ ൏ ௥ܲ௘௤ ൌ 0.01 with 90% confidence.  Hence, the content 
for this analysis is ݌ ൌ 1 െ ௥ܲ௘௤ ൌ 0.99 and the desired percentile would be the ሺ1 െ ሻ݌ · 100 ൌ  1st 
percentile, ܳଵି௣ ൌ ܳ଴.଴ଵ, and  Φିଵሺ0.01ሻ ൌ െ2.326.  Therefore, the estimated 1st percentile for 
transformed set of data is, 
 

෠ܳ଴.଴ଵ ൌ െ0.113 ൅ 0.363 · Φିଵሺ0.01ሻ ൌ െ0.957. 
 
The estimated 1st percentile for the original Lognormal set of data is, 
 

෠ܳ଴.଴ଵ
כ ൌ ݁ொ෠బ.బభ ൌ ݁ି଴.ଽହ଻ ൌ 0.384. 

 
As discussed above, the confidence bound on the estimated percentile is a statistical tolerance bound that 
can be computed using the Normal distribution methodology.  For this dataset, ݊ ൌ 65, ݂݀ ൌ ݊ െ 1 ൌ
64, Δ ൌ √65 · Φିଵሺ0.99ሻ ൌ 18.76, and 
 

݇ଵ ൌ ଺ସ,଴.ଽହሺ18.76ሻ/√65ݐ ൌ 2.79. 
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The lower tolerance bound for the transformed dataset is estimated to be 
 

෠ܳ଴.଴ଵ,଴.ଽହ ൌ െ0.113 െ 0.363 · 2.79 ൌ െ1.124 
 
and the estimated lower tolerance bound for the original Lognormal set of data is, 
 

෠ܳ
଴.଴ଵ,଴.ଽହ
כ ൌ ݁ொ෠బ.బభ,బ.వఱ ൌ 0.325. 

 
The estimated lower tolerance bound, ෠ܳ଴.଴ଵ,଴.ଽହ ൌ 0.325, is greater than the lower performance 
requirement, which indicates that we are meeting the requirement.  We reinforce this conclusion by 
calculating the formal figure-of-merit.  The estimated lower margin for this dataset is, ܯ෡ ൌ ෠ܳ଴.଴ଵ

כ െ
ܴܲܮ ൌ 0.384 െ 0.25 ൌ 0.134 and the estimated uncertainty is ෡ܷ ൌ ෠ܳ଴.଴ଵ

כ െ ෠ܳ
଴.଴ଵ,଴.ଽହ
כ ൌ 0.384 െ

0.325 ൌ 0.059.  Therefore, the estimated tolerance ratio is given by, 
 

ܴܶ ൌ
෡ܯ 

෡ܷ ൌ
0.134
0.059

ൌ 2.27. 

 
Since ܴܶ ൌ 2.27 ൐ 1, we can conclude that we are meeting the requirements and can assert that we are 
95% confident that at least 99% of the performance characteristic values will be greater than the lower 
performance requirement of 0.25.  The estimates for this analysis are depicted in Figure 4.6 below. 
 

 

Figure 4.6.  QMU Metrics for Example Dataset 2 with a Lognormal Distribution Fit. 
 
Again, note that these metrics are shown on the engineering unit scale.  Although a transformation was 
required for their computations, the constraint that the transformation must be a one-to-one transformation 
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  ෠ܳଵି௣ ൌ 0.384 



38 

allows the metrics to be translated easily back to their original scale, as shown in the equations and figure 
above.  The following discussion shows an example when a one-to-one transformation is not available. 
 
Direct Parametric Approach 
 
Next, we analyze Example Dataset 3 using a Weibull distribution fit.  Recall, from the probability plots in 
Figure 3.3 above the Weibull distribution appeared to be an adequate assumption (݌-value = 0.137) for 
this dataset.  The two-parameter Weibull distribution is characterized by a shape ሺߚሻ parameter and a 
scale ሺߟሻ parameter.  The Weibull distribution can take on several different parameterizations.  Here we 
use the PDF form given by, 
 

݂ሺݔሻ ൌ
ߚ
ߟ
൬
ݔ
ߟ
൰
ఉିଵ

݁
ିቀ
௫
ఎቁ

ഁ

. 

 
The Weibull distribution does not have a one-to-one transformation with the Normal distribution.  For a 
two-parameter Weibull distribution with shape ߚ and scale ߟ, the ݎ · 100th percentile is,  
 

ܳ௥ ൌ ߟ · ሾെ lnሺ1 െ  .ሻሿଵ/ఉݎ
 
The best estimate of this percentile is given by replacing the shape and scale parameters with their 
respective maximum likelihood estimates, ߚመ  and ̂ߟ.  Hence, 
 

෠ܳ௥ ൌ ߟ̂ · ሾെ lnሺ1 െ ሻሿଵ/ఉ෡ݎ . 
 
For Example Dataset 3, shown again in Figure 4.7, there are 65 observations yielding an estimated shape 
and scale of ߚመ ൌ 51.49 and ̂ߟ ൌ 10.14.  To be consistent with the example used previously we will again 
assume we require ܲ ൏ ௥ܲ௘௤ ൌ 0.005 or the desired content is ݌ ൌ 1 െ ௥ܲ௘௤ ൌ 0.995.   
 

1. Are we ૢ૞% certain that at-least ૢૢ. ૞% of the unit population will yield a response greater 
than the threshold ࡾࡼࡸ ൌ ૢ?  

 
Since we are estimating a lower bound, the desired percentile would be the 0.5th percentile ሺ1 െ ݌ ൌ
0.005ሻ.  Therefore, the estimated 0.5th percentile for this set of data is, 
 

෠ܳ଴.଴଴ହ ൌ 10.14 · ሾെ lnሺ1 െ 0.005ሻሿ
ଵ

ହଵ.ସଽ ൌ 9.149. 
 
For data that follows a Weibull distribution the estimated lower tolerance bound from a sample of size ݊ 
is of the form, 
 

෠ܳଵି௣,ఊ ൌ ߟ̂ · exp ൫ݓଵି௣,ଵିఊ/ߚመ൯, 
 
where ݓଵି௣,ଵିఊ is the ሺ1 െ ሻߛ · 100th percentile of ݓ ൌ ሾെכߚ lnሺכߟሻ ൅ ln ሺെ lnሺ݌ሻሻሿ and כߚ and כߟ are 
the maximum likelihood estimates calculated from a sample of size ݊ from a Weibull ሺߚ ൌ 1, ߟ ൌ 1ሻ 
distribution.  The distribution of ݓ does not depend on any unknown parameters, and so its percentiles 
can be estimated using Monte Carlo simulation.  For details on the derivation of this tolerance bound, 
refer to reference 5.  For an upper tolerance bound, ෠ܳ௣,ఊ ൌ ߟ̂ · exp ൫ݓ௣,ఊ/ߚመ൯ where ݓ௣,ఊ is the ߛ · 100th 
percentile of ݓ ൌ ሾെכߚ lnሺכߟሻ ൅ ln ሺെ lnሺ1 െ  .ሻሻሿ݌
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For Example Dataset 3, ݓ଴.଴଴ହ,ଵି଴.ଽହ ൌ െ6.43 , based on a Monte Carlo simulation consisting of 
100,000 runs, and 
 

෠ܳ଴.଴଴ହ,଴.ଽହ ൌ 10.14 · exp  ൬ 
െ6.43
51.49

 ൰ ൌ 8.95, 

 
which is less than the lower performance requirement.  Consequently, we can conclude that we are not 
meeting the requirements and cannot assert that we are 95% confident that at least 99.5% of the 
performance characteristic values will be greater than the lower performance requirement of 9.  The 
margin, uncertainty, and tolerance ratio are calculated exactly as in the Normal case.  This feature 
enhances the interpretability of this methodology. 
 
The estimated margin for this dataset is, ܯ෡ ൌ ෠ܳଵି௣ െ ܴܲܮ ൌ 9.149 െ 9 ൌ 0.149.  Further, the estimated 
uncertainty is, ෡ܷ ൌ ෠ܳ଴.଴଴ହ െ ෠ܳ଴.଴଴ହ,଴.ଽହ ൌ 9.149 െ 8.95 ൌ 0.199, and the estimate of the new figure-of-
merit is given by, 
 

ܴܶ ൌ
෡ܯ

෡ܷ ൌ
0.149
0.199

ൌ 0.75, 

 
which is less than 1 reinforcing the fact that, based on the available data, we are not meeting the 
requirements.  A depiction of these new metrics applied to Example Dataset 3 is shown in Figure 4.7 
below.   
 

 

Figure 4.7.  Example Dataset 3 Showing the Metrics for the New QMU Methodology. 
 
As mentioned previously, when we fail to meet the specified requirements, a coverage probability can be 
computed to explore the true probability of meeting the requirements with a fixed level of statistical 
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confidence.  For a fixed confidence level of 95%, a tolerance bound with a content of ݌ ൌ 0.9935 is 
estimated to be, ෠ܳ଴.ଽଽଷହ ,଴.ଽହ ൌ 9.  Hence, the coverage probability is estimated to be, ݌௖ ൌ 0.9935.  The 
tolerance ratio provides the initial conclusion that we cannot assert that 99.5% of the performance 
characteristic values are greater than the lower performance requirement with 95% confidence.  The 
computation of the coverage probability then allows us to quantify the degree to which we fail to meet 
this requirement.  Here, we can only claim that, with 95% confidence, at most 99.35% of the 
performance characteristic values will be greater than the lower performance requirement. 
 
Recall, the ݇-factor analysis of Example Dataset 3 resulted in a sample mean and sample standard 
deviation of ݔҧ ൌ  10.027 and ݏ ൌ  0.257.  Thus, the estimated ݇-factor for these data, relative to a lower 
performance requirement of 9 was, ෠݇ ൌ 3.99 and the 95% lower confidence bound on the ݇-factor was 
estimated to be ෠݇଴.ଽହ ൌ 3.38 which indicates good margin.  In fact, comparing ෠݇଴.ଽହ to a critical value of 
2.576 for a maximum probability of failure of 0.005 we would conclude that we have met this 
requirement.  The mean and standard deviation alone however do not accurately characterize the shape of 
this distribution.  By properly characterizing the distribution one can see that the tail of this Weibull 
distribution fit (Figure 4.7) is much wider than a Normal distribution fit for the same dataset (Figure 3.2). 
 
This demonstrates the importance of properly characterizing the distribution of the performance 
characteristic to determine if it meets requirements.  Once that is accomplished, the estimation of a 
percentile of that distribution (and its confidence bound) provides the information needed to make 
informed decisions.  The next section demonstrates how this methodology can be applied for a dataset 
with an observed aging trend. 
 

4.4. Age Trend Regression with a Tolerance Bound 
 
This section presents the technical details to obtain an estimated percentile of a regression fit and a 
confidence bound on that percentile (statistical tolerance bound).  The identification of the age trend, 
along with a determination that the trend is due to an aging effect and not some other known or unknown 
factor, must be done during the engineering analysis of the dataset.  When an age trend is present in the 
data, the goal of the analysis tends to attempt to answer one of the following questions, 
 

1. Are we ࢅࢅ% certain that at-least ࢄࢄ% of the unit population will yield a response greater than 
the threshold ࢀ after ࢆ years of life? 
 

2. At which age will we no longer be ࢅࢅ% certain that at-least ࢄࢄ% of the unit population will 
yield a response greater than the threshold ࢀ? 

 
This remainder of this section describes the statistical analysis needed to estimate an Alarm Age.  The 
alarm age is defined as the component age at which we estimate certain percentage of the population is no 
longer contained by the performance requirement, with a given level of confidence.  Measured values of a 
performance characteristic may trend up or down, or the range of values may grow larger or smaller as 
components age.  We are most concerned if the measured values trend toward a performance requirement 
or if the range of measured values expands toward the limit.  Figure 4.8 shows a notional plot of the mean 
performance characteristic versus component age ሺܣܥሻ.  Here the mean, ߤሺܣܥሻ, the percentiles, 
ܳଵି௣ሺܣܥሻ, the margin, ܯሺܣܥሻ ൌ ܳଵି௣ሺܣܥሻ െ ሻܣܥand uncertainty, ܷሺ ,ܴܲܮ ൌ ܳଵି௣ሺܣܥሻ െ ܳଵି௣,ఊሺܣܥሻ, 
are all functions of the component age.  The notional data in Figure 4.8 depicts a downward trend and 
increasing measurement error bars with increasing component age.  A lower performance requirement 
 is shown by the red dashed line.  The plot thus demonstrates an example of decreasing (ܴܲܮ)
performance with increasing variability, with possible failure at some point in the future.  Again, the case 
of increasing variability with age is shown here for example purposes only.  The regression analyses 
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described throughout this paper assume a constant variance.  For data that exhibits increasing variability 
with age, a statistician should be consulted to determine the appropriate methodology to apply. 
 

 

Figure 4.8.  Graphical Depiction of Margin and Uncertainty with a Linear Aging Trend. 
 
Again, for simplicity, we will only explore a linear regression model with the component age (ܣܥ) as a 
single independent variable.  The regression model is given by, 
 

ܥܲ ൌ ଴ߚ  ൅ ଵߚ · ܣܥ ൅  ,ߝ
 
where ܲܥ is the performance characteristic, ߚ଴ and ߚଵare the model parameters to be estimated, and ߝ is a 
random error assumed to follow a Normal distribution with mean zero and standard deviation ߪோ.  For 
Example Dataset 2, shown again in Figure 4.9, the model parameters are estimated to be ߚመ଴ ൌ 10.493 
and ߚመଵ ൌ െ0.031 which gives the estimated regression line for the mean performance characteristic at 
age ܣܥ, shown by the dashed green line, to be ܲܥ෢ ൌ  10.493 െ 0.031 ·  Example Dataset 2 also  .ܣܥ
yields an estimate of ߪොோ ൌ 0.246. 
 
For a regression analysis assuming the random error follows a Normal distribution with mean zero and 
standard deviation ߪோ, the ݎ · 100th percentile is a function of the component age and is defined to be,  
 

ܳ௥ሺܣܥሻ ൌ ଴ߚ ൅ ଵߚ · ܣܥ ൅ ோߪ · Φିଵሺݎሻ, 
 
where Φሺ·ሻ is the cumulative probability function for a standard Normal distribution (ߤ ൌ ߪ ,0 ൌ 1).  The 
best estimate of this percentile is obtained by replacing the model parameters with their respective best 
estimates.  Hence, 
 

෠ܳ௥ሺܣܥሻ ൌ መ଴ߚ ൅ መଵߚ · ܣܥ ൅ ොோߪ · Φିଵሺݎሻ. 
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Figure 4.9.  Scatter Plot of Example Dataset 2 with Regression Fit. 
 
To be consistent with the example used previously we will again assume we require ܲ ൏ ௥ܲ௘௤ ൌ 0.005.  
Since this analysis is specific to a lower performance requirement, the desired percentile would be 
෠ܳଵି௣ሺܣܥሻ.  Recall, the content is ݌ ൌ 1 െ ௥ܲ௘௤ ൌ 0.995, hence we are interested in the 0.5th percentile 
ሺ1 െ ݌ ൌ 0.005ሻ and Φିଵሺ0.005ሻ ൌ െ2.576.  Therefore, the estimated 0.5th percentile as a function of 
component age for this set of data is, 
 

෠ܳଵି௣ሺܣܥሻ ൌ ෠ܳ଴.଴଴ହሺܣܥሻ ൌ 10.493 െ 0.031 · ܣܥ ൅ 0.246 · Φିଵሺ0.005ሻ ൌ 9.859 െ 0.031 ·  .ܣܥ
 
As discussed above, a confidence bound on a percentile is a statistical tolerance bound.  For a regression 
with a random error that follows a Normal distribution, the estimated lower tolerance bound from a 
sample of size ݊ is of the form, 
 

෠ܳଵି௣,ఊሺܣܥሻ ൌ መ଴ߚ ൅ መଵߚ · ܣܥ െ ොோߪ · ݇ଵሺܣܥሻ, 
 
where  
 

݇ଵሺܣܥሻ ൌ ݀ሺܣܥሻ · ௡ିଶ,ఊݐ ቆ
Φିଵሺ݌ሻ

݀ሺܣܥሻ
ቇ,   ݀ଶሺܣܥሻ ൌ

1
݊
൅

ሺܣܥ െ ҧሻଶݔ

∑ ሺݔ௜ െ ҧሻଶ௡ݔ
௜ୀଵ

, 

 
ߛ ௗ௙,ఊሺΔሻ denotes theݐ ҧ is the average component age, andݔ ,௜ is the ݅th component ageݔ · 100th percentile 
of a non-central ݐ-distribution with ݂݀ degrees of freedom and noncentrality parameter Δ.  The value ݇ଵ is 
commonly referred to as a tolerance factor.  For details on the derivation of this tolerance factor and the 
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tolerance bound in general, please refer to reference 5.  For an upper tolerance bound, the appropriate 
percentile is ෠ܳ௣ሺܣܥሻ and the upper tolerance bound is, ෠ܳ௣,ఊሺܣܥሻ ൌ መ଴ߚ ൅ መଵߚ · ܣܥ ൅ ොோߪ · ݇ଵ.   
 
For Example Dataset 2, the average component age is ݔҧ ൌ 8.56 and ∑ ሺݔ௜ െ ҧሻଶ௡ݔ

௜ୀଵ ൌ ሺ݊ െ 1ሻ · ௔௚௘ଶݏ ൌ
817.856, where  ݏ௔௚௘ is the estimated standard deviation of the component ages.  Therefore, 
 

݀ଶሺܣܥሻ ൌ
1
65

൅
ሺܣܥ െ 8.56ሻଶ

817.856
, 

 
and ݇ଵሺܣܥሻ and ෠ܳଵି௣,ఊሺܣܥሻ are computed using the equations above.  The estimated margin for this 

dataset is ܯ෡ሺܣܥሻ ൌ ෡ܳ
1െ݌ሺܣܥሻ െ ܴܲܮ ൌ 0.859 െ 0.031 · ሻܣܥThe estimated uncertainty is ෡ܷሺ  .ܣܥ ൌ

  ෠ܳଵି௣ሺܣܥሻ െ ෠ܳଵି௣,ఊሺܣܥሻ ൌ ොோߪ · ሺΦିଵሺ݌ሻ െ ݇ଵሺܣܥሻሻ.  These metrics are shown in Figure 4.10 along 
with the fitted regression line.  The estimates are projected to the age at which they intersect the lower 
performance requirement.   
 

 

Figure 4.10.  Plot of Example Dataset 2 with the Proposed QMU Regression Metrics. 
 
Finally, the age at which the statistical tolerance interval crosses the lower performance requirement, ܣመ, 
corresponds to the component age at which ܯ෡ ൌ ෡ܷ and ܴܶ ൌ 1.  Therefore, for ages less than ܣመ we are 
95% confident that at least 99.5% of the performance characteristic values will be greater than the lower 
performance requirement of 9.  For ages greater than ܣመ we cannot make this statement.  We define this 
age to be the component Alarm Age.  For Example Dataset 2, ܣመ ൌ 20.4.  Recall, the traditional ݇-factor 
regression analysis produced a 95% lower confidence bound for the alarm age of ܣ௅஻ ൌ 21.3.  This new 
methodology produced an estimate that is almost a year earlier.  This is to be expected since the 
traditional ݇-factor regression only accounts for the uncertainty in the estimation of the mean, hence the 
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new methodology will always provide a more conservative estimate that accounts for the sampling 
uncertainty in both the mean and standard deviation.   
 

4.5. Exploration of the Tolerance Ratio 
 
This section is intended to provide further insight into the new tolerance ratio figure-of-merit.  In 
particular, we attempt to provide additional detail on the factors that may cause the tolerance ratio to take 
on smaller or larger values and an interpretation of how a smaller or larger values of the tolerance ratio 
influence decision-making.  The discussions that follow will be with respect to a lower performance 
requirement for reference.  Similar derivations and statements could be made with minor adjustments for 
an upper requirement.  Further, we only consider the Normal distribution case in the discussion below.  
Similar comparisons can be made for other distributions but are omitted here for brevity.  Recall, the 
tolerance ratio is defined as, 
 

ܴܶ ൌ
෡ܯ

෡ܷ ൌ
෠ܳଵି௣ െ  ܴܲܮ
෠ܳଵି௣ െ ෠ܳଵି௣,ఊ

ൌ
ҧݔ െ ݏ · ௣ݖ െ ܴܲܮ

ҧݔ െ ݏ · ௣ݖ െ ൫ݔҧ െ ݏ · ݇ଵሺ݌, ,ߛ ݊ሻ൯
ൌ

ҧݔ െ ݏ · ௣ݖ െ ܴܲܮ

ݏ · ൫݇ଵሺ݌, ,ߛ ݊ሻ െ ௣൯ݖ
, 

 
where ݖ௣ ൌ Φିଵሺ݌ሻ is the ݌th percentile of a standard Normal distribution.  It is clear that the tolerance 
ratio is a function of the content ݌ and the confidence level ߛ.  It should be apparent that as the content 
increases (a higher proportion of the units required to be within the performance requirements) or the 
statistical confidence increases (a higher level of rigor required for decision-making) the tolerance ratio 
will decrease and vice-versa.  These parameters however are specific to the performance characteristic 
and the requirements.  For any given analysis these will be fixed, and therefore will be treated as 
constants in the discussion that follows.  For consistency with the previous examples we will fix these at 
݌ ൌ 0.995 and ߛ ൌ 0.95.  With these considered constant, the tolerance ratio becomes a function of the 
mean, standard deviation, and the sample size, 
 

ܴܶ ൌ
ҧݔ െ ݏ · ௣ݖ െ ܴܲܮ

ݏ · ൫݇ଵሺ݊ሻ െ ௣൯ݖ
. 

 
For a fixed content ݌ and confidence level ߛ, ݇ଵሺ݊ሻ is proportional to 1/√݊, denoted by  ݇ଵሺ݊ሻ ן 1/√݊.  
Therefore, if we consider the tolerance ratio to be a function of any one of these three parameters (the 
mean, standard deviation, and the sample size) holding the other two fixed, we have ܴܶሺݔҧሻ ן ሻݏҧ, ܴܶሺݔ ן
and ܴܶሺ݊ሻ ,ݏ/1 ן √݊.  These three relationships are shown in Figure 4.11 below. 
 
Using these relationships, we can explore how to increase the tolerance ratio.  The list shown here 
discusses possible practical ways to increase the tolerance ratio by improving either the component’s 
performance or the amount of information obtained on the component. 
 

1. Increase margin – Improvements in the component performance (possibly through design 
improvement) that shift the mean of the distribution of the performance characteristic away from 
the performance requirement will result in a larger tolerance ratio, provided the unit-to-unit 
variability does not change significantly. 

 
2. Decrease uncertainty – Reducing the unit-to-unit variability of the component performance 

distribution (possibly through improvement or implementation of manufacturing process 
controls) will result in a larger tolerance ratio, provided these changes do not shift the mean of 
the distribution significantly. 
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3. Increase precision - Increasing the data acquired on a performance requirement (possibly through 
increased surveillance testing) will result in a larger tolerance ratio, provided the additional 
data does not significantly change the estimated mean or standard deviation. 

 

 

Figure 4.11.  The Tolerance Ratio as a Function of the QMU Metrics. 
Mean (top left), Standard Deviation (top right), and Sample Size (bottom) 

 
These relationships should be fairly obvious since the tolerance ratio is a ratio of the margin and 
uncertainty.  Recall, the assessed performance is defined as the estimated percentile of the performance 
characteristic distribution corresponding to a maximum probability of failure, ෠ܳଵି௣ or ෠ܳ௣ for either a 
lower or upper requirement respectively.  The margin is a function of the assessed performance, which is 
directly related to both the mean and standard deviation.  As the mean of the performance characteristic 
distribution improves relative to the performance requirement, the assessed performance, and hence the 
tolerance ratio, will increase.  Likewise, the assessed performance and the tolerance ratio increase as the 
standard deviation decreases.  In either case the tolerance ratio increases as the assessed performance 
increases, however this is not a one-to-one relationship and will depend on which parameter (the mean or 
standard deviation) is driving the change in the assessed performance.  Figure 4.12 shows these 
relationships for changes in the mean and standard deviation.  These are presented because it may be 
more meaningful to think about changes in the tolerance ratio as a function of the assessed performance 
rather than simply as a function of either the mean or standard deviation alone.   
 
Note that no plot is shown in Figure 4.12 for a change in the sample size since the assessed performance 
is not directly a function of the sample size.  Recall number 3 above noted that increasing the data 
acquired on a performance requirement would result in a larger tolerance ratio, provided the additional 
data does not significantly change the estimated mean or standard deviation.  The change in the 
tolerance ratio in this case is due to the fact that the precision of the assessed performance (the estimated 
percentile) will get better (i.e. ෡ܷ is smaller).  There is however no guarantee that the assessed 
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performance will remain the same.  The estimated percentile may increase or decrease as new data is 
acquired.  If the estimated percentile moves closer to the performance requirement (gets worse) then the 
tolerance ratio may go down even as the precision of the estimate gets better.  This would be the case 
where, although the uncertainty gets better (smaller), the margin gets worse (smaller).  This relationship is 
difficult to show graphically, however this discussion is included as a warning that simply increasing the 
sample size may not necessarily improve or change the resulting conclusions. 
 

 

Figure 4.12.  The Tolerance Ratio as a Function of the Assessed Performance. 
 As the Mean Changes (left) and as the Standard Deviation Changes (right)  

 
The plots shown to this point in this section provide some insight as to the factors that influence changes 
in the tolerance ratio, however they do not provide much insight as to what the magnitude of the tolerance 
ratio implies with respect to performance.  This insight is ultimately required to make comparisons across 
components.  For simplicity, we only consider comparisons of the tolerance ratio for a fixed content ݌ and 
confidence level ߛ.  Recall the concept of a coverage probability introduced in Section 4.1.  The coverage 
probability is defined as the estimated probability that a performance characteristic will be either greater 
than a lower requirement or less than an upper requirement with ߛ · 100% confidence.  That is, the 
coverage probability is the value ݌௖ that satisfies the equation, ෠ܳଵି௣೎,ఊ ൌ  for a lower requirement or ܴܲܮ
෠ܳ௣೎,ఊ ൌ ܷܴܲ for an upper requirement.  In other words, it is the content value such that the tolerance 
bound will be exactly equal to the performance requirement.   
 
First, we make the following observation, again with the content and confidence level fixed at ݌ ൌ 0.995 
and ߛ ൌ 0.95.  When the tolerance ratio is equal to one, the estimated tolerance bound will be equal to the 
performance requirement and the coverage probability will be equal to the content.  If the tolerance ratio 
is less than one, then the coverage probability will be less than the content and similarly if the tolerance 
ratio is greater than one the coverage probability will be greater than the content.  That is, 
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ܴܶ ൏ 1
ܴܶ ൌ 1
ܴܶ ൐ 1

  ֞   
௖݌ ൏ ݌ ൌ 0.995
௖݌ ൌ ݌ ൌ 0.995
௖݌ ൐ ݌ ൌ 0.995

 

 
We note that the coverage probability is a function of both the assessed performance and the sample size.  
The following two figures show the coverage probability as a function of the tolerance ratio holding one 
of these two factors fixed.  The curves differ slightly, however they both provide the same insight.  As the 
tolerance ratio increases so does the coverage probability.   
 

 

Figure 4.13.  The Coverage Probability as a Function of the Tolerance Ratio  
Holding the Sample Size Fixed. 

 
It should be clear from Figure 4.13 that as the tolerance ratio goes to infinity (which for a fixed sample 
size would require the assessed performance to go to infinity) the coverage probability goes to one.  This 
is the case where the performance characteristic distribution moves significantly far from the performance 
requirement, such that the probability that a value would fall outside of the performance requirement 
becomes negligible.  One thing to note from Figure 4.14 is that for a fixed assessed performance, an 
increase in the sample size will provide more confidence in the estimated parameters and hence the 
tolerance ratio and the coverage probability will both increase.  The coverage probability however will 
not approach one as the tolerance ratio approaches infinity as it will in Figure 4.13.  The coverage 
probability in this case is limited by the true performance.  In the example shown here, the mean and 
standard deviation are fixed at ݔҧ ൌ 10 and ݏ ൌ 0.25 which, if we assume these parameters to be known 
(which is the case if ݊ ՜ ∞) gives an estimated probability that the performance characteristic will be 
greater than the lower performance requirement of 9, 
 

ܥሺܾܲ݋ݎܲ ൐ 9ሻ ൌ 1 െ Φ൬
9 െ 10
0.25

൰ ൌ 0.99997. 
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Therefore, if only the sample size changes, the coverage probability will only approach 0.99997 as the 
tolerance ratio goes to infinity (again assuming that the mean and standard deviation do not change).   
 

 

Figure 4.14.  The Coverage Probability as a Function of the Tolerance Ratio  
with the Assessed Performance Fixed. 

 
Figure 4.13 and Figure 4.14 should make it clear that as the tolerance ratio increases so does the coverage 
probability.  Therefore, if we compare two components, each with the same maximum probability of 
failure requirement and confidence level, the one with the larger tolerance ratio will also have a larger 
coverage probability; hence that component will have a smaller probability of failing to meet the 
performance requirement.  The computation of the coverage probability will aid in these types of 
comparisons, especially for analyses resulting in a tolerance ratio close to one.  For analyses resulting in a 
large tolerance ratio ሺܴܶ ب 5ሻ, small changes in a tolerance ratio of this magnitude will have negligible 
differences in the coverage probability.  For examples of the computation of the coverage probability 
refer to Sections 4.3.1 and 4.3.2. 
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5. PROPOSED ACTIVITIES TO BE INCLUDED IN AN ENGINEERING 
DATA ANALYSIS 

 
 
This section describes a thorough engineering analysis of a physical dataset.  The intent of an engineering 
analysis is to better understand the available data (and its nuances) and to identify a suitable analysis set 
for further investigation and analysis.  The engineering analysis should be performed well in advance of 
any planned statistical analysis since this step will often require several iterations and discussions with 
systems and component engineers, tester engineers, analysts, and statisticians.  Including newly acquired 
data after this process has begun is not recommended unless the new data is subjected to an engineering 
analysis consistent with the initial engineering analysis.  Simply adding in newly acquired data to an 
analysis after the engineering analysis has been completed is risky since the new data may not be 
understood at the same level of rigor as the data that went through the engineering analysis.  
 
This section is also intended to reintroduce the original intent of QMU and identify steps that will help 
component engineers and analysts proceed in the right direction.  Recall, the three key elements of QMU 
consist of the following: (1) specification of performance thresholds; (2) identification of associated 
performance margins, where a performance margin is a measure of exceeding the performance threshold; 
and (3) quantification of uncertainty in the performance thresholds and performance margins as well as in 
the larger framework of the decisions being contemplated.  Diegert et al. [1] defines these three key 
elements, condensed below, as follows. 
 

 Performance threshold: Performance is the ability of a bomb, a warhead, or a component to 
provide the proper function (e.g., timing, output, response) when exposed to the sequence of 
design environments and inputs.  This definition of performance is applicable to the following 
functional-requirement areas: reliability, nuclear safety, use-control, and nuclear survivability.  A 
performance threshold is a specification of a necessary performance achievement, typically in 
quantitative form.  We call this the required performance of a system.  The required performance 
is most often specified in a deterministic form where the performance must be greater than (or 
less than) a specified performance threshold.   

 
 Performance margin: A performance margin is the difference between the required performance 

of a system and the demonstrated performance of a system, with a positive margin indicating that 
the expected performance exceeds the required performance.  The expected performance can be 
nondeterministic and may be specified by a probability or cumulative distribution function.   

 
 Uncertainty: There is uncertainty in the specification of thresholds and margins, as well as in the 

larger framework of the decision tasks.  This uncertainty begins in the requirements that provide a 
foundation for the definition of performance thresholds, and it accumulates and transforms as the 
various science and engineering activities that lead from weapons design to qualification to 
evaluation are executed.  There are two general types of uncertainty that must be separately 
accounted for, quantified, and aggregated within QMU: 

 
1. Aleatory uncertainty – also called irreducible uncertainty or stochastic variability.  We 

typically refer to this type of uncertainty as simply variability.  Aleatory uncertainty (or 
variability) is naturally characterized, quantified, and communicated in terms of probability.   

 
2. Epistemic uncertainty – also called reducible uncertainty.  This type of uncertainty is due to 

lack of knowledge or incomplete knowledge.  Common examples of epistemic uncertainty 
are the so-called model form uncertainty (that is, uncertainty in how well the equations in the 
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model capture the physical phenomena of interest), both known and unknown unknowns in 
scenarios, and poor-quality physical test data.   

 
With these key elements serving as the basis for a rigorous QMU analysis, the following steps are 
recommended for an engineering analysis.  The steps are presented in the order in which the engineering 
analysis is proposed to occur, however it may be necessary to revisit some steps based on the decisions 
made at a later step. 
 

1. Identify the performance characteristics that relate to or provide knowledge of system and/or 
component performance.  Time should be spent at this step to understand how the performance 
characteristics are measured and the testing conditions used to obtain the measurements.  This 
step could also include a failure modes and effects analysis (FMEA), or a similar type of analysis, 
to identify if the current data is sufficient for assessing component performance.  The testing 
conditions and measurements should be an accurate representation of component function in use 
conditions.  All measured values that do not relate to performance and/or are not obtained in a 
well-understood fashion that can be related to component performance and thresholds should be 
excluded from more rigorous QMU analyses.  The measurement uncertainty (especially the 
stability of the measurements over time when trending is being considered) should be 
investigated at this step as well. 

 
2. For each performance characteristic remaining after step one, time should be spent understanding 

the performance thresholds and requirements and the planned lifetime of the component.  All 
characteristics that do not have a well-defined and meaningful performance requirement, which 
relates directly to component and/or system performance, should be removed from further 
rigorous QMU analyses until the requirements and thresholds are better understood.  Further, 
understanding the planned lifetime of the component is necessary for all age trend analyses in 
order to provide insight as to the range of age values that the age trend must be projected across. 

 
3. Investigate the composition of the available data.  The units tested should be a representative 

and random sample from the stockpile population that inferences are intended to be made on.  If 
convenience sampling (sampling based on availability/cost of resources) is used one must be 
aware of the potential limitations of that sample.  If the sample only represents a subset of the 
overall population then the results and conclusions should only be applied to that subset.  If the 
pedigree of all or a subset of the data is in question, then more rigorous QMU analyses should not 
be performed until the dataset is properly understood or reduced to an appropriate analysis set.  If 
pedigree differences are observed within the dataset work should be done to understand and 
identify a subpopulation that best represents the stockpile population, or representing a worst-case 
subpopulation.  Ideally, further more rigorous analyses should only be performed on the most 
representative dataset.    

 
4. Perform a preliminary graphical analysis on the remaining performance characteristics to identify 

potential data issues such as shifts or jumps in the data by production date, test date, test code, or 
other potential factors.  If any of these factors are identified, work should be done to better 
understand the impact of the observed factor(s).  Simply dividing the data into several subsets 
based on observed shifts is not recommended.  Recall, the aleatory uncertainty accounts for 
variability arising from a number of effects (unit-to-unit differences, lot-to-lot differences, lack of 
measurement precision, etc.), none of which should be dominant.  If an underlying factor 
dominates the aleatory uncertainty, the uncertainty must be properly characterized in order for the 
conclusions from subsequent analyses to be meaningful.  The decision as to how to handle these 
additional factors should be based on engineering judgment.  If a shift is caused by a change to a 
tester then this difference needs to be understood and accounted for prior to further analysis.  If a 
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new tester is assumed to be a better representation of use conditions and the cause of the observed 
shift from the old tester is unknown then only data from the new tester should be considered for 
analysis.  If however, the observed shifts are due to test code differences, possibly indicating 
sensitivity to environmental factors, one may wish to either analyze the environmental conditions 
separately or account for them in a more rigorous statistical analysis such as an analysis of 
covariance.  Consultation with a statistician is highly recommended at this step.  Further rigorous 
QMU analyses should not be performed until all factors have been thoroughly investigated. 

 
5. During the preliminary graphical analysis, identify any performance characteristics with 

insufficient data to perform a more rigorous analysis on.  Tests with high variability, a large 
number of factors, and a small sample size (e.g. flight tests) are not appropriate for a rigorous 
statistical analysis.  These tests can provide valuable engineering information and could 
potentially aid a computational simulation QMU analysis, however the data alone should not be 
analyzed using the methods described in this paper for a physical simulation QMU analysis.  

 
6. Identify performance characteristics with ample margin.  This often can be achieved by 

generating a scatter plot of the data along with the performance requirements.  If this plot shows 
that both the margin and uncertainty (variability) of the observed data are sufficient as compared 
to the requirements, further more rigorous analyses are not needed.  The traditional ݇-factor based 
on the mean and standard deviation and its lower confidence bound can also be used as a guide to 
determine if the observed margin warrants further analysis.  One could potentially set a cutoff to 
exclude performance characteristics with large margin from further analysis.  For example, any 
performance characteristic with a lower confidence bound on the ݇-factor greater than five 
൫ ෠݇ఊ ൐  5൯.  This cutoff however should be used cautiously since other factors, especially the 
distributional assumption, can affect the interpretation of the ݇-factor. 

 
7. Once the dataset has been reduced to a set of performance characteristics that are suitable for 

further analysis based on the steps above, the remainder of the engineering analysis should focus 
on verifying assumptions, identifying potential outliers and deciding how to handle them, and 
identifying potential aging trends.  This step can often be completed as part of the preliminary 
graphical analysis.  Here potential aging trends should be investigated to see if other underlying 
factors might be contributing to the trending.  All potential outliers should be taken seriously and 
should be investigated thoroughly for explanations.  Automatic outlier rejection schemes such as 
throwing out all data beyond 4 sample standard deviations from the sample mean are particularly 
dangerous and not recommended.  Determining if outliers should be removed from the analysis 
set is a process that should include interaction between the statistician/analyst, the component 
engineers, and the tester group. 

 
The steps presented above are a good starting point for a thorough engineering analysis however; other 
steps may be needed as the study of the data and its nuances progresses.  In particular, the completion of 
one step may prompt the analysis to revisit a previous step.  Once the engineering analysis is complete, 
the component engineer and analyst should thoroughly understand the data to be analyzed further.  Again, 
upon completing the engineering analysis of the data, an Engineering Review must be performed by an 
interdisciplinary team (Systems and Components Engineering, Test Engineers, Statisticians and Analysts, 
etc.) to ensure that the conclusions resulting from the engineering analysis are acceptable and the dataset 
is sufficient for further analysis.  Although only a small subset of the data and performance characteristics 
may be appropriate for further analysis, a good deal of information can be obtained from the engineering 
analysis and review itself.  This study can indicate areas with knowledge gaps that need further 
investigation or performance characteristics with insufficient data, and lead to decisions on future 
research and/or a formal design of experiments and collection of new data to fill existing data gaps.  



52 

6. A COMPARISON TO QMU FOR COMPUTATIONAL SIMULATION 
APPLICATIONS 

 
 
This new approach to QMU for physical simulation data is closely aligned to the approach to QMU for 
computational simulation analyses.  This consistency will simplify analyses involving both physical and 
computational simulation and will help clarify Sandia’s approach to QMU.  The approaches are identical 
in their objectives but differ somewhat in the methodology employed because of the, often substantial, 
contribution of epistemic uncertainty that is common with computational analyses.  In comparing the two 
approaches, we assume a calibrated computational model that has successfully completed application-
specific verification and validation analysis and testing.  This is equivalent to the assumption that an 
engineering analysis has been performed on a dataset prior to applying the methodologies proposed 
for a QMU on physical simulation data.  While these difficult elements of establishing reliable model-
based predictions are an integral part of computational simulation QMU, we focus here on the 
comparisons of approaches to establishing margins and uncertainty.  Furthermore, for simplicity in this 
comparison, we will only address the point-in-time analysis and address only the computational 
simulation case where there is a probabilistic characterization for the epistemic uncertainty.  Other 
situations have been addressed [7,8] but are beyond the scope of this document. 
 
The computational simulation program is currently addressing QMU using an approach known as 
Probability-of-Frequency (previously referred to as “second-order”) method.  Technical details 
concerning this approach are given in reference 7.  In this approach, the simulations that provide the basis 
for prediction are selected through a two-stage sampling approach as illustrated in Figure 6.1.  In the inner 
loop, the simulations are performed using fixed values for the epistemic parameters, producing a single 
distribution of the performance characteristic conditioned on the epistemic values.   
                  
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1.  Looping Process for the Probability-of-Frequency Approach. 
 
One replication of this inner loop will generate data for a performance characteristic yielding a histogram 
similar to that shown in Figure 6.2.  Often, for computational analyses, this empirical distribution is used 
directly (as opposed to trying to fit a parametric distribution) although the latter has been proposed for 
cases where there are few (expensive) simulations.  We assume here (to simplify this comparison) that the 
simulations are inexpensive.  Alternative techniques for implementing the probability-of-frequency 
approach with fewer simulation runs are currently being examined [9].  The fitted parametric distribution 
shown in Figure 6.2 and Figure 6.3 is shown for reference; however the calculations that follow will use 
the empirical distribution directly. 
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Figure 6.2.  Histogram of a Single Simulation from the Inner Loop. 
 
The data shown in Figure 6.2 is similar to the physical simulation data (Example Dataset 1) shown in 
Figure 2.3 except that the data was acquired through a single inner loop simulation of a physics-based 
computer model.  It is assumed that this inner loop properly characterizes the aleatory uncertainty.  In the 
absence of additional epistemic uncertainties, this single set of simulation data could be subjected to the 
same statistical methodologies proposed in Section 4 to estimate margin and uncertainty.  This however 
treats the computational simulation data exactly as physical simulation test data and does not necessarily 
account for inaccuracies, often present, in the implemented physics model.   
 
Since multiple simulations will be performed for various instances of the epistemic parameters, it is often 
convenient to represent the data graphically using an empirical cumulative distribution function (CDF).  
Figure 6.3 shows an empirical CDF of the data from Figure 6.2.  The inner loop is repeated several times 
for various sampled epistemic values in the outer loop.  Figure 6.4 shows a series of simulations, 
represented by their empirical CDF’s, collected for the given epistemic parameters sampled in the outer 
loop.  There are different methods for selecting these values but random sampling is assumed here.  
Figure 6.4 also shows a lower performance requirement (red dashed line) and the maximum proportion of 
units allowed to fall below the lower performance requirement (black dotted line).  These are equivalent 
to ܴܲܮ and ௥ܲ௘௤ respectively from the discussions above for physical simulation data.  The red dots 
indicate the estimated percentile of each empirical distribution corresponding to ௥ܲ௘௤.  The objective in 
the probability-of-frequency approach is to estimate the distribution of the desired percentile.  In the 
physical simulation case, this distribution is generally calculated based on an assumed parametric 
distribution fit to the data from a number of physical experiments and is quantified by the calculated 
statistical tolerance bound.  For consistency in comparing back to the previous examples, the example 
shown in Figure 6.4 estimates the 0.5th percentile for each inner loop simulation. 
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Figure 6.3.  Empirical CDF of a Single Simulation from the Inner Loop. 
 
 

 

Figure 6.4.  Resulting Empirical CDFs Using the Probability-of-Frequency Approach. 
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The epistemic uncertainty distribution for the 0.5th percentile, shown in Figure 6.5,  is constructed 
empirically using the estimated points indicated by the red dots.  Again, the points are estimated to satisfy 
the probabilistic requirement (the maximum proportion of units allowable below the lower performance 
requirement of 0.005) conditioned on each set of values of the epistemic parameters.   
 

 

Figure 6.5.  Uncertainty CDF Using the Probability-of-Frequency Approach. 
 
Each red dot in Figure 6.4 and Figure 6.5 is an estimated lower 0.5th percentile, ෠ܳ଴.଴଴ହ, from a single 
iteration of the inner loop.  The goal then becomes the quantification of margin and uncertainty for this 
distribution relative to the lower performance requirement.  This was accomplished in the proposed 
methodology for physical simulation data by computing an estimate of the percentile and a lower 
confidence interval for the estimated percentile (a statistical tolerance bound).  The probability-of-
frequency approach described here produces a distribution of the estimated percentiles.  Therefore, the 
average value from this distribution can be used as a point estimate of the percentile.  We denote this by 
തܳଵି௣ or തܳ௣ for a lower or upper percentile respectively.   The margin is then defined as the difference 
between this point estimate and the performance requirement, ܯ෡ ൌ തܳଵି௣ െ  of a lower requirement ܴܲܮ
or ܯ෡ ൌ ܷܴܲ െ തܳ௣ for an upper requirement.  Next, to account for the uncertainty in this point estimate a 
confidence bound can be obtained from the epistemic uncertainty distribution by selecting the appropriate 
percentile of the distribution.  For consistency with the previous examples, we choose a 95% confidence 
level ሺߛ ൌ 0.95ሻ.  We denote this here by തܳଵି௣,ఊ and the uncertainty can be quantified by the difference 
between this bound and the estimated mean of the epistemic uncertainty distribution, ෡ܷ ൌ തܳଵି௣ െ തܳଵି௣,ఊ, 
specifically for a lower percentile.  Similar metrics could be defined for an upper percentile.  Figure 6.6 
shows these metrics for the example described above. 
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For this example, the mean percentile from the epistemic uncertainty distribution is തܳଵି௣ ൌ 9.35.  The 
margin, relative to the lower performance requirement of 9, is then estimated to be ܯ෡ ൌ തܳଵି௣ െ ܴܲܮ ൌ
9.35 െ 9 ൌ 0.35.  The lower 95% confidence interval from the empirical CDF of the 0.5th percentile is 
തܳ଴.଴଴ହ,଴.ଽହ ൌ 8.97 and the uncertainty is estimated to be ෡ܷ ൌ തܳଵି௣ െ തܳଵି௣,ఊ ൌ 9.35 െ 8.97 ൌ 0.38.  
Clearly, ܯ෡/෡ܷ ൌ 0.92, which is less than 1.  In the computational simulation framework ܯ/ܷ is referred 
to as a confidence factor ሺܨܥሻ.  For a confidence factor greater than 1 it is assumed that unreliability due 
to margin insufficiency is negligible (see reference 1).  For ܨܥ ൏ 1, as is the case with this example, we 
cannot make that claim.  This decision rule and interpretation are closely aligned with the proposed 
approach using the tolerance interval methodology for QMU with physical simulation data.  This provides 
a consistency across methods that allows for comparisons and interpretations to be made more easily.   
 

 

Figure 6.6.  Uncertainty CDF Showing the M and U Metrics. 
 
  

10.410.210.09.89.69.49.29.0

1.00

0.75

0.50

0.25

0.05
0.00

Performance Characteristic

Cu
m

ul
at

iv
e 

Pr
ob

ab
ili

ty

LPR
Empirical CDF of the 0.5th Percentiles

෡ܯ ൌ തܳଵି௣ െ  ܴܲܮ

෡ܷ ൌ തܳଵି௣ െ തܳଵି௣,ఊ 

തܳଵି௣,ఊ തܳଵି௣



57 

7. CONCLUSIONS 
 
 
This paper reviewed the standard ݇-factor methodologies and discussed potential limitations.  The 
tolerance interval methodology was introduced as an alternative technique for QMU with physical 
simulation data.  The technical details of these methodologies were presented and demonstrated with 
several examples.  The proposed methodologies are intended for a thoroughly understood dataset with a 
performance characteristic that relates to component and/or system function and a well understood 
performance requirement.  This paper also outlined recommendations for an engineering analysis that will 
result in a dataset that meets these criteria and is eligible for a rigorous QMU analysis using the proposed 
methodologies.  Finally, the tolerance interval methodology was shown to be more consistent with the 
standard QMU methodologies for computational simulation applications.  We conclude with the 
following recommendations for future QMU analyses on physical simulation data. 
 

1. The point-in-time ݇-factor analysis should be used as a screening tool in an engineering analysis 
to identify performance characteristics with low margin that require a more rigorous QMU 
analysis.  This methodology can be applied quickly on a large number of performance 
characteristics, but should not be viewed as a rigorous analysis technique.  This methodology 
should be used cautiously, especially in cases of non-Normality.  Analyses that show a potential 
for low margin or deviations from Normality should adhere to the guidance in list item 2 below. 
 

2. For performance characteristics that do not exhibit an aging trend but do show the potential for 
low margin or non-Normality, the point-in-time tolerance interval methodology should be used to 
assess the impact of the low margin and to make conclusions with respect to requirements.  In 
these cases, considerable thought should go into the choice of statistical distribution and the 
appropriate methodology should be applied based on this decision.  The resulting analysis metrics 
can easily be presented on the engineering unit scale regardless of the choice of distribution.  
Consultation with a statistician at this point is highly recommended.   
 

3. For cases where the ݇-factor regression methodology is currently being implemented, a transition 
to the tolerance interval methodology is recommended.  For analyses with large sample sizes 
these methods provide comparable results which should make this change straightforward.  The 
tolerance interval approach increases the technical rigor and interpretability of these analyses.  
The ݇-factor regression analysis is not recommended moving forward due to a continued lack of 
understanding and interpretability.  A statistician or the QMU steering committee can provide 
guidance on how to educate customers on this transition. 
 

4. For early screening analyses, where the goal is to assess if one or more of the performance 
characteristics has an aging trend, standard regression techniques should be used to determine if 
the trend is statistically significant.  A ݌-value less than 0.05, from a hypothesis test on the slope 
parameter, is commonly accepted as sufficient evidence of a statistically significant trend.  
Determination that the trend is a result of an aging effect should be done in an engineering 
analysis.  Cases that show a statistically significant trend, that is determined to be due to an aging 
effect, should adhere to the guidance in list item 5 below. 
 

5. For performance characteristics that exhibit an aging trend, the tolerance interval regression 
analysis should be used to estimate an alarm age.  This method parallels the methodology for a 
rigorous point-in-time analysis except for the addition of an aging trend.  This provides a more 
consistent and interpretable approach to QMU for physical simulation data.  Again, the resulting 
analysis metrics can easily be presented on the engineering unit scale with a single graphic. 
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