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Abstract 

This report is a compilation of projects completing during an investigation into void 
growth in ductile metals.  Included, are the following results.  (a) We have performed 
a suite of tests looking at the effect of porosity on the macroscopic yield stress of the 
material in a plane strain framework.  Results have shown the orientation of voids to 
have a large effect on the yield stress.  (b) Preliminary simulations of a periodic three 
dimensional void microstructure are given along with the meshing procedure.  
Results show less void interaction as compared to the two dimensional case.  
(c) Development and implementation of an anisotropic plasticity model is detailed.  
The model is used to replicate anisotropic necking seen in a tensile bar 
experimentally tested to failure.  (d) We have shown efficiency gains of 84% of a 2D 
solution framework compared the standard 3D framework. (e) We investigated a 
large number of element formulations and have shown the q1p0 element (selectively 
integrated hex8) to outperform all others in the context of large deformation plasticity 
simulations.  (f) The implementation of the q1p0 element into SIERRA is provided 
along with results of verification and performance investigations. 
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Introduction 
This report is a collection of documentation—some previously disseminated—that was done as 
part of an Early Career LDRD on clustered void growth in ductile metals. 

Background 
Fracture in ductile metals occurs through the processes of void formation, growth and 
coalescence.  Ultimately, voids grow large enough to join together and fracture occurs. 

An initial material microstructure before the forming operation is shown in Figure 1 (left).  
Within the matrix material, both second phase particles and voids are typically present.  As the 
material is deformed by the forming process or by stresses and loads applied while the 
component is in use, nearby voids can grow and link up to form the beginning of the fracture 
surface (right).  During this time, new voids can also be nucleated at inclusions. 

 

 
 

Figure 1:  At left, the typical microstructure of stainless steel 304L before a 
metal forming operation.  Both voids (white) and inclusions (red) are 
present.  At right, under loading, nearby voids grow and link up to form the 
beginning of the fracture surface. 

A typical fracture surface of stainless steel 304L is shown in Figure 2.  At the magnification 
shown, this picture resembles a cratered surface.  Each crater forms half of what was previously 
a void in the material which was separated when the fracture surfaces was formed. 
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Figure 2:  Fracture surface of stainless steel 304L.  Inclusions can be seen at 
the center of the large voids which have coalesced. 

In order to assess the safety and reliability of components made from stainless steel, it is critical 
that we understand this failure process. 

Archival 
In addition to being summarized within this document, all work on the project has been archived 
under the WorkBench project clustered_void_growth. 
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Effect of porosity on macroscopic yield 
stress—a two-dimensional study 
Within our current computational tools, all damage models have implemented an isotropic void 
growth rule.  These models assumed that damage affects the yield stress in a linear fashion and 
that the response is isotropic. 

In this chapter, we examined the effect of porosity and anisotropic effects on the macroscopic 
response of the material to investigate the accuracy of these assumptions. 

Meshing Procedure 
The procedure for generating meshes will first be outlined with details given in later sections. All 
related files are archived at the following Workbench location: 

 workbench:/clustered_void_growth/2d_porosity_study/meshing/ 

Scripts and source code files within this directory are generously commented. 

Overview 
In the meshing process, the microstructure is generated via the following procedure. 

1. Create a “trial” void placed randomly within the unit cell 

2. If void is sufficiently far away from all other voids, add it to the microstructure.  If not, 
create a new trial void and repeat 

3. Find the best “unit cell” for the given microstructure. 

a. First, find a point which is far away from all voids and translate all voids so this 
point is at (0, 0). 

b. Find a path from (0, 0) to (0, 1) keeping far enough away from each void surface. 

c. Find a path from (0, 0) to (1, 0) keeping far enough away from each void surface. 

4. Create the geometry in Cubit and generate a preliminary mesh. 

5. Within ParaView, evaluate the element size function at each node based on the distance 
away from the nearest void surface. 

6. Reload the geometry within Cubit and create the final mesh using the generated sizing 
function. 

Two examples meshes can be seen in Figure 3 for a distribution of 64 voids—each with an 
aspect ratio of 2 and aligned in the same direction—for a porosity of 10% (left) and 1% (right). 
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Figure 3:  Example meshes for the plane strain void geometry for a porosity 
of 10% (left) and 1% (right).  Both meshes have voids with an aspect ratio 
of 2. 

It should be noted that the tool used to generate the microstructure and subsequent mesh is able 
to generate considerably more complex microstructures than those depicted in the previous 
figure.  For example, Figure 4 shows a mesh which was generated using probability distribution 
functions for the void size, orientation and aspect ratio. 

 
Figure 4:  A mesh of a randomly generated microstructure in which the 
size, orientation and aspect ratio of voids were taken from a probability 
distribution function. 
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Details 
Details for each of the steps are given below. 

1. Create a “trial” void placed randomly within the unit cell 

A trial void consists of a void area, location, major and minor radii, and orientation angle within 
the plane.  Each of these variables can be taken from a distribution function.  In the code, a 
uniformly distributed number between 0–1 is generated and passed to a routine to calculate the, 
for example, aspect ratio. 

The routine to return the aspect ratio is shown in Table 1 and generates the aspect ratio according 
to a normal distribution with a mean 2 and a standard deviation of 0.3.  This code can be changed 
to return any other distribution (no necessarily normal) and recompiled. 

  // return the aspect ratio of the phi percentile 
  double getAspectRatio(const double phi) 
  { 
    return randNormal(2., 0.3); 
  } 

Table 1:  Function to return the aspect ratio. 

The code to return the relative void area according to a Weibull distribution is shown in Table 2. 
  // return the unscaled void area of the phi percentile 
  double getArea(const double phi) 
  { 
    // get the shape, scale parameters for the distribution 
    static const std::pair<double, double> weibullParameter = 

getWeibullParameters(1., 0.1); 
    // return a random point 
    return randWeibull(weibullParameter.first, weibullParameter.second); 
  } 

Table 2:  Function to return the relative void area. 

Routines for these and other parameters of the void distribution and documentation on their use 
can be found in the source files. 

2. If void is sufficiently far away from all other voids, add it to the microstructure.  If 
not, create a new trial void and repeat. 

A void is sufficiently far away from all other voids if it is separated by at least a given distance.  
This distance is calculated based on the distribution functions given and can be modified. 

If the trial void cannot be successfully placed, a new trial void is created by simply translating 
the old one into a new position.  This was done to avoid the scenario where smaller voids had a 
relatively larger probability of being successfully placed which could alter the distribution. 

3. Find the best “unit cell” for the given microstructure. 

a. First, find a point which is far away from all voids and translate all voids so this 
point is at (0, 0). 

b. Find a path from (0, 0) to (0, 1) keeping far enough away from each void surface. 

c. Find a path from (0, 0) to (1, 0) keeping far enough away from each void surface. 
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In this step, we wish to find a tessellation of the space such that the boundaries of the tessellation 
are as far away from a void as possible.  This is in generally a computationally intensive process 
to perform for an arbitrary array of voids. 

First, a single point is obtained through sampling which is the farthest away from a void.  This 
point is chosen to be (0, 0). 

We then attempt to find a tessellation with boundaries separated from voids by a distance of at 
least  . 

A uniform grid is used with points spaced in increments of 1
2  .  At each grid point, the distance 

to the nearest void is calculated.  Then, a modified version of Dijkstra's algorithm is employed to 
find the shortest distance from point (0, 0) to point (1, 0) using grid points which are at least   
away from voids.  If this algorithm fails, we reduce   and try again. 

After boundaries have been established, a minor smoothing algorithm is performed to improve 
mesh quality. 

4. Create the geometry in Cubit and generate a preliminary mesh. 

A preliminary mesh is created using Cubit’s automated tetmesh algorithm.  This preliminary 
mesh has widely varying element sizes and is not suitable for computation. 

5. Within ParaView, evaluate the element size function at each node based on the 
distance away from the nearest void surface. 

At each node, the distance to the nearest void surface is calculated and stored into a node-based 
field within the ExodusII file.  This is performed using the Calculator filter within ParaView. 

6. Reload the geometry within Cubit and create the final mesh using the generated 
sizing function. 

The mesh and node-based field is read into Cubit.  The paver algorithm is used with a skeleton 
sizing field obtained from the field.  The resulting mesh has smoothly varying element sizes with 
smaller elements at the void surface and larger elements in places far from voids.  This mesh is 
suitable for efficient computation. 

Analysis procedure 
A sample run can be found in the following Workbench directory 

 workbench:clustered_void_growth/2d_porosity_study/sample_run/ 

The material model used in these runs is representative of a structural metal such as an aluminum 
alloy.  There is a small amount of strain hardening present.  In addition, a strain rate dependence 
was added to provide the analysis some numerical stability. 

A sample Ares input deck is given in Table 3. 
# set up the 2D plane strain framework 
>framework 
plane_strain_planar 
 
# define the material model 
>material 
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material, plastic_isotropic, 160e9, 78e9, 8e3, hardening_curve, 
strain_rate_dependence_curve 

>data curve 
hardening_curve, piecewise_linear 
0, 200e6 
1, 220e6 
>data curve 
strain_rate_dependence_curve, piecewise_linear 
0, 1 
1, 1.1 
 
# include the mesh file 
>include 
"mesh_voids_planar.in" 
 
# set termination time 
>termination time 
0.0034641 
 
# set the initial timestep size 
# (initial size) = (termination time) / (timesteps) 
>timesteps 
10 
 
# adjust the timestep so that the max eqps change 
# in any element per timestep is at most X 
>control timestep via material state change 
bulk, eqps, 0.03 
 
# set the element formulation 
>element block cubature 
bulk, tri7p5o 
 
# enforce periodic boundaries to unit cell 
>bc periodic translational direction 
x, 1 
y, 1 
 
# plane strain condition 
>assign surface id analytic 
bottom, "Y < 0.5" 
left, "X < 0.5" 
 
# displacement boundary conditions 
>assign node id 
-1, 0, 0, 0 
-2, 1, 0, 0 
-3, 0, 1, 0 
-4, 1, 1, 0 
>bc prescribe node displacement 
-1, zero, x 
-1, zero, y 
 
# x displacement of top 
>analytic curve 
u, "t" 
>bc prescribe node displacement 
-4, u, x 
-4, zero, y 
-2, zero, y 
-2, zero, x 
 
# output surface forces 
>output surface force 
bottom, y, "load_yy.txt" 
left, x, "load_xx.txt" 
bottom, x, "load_yx.txt" 
left, y, "load_xy.txt" 
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# output material maximuma 
>output material state value 
bulk, eqps, maximum, "eqps_max.txt" 
bulk, eqpsdot, maximum, "eqpsdot_max.txt" 
 
# output expansion of block 
>output element block value 
bulk, "v/V-1", "expansion.txt" 
bulk, "v", "dense_area.txt" 

Table 3:  Sample Ares input deck for running a 2D void simulation. 

Results 
Compiled results can be found in the following Workbench directory 

 workbench:clustered_void_growth/2d_porosity_study/results/ 

Effect of porosity on yield stress 
In one set of simulations, we generated microstructures with uniform circular voids of varying 
porosities between 0.001 and about 0.2.  After deforming the body, the macroscopic yield stress 
was postprocessed and compared to the yield stress of the unvoided material. 

At each porosity, around 50 different microstructures were generated.  The error bars in the plot 
refer to two standard deviations from the mean. 

The overall effect of porosity on yield strength for an initially isotropic microstructure is shown 
in Figure 5.  This trend was empirically fit to an curve which is given in the figure. 

 
Figure 5:  Normalized yield stress as a funciton of porosity for randomly 
distributed initially circular voids. 

An inset of the previous figure around the neighborhood of zero porosity is shown in Figure 6.  
From the curve fit in this figure, we see that a 0.01 increase in porosity causes a 0.05 drop in 
yield stress.  In other words, the effect of porosity on yield stress for low porosities is closer to 

     0
y y1 5      (0.1) 

instead of the commonly assumed  1   dependence. 
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Figure 6:  Normalized yield stress as a function of porosity for randomly 
distributed initially circular voids near the region of zero porosity.  (This is 
a close-up of the previous figure.) 

Effect of void uniformity on yield stress 
In the previous results, we assumed all voids had the same radius.  In these results, we have 
repeated the previous study but generated new microstructures and meshes with a distribution of 
void areas.  These areas were given by a Weibull distribution with parameters 1.72k   and 

1.12   which were chosen such that / 0.6    and is shown in Figure 7. 

 
Figure 7:  The probability density function of the void area for this study. 

The results are shown in Figure 8 for the effect of uniform voids and voids with varying areas.  
As the figure clearly shows, the effect for all porosities is minimal.  The mean of each curve lies 
well within the error bars of the other curve.  This was a surprising result, but it does suggest that 
it may not be necessary to track the relative void sizes of the microstructure within an anisotropic 
void growth model. 
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Figure 8:  This shows the effect of nonuniform void areas versus uniform 
void areas on the normalized yield stress. 

Additional void area distributions were tested and none were found to have an appreciable affect 
on the yield stress versus porosity curve. 

Effect of void aspect ratios on yield stress 
In this set of runs, the void aspect ratio was varied.  Voids were aligned with either their major or 
minor axis pointing towards the loading direction.  An aspect ratio of 4 indicates voids with the 
minor axis aligned perpendicular to the loading direction while an aspect ratio of 1

4  indicates the 
same void shape but with the major axis in the loading direction. 

The results are shown in Figure 9.  From this figure, it is clear that void orientation plays a large 
role in the macroscopic response of the material.  For a given porosity, voids aligned with the 
loading direction have a relatively minor effect on the yield stress.  Voids oriented perpendicular 
to this direction have a much larger effect.  The nominal case of initially circular voids produces 
results in between these two extremes. 

 
Figure 9:  Normalized yield stress as a function of porosity for a variety of 
void aspect ratios. 
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Effect of void aspect ratios on yield stress 
In this set of runs, the aspect ratio of the voids was fixed at 4.  The orientation with respect to the 
loading direction was varied from 0° (aligned), to 90° (perpendicular).  The results are shown in 
Figure 10. 

The results from this experiment are similar to those of the previous one.  Voids aligned with the 
loading direction have less of an effect on the yield stress.  However, we also see the effect at 
angles between these extremes.  The difference between 0° and 30° is much larger than that 
between 90° and 60°. 

 
Figure 10:  For a void aspect ratio of 4, the effect of orientation of the major 
axis with the uniaxial tension loading direction. 
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Results of two-dimensional bifurcation 
simulations 
This chapter includes the results of a study which looked at the onset of coalescence in a 
randomized microstructure. 

Procedure 
Starting from a randomized microstructure of initially circular voids, the body was loaded under 
uniaxial tension in a plane strain framework.  This loading condition induces an averaged 
triaxiality of 0.5 which varies locally due to the presence of voids. 

We used a basic power law hardening material model representative of stainless steel 304L. 

For each microstructure, the load and displacement were tracked throughout the simulation.  The 
point of maximal load was noted as the onset of coalescence.  This point is annotated in Figure 
12.  This point corresponds to the onset of necking in a tensile bar. 

A set of 32 randomly generated microstructures were generated.  This represents the natural 
variation which would occur in a material. 

Meshing 
For this analysis, the procedure for generating meshes was a primitive version of the version 
outlined in a previous chapter.  B ecause the new version is superior, this version will not be 
heavily documented. 

The basic meshing procedure was to (a) generate a random microstructure, (b) choose a unit cell, 
(c) place nodes everywhere on the boundary, and (d) mesh the interior.  These stages are shown 
in  Figure 11. 

 

 

 

 

 

 Figure 11:  The meshing procedure started with a periodic array of voids 
(left), then placement of nodes on the exterior (middle), then generation of 
the final mesh using the paver algorithm (right). 

Although this meshing procedure worked well enough for this analysis, it had several drawbacks 
keeping it from being more applicable in general.  With void volume fractions under about 1%, 
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the meshing procedure often failed to work correctly or produced elements too distorted to be 
reliable.  Additionally, the having voids of different sizes often caused the meshing to fail.  
These drawbacks were improved in the updated meshing procedure. 

Results 
A representative load versus displacement curve is shown in Figure 12 with the bifurcation point 
annotated.  This point represents the point of material instability in which the deformation begins 
to localize. 

 
Figure 12:  Representative load versus displacement curve for a two 
dimensional array of voids.   The onset of necking—or bifurcation point—is 
noted at the point of maximal load. 

In Figure 13, the equivalent plastic strain is shown at a point in the simulation shortly after 
bifurcation.  The beginning of the fracture surface is clearly evident along the region of increased 
plastic strain.  Further loading of the material will result in nearly all deformation taking place in 
this zone.  Although each void started out identical in size, the voids along the fracture surface 
have grown significantly in size while others have grown only a small amount. 

 
Figure 13:  The beginning of a fracture surface can be seen.  Note the voids 
along the zone of high plastic strain have increased significantly in size 
compared to voids in other regions. 
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By plotting each load versus displacement curve up until the point on fracture, we can see the 
spread in the data.  This is shown in Figure 14 with an “X” marking the bifurcation point.  Data 
past this point is not plotted for clarity.  Even though the microstructures were all seeded with the 
same randomized generation algorithm, there is a significant spread in the displacement at which 
bifurcation takes places. 

 
Figure 14:  Load curves up to the point of bifurcation are shown for each of 
the 32 microstructures. 

In order to assess material integrity at the macro scale, we have homogenized these results in the 
following manner.  We have assumed a normal distribution for the strain at bifurcation.  When 
the material is strained past this point, even though it may not be fractured, the material has lost 
its structural integrity.  In this sense, we regard the point of bifurcation (or necking) as the point 
of failure.  These points were plotted and a best fit normal distribution was used to approximate 
the data. 

We can see this procedure in Figure 15.  A histogram of the necking strains is shown in green, 
while the best fit normal distribution curve is shown as a black line.  In this example, the strain at 
failure for a 95% confidence level is shown in red.  For a material which has been strained more 
than this level, we can regard that material as failed. 

 
Figure 15:  A histogram of the strain at which each microstructure sample 
necked is shown along with a best fit normal distribution curve. 
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Additional work 
The results shown in this chapter are applicable to a specific material and microstructure.  
Because each material is unique, these results are not applicable to ductile metals in a general 
sense. 

Although the results given were using a material model representative of stainless steel 304L, the 
initial void volume fraction of 3% is considerably higher than the < 0.1% found in the actual 
material.  This discrepancy was a result of technical hurdles which could not be overcome in the 
time allotted.  Along with the meshing difficulties discussed earlier, the time required for each 
simulation was significant.  Reducing the void volume fraction by a factor of 10 would increase 
the time required by about a factor of 10.  Instead of each simulation taking a few days, they 
might take a month or more to finish.  Just due purely to the instability of the computational 
platforms, this approach would not have been feasible. 
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Results of three-dimensional void growth 
simulations 
Similar to the previous study of voids in a two dimensional plane strain framework, we ran a 
series of simulations on a fully three dimensional microstructure. 

Procedure 
Using the meshing procedure described in a later chapter, a set of 64 meshes was created to 
represent a random distribution of initial void microstructures.  All voids were initially spherical 
in shape and had a uniform diameter. 

To efficiently capture the large deformation response, a selectively integrated TET10 element 
was used.  This element was shown to be the most efficient in the element study detailed in a 
later chapter. 

The periodic boundary conditions were enforced in a manner identical to the 2D plane strain 
simulations.  Opposite faces were constrained to have the same shape.  Since the choice of the 
boundary of the unit cell is arbitrary, no artificial constraints were placed to keep faces planar.  
This allows for the most general periodic solution. 

Loading was applied to represent a uniaxial tension condition.  This results in an effective 
triaxiality of 0.33.  Since this is less than the triaxiality of 0.5 seen in the plane strain simulations, 
one would expect voids to grow slightly slower. 

Initial conditions 
In an ideal world, we would model the initial conditions of the microstructure—including void 
distribution, shape and orientation—to closely resemble that of the actual material.  While some 
techniques are available to determine some characteristics of the initial microstructure, these 
techniques are not yet developed enough to paint a detailed three dimensional picture.  We 
therefore rely on assumptions to seed the initial microstructure. 

In this analysis, our assumptions of initially spherical voids distributed randomly was done both 
for computational advantages and to model an isotropic material. 

Results 
Some typical results can be seen in Figure 16 where the equivalent plastic strain in the 
microstructure is plotted at a macroscopic plastic strain of 10%.  The body is being loading in the 
vertical direction with a loading condition representative of uniaxial tension.  Interaction effects 
between neighboring voids can be seen, especially with the two voids on the left-hand axis 
linked by a band of increased plastic strain.  Areas of low plastic strain can also be seen on the 
top and bottom of each void. 
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Figure 16:  Equivalent plastic strain in one slice of the void microstructure. 

While most simulations were able to be run to 20% macroscopic strain, we ran into 
computational limits preventing us from going much further.  The walltime of 4 days on a single 
processor, coupled with no mechanism for simulations restarts, limited the run. 

Differences from two-dimensional results 
In these simulations, we did not see noticeable buckling behavior as we did in the two-
dimensional runs.  This is likely on account of several issues.  The loading condition here had a 
triaxiality of 0.33 compared to 0.5 in the 2D runs.  Because of this, we expect voids to grow and 
link up more slowly.  The other issue is likely on account of the natural differences between 2D 
and 3D simulations.  In three dimensions, the link between voids is not nearly as strong even if 
they are separated by the same distance.  This causes less of an interaction and the mechanism 
for enabling coalescence is not as strong. 

Future work 
There is some question as to whether or not the selectively integrated TET10 element is 
behaving well in this simulation.  Although the element performed well in the notched tensile 
study, it may be producing an overly compliant response in this simulation.  In some simulations, 
deformation at a particular cubature point would grow much more than expected.  Rather than 
attributing this as a result of the deformation, we believe it may be pointing to a deficiency in the 
element.  This remains an open question. 

Apart from the element issue, the mathematical framework used in this analysis is sound—
including the meshing procedure, the enforcement of periodic boundary conditions and the 
loading conditions.  The computational cost of the simulation is simply too much for our current 
capabilities. 

The effective applied triaxiality of 0.33 is a bit low compared to that seen in material regions 
expected to fail.  For example, the triaxiality ahead of a crack tip can reach 2.0.  Due to the 
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nature of the loading conditions, we cannot easily modify the applied triaxiality.  It may be 
possible to prescribe tangential displacements (in addition to the axial one) in order to effect this 
response.  However, this would need to be done assuming some sort of macroscopic response.  
At the point in the simulation where necking begins to happen, the macroscopic response no 
longer behaves the same as that of the dense material.  Future work could be done to perform this 
modification and mitigate any problems which may arise. 
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Three-dimensional mesh generation 
As a continuation of the FY 2011 work that was done looking at periodic two-dimensional arrays 
of initially circular voids in a plane strain framework, we wanted to extend this method to three 
dimensions. 

The computational techniques for modeling a periodic boundary condition in three dimensions 
are identical to those used for the previous study in two dimensions, so no additional 
modification of the code was required. 

The process of generating and meshing a randomly generated microstructure in an automated 
process turned out to be a considerable challenge.  It was immediately decided to use selectively 
integrated TET10 elements due to their ease of meshing—compared to hexahedral elements—
and their accuracy in modeling large deformation plasticity.  The “trimesh” and “tetmesh” 
schemes worked well for meshing arbitrary surfaces and volumes, respectively. 

While a number of issues were encountered along the way, ultimately we performed this task by 
generating the microstructure within Mathematica along with the corresponding Cubit journal 
file.  A Bash script was used to run the various components, process data, and generate 
additional Cubit journal files to complete the task. 

If desired, this procedure can be readily adapted to model more complex initial microstructures 
such as those found in anisotropic materials. 

The Mathematica notebook and Bash script files used in this procedure are archived in the 
DART Workbench project “clustered_void_growth” within the “threedee/meshing” folder. 

The overall procedure to generate a randomized three dimensional periodic microstructure of 
voids is: 

 Using Mathematica, place voids randomly within the unit cell 

 Using Cubit, replicate geometry and mesh in a periodic manner 

The details of each of the steps are given below. 

Void distribution in Mathematica 
The structure of the Mathematica file to generate voids can be summarized as follows: 

1. Establish microstructure parameters 
o Unit cell dimensions = {1, 1, 1} 
o Void volume fraction = 0.03 
o Void diameter distribution = uniform 
o Number of voids = 32 
o Mesh quality = 12 
o Minimum void spacing = 0.5 * diameter 

2. Generate a trial void and see if it works 
o Random position within unit cell 
o Random diameter based on sizing function 
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o Ensure minimum void spacing is satisfied 
o If it fits, add it to the list 
o If it doesn’t fit, discard it 

3. Repeat until the number of voids is reached 
4. Find the best unit cell to mesh 
5. Create Cubit journal file to recreate and mesh geometry 

This script is located in the DART Workbench at the following location: 
 workbench:clustered_void_growth/threedee/meshing/generation.nb 

Microstructure parameters 
The microstructure parameters are what allow us to tune the microstructure.  For the initial set of 
runs, we have chosen each void to be a spherical void with all voids having a uniform radius. 

Ideally, this step would be set up to generate a microstructure closely resembling those found in 
actual materials, however we have had to make considerable allowances on a ccount of 
computational costs. 

Estimate of computational costs 
We can perform a simple calculation to determine the range of microstructure variables we can 
use on account of computational costs.  A list of the microstructure and meshing variables is 
shown in Table 4.  Note that the majority of these are calculated from the parameter set  , ,n q  . 

Variable Symbol Type 

number of voids n  chosen 

mesh quality q  chosen 

initial void volume fraction   chosen 

unit cell volume  totalV  chosen (but arbitrary) 

dense volume denseV  calculated 

void radius r  calculated 

element edge length  calculated 

element volume elementV  calculated 

number of elements e  calculated 

Table 4:  Microstructure and meshing variables used in this analysis. 

We choose a cube to be the unit cell of the periodic microstructure.  For ease, we choose the 
edge length to be 1 meter, although since there is no length scale type parameter associated with 
this problem, it has no bearing on the results. 

We can easily estimate the number of elements in a given mesh for a given set of parameters 
 , ,n q  .  Give n the total volume of the unit cell, totalV , the volume occupied by elements is 

 dense total1V V  .  Given then, the number of elements is easily approximated as 

 dense element/e V V  (1.1) 

where elementV  is the typical element volume. 
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For n  spherical voids of uniform radius r , the tot void volume is given by 34
3 r n .  Given that 

this is the void volume fraction totalV , we can solve for the radius: 

 total3
3
4
V

r
n




  (1.2) 

The mesh quality parameter q  defines how many element edge lengths fit around the 
circumference of the void at its largest diameter, so we may calculated this as 

 2 r

q




2 r

q


  (1.3) 

A standard tetrahedron of element edge length  has volume 32
12

3 .  Alt hough standard 
tetrahedrons are not space-filling, we use this approximation to calculate the average element 
volume: 

 3
element

2
12

V  3  (1.4) 

Putting everything together leaves us with an approximation of the number of elements in a mesh 
for a given set of input parameters 

 
3

2

2 nq
e

 
  (1.5) 

On a 12 GB  machine (e.g. a redsky node), we can have about 250,000 selectively integrated 
TET10 elements without running out of memory.  The following choices have been made with 
this in mind. 

A number of previous studies have been done which have concluded that for these types of 
simulations, a mesh quality of around 16 is required for accurate results.  In the first set of three 
dimensional simulations, we relax this requirement to 12 to allow for more voids and a smaller 
void volume fraction. 

The physical void volume fraction is around 43 10 , however due to computational 
considerations we relax this to be 23 10  for the first set of runs. 

The appropriate number of voids in a unit cell is somewhat up for discussion.  This value is 
where a length scale parameter could be given to the simulation.  For the first set of runs, we 
have chosen 32n  .  

In practice, the equation (1.5) is fairly accurate and typically overpredicts the actual value by 5–
25%.  A comparison of calculated values versus the actual values is given in Table 5. 

n  q    calculated actual 

32 16 0.03 626,042 497,675 

32 12 0.03 264,111 249,493 

16 12 0.03 132,055 127,974 

16 16 0.10 93,906 85,655 

Table 5:  Co mparison of the estimated number of elements to the actual 
number for a given mesh for several sets of microstructure parameters. 
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Choosing the best unit cell 
Although the microstructure we are representing is periodic—and therefore infinite in 
dimensions—we must choose a particular unit cell to explicitly mesh and model to perform the 
simulation.  The particular choice is arbitrary from a geometric standpoint.  However, if poorly 
formed elements such as slivers are present, they could corrupt the system of equations and cause 
the solution to diverge.  Therefore, we choose the unit cell to model based on meshability. 

To choose the unit cell which is most easily meshed, we create an objective function   within 
Mathematica to avoid problem elements and find the unit cell which maximizes this objective.  
This global objective function is the maximum of each sub-objective function   as given below. 

Problems at corners 
In order to track unit cell dimensions (length, width, height), we need a node to be at each corner 
of the unit cell.  Therefore, the origin cannot be within a void.  We create n  sub-objective 
functions to ensure this, with each objective function being the distance of the origin away from 
the void. 

 
Figure 17:  A problematic unit cell choice because the corner is within a 
void. 

Problems at edges 
To avoid cases where an edge of the unit cell intersects a void, we create a sub-objective function 
for each case with the objective function being the shortest distance between the void surface and 
the edge.  Since there are 12 edges to a cube, this results in 12n  sub-objective functions. 
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Figure 18:  A problematic unit cell choice because an edge is very close to a 
void surface. 

Problems at faces 
To avoid cases where a face of the unit cell is very close to the surface of a void, we create a sub-
objective function with the objective function being the distance of the unit cell face towards the 
corresponding void extent.  Since there are 6 faces, and 2 corresponding extents per void, this 
creates 12n  sub-objective functions. 

 
Figure 19:  A problematic unit cell choice because a face is very close to a 
void surface extent. 

This results in an objective function 

  
each

, , maxx y z

      (1.6) 

which we maximize to find the offset  , ,x y z    which we then apply to each void. 

The frequency with which at least one of these problematic issues occurs in the original 
microstructure increases with the number of voids in the unit cell.  In practice, one or more of 
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these problems occurred virtually all of the time with the chosen set of microstructure parameters 
and so this scheme was adopted to avoid these issues. 

Meshing procedure 
Once the microstructure and unit cell are chosen, we can begin the meshing procedure. 

Due to the periodic requirement, the meshing procedure is long and tortuous, and the procedure 
given here was found by trial and error to be the most reliable.  The general procedure is 
summarized as follows: 

1. Create the geometry within Cubit 
2. Set up mesh intervals along external curves 
3. Mesh surfaces lying on the negative faces of the unit cell 
4. Replicate these faces onto the positive faces 
5. Imprint these surface meshes into the 3D geometry 
6. Mesh the other surfaces 
7. Mesh the interior 
8. Perform node matching on corresponding surfaces 

The details of each step are as follows. 

1. Create the geometry within Cubit 

To do this, we create the unit cell, then find each void which intersects the unit cell and create 
the sphere.  We then perform a boolean operation to subtract each void sphere from the unit cell 
and output that as a cub file.  An example journal file for this operation is shown in Table 6. 

# reset everything 
reset 
 
# create the unit cell solid and move it into place 
brick x 1 y 1 z 1 
move vertex 7 location 0 0 0 nomerge 
 
# create each void and move it into place 
create sphere radius 0.0607148 
move volume 2 location x -0.00777978 y -0.0264078 z 0.716514 
... 
 
# perform the boolean operation to subtract the voids 
subtract volume 2 to 47 from volume 1 
 
# save the result 
save as "cube_geometry.cub" overwrite  

Table 6:  An example Cubit journal file to create and save the void 
geometry. 

An example of the geometry generated after this procedure is shown in Figure 20. 
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Figure 20:  T he generated geometry after subtracting the voids from the 
unit cell. 

2. Set up mesh intervals along external curves 

Surfaces must be meshed before volumes, and curves must be meshed before surfaces, and 
vertices must be meshed before curves. 

As it turns out, the circular curves seen in Figure 20 have a vertex at the start/end point.  For a 
given circular curve, the location of this vertex is not necessarily the same on the front face as it 
is on the back face.  However, in cases where it is not the same, it varies by 180°.  Therefore, if 
we mesh each curve with an interval divible by 2, the nodes will match. 

To determine the appropriate amount of nodes per curve, we first find the curve length which can 
be output by Cubit using the “list curve all” command.  The number of intervals along a given 
curve is then 

 1
i c22 / 2n     2 / 22 / 2  2 / 2 2 / 2 2 / 2 i c i c   i c i c i c i c2 / 2 2 / 2 2 / 2 2 / 2i c2 / 2i c i c2 / 2i c i c2 / 2i c i c2 / 2i c2 / 2  2 / 2 2 / 2  2 / 2 2 / 2  2 / 2 2 / 2  2 / 2i c2 / 2i c  i c2 / 2i c i c2 / 2i c  i c2 / 2i c i c2 / 2i c  i c2 / 2i c i c2 / 2i c  i c2 / 2i c  (1.7) 

where cc  is the curve length and  is the target element edge length.  This function simply 
rounds /c

c is the curve length and 
/c  to a nearby multiple of 2.  This procedure was done for all curves in which the end 

vertex was the same as the start vertex. 

The placement of nodes can be seen in Figure 21. 
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Figure 21:  The placement of nodes along each curve. 

3. Mesh surfaces lying on the negative faces of the unit cell 

After nodes were placed, the negative faces (surfaces with normal –x, –y, and –z) were meshed.  
Since the ID of these is not known, they were specified by location of the centroid. 

4. Replicate these faces onto the positive faces 

The mesh at 0x   was simply translated by  1,0,0  to create the desired mesh at 1x  .  A 
sample Cubit journal file for the previous three steps is shown in Table 7. 

# reset everything 
reset 
 
# open the geometry file 
open "cube_geometry.cub" 
 
# redefine block numbers and element types 
reset block 
block 1 volume all 
block 1 element type tetra10 
block 2 surface all 
block 2 element type tri6 
 
# set surface and volume target element edge length 
surface all size 0.0317902 
volume all size 0.0317902 
 
# set up surface/volume meshing schemes 
surface all scheme trimesh 
volume all scheme tetmesh 
 
# mesh boundary curves 
curve 13 scheme equal 
curve 13 interval 10 
mesh curve 13 
... 
 
# mesh and save the negative x surface 
mesh surface with x_coord = 0 
export mesh "mesh_periodic_1.g" dimension 3 overwrite 
 
# translate the surface and save it at the positive face location 
move volume all x 1 include_merged 
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export mesh "mesh_periodic_2.g" dimension 3 overwrite 
move volume all x -1 include_merged 
delete mesh surface all 
 
# repeat for y and z sides 
... 

Table 7:  An example Cubit journal file to mesh the boundary curves and 
faces. 

The resulting six surface meshes (each is a separate file) can be seen in Figure 22. 

 
Figure 22:  Meshes of the six external faces of the unit cell.  Note the 
interior and void surfaces are unmeshed at this point. 

5. Imprint these surface meshes into the 3D geometry 

At this point, we have a geometry file along with six surface mesh files for each of the six faces 
of the unit cell.  We can “imprint” these meshes onto the geometry by loading the geometry file 
and then importing each mesh. 

This step works most of the time with Cubit successfully associating the mesh in the file with the 
appropriate surface.  However, it doesn’t always work and sometimes an error is thrown.  
Therefore, the success of this step must be checked. 

6. Mesh the other surfaces 

Since the mesh is now guaranteed to be periodic, we can mesh the rest of the surfaces using a 
simple “trimesh” scheme. 

7. Mesh the interior 

With all surfaces meshed, the interior is meshed using the “tetmesh” scheme. 

A sample script for the last three steps is shown in Table 8. 
# reset everything 
reset 
 
# open the geometry file 
open "cube_geometry.cub" 
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# redefine block numbers and element types 
reset block 
block 1 volume all 
block 1 element type tetra10 
block 2 surface all 
block 2 element type tri6 
 
# set surface and volume target element edge length 
surface all size 0.0317902 
volume all size 0.0317902 
 
# set up surface/volume meshing schemes 
surface all scheme trimesh 
volume all scheme tetmesh 
 
# attempt to import and imprint the mesh for 
# each external face 
import mesh "mesh_periodic_1.g" 
import mesh "mesh_periodic_2.g" 
import mesh "mesh_periodic_3.g" 
import mesh "mesh_periodic_4.g" 
import mesh "mesh_periodic_5.g" 
import mesh "mesh_periodic_6.g" 
 
# mesh the rest of the surfaces 
mesh surface all 
 
# mesh the volume 
mesh volume all 
 
# save it 
export mesh "mesh_cube.g" dimension 3 block 1 overwrite 

Table 8:  An example Cubit journal file to imprint the external faces and 
mesh the interior. 

8. Perform node matching on corresponding surfaces 

Rather unfortunately, even after the precautions taken in the procedure to ensure nodes on 
corresponding faces match, nodal positions can still be off by a small amount.  To correct this 
final issue, we perform the following face-matching routine: 

 For each node on the 1x   face with coordinates  1, ,y z  
o Find the closest node to  0, ,y z  with coordinates  0, ,y z   
o Move the original node to  1, ,y z   

The resulting mesh then exactly matches on the 0x   and 1x   faces.  That is, for every node 
with coordinates  0, ,y z  there is a corresponding node with exactly the coordinates  1, ,y z , 
and vice-versa. 

This procedure is also repeated on the other two pairs of surfaces. 

The final mesh can be seen in Figure 23. 
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Figure 23:  The final and truly periodic mesh in all its glory. 

Problems encountered while meshing 
At first glance, the meshing procedure outline previously may seem overly complicated.  
However, there numerous bugs and issues encountered which influenced this path. 

Cubit IDs change 
In general, there is no guarantee that “surface 1” after the boolean subtraction operation is the 
same surface as “surface 1” before the operation.  It may have disappeared or changed values.  
This is the reason we refer to surfaces by coordinate rather than ID. 

In addition, it is well known that, for the same journal file, IDs frequently change between code 
versions.  Thus, referring to entities by ID in a particular journal file will likely cause the journal 
file to not function correctly in future code versions. 
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Copy mesh produces unreliable results 
There is a copy mesh method in Cubit which purportedly creates a mesh on the target surface from 
the mesh on the source surface.  If the two surfaces are geometrically identical (within a rigid 
body motion), this command should reproduce the mesh identically (within the same rigid body 
motion).  However, in practice, this was not the case. 

For a well-formed source mesh, the created target mesh often contained inverted elements.  
Other times, the operation would simply fail.  Even in cases where the method appeared to have 
worked (by visual inspection), the nodal coordinates on the target mesh would significantly 
differ from those on the source mesh, making enforcement of the periodic condition impossible. 

For these reasons, we abandoned use of the copy mesh method. 

Importing more than one surface at once problematic 
During the step where we import surface meshes, we found that trying to import the entire 
surface mesh in a single file often failed.  By trial and error, we found that individually importing 
surfaces worked much more reliably.  This is the reason for 6 separate surface mesh files. 
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Anisotropic plasticity model development 
This chapter contains the formulation and implementation details of an anisotropic plasticity 
material model. 

After investigating the effect of void texture on the macroscopic response, it became clear that an 
isotropic material mode would be unable to accurately capture the response of a material with an 
anisotropic void distribution (this includes most ductile metals).  Because no anisotropic 
plasticity models are available in SIERRA, we decided to formulate and implement one such 
formulation into the Area code. 

Procedure 
The model is relatively easy to formulate, but difficult to implement in a robust fashion.  In 
particular, this formulation is complicated by not using the typical decomposition of the 
deformation tensor into elastic and plastic parts—also known as hypoelasticity. 

This derivation will be given for the case in which the material axes of symmetry are aligned 
with the coordinate axes in the reference configuration. 

Formulation 
The model is effectively a linearly hardening model with an anisotropic yield function.  We 
break up the deformation gradient into an elastic and plastic part 

 e p F F F  (8) 

with the further restriction that p pF U  is symmetric by definition.  We can find the polar 
decomposition of F  to calculate 

  F R U  (9) 

where R  is a rotation tensor with the properties det 1R  and T 1R R  and U  is the right 
stretch tensor which is symmetric.  We can also apply the polar decomposition to eF  to get 

 e e e F R U  (10) 

where e R R  and eU  is symmetric. 

Elastic response 
In this section, to simplify the presentation, we will assume p U I  and therefore eF F . 

In plasticity, the elastic deformation typically has a magnitude of less than 1%.  Because of this, 
the particular elasticity law one chooses is nearly insignificant as they all behave similarly in the 
regime of interest.  For computational convenience, we choose the elastic response to be 

  T 11
2 2 devJ J     R σ R I U  (11) 

which satisfies the usual requirements on objectivity where 
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def

1/3J U U  (12) 

is the isochoric stretch tensor.  Note that the volumetric response is decoupled from the 
deviatoric response. 

Infinitesimal elastic response 
As an exercise, we can linearize this about a state of zero deformation by making the 
approximation 

  F I H  (13) 

for 1 1.  The polar decomposition then becomes 

 
   

   

T 21
2

T 21
2

O

O

 

 

   

   

R I H H

U I H H
 (14) 

and the stress becomes 

      T 21
3dev tr O       

 
σ H H H I  (15) 

which, if we use the infinitesimal small strain tensor 

  
def

1
2

T ε H H  (16) 

the stress can be written as 

    21
3dev tr O   σ ε ε I ε  (17) 

which is linear elasticity. 

Thus, the elasticity law we use here collapses to linear elasticity in the small strain limit and the 
constants   and   have their usual meanings of the shear modulus and the bulk modulus, 
respectively. 

Yield surface 
To form the yield surface, we use the Hill yield criterion with a slight modification to allow for 
strain hardening.  We form the equivalent stress 

      
def 2 2 2 2 2 2

eq 1 22 33 2 33 11 3 11 22 4 23 5 31 6 122 2 2c c c c c c                   (18) 

which comes from a simple extension of the Von-Mises equivalent stress.  The parameters 
 1 2 6, , ...,c c c  must be fit from experimental data.  The yield surface is then defined by eq y   
with a purely elastic response taking place when eq y  . 

The yield stress y  is also fit from experimental data.  Note that this system is non-unique.  This 
is deliberate to allow for the constants to have physical meanings while retaining the traditional 
definition of y  as the yield stress in a particular direction—typically the longitudinal direction. 
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The yield stress evolves linearly as the material hardens due to plastic strain according to the law 

 
def

0
y y p,eqK     (19) 

where 0
y  is the initial yield stress (in the 1–1 direction), K  is the hardening modulus, and p,eq  

is the equivalent plastic strain which evolves according to 

 
def

p2
p,eq 3  d

def
2

p,eq 3   (20) 

where 

  
def 1p p p 

 d U U 
1p p pp p p


d U Ud U Up p pd U Up p pp p pd U Up p p d U U p p p p p pd U Up p p p p p  (21) 

is the rate of plastic deformation tensor. 

Parameter fitting 
The six constants  1 2 6, , ...,c c c  are fit using the following procedure. 

The yield stress in each direction must be experimentally obtained by performing tensile tests 
and shear failure tests.  The yield stress of each of these must be obtained.  The constants may be 
fit with the equations 

 

   

   

   

1 2 2y y y y
22 11 33 11

2 2 2y y y y
22 11 33 11

3 2 2y y y y
22 11 33 11

1 1 11
2 / /

1 1 11
2 / /

1 1 11
2 / /

c

c

c

   

   

   

 
    
 
 

 
   
 
 

 
   
 
 

 (22) 

where y
11  is the yield stress obtained from a simple tension tests along the 1–1 direction and 

 
     

4 5 62 2 2y y y y y y
23 11 31 11 12 11

1 1 1

2 / 2 / 2 /
c c c

     
    (23) 

where y
12  is the yield stress (in shear) of a simple shear tests in the 1–2 direction. 

Note that for the typical J-2 plasticity isotropic yield surface, we have 

 
y y y

11 22 33 y

y y y 1
12 23 31 y3

   

   

  

  
 (24) 

and therefore 
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1

1 2 3 2
3

4 5 6 2

c c c

c c c

  

  
 (25) 

In this case, the equivalent stress is equal to the Von-Mises stress. 

Flow rule 

The principle of maximum plastic dissipation effectively says the following:  During yielding, 
the plastic strain—however you wish to define it—evolves in such a way that the Cauchy stress 
evolves in a direction normal to the yield surface. 

This rule is good for two reasons: (1) it makes physical sense based on thermodynamic principles 
and (2) it preserves the symmetry of the stiffness matrix.  For these reasons, and for lack of 
experimental data suggesting otherwise, we adopt this flow rule for our model. 

In isotropic plasticity, for a point on the yield surface, the Cauchy stress is always normal to the 
yield surface.  Thus, this is a trivial exercise.  The radial return algorithm literally describes this 
approach as the trial stress outside the yield surface returns radially.  This is further mad clear in 
that the isotropic yield surface can be visualized in three dimensional space as a sphere.  Upon 
yielding, the stress evolves literally in the radial direction. 

For our anisotropic case, the yield surface is a 5-dimensional manifold in 6-dimensional space 
and the task of finding the appropriate path 

Return mapping algorithm 

The most expensive task of the return mapping algorithm is finding the point on the yield surface 
whose normal points in the direction of the trial stress.  This is depicted for a two-dimensional 
system in Figure 24. 

 
Figure 24:  The yield surface as depicted as an ellipse in two dimensions.  
The return mapping algorithm finds nσ  as a function of y  and the trial 
σ . 

To find this point, an iterative Newton’s method approach is used.  Since the equivalent stress 
function is linear, the first trial nσ  is chosen by radially scaling the trial σ  back to the yield 
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surface.  The residual is then calculated by projecting the difference onto a plane tangent to the 
yield surface.  The system is then linearized about this point and an update is found using 
Newton’s method. 

Starting with the definition of the residual 

 
def f f

f f

  
       

r τ τ  (26) 

where 

 
def

n  τ τ τ  (27) 

and f  is the equivalent stress function (i.e. Hill’s yield criteria) and f  is a function of n
τ .  We 

can rewrite the residual in index notation as 

  2
i

i i k k

f
r f

f
 


    


 (28) 

which we take the gradient of to give us 

    2 3 2n n n n n n

21i i i i i k k
k k k k k k

j j j j j j

d fdr d d f f f d f d
f f f

d d d d d df f f

 
  

     

      
               

 (29) 

To simplify this, we can calculate 

 n n
i i

j j

d f f d f

d f d 

  



 (30) 

and 

  n
n n

i
i i ij

j j

d d

d d


  

 


     (31) 

and use these in (29) to find 

 2 2 2 2n n n 2 i ji i i k
ij k k

j j j

f fdr d f f d ff f
f

d d df f f f
 

  

        
       

     

τ τ  (32) 

The update to the system is found by taking 

 
1

1
n n
I I I

n

d

d



  
   

 

r
τ τ r

τ
 (33) 

In practice, with moderately anisotropic yield functions, this converges in 3–4 iterations to a 
tolerance near machine precision (10-16). 
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Inverse stress calculation 
Due to the formulation of the flow rule, an implicit equation must be solved to find the elastic 
stretch eU  in terms of the un-rotated stress τ .  We can take the determinant of (11) to find 

  13
2tr J J  τ  (34) 

which we can solve to find 

 
2tr tr1

3 3
J

 

 
    

 

τ τ  (35) 

Taking the deviatoric part of (11) yields 

 1/3dev 2 dev 2 devJ  τ U U  (36) 

From here, we know 

 det JU  (37) 

and 

 dev  U U I  (38) 

for some real number  .  Since the elastic part of the deformation is typically close to I , we can 
define our residual to be 

  
def

det devI Ir J  U I  (39) 

which has a gradient of 

    
1

det dev tr dev
I

I I

I

dr

d
 



   
  

U I U I  (40) 

To converge, we choose our initial point 0 1   and use Newton’s method to find the exact 
solution.  This scheme is summarized in Table 9. 
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1. Calculate 
2tr tr1

3 3
J

 

 
    

 

τ τ  

2. Calculate 
1/3

dev dev
2
J


U τ  

3. Set 0I  , choose 1I   

a. Calculate devI I U U I  

b. Calculate detI Ir J U  

c. If 1Ir 1 , exit 

d. Calculate 
   

1
1

det tr

I
I I

I I

r
 


 

 
  

U U
 

e. Set 1I I   and iterate 

Table 9:  Algorithm to find elastic stretch as a function of unrotated stress. 

In practice, for plastic materials, this algorithm converges to within machine precision after 1–4 
iterations.  Also, note that the quantity    , 1det trI I U U  simplifies considerably and the 
calculation the calculation of the full inverse is not necessary. 

Implementation 
A C++ implementation of this algorithm is available within the finite element code Ares1 under 
the anisotropic_void_plasticity material model. 

Preliminary results 
In formed materials, results of anisotropy can often be seen in the asymmetric response of a 
specimen.  In Figure 25, the results of a tensile specimen of aluminum 7050-T74 tested to failure 
at 300 °C can be seen.  Although the initial geometry is axisymmetric, the cross section of the 
necked region is noticeably elliptical. 

   
Figure 25:  The tensile specimen tested at 300 °C.  At right is a view of the 
asymmetric fracture surface. 

                                                 
1 http://www.sourceforge.net/projects/aresfea/ 

http://www.sourceforge.net/projects/aresfea/
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Using the anisotropic plasticity model, we ran a simulation of a tensile specimen with the yield 
stress in the long transverse direction reduced to 90% and the yield stress in the short transverse 
direction reduced to 80% compared to the longitudinal (axial) direction.  These values were 
chosen to show a proof of concept and do not necessarily represent the actual material properties.  
A more rigorous testing procedure would be necessary to characterize the anisotropy of the 
material. 

The results of this are shown in Figure 26.  On the left, one can clearly see the anisotropy of the 
necked region.  The two middle pictures show the profile of the specimen rotated 90 degrees 
relative to one another. 

 

 

 

 

 

 

Figure 26:  Equivalent plastic strain in a tensile specimen with anisotropic 
properties. 

The results of this study show even a modest amount of material anisotropy can affect the shape 
of the necked region. 
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Mathematical enforcement of boundary 
conditions 
The mathematical framework necessary for enforcing a periodic boundary condition is given 
below. 

Enforcement of periodic boundary condition 
In our framework, we have a unit cell which is repeated according to 

  
3

1
A A

i

n 


 
  

 
X R X  (1.41) 

where   is the material function (0 within a void, 1 within the matrix), AR  are the unit cell 
directions, and An  are any integer.  In short, this equation says that if there is a void at X , there 
is also a void at 1X R , 12X R , etc...  This framework is identical to that of crystal lattice, 
except that the geometry is random and not ordered. 

A periodic boundary condition requires the displacement field to satisfy 

    
3 3

1 1
A AA A

i i

d d n n
 

   
         

   
 u X X u X u X X R u X R  (1.42) 

for an arbitrary position X  and vector dX .  Note that this is not the same as enforcing the 
condition    A An u X R u X  which is overly restrictive. 

This boundary condition enforcement is illustrated in Figure 27.  On the left, the unit cell is 
shown as the gray dashed square.  The locations of four material points are also shown.  
Equation (1.42) forces the relative positions given by the two red arrows to be identical, as the 
shape of the left and right boundaries of the unit cell must match.  No restriction is required on 
the relative position of the left and right boundary, as shown by the green arrow.  On the right, a 
possible deformed configuration is given. 

  
Figure 27:  The initial configuration (left) and one possible deformed 
configuration (right) of four material points. 
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Since we have taken great pains to ensure that nodes on the 1x   face have a corresponding 
node on the 0x   face, ensuring that corresponding nodal displacements are periodic also 
ensures the point-wise displacement on the face is periodic. 

Simple linear constraint example 
Consider the convex system energy function 

 2 23 2 8x y xy y      (1.43) 

where our two unknowns are  ,x y .  Minimizing this is a trivial exercise in which we find 
24    at    , 2, 6x y   . 

Consider now the case in which we constrain the solution to satisfy x y  due to some kinematic 
constraint.  The system then becomes 28 6x x    and the minimum 8

3   is obtained at 
   2 2

3 3, ,x y   . 

This simple 2-variable example is exactly analogous to the procedure done on the full system of 
equations in our actual problem.  To satisfy the periodic boundary conditions, we form linear 
constraints of the form 

 0

,
Ii Ii Jj Jj

J j

a a c a   (1.44) 

where each 
Jja  is a component of a nodal displacement and the 

Jjc  are constants found in our 
application of the constraint. 

A more complete discussion of this can be found in previous documentation2. 
 

                                                 
2 T. D. Kostka, “On better understanding dilute void growth in ductile metals”, Ph.D. dissertation, University of 

California, Berkeley, 2010. 
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Efficiency of a plane strain formulation 
Three different computational frameworks were investigated for solving the same plane strain 
solid mechanics boundary value problem—Standard 3D, Reduced 3D, and True 2D.  The first of 
these denotes what is currently available in three-dimensional codes by having a single layer of 
elements and constraining the vertical displacement to be zero at each node.  The “True 2D” 
framework denotes a framework in which elements are two-dimensional and where each node 
only has 2 displacement unknowns.  An intermediate “Reduced 3D” framework uses analytical 
constraints to produce a truly 2D solution within the three-dimensional framework. 

Since the boundary value problem is identical in all three cases, the results match to within the 
specified numerical tolerance and the primary difference between the cases is the computational 
effort (time, memory) required to solve the problem. 

Compared to the “Standard 3D” framework, the “True 2D” framework reduced the analysis time 
by 84%—a factor of 6.25.  In addition, the RAM memory footprint was reduced by 81% and 
output file size by 51%. 

An intermediate framework in which corresponding node pairs are constrained to have the same 
displacement reduced the analysis time by 65% and the memory footprint by 32%. 

These results show a vast performance increase obtained by the two-dimensional framework.  
The reduction in computational time—a factor of 6.25—is above what one would expect based 
purely on O(N) type approximations.  Although this test was performed on a single 
computational architecture (a dual Intel Xeon X5570 setup), the performance increase is 
expected to be consistent across other modern processor configurations. 

Procedure 
In this section, we outline the procedure used to obtain the results. 

Planar plane strain 
In the most general sense, the “plane strain” condition simply means that the out-of-plane strain 
is zero at all points and that the displacement is not a function of the out-of-plane coordinate.  
Mathematically, this constraint yields 

        1 1 2 2 3 3, , , , ,X Y Z u X Y u X Y u X Y  u e e e  (1.45) 

where we take 3e  as the out-of-plane direction. 

A subset of this case is planar deformation—often simply called “plane strain” itself—in which 
the out of plane deformation is zero.  In this case, we have 3 0u   and are left with only two 
displacement unknowns at each point. 

In this analysis, we enforce 3 0u   and call the framework planar plane strain. 

 

The three plane strain frameworks we examine are as follows. 
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 Standard 3D—a standard 3D framework (3 unknowns per node) is used and the vertical 
displacement of all nodes is prescribed to be zero. 

 Reduced 3D—a standard 3D framework is used.  In addition to setting the vertical 
displacement of all nodes to be zero, for each pair of nodes that share the same in-plane 
coordinates, the displacement of the top node is set to be equal to the displacement of the 
bottom node.  This results in a reduction of the number of effective unknowns when 
solving the linear system. 

 True 2D—the underlying framework is 2D (2 unknowns per node).  The third unknown 
is implicitly assumed to be zero to accommodate the plane strain boundary condition. 

Although the system of equations for the “Reduced 3D” and “True 2D” cases are equivalent, the 
major differences lie in the amount of memory space required for the stiffness matrix and the 
vector list of unknowns.  This memory requirement between these two is approximately a factor 
of 3. 

Meshing 
The mesh was created using Cubit and represents a randomized microstructure of elliptical voids.  
The three-dimensional meshes were formed by extruding the elements a small distance out of 
plane.  The mesh can be seen in Figure 28. 

         
Figure 28:  The mesh used in the analysis (left) and a close-up of the mesh 
around a single void (right). 

The mesh has been intentionally created such that elements near the void surface are relatively 
smaller compared to those in the middle of the body. 
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Element formulation 
The Ares3 finite element code was used to perform these simulations.  Ares is an open source 
nonlinear implicit finite element software with multithreaded capabilities built on a shared 
memory architecture. 

The interpolation and cubature type for each framework are shown in Table 10. 

Framework Element 
In-plane 
cubature 

Out-of-plane 
cubature 

Standard 3D WEDGE15 TRI7P5O GAUSS2P3O 
Reduced 3D WEDGE12 TRI7P5O GAUSS1P1O 
True 2D TRI6 TRI7P5O n/a 

Table 10:  Element interpolation and cubature types used in each 
framework. 

For all frameworks, the in-plane element interpolation is quadratic and the integration is done 
using a 7 point, 5th order scheme.  In the out-of-plane direction, the interpolation order is 
quadratic (WEDGE15) or linear (WEDGE12).  Although the integration order may seem 
excessive, it is important to realize that the bulk of the computational time is spent in the linear 
solver which is not affected by the integration scheme. 

The number of nodes, element, unknowns, and cubature point in each framework is shown in 
Table 11. 

Framework Nodes Elements 
Actual 

unknowns 
Effective 

unknowns 
Cubature 

points 

Standard 3D 133,892 28,553 401,676 281,832 399,742 
Reduced 3D 118,560 28,553 355,680 118,093 199,871 
True 2D 59,280 28,553 118,560 118,093 199,871 

Table 11:  Statistics for each framework. 

The actual unknowns are the number of nodes multiplied by the number of unknowns per node 
(3 for 3D, 2 for 2D). 

The effective unknowns take into consideration the constraints placed on the system.  For 
example, in the “Standard 3D” framework the vertical displacement of all nodes is fixed at zero.  
Therefore, the number of effective unknowns is about two thirds that of the actual unknowns. 

Platform 
All analyses were run on the redsky cluster using the same code version and on the same day.  
Disk access time in each run was negligible compared to the total run time.  The hardware setup 
is a dual Intel Xeon X5570 board.  The code is multithreaded and makes use of all of the 8 
available cores. 

                                                 
3 http://sourceforge.net/projects/aresfea/ 

http://sourceforge.net/projects/aresfea/
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Metrics 
The analysis time was computed by the walltime from the start of the simulation to the end of the 
7th step. 

The memory footprint was computed via the “top” command in Linux and represents actual 
memory usage—not an estimate. 

The output file size is the file size required for each step of the analysis. 

Results 
The results were obtained after 7 nonlinear steps were performed which corresponded to a bulk 
plastic strain of about 3%.  The equivalent plastic strain field can be seen in Figure 29.  The 
results of all three simulations were the same to within a relative tolerance of 10-6.  One can see 
that the solution field is highly nonlinear. 

 
Figure 29:  The equivalent plastic strain field. 

The walltime and memory footprint were obtained after 7 nonlinear steps.  Along with the output 
file size, these metrics are shown in Table 12. 

Framework 
Time 
(min) 

Memory 
(MB) 

File size 
(MB) 

Standard 3D 145 1,260 47 
Reduced 3D 51 780 47 
True 2D 23 264 23 

Table 12:  Results for each framework. 

The increase in computational efficiency between the “Standard 3D” framework and the “True 
2D” framework is a factor of 6.3.  In other words, a simulation which takes one week to 
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complete could be reduced to one day if the framework was changed.  This is an incredible speed 
up in efficiency given that the results from the two simulations are equivalent. 

The memory footprint also sees a considerably decrease by a factor of 4.7.  While memory is 
typically not the barrier to higher resolution implicit simulations, this is still an impressive result. 

The intermediate “Reduced 3D” framework delivered results somewhere between the two 
extremes.  It should be noted that this framework and the “True 2D” framework solved the exact 
same set of equations and the differences were that the “Reduced 3D” framework holds a 
considerable number of “dummy” equations resulting from the reduction of unknowns due to 
analytical constraints.  This increases the memory requirement for all components and so slows 
down the speed of the computation. 

Timing profile 
The walltime spent in each part of the code was reported in Table 13, Table 14, and Table 15.  It 
is clear that in all three cases, the majority of time was spent within the linear solver.  By 
comparison, formation of the stiffness matrix and load vector—reported within “System 
generation”—was relatively minor.  Reduction of the system of equations by enforcing the 
analytical constraints—reported within “Constraints”—was relatively minor as well, even for the 
“Reduced 3D” framework which reduced the number of unknowns by more than two thirds. 

=== Timing profile information ====================== 

Item                         Hits  Percent  Absolute  

----------------------------------------------------- 

Setup.......................    3    0.27%   24.07 s  

Constraints.................  133    1.15%    1.66 m  

System generation...........  176    2.95%    4.27 m  

Linear solver...............   37   94.67%    2.28 hr 

Output......................    8    0.26%   22.95 s  

Other.......................  177    0.66%   58.05 s  

----------------------------------------------------- 

Total.......................  534  100.00%    2.41 hr 

----------------------------------------------------- 

Table 13:  Timing profile for the “Standard 3D” framework. 

=== Timing profile information ====================== 

Item                         Hits  Percent  Absolute  

----------------------------------------------------- 

Setup.......................    3    0.80%   24.79 s  

Constraints.................  133    4.67%    2.39 m  

System generation...........  176    4.09%    2.10 m  

Linear solver...............   37   89.15%   45.63 m  

Output......................    8    0.73%   22.52 s  

Other.......................  177    0.53%   16.32 s  

----------------------------------------------------- 

Total.......................  534  100.00%   51.18 m  

----------------------------------------------------- 

Table 14:  Timing profile for the “Reduced 3D” framework. 
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=== Timing profile information ====================== 

Item                         Hits  Percent  Absolute  

----------------------------------------------------- 

Setup.......................    3    0.15%    2.22 s  

Constraints.................  145    0.35%    5.05 s  

System generation...........  192    8.62%    2.02 m  

Linear solver...............   41   89.27%   20.89 m  

Output......................    8    1.06%   15.00 s  

Other.......................  193    0.50%    7.16 s  

----------------------------------------------------- 

Total.......................  582  100.00%   23.40 m  

----------------------------------------------------- 

Table 15:  Timing profile for the “True 2D” framework. 

Sample input deck 
A sample Ares input deck for the “True 2D” framework is given in Table 16.  The mesh file is 
not included. 

# set up the 2D framework 
>framework 
plane_strain_planar 
 
# define the material 
>material 
material, plasticisotropic, 160e9, 78e9, 8e3, hardening_curve, 

strain_rate_dependence_curve 
>data curve 
hardening_curve, piecewise_linear 
0, 200e6 
1, 250e6 
>data curve 
strain_rate_dependence_curve, piecewise_linear 
0, 1 
1, 1.1 
 
# include the mesh file 
>include 
"mesh_voids_planar.in" 
 
# solution settings 
>developer initial motion limit 
0.10 
>developer newton solver target tolerance 
1e-6 
>developer linear solver target tolerance 
1e-7 
 
# set termination time 
>termination time 
1 
 
# set the initial timestep size 
# (initial size) = (termination time) / (timesteps) 
>timesteps 
4000 
 
# adjust the timestep so that the max eqps change 
# in any element per timestep is at most X 
>control timestep via material state change 
bulk, “eqps”, 0.05 
 
# set the cubature type 
>element block cubature 
bulk, tri7p5o 
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# set minimal output 
>output iteration steps 
none 
>output integration points 
none 
>output nodal forces 
none 
 
# enforce periodic boundaries to unit cell 
>bc periodic translational direction 
x, 1 
y, 1 
 
# define surfaces for load calculation 
>assign surface id analytic 
bottom, "X+Y<1 && X-Y<0" 
bottom2, "X<0.5" 
 
# assign node numbers to corner nodes 
>assign node id 
-1, 0, 0, 0 
-2, 1, 0, 0 
-3, 0, 1, 0 
 
# set the unit cell displacements 
>bc prescribe node displacement 
-1, zero, x 
-1, zero, y 
-2, zero, y 
-3, zero, x 
 
# displace the right side 
>analytic curve 
displacement, "exp(sqrt(3)/2*t)-1" 
>bc prescribe node displacement 
-2, displacement, x 
 
# output surface forces 
>output surface force 
bottom, x, "load.txt" 
bottom2, x, "load2.txt" 
 
# set output element type 
>element block output 
bulk, tri3, 1, 0 
 
# output displacement 
>output node value 
-3, "x-X", "displacement.txt" 
 
# output material maximuma 
>output material state value 
bulk, eqps, maximum, "eqps_max.txt" 
bulk, eqpsdot, maximum, "eqpsdot_max.txt" 

Table 16:  Ares input deck for the “True 2D” framework. 
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Best elements for large deformation 
plasticity 
In this analysis, a number of element formulations were tested on a large deformation notched 
tensile specimen. The element formulations included the most basic standard displacement 
formulations as well as two nontrivial formulations—selective integration and selective 
deviatoric. The formulations have been ranked by accuracy and efficiency for both macroscopic 
and local quantities of interest. 

All element formulations were shown to have convergent behavior, although the standard 
displacement formulations converged so slowly as to be of no practical use. For macroscopic 
variables—such as the load at a given displacement—typical errors ranged from around 10% for 
standard displacement formulations to around 1% for the more advanced formulations. For local 
variables—such as the triaxiality in the center at a given displacement—standard displacement 
formulations were off by a factor of 2 or more, while other formulations were off by 
approximately 1–10%. 

The clear winners in terms of efficiency were the selectively integrated HEX8 and the selectively 
integrated TET10 formulations. Both of these elements have proven to be remarkably more 
accurate than standard formulations. In addition, neither requires the application of hourglass 
restoring forces. We propose implementing these two new selective integration element 
formulations into the SIERRA framework of codes. 

The two proposed schemes are shown in Figure 30 and Figure 31, with the interpolation type 
shown on the (left), the shear cubature scheme shown in the (middle), and the volumetric 
cubature scheme shown on the (right). 

 

+ 

 

+ 

 

Figure 30: The proposed selectively integrated HEX8 element formulation. 

 

+ 

 

+ 

 

Figure 31: The proposed selectively integrated TET10 element formulation. 
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Background 
Understanding the mechanical behavior of structural metals is of fundamental importance in the 
mission of Sandia to ensure the safety and reliability of the U.S. nuclear weapon stockpile. The 
capability to model the fracture of ductile metals is of vital importance to allow us to support this 
mission. 

The finite element framework allows us to model a complex three-dimensional system by 
breaking it up into a number of elements. Mathematically, the laws of momentum balance are 
solved on these elements and the system of equations is assembled. Of critical importance in this 
procedure is the element formulation—both the interpolation scheme and integration scheme. 

It is well known that the triaxiality field is the primary variable driving void growth and 
coalescence4. Therefore, it is important to accurately resolve the triaxiality field if one is 
interested in predicting failure of this type. Traditional standard displacement elements have 
been shown to do a poor job of resolving the pressure field in the context of large deformation 
plasticity. The popular underintegrated elements have a fundamental drawback in that the 
application of hourglass restoring forces, necessary to eliminate zero energy modes, is not 
uniquely defined. The hourglass force application varies between codes and can influence the 
results by several percent or more. 

Since the mathematical formulation of the finite element method is a well-defined problem, a 
unique solution—given an appropriate material model—exists. The variation in the solution as a 
result of the hourglass formulation is a non-physical and unwelcome artifact. 

Due to these drawbacks of the current element implementations, we wish to look a t other 
formulations to more accurately capture the dynamics of the system and help us predict failure in 
ductile metals. 

Mathematical foundation 
Following from Newton’s second law of motion, the local balance of linear momentum in 
continuum mechanical is simply written as 

 ,ij j iu ij j iuij j iuij j i u u  (46) 

where σ  is the Cauchy stress tensor,   is the density, and u  is the displacement. To transform 
this equation into a form useful for finite element calculations, we integrate over the body and 
introduce shape functions to arrive at the following form for the nodal force vector. The result of 
this procedure is 
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where   is the body, I  is the shape function of node I , ib  is the body force,   is the surface 
of the body, it  is the applied traction on that s urface, , /I j i jd dx  , and Jiu

is the body force, 
Jiu  is the acceleration 

                                                 
4 F. McClintock, “A criterion for ductile fracture by the growth of holes,” Journal of Applied Mechanics, 1968. 
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of node J . Here, lower-case indices sum over the 3 Cartesian coordinates, and upper-case 
indices sum over each node. 

The most significant of these terms is typically the contribution due to internal forces, 

 
def

,Ii I j ijf d 


   (48) 

which must be evaluated using some approximation. The most basic of these is the standard 
displacement formulation, which approximates the integral by evaluation it at discrete integration 
points within the domain and weighting each contribution according to a given scheme—such as 
Gaussian quadrature. 

We will look at the shortcomings of this approach and evaluate other methods. 

Standard displacement formulation 
In the standard displacement model, the displacement within the element is interpolated from the 
nodal displacements and the shape functions. Within each element, it is formed by the sum 

 
1

N

i I Ii

I

u a


  (49) 

where N  is the number of nodes, I  is the shape function corresponding to node I , and Iia  is 
the displacement of node I  in the direction of ie . This allows us to evaluate the integrand of 
equation (48) at any point within the element. 

We then approximate the integral by evaluating it at a number of integration points. These are 
often locations obtained from extending Gaussian quadrature into multiple dimensions, but this 
does not have to be the case. For this reason, these points are often called “Gauss points”. 
Equation (48) is then approximated as 

 , ,
1 c

C

I j ij c I j ij

c

d w d   




   x
 (50) 

where C  is the number of integration points and cw  is the weight associated with the integration 
point located at cx . 

For the naming convention, we simply list the interpolation and integration schemes. For 
example, the HEX8+GAUSS8P3O formulation uses the 8 node hexahedron for the shape functions 
and evaluates the integral using an 8 point, 3rd order Gaussian scheme. 

Theoretical foundation 
In this section we discuss the mathematics of the selective integration and the selective deviatoric 
formulations. 

Selective integration formulation 
In the selective integration formulation, the nodal force contributions from internal forces are 
separated into deviatoric and volumetric parts by using the decomposition of the stress 
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 ij ij ijp     (51) 

 
def

1
3 kkp   (52) 

where p  is the pressure and ij   is the deviatoric stress. Accordingly, we break the internal force 
integral into 

 1
, , , 3

deviatoric part volumetric part
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where the two integrals are evaluated using separate integration schemes similar to equation (50). 
The volumetric integration scheme is typically of lower order than the deviatoric scheme. 

Complications of this formulation exist in post-processing field data. Since we have two types of 
integration points, the analyst must be aware of this and choose the appropriate set. For example, 
the equivalent stress field is (typically) a function primarily of the deviatoric deformation, so the 
deviatoric cubature points would be an appropriate choice. The volumetric cubature points could 
also be used, although the resolution would not be as high since there are less of them. Similarly, 
the pressure is (typically) a function primarily of the volumetric deformation, so the volumetric 
cubature points would be the appropriate choice. We make no attempts at combining information 
from the two sets of fields. 

Computationally, this formulation preserves the symmetry of the stiffness matrix. It has a cost 
only slightly higher than the standard displacement scheme due to the addition of some 
volumetric cubature points. Since the decomposition of the stress can be done after a call to the 
material routine, implementation of this formulation requires no modification to the material 
subroutine calls which calculate the stress. 

For the naming convention, the scheme used to evaluate the deviatoric part is listed first. For 
example, a HEX8SI+GAUSS8P3O_HEX1P1O formulation uses the 8 node hexahedron element for 
the shape functions, and evaluates the deviatoric part using an 8 poin t, 3rd order Gaussian 
scheme, and the volumetric part using a single point scheme. 

Selective deviatoric formulation 
In the selective deviatoric formulation, we have a similar change to the internal force calculation. 
Before the evaluation of the stress takes place in the material subroutine, we pass 

 
def

sd 1/3 1/3
avgJ J F F  (54) 

instead of the local F , where avgJ  is the average Jacobian of all cubature points within the 
element. 

This formulation can be extended to, for example, linearly interpolate J  within the element, 
however these extended formulations have not proven as effective as the simple averaging 
operation. 

Since  

Computationally, the cost can be significantly higher than the standard displacement 
formulation. Since the stress at a given cubature point is a function of the deformation at all 
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cubature points (on account of averaging J ) and not just the local deformation, calculating the 
stiffness matrix requires significantly more effort. This increase in cost grows as the number of 
cubature points increases. Additionally, the symmetry of the stiffness matrix is not preserved in 
this formulation. Although this effect is small, this requires a linear solver capable of solving 
non-symmetric equations. These solvers are considerably slower than their counterparts for 
symmetric systems. 

Unlike the selective integration technique, the selective deviatoric technique has only a single set 
of cubature points and so there is no ambiguity associated with post-processing a given field. 

For the naming convention, we simply append SD to the interpolation scheme to denote the use 
of the selective deviatoric technique—e.g. HEX8SD+GAUSS8P3O. 

A note on selective techniques 
The use of selective techniques to evaluate the internal forces is not a new concept and has been 
widely used. However, typical application has been limited to small strains and/or the 
assumption of hypoelasticity. The research in this report does not use either of these simplifying 
assumptions. 

The 8 noded underintegrated hexahedron 

The underintegrated hex has seen widespread use due to its computational efficiency. In this 
formulation, the internal force is approximated as 

    , , element center
hourglass restoring forcesI j ij I j ijd d   


     (55) 

where the integrand is evaluated at a single central cubature point, and hourglass restoring forces 
are prescribed to prevent zero-energy hourglass modes from becoming significant. 

This scheme gains some benefits of the selective integration technique as the integral is only 
evaluated at a central cubature point. This also allows the element to be several times faster than 
its fully integrated counterpart—although this computational savings is typically negligible in 
implicit simulations. 

The difficulty in this scheme is the prescription of the hourglass restoring forces. A large amount 
of effort has been done to tune the hourglass settings based on the type of analysis. This is still an 
open question as evidenced by the proprietary nature of how each of the different commercial 
codes handles this situation. 

The selective integration technique avoids the application of hourglass forces entirely as there 
are no spurious zero energy modes to correct. 

Modeling procedure 
This analysis was performed using Ares5—a three dimensional, implicit, mechanical finite 
element software. Meshes were created using Cubit6, and the results were viewed using 
ParaView7. 

                                                 
5 http://sourceforge.net/projects/aresfea/ 

http://sourceforge.net/projects/aresfea/
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Notched tensile specimen 
We chose the notched tensile geometry as the model problem of interest as it possesses many 
features present in larger scale analyses, yet is small enough to allow for a high fidelity mesh 
convergence study. Among these features are: 

 a simple geometry suitable for both HEX and TET meshing 
 a geometry free of cracks and other sources of infinite stress concentrations 
 under loading, a nontrivial transition from an elastic region to a large deformation plasticity 

region 
 under loading, smooth stress and triaxiality fields 
 suitable global and local metrics to assess convergence 

The geometry of the notched tensile specimen is shown in Figure 32. 

 
Figure 32: Geometry of the cylindrical notched tensile specimen. The 
specimen is axisymmetric about the left edge and symmetric across the 
bottom edge. 

Material models 
Our material model allows a yield stress of the form 

  0 0
y y p,eq p,eq

n

K       (56) 

which contains linear hardening and power law hardening as specific cases. We have obtained 
compression data from B. Antoun (8246) for a compression specimen of stainless steel 304L up 
to a logarithmic compressive strain of around 0.7. These data points have been used to fit three 
curves conforming to (56). The material parameters resulting from this fit are given in Table 17. 
Since this specimen was annealed, we have chosen to fix the initial plastic strain at zero while 
other parameters have been fit using a least squares approach. The strain at necking parameter is 
both approximate and derived from the other parameters and is therefore shown in italics. 

                                                                                                                                                             
6 http://cubit.sandia.gov/ 
7 http://www.paraview.org/ 

http://cubit.sandia.gov/
http://www.paraview.org/
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Parameter Variable Units Combined Power Law Linear 

initial yield stress 
0
y  MPa 132.157 0 269.407 

hardening modulus K  MPa 1494.71 1547.92 1541.74 

hardening exponent n  (none) 0.719760 0.575326 1 

initial plastic strain p,eq  (none) 0 0 0 

strain at necking neck  (none) 0.641680 0.575326 0.916438 

Table 17: Material parameters for stainless steel 304L. 

The fit of each of these hardening models compared to the experimental data is shown in Figure 
33. Over the given range, all three models behave similarly, with variations of approximately 5% 
on most data points. At the first data point, the curves vary more due to the difference in initial 
yield stress and initial hardening slope between each model. 

 
Figure 33: Yield stress curve fits to experimental stainless steel 304L data. 

For results in this report, we will use the “Combined” model since it provides the best fit to 
experimental data. The other two fits are given as they are useful for comparing with published 
data. 

Boundary conditions 
On symmetry planes, the out-of-plane displacement is constrained to be zero. 

To load the specimen, the vertical displacement of all nodes on the outer surface is ramped 
linearly from zero to 0.2” over 100 equal steps. 

Mesh refinement levels 
The notched tensile specimen geometry has been meshed using a parameterized Cubit file to 
generate both HEX and TET meshes at a variety of refinement levels. Taking advantage of 
symmetry, only one eighth of the geometry is modeled, and appropriate boundary conditions are 
applied along the symmetry planes. 
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Successive refinement levels for the HEX8 mesh can be seen in Figure 34, with the “x2” 
refinement on the left, the “x4” refinement (middle), and the “x8” refinement (right). Finer 
meshes are not pictured. The corresponding HEX20 meshes (not pictured) look similar to the 
HEX8 meshes, but have curved faces which better represent the specimen geometry. 

     
Figure 34: Successive refinements of the HEX8 notched tensile mesh. 
Refinement levels are “x2” (left), “x4” (middle), and “x8” (right). The “x16” 
and “x32” refinements are not pictured. 

Successive refinement levels for the TET mesh can be seen in Figure 34, with the “x2” 
refinement on the left, the x4 refinement (middle), and the “x8” refinement (right). Finer meshes 
are not pictured. The corresponding TET10 meshes (not pictured) look similar to the TET4 
meshes, but have curved faces which better represent the specimen geometry. 
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Figure 35: Successive refinements of the TET notched tensile mesh. 
Refinement levels are “x2” (left), “x4” (middle), and “x8” (right). The “x16” 
and “x32” refinements are not pictured. 

The number of nodes and elements for each mesh discretization is given in Table 18. 

Refinement 
Level 

Nodes Elements 

HEX8 HEX20 TET4 TET10 HEX8/HEX20 TET4/TET10 

x2 123 421 148 908 66 513 
x4 469 1,690 922 3,288 307 4,120 
x8 3,220 12,216 5,528 40,636 2,602 27,869 

x16 23,115 90,003 34,504 262,468 20,748 186,580 
x32 162,930 642,536 190,927 1,475,821 153,922 1,066,362 

Table 18: Number of nodes and elements in each mesh. 

Element formulations 
While there are an incredibly large number of element formulations available within Ares, we 
have chosen to focus on the standard first and second order HEX and TET elements, including 
some variations. As mentioned earlier, we denote each scheme with the naming convention 
INTERPOLATION+CUBATURE. 

Interpolation schemes 

The list of interpolation schemes used in this analysis is given in Table 19. 
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Interpolation Order Nodes Notes 

HEX8 1 8 standard 8 node linear hexahedron element 

HEX8SI 1 8 
hex8 with selective integration of the bulk 
and deviatoric parts 

HEX8SD 1 8 
hex8 with averaging of the bulk response 
among all integration points 

TET4 1 4 standard 4 node linear tetrahedron element 
HEX20 2 20 quadratic “serendipity” hex element 
TET10 2 10 standard quadratic tetrahedron element 

Table 19: Summary of the interpolation schemes used. 

Cubature schemes 

The list of cubature schemes used in this analysis is given in Table 20. Note that only some 
combinations of interpolation and cubature schemes make sense. 

Cubature Order Points Notes 

GAUSS8P3O 3 8 
extended 2 point Gaussian quadrature 
scheme 

GAUSS8P3O_GAUSS1P1O 3 / 1 8 + 1 
8 point deviatoric scheme + 1 point bulk 
scheme 

HEX14P5O 5 14 5th order hex scheme with 14 points 
TET4P2O 2 4 2nd order tet scheme with 4 points 

TET11P4O 4 11 4th order tet scheme with 11 points 

Table 20: Summary of the cubature schemes used. 

A cubature scheme with an order twice the order of the element is typically required to “fully” 
integrate the element. In a hyperelastic material, very little effect is seen from increasing the 
accuracy of the scheme beyond this point. In a plastic material, since the material response is 
non-smooth, the cubature scheme has a much bigger effect on the results. In some scenarios, a 
more accurate response can be obtained by under integrating (e.g. HEX20+GAUSS8P3O), although 
this technique is often not without drawbacks (e.g. hourglass control requirement on 
HEX8+GAUSS1P1O elements). 

Metrics of interest 
In order to assess the performance of each element formulation, we look at two metrics of 
interest. For both of these, the error is calculated as 

 
approx

exactln h
error

h

 
  

 
 (57) 

where approxh  is the approximate solution, and exacth  is the “exact” solution as obtained from a 
Richardson extrapolation technique. 

Load at displacement 

For one metric of interest, we have measured the load after a displacement of 0.2 inches. The 
“exact” solution was obtained using Richardson extrapolation on the two finest HEX8SI 
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simulations and is expected to be accurate to over 3 decimal places. We have obtained this by 
summing the residual forces in the axial direction on the top face of the specimen. 

This metric is a “global” quantity in the sense that local element variations should not 
significantly affect the result. Therefore, we expect convergence behavior to be well behaved. 

Maximum triaxiality 

The second metric of interest is the maximum triaxiality in the specimen after a displacement of 
0.2 inches. The triaxiality is defined as 

 
1def
3m
3

eq 2

kk

ij ij

T


  
   (58) 

where m  is the mean stress, and eq  is the equivalent (i.e. von Mises) stress. Since the 
triaxiality field is not defined pointwise within the specimen, we approximate this metric as the 
maximum value of all cubature points. 

This metric is a “local” quantity in the sense that local element variations can greatly affect the 
results. The convergence behavior is expected to be  

Visualizing element fields 
In order to visualize an element field, we must process information at the integration points in 
some manner to produce a piecewise defined field. This is not a trivial task, in general. For some 
element formulations, the process is straightforward. For example, for elements with a single 
integration point one may either assume the field is constant within each element, or one may 
obtain nodal values through by taking a simple average of the neighboring elements and then use 
the shape functions to interpolate the field. 

In general, there is not a straightforward manner to do this construction. In Figure 36, we show 
the results of such a transformation. On the left picture, the value of the triaxiality field at each 
cubature point is represented with a sphere. The construction of the pointwise defined field is 
shown on the right. 
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Figure 36: Construction of a pointwise defined field (right) from discrete 
values at cubature points (left). The value at each cubature point is shown 
as a sphere on the left-hand picture. 

The construction shown in Figure 36 was done on an element-by-element basis. Within each 
element, a least-squares fit was done to a first order polynomial basis (4 shape functions). Since 
continuity of the field is not enforced across element boundaries, the resulting field can be 
discontinuous. In Figure 37, we have shown the construction of the field on a single element. 

 

 

Figure 37: A per-element construction of a pointwise defined field (right) 
from discrete values at cubature points (left). The construction was done 
through a least squares fit to a linear polynomial basis. 

This construction is not without drawbacks. The constructed field can have a 
maximum/minimum which is more extreme than the maximum/minimum of all cubature points. 
For fields which have physical bounds on their range (e.g. absolute temperature must be 
positive), this can lead to inconsistencies the analyst must address. 
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Results 
We have broken up the results into the response under infinitesimal loading, and the response 
under the large deformation plastic loading. 

Fields after infinitesimal loading 
In a separate simulation, we have loaded the specimen infinitesimally to obtain the shape of each 
field. Three field of interest are shown in Figure 38—equivalent stress, pressure, and triaxiality. 
The first two fields have been normalized by their maximum value. The triaxiality field is 
unitless and therefore not normalized (although the maximum value of 0.94 is so close to 1 that it 
may look this way). 

 

    

 

    

 

 

Figure 38: The normalized equivalent stress (left), normalized pressure 
(center), and triaxiality (right) fields for an infinitesimal loading of the 
notched geometry. The maximum triaxiality of approximately 0.94 occurs 
at the center of the geometry. 

Under an infinitesimal loading, all element formulations performed relatively well. In Figure 39 
and Figure 40 the triaxiality field is shown for a series of refinement from coarsest (left) to finest 
(right) for the standard HEX20 and TET4 element formulations, respectively. As can be seen, 
both formulations appear to converge to the same solution, although the HEX20 formulation 
converges significantly faster. 

     

 

Figure 39: The triaxiality field under an infinitesimal loading for the 
HEX20 formulation under successive refinements, from “x2” (left) or “x32” 
(right). 
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Figure 40: The triaxiality field under an infinitesimal loading for the TET4 
formulation under successive refinements, from “x2” (left) or “x16” (right). 

In these figures, the triaxiality field was chosen to plot because it behaves the worst out of the 
fields of interest. The other fields (equivalent stress, pressure) are much better behaved in 
general. 

Fields after full loading 
In Figure 41, the equivalent plastic strain, normalized pressure, and triaxiality fields are shown 
after the material has undergone the full deformation for the HEX8SI formulation. The plastic 
strain in the center of the specimen is seen to be about 0.45 and reaches a maximum of around 
0.65 on the inside of the notch. Both the pressure and triaxiality fields have changed significantly 
from their relative values under infinitesimal loading. Among other things, this suggests that one 
cannot assume the fields under elastic loading are representative of the same fields after plastic 
deformation, even though the loading is monotonic. 

 

    

 

 

   

 

 

Figure 41: The equivalent plastic strain (left), normalized pressure (center), 
and triaxiality (right) fields after a loading of 0.2 inches of the notched 
geometry for the HEX8SI element formulation. 

In general, fields from other element formulations did not look nearly as nice as the pictures in 
Figure 41. We will explore these artifacts and the reasons behind them. 
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Evolution of the triaxiality field 

The evolution of the triaxiality field throughout the simulation follows a nontrivial path.  In 
Figure 42 we have plotted the field at five equally spaced intervals along the load path.  Its state 
at a small plastic deformation (left) closely resembles that of the elastic solution from Figure 38.  
After this, the point of maximum triaxiality initially at the center of the specimen separates 
axially into two local maxima, after which the field again evolves to have a single global 
maximum at the center of the specimen. 

     

 

Figure 42: The evolution of the triaxiality field from the beginning of plastic 
deformation (left) to the end of the simulation (right). 

Oscillations in pressure field 

In all standard element formulations, the pressure field was found to oscillate significantly. We 
have plotted the value of this field at all cubature points in Figure 43. One can see significant 
clipping of the field in all subfigures, especially for HEX8 and TET4. By comparison, the 
quadratic formulations did not suffer nearly as much, although checkerboard-type oscillations 
can still be seen. 

    

 

HEX8 “x16” HEX20 “x8” TET4 “x16” TET10 “x8”  

Figure 43: The pressure field for a variety of standard displacement 
formulations. Note that there is considerable clipping in the fields in all 
cases, especially for the HEX8 and TET4 cases. 
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For comparison, the pressure field for the selective integration and selective deviatoric schemes 
are plotted in Figure 44. None of these figures show oscillations. 

   

 

HEX8SD “x16” HEX8SI “x16” TET10SI “x8”  

Figure 44: The pressure field for three selective element formulations. 

Mitigation by averaging 

In transferring cubature point information into element-based data, one can mitigate the 
appearance of these oscillations by averaging the integration point values in the element. 
However, doing so does not always produce accurate or good looking results. We note that such 
an averaging scheme is not equivalent to the HEX8SI formulation, which takes its triaxiality 
value from the central integration point. The difference between these two is shown in Figure 45. 
Even though the meshes are identical, the resulting fields have significant differences. The most 
apparent of these differences are the checkerboard-type oscillations in the averaged HEX8 field. 
One can see significant variations in the field in adjacent elements. This behavior is not expected 
in the true solution, and it is not seen in the HEX8SI field. These differences are not apparent 
under elastic loading, but become increasingly significant as the body is loaded plastically. 
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HEX8 “x8” 
(averaged) 

HEX8SD “x8” HEX8SI “x8”  

Figure 45: The triaxiality field obtained through averaging the integration 
point values in the HEX8 formulation (left), the HEX8SD formulation 
(middle), and the HEX8SI formulation (right). 

Selective formulations of the HEX20 element 
Although it is possible to run the HEX20SD+HEX14P5O formulation, the associated stiffness 
matrix was so poorly conditioned that the code could make little if any progress on convergence. 
Whereas most simulations converged within about 15 Newton-like iterations, this formulation 
took over 100 iterations and still did not meet the target 10-10 relative residual. The 
HEX20SI+HEX14P5O_HEX1P1O formulation suffered similar problems. 

To see if any successful formulations could be made from the HEX20 element, we tried both the 
HEX20SI+RIEMANN27P1O_HEX1P1O and the HEX20SI+RIEMANN27P1O_RIEMANN8P formulations. 
Cubature schemes named RIEMANN have points spaced evenly across the domain with equal 
weights. Although these ran, the results show significant element-based artifacts. As shown in 
Figure 46, ridges formed at element boundaries on the external surface. These artifacts were 
reduced significantly with element refinement. However, their presence at any level of mesh 
discretization does not inspire confidence in the results. 
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HEX20SI+ 
RIEMANN27P1O_ 

HEX1P1O 
“x8” 

HEX20SI+ 
RIEMANN27P1O_ 

RIEMANN8P1O 
“x8” 

 

Figure 46: Values of the triaxiality at bulk cubature points for two 
HEX20SI formulations. Note the formation of ridges along the notch 
surface. 

Typical timing profile 
To gain some understanding of the computational cost of an implicit simulation, it is helpful to 
look at the timing profile. After each timestep, Ares outputs this information separated into the 
various parts of the calculation. The timing profile for the “x4” mesh of the TET10 mesh is 
shown in Table 21. 

=== Timing profile information ====================== 
Item                         Hits  Percent  Absolute  
----------------------------------------------------- 
Setup.......................    3    0.00%    8.22 s  
  Reading keywords              1    0.00%    1.61 s  
  Processing                    1    0.00%    1.96 s  
  Initializing                  1    0.00%    4.65 s  
Constraints................. 1504    0.69%    1.60 hr 
  Initializing . . . . . . .  502    0.36%   49.92 m  
    Static                      1    0.00%    1.67 s  
    Dynamic                   501    0.36%   49.89 m  
  Application. . . . . . . .  501    0.33%   45.79 m  
  Evaluation . . . . . . . .  501    0.00%  400.00 ms 
System generation........... 1002    4.85%   11.14 hr 
  Internal forces             501    4.85%   11.14 hr 
  Tractions                   501    0.00%       0 s  
Linear solver...............  421   93.74%    8.97 dy 
  DPCG                        421   93.74%    8.97 dy 
Output......................  501    0.32%   45.24 m  
Other....................... 2425    0.37%   52.28 m  
----------------------------------------------------- 
Total....................... 5856  100.00%    9.57 dy 

Table 21: Timing profile information for the TET10 x4 refinement run. 
Note that the vast majority of the time is spent within the linear solver. 
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As can be seen, over 90% of the computational time is spent in the linear solver, in this case a 
diagonally preconditioned conjugate gradient (DPCG) solver. The next biggest contribution 
comes from generation of the system of linear equations (stiffness matrix, load vector) from 
internal element force calculations. 

It is reassuring to note that the computation of the analytical constraints placed on the system of 
unknowns, including the generation of each linear equation, the Gaussian elimination to reduce 
redundant constraints, and the modification of the stiffness matrix based on the resulting system 
occupied less than 0.7% of the total calculation. If we were to use a penalty formulation or a 
Lagrange multiplier approach, this calculation would have been much more costly. 

All simulations were performed on the same machine with the same version of the code and the 
associated runtimes are accurate to the extent possible. Of course, due to the complexity of 
today’s CPUs, the runtime is by no means constant for a given simulation and has been seen to 
vary by 20% or so for no transparent reasons. In the results communicated, a difference of 20% 
in runtime has a negligible effect. 

Load at displacement error 
In Figure 47, the error in the load is plotted versus the element edge. Light gray contour lines are 
drawn to show the expected linear convergence behavior. It is reassuring that all element 
formulations converge at approximately a linear rate. Typical errors are around 1% for most 
formulations, but considerably worse (10–100%) for the standard fully integrated TET4 and 
HEX8 formulations. Since the cost of using an element is a function of more things than simply 
the element edge length, we need to look at another plot to examine the relative efficiency of the 
different formulations. 

 
Figure 47: Error in load versus element edge length. Light gray contour 
lines correspond to the expected linear convergence behavior. 

In Figure 48, the error is plotted versus the simulation walltime. Since Ares is a serial (i.e. single 
thread) code, this is simply the physical time between the start and end of the simulation. This 
plot allows us to effectively rank the element formulations at solving this particular problem by 
ranking curves from the bottom left (best) to the top right (worst). We notice the standard fully 
integrated HEX8 and TET4 elements are significantly worse than all other formulations. The 
HEX20+HEX14P5O formulation performs the best, with the HEX8SI formulation a close second. 
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Figure 48: Error in load versus simulation walltime. 

Triaxiality field 
In Figure 49, the error in the maximum triaxiality metric is plotted versus element edge length. 
Unlike the results for the forging load, these results do not converge linearly in general. Five of 
the eight element formulations had an unacceptably high error. The three which had errors under 
1% were the HEX8SD, HEX8SI, and TET10SI formulations. 

 
Figure 49: Error in maximum triaxiality versus element edge length. Light 
gray contour lines correspond to linear convergence behavior. 

In Figure 50, the error is plotted versus the simulation walltime. One can see three best 
formulations are approximately equal in efficiency, with the HEX8SI formulation slightly better 
than the others. 
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Figure 50: Error in maximum triaxiality versus walltime. 

Selective integration vs. selective deviatoric 

In the previous figures, some interesting trends can be seen between the selective deviatoric 
HEX8SD and the selective integration HEX8SI formulations. 

For the load at displacement metric, we can see the accuracy for a given mesh is approximately 
the same.  However, the selective deviatoric formulation takes more computational time. As 
noted earlier, this is due to the non-symmetric stiffness matrix it generates. The solver for such a 
matrix requires in general twice as much time to solve as a similar symmetric matrix. 

For the maximum triaxiality metric, the same trends are seen. 

Additional work 
It is possible that other selective integration formulations also perform well. For example, a 
HEX20SI+HEX14O5O_HEX1P1O and TET10SI+TET14P5O_TET1P1O could be investigated. These 
would benefit from being able to represent curved surfaces while still retaining the advantages of 
the selective integration technique. 
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Q1P0 element implementation into 
SIERRA 
As part of this project, the q1p0 formulation for the eight-node hexahedral element has been 
implemented into the SIERRA codes.  This element is available for both explicit and implicit 
analysis. 

This element has been used extensively in literature.  In materials which exhibit near-
incompressible behavior—where the effective Poisson’s ratio approaches 0.5—the element 
performs very well.  This list includes structural metals undergoing large plastic deformations 
where the plastic deformation is assumed to be isochoric. 

Formulation 
In the q1p0 formulation, the internal forces due to material stress are selectively integrated.  We 
break up the nodal force integral into two parts 
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and evaluate the d eviatoric response using an 8 point Gauss rule and the volumetric response 
using a single integration point. 

Usage syntax 
This element can be used by including the following block at the SIERRA scope: 

  # define the q1p0 section 
  Begin Solid Section section_q1p0 
    Formulation = q1p0 
    Strain Incrementation = strongly_objective 
  End 

and by calling out this section within the Finite Element Model block using this syntax: 
    # define material parameters 
    Begin Parameters For Block ... 
      Material ... 
      Section = section_q1p0 
    End 

Output 
When post processing results, one should generally use the values of internal state variables at 
the volumetric integration point.  This is the first integration point output to the ExodusII file.  
For example, one should look at eqps_1 to examine the plastic strain field instead of looking at all 
9 values or using an averaging procedure. 
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For stress based values, such as stress and von_mises, these are not output at each integration 
point.  Instead, these are calculated by using a stress tensor which combines the pressure at the 
volumetric integration point with the average of the deviatoric stress in the other 8 integration 
points. 

Additional options 
While the syntax given above should be sufficient for nearly all analyses, there are some 
additional options available within the Solid Section block to alter the performance of this 
element.  These options, along with their defaults, are given in the following table. 

  # define the q1p0 section 
  Begin Solid Section section_q1p0 
    Formulation = q1p0 
    Strain Incrementation = strongly_objective 
    Q1P0 Stabilization Threshold = <real> (0.0) 
    Q1P0 Timestep Scale Factor = <real> (0.95) 
    Q1P0 Timestep Wave Speed = <string> VOLUMETRIC|SHEAR|AUTOMATIC(AUTOMATIC) 
    Q1P0 Timestep Length Scale = <string> DEFORMED_NODAL_DISTANCE| 

MINIMUM_MAPPING_STRETCH|INSCRIBED_SPHERE_DIAMETER 
(MINIMUM_MAPPING_STRETCH) 

  End 

Strain Incrementation 

The only strain incrementation available for this element is strongly_objective.  Because this is 
not the default, it must be called out explicitly to avoid a warning message being generated. 

Q1P0 Stabilization Threshold 

In some scenarios, elements may invert under a significant and localized loading condition.  This 
option is provided as a way to avoid these inversions.  In these cases, a value of 0.25 might be 
preferable.  As the element becomes significantly distorted, the formulation is smoothly reverted 
back to a fully integrated formulation which this option is active. 

For each element, the minimum stretch min  out of all integration points is obtained.  If this value 
is above the threshold threshold  specified, no modification is done.  If it is below, the internal 
forces are calculated as 
   q1p0 full

int int int1    f f f  (1.60) 

where q1p0
intf  are the forces from a q1p0 formulation, and full

intf  are the forces from a fully 
integration formulation, and 
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 (1.61) 

The value of   is available in the analysis by requesting the element variable 
stabilization_factor. 

Keep in mind that any value other than zero causes this formulation to differ from that of a 
selectively integrated q1p0 formulation.  It may also cause the stiffness matrix to be non-
symmetric, which may cause issues in converging to a solution, depending on the solver used. 
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By default, this option is set to zero, or off. 

Q1P0 Timestep Scale Factor 

In the critical timestep calculation, this is a scale factor applied to the calculated critical timestep.  
The default of 0.95 should be sufficient for most analyses. 

If another timestep scale factor is prescribed within the Parameters for Presto Region block, the 
two factors have a multiplicative effect. 

Q1P0 Timestep Wave Speed 

The wave speed used to calculate the critical timestep can be selected from the following 
options: 

 If set to VOLUMETRIC, this will be calculated as sqrt(3 * bulk_modulus / density). 

 If set to SHEAR, this will be calculated as sqrt(2 * shear_modulus / density). 

 If set to AUTOMATIC, the maximum of the other two options will be used.  This option is the 
default. 

The default should be sufficient for all analyses. 

Q1P0 Timestep Length Scale 

The method of computing the element length scale used in the critical timestep calculation can 
be selected from the following options: 

 With the DEFORMED_NODAL_DISTANCE option, the length is calculated as the minimum nonzero 
distance between two nodes.  This is the fastest option and works for most analyses. 

 With the MINIMUM_MAPPING_STRETCH option, the length is calculated as the minimum stretch 
out of all integration points for the mapping from a unit cube to the current configuration 
of the element.  While computationally intensive, this formulation is very robust.  For this 
reason, this option is chosen as the default. 

 With the INSCRIBED_SPHERE_DIAMETER option, the length is calculated as the diameter of the 
largest sphere which can be inscribed within the element.  For this calculation, each side 
of the element is approximated by a flat plane which is tangent to the true—possible 
curved—surface at the midpoint. 

Verification tests 
A number of verification tests have been performed comparing this element formulation to 
others available within SIERRA.  For reference, these formulations are listed below: 
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 The ugelastic formulation refers to the following block.  This is the default in Adagio. 
  Begin Solid Section ... 
    Formulation = mean_quadrature 
    Strain Incrementation = midpoint_increment 
  End 
  ... 
    Effective Moduli Model = elastic 

 The ugpronto formulation refers to the following block.  This is the default in Presto. 
  Begin Solid Section ... 
    Formulation = mean_quadrature 
    Strain Incrementation = midpoint_increment 
  End 
  ... 
    Effective Moduli Model = pronto 

 The sdmi formulation refers to the following block. 
  Begin Solid Section ... 
    Formulation = selective_deviatoric 
    Deviatoric Parameter = 1 
    Strain Incrementation = midpoint_increment 
  End 

 The q1p0 formulation refers to the following block. 
  Begin Solid Section ... 
    Formulation = q1p0 
    Strain Incrementation = strongly_objective 
  End 

 The full formulation refers to the following block. 
  Begin Solid Section ... 
    Formulation = fully_integrated 
    Strain Incrementation = strongly_objective 
  End 

Note that the Effective Moduli Model line is used in the calculation of hourglass restoring forces 
which are only applied for the mean_quadrature element.  For other elements, this setting has no 
effect. 

Cantilever beam—Implicit 
In this problem, a simple cantilever beam composed of an elastic-plastic material is subjected to 
a vertical tip displacement.  The mesh and equivalent plastic strain field at the end of the 
simulation are shown in Figure 51. 

 
Figure 51:  The equivalent plastic strain field in the cantilever beam 
problem is shown for the x8 mesh. 
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The boundary conditions in this problem are as follows. 

 A symmetry plane is enforced on the left side. 

 A symmetry plane is enforced on the near side. 

 The vertical displacement of all nodes on the left side is fixed. 

 The vertical displacement of all nodes on the right side is progressively displaced over 50 
timesteps. 

To assess convergence behavior, we measured the vertical resultant load at the last timestep.  A 
series of mesh refinements was done, with each successive refinement cutting the element edge 
length in half and increasing the total number of elements by a factor of 8.  The results are shown 
in Table 22.  Additionally and for convenience, the change in load as a result of successive mesh 
refinements is shown in Table 23. 

Mesh full q1p0 sd ugelastic ugpronto 
x1 23,029.81 19,648.52 19,649.13 29,703.02 20,225.83 
x2 20,588.82 19,053.47 19,053.69 22,103.71 crash 
x4 19,469.69 18,861.55 18,861.67 19,751.51 crash 
x8 19,026.14 18,803.41 18,803.49 19,069.32 18,815.00 

x16 18,866.25 18,783.17 18,783.24 18,868.56 crash 
Table 22:  The resultant force is shown for each mesh and each element 
formulation for the implicit cantilever beam problem. 

Refinement full q1p0 sd ugelastic ugpronto 
x1 x2 -2440.99 -595.05 -595.44 -7599.31 crash 
x2 x4 -1119.13 -191.91 -192.02 -2352.20 crash 
x4 x8 -443.55 -58.15 -58.18 -682.19 crash 

x8 x16 -159.89 -20.23 -20.25 -200.76 crash 
Table 23:  The change in resultant force is shown for each successive mesh 
refinement and each element formulation for the implicit cantilever beam 
problem. 

In these tables, we see several important trends. 

 The ugpronto formulation crashed 3 out of 5 times, with no clear trend towards mesh 
discretization.  The hourglass restoring forces applied with this model are discontinuous 
which causes the problem not to be locally convex.  Because of this, the system of 
equations becomes ill-posed and a solution cannot be obtained.  This is a known issue 
with this effective moduli model and the solution is to use a different model. 

 Apart from ugpronto, all element formulations converged to the same solution as the mesh 
was refined.  Additionally, they all approached the true solution from above.  So at any 
given refinement, the approximate solution overpredicted the resultant load. 

 The ugelastic formulation—which is the default—behaved the worst for a given mesh 
refinement.  The system response was overly stiff.  This is consistent with the 
assumptions made for this element formulation. 
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 Both the q1p0 and the sd formulations performed well and behaved almost identically.  
This is not surprising as the two formulations are very close to one another.  In fact, for 
infinitesimal displacements, they are equivalent. 

Using Richardson extrapolation, the true solution was estimated and used to generate a measure 
of the error for each run.  The percentage error was calculated using a log-based scale.  These 
error measures are given in Table 24. 

Mesh full q1p0 sd ugelastic ugpronto 
x1 20.441 4.562 4.565 45.886 7.458 
x2 9.236 1.486 1.488 16.336 crash 
x4 3.647 0.474 0.475 5.085 crash 
x8 1.343 0.165 0.166 1.570 0.227 

x16 0.499 0.058 0.058 0.511 crash 
Table 24:  The percentage error is shown for each mesh and each element 
formulation for the implicit cantilever beam problem. 

In this table, we immediately see that the q1p0 and sd formulations outperform all others for a 
given mesh discretization.  They both outperform the default ugelastic formulation by a 
significant margin.  For example, the x2 mesh with the q1p0 formulation outperforms the x8 mesh 
with the ugelastic formulation, despite the latter having 64 times the number of elements and 7 
times the number of integration points. 

The total cpu-hours required for each run are given in Table 25.  Note that the number of cores 
used was not constant in general, but was constant for a given mesh size. 

Mesh full q1p0 sd ugelastic ugpronto 
x1 0.0104 0.0127 0.0099 0.0067 0.0063 
x2 0.0928 0.1093 0.0538 0.0202 crash 
x4 1.9797 2.2520 1.2232 0.2990 crash 
x8 28.189 31.561 19.031 5.2043 16.282 

x16 433.64 479.78 298.12 72.925 crash 
Table 25:  The total cpu-hours are shown for each mesh and each element 
formulation for the implicit cantilever beam problem. 

In this table, we see that the full, q1p0, and sd formulations are significantly slower on a per-
element basis than the ugelastic formulation.  However, even taking this slowdown into effect, 
the multiple integration point elements outperform the single integration point element. 

The difference in time between the q1p0 formulation and the sd formulation is at least partly on 
account of the latter using a quicker but less accurate calculation for the strain increment. 

Constrained block compression—Implicit 
In this test, a uniform cube of an elastic-plastic material is smashed between two rigid plates.  
Nodes on the top and bottom surface (which contact the plate first) are glued to the plate such 
that they cannot move tangentially or normally away from it.  Nodes on the sides of the block are 
constrained not to pass through the plates though a frictionless contact. 



 

93 

         
Figure 52:  The constrained block is shown being progressively deformed. 

The scaled load at full displacement is shown in Table 26.  The load values in this table have 
been scaled such that a value of 1 represents approximately the true solution. 

Mesh full q1p0 sd ugelastic ugpronto 

x1 10.896 1.2956 1.1966 6.4308 1.3817 
x2 4.9641 1.0452 0.9907 2.7880 1.0582 
x4 2.5246 1.0149 1.0170 1.6561 0.9866 
x8 1.6179 1.0291 1.0280 1.2558 1.0231 

x16 1.2637 1.0098 1.0129 1.0799 1.0107 
x32 1.0839 1.0062 1.0104 1.0320 1.0105 
x64 1.0051 1.0031 crash 1.0246 crash 

Table 26:  The scaled load at displacement is shown for each mesh and each 
element formulation for the implicit constrained block compression 
problem. 

Constrained block compression—Explicit 
In addition for testing for element robustness under localized deformations, this study also tests 
for robustness of the element timestep calculation. 

Mesh full q1p0 sd ugelastic ugpronto 

x1 16.178 2.2386 1.8876 10.672 2.4751 
x2 7.4393 1.5791 1.4893 4.3407 1.709 
x4 3.8140 1.2705 1.2125 2.5082 1.4482 
x8 2.4639 1.1708 1.1582 1.8666 1.2217 

x16 1.9351 1.0866 1.0795 1.5756 1.1165 
x32 1.6536 1.0419 1.0392 1.2728 1.0654 
x64 1.3793 1.0175 crash 1.1368 1.038 

Table 27:  The scaled load at displacement is shown for each mesh and each 
element formulation for the implicit constrained block compression 
problem. 
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