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Abstract

A high fidelity fracture modeling approach is presented that is focused on accurately quan-
tifying the cause and uncertainty of failure for applications that involve the nucleation and
propagation of dominant cracks. Two capabilities are presented:

1. A semi-automated, geometry and mesh adaption procedure for modeling arbitrarily
non-planar crack evolution.

2. A robust framework for accurately mapping history-dependent variables with specific
consideration of large deformations and element field gradients.

Both capabilities are considered foundations for future research, development, and applica-
tion.
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Chapter 1

Introduction

Many applications, at Sandia and elsewhere, involve metallic components of critical systems
subject to failure due to hostile or abnormal environments. Failure necessarily involves the
nucleation and propagation of cracks. However, analysts cannot determine the root cause
of failure or reasonably quantify uncertainty using common modeling approaches. Such
approaches typically reduce model complexity at the costs of generality and/or physical
fidelity in the representation of crack nucleation and propagation.

We seek to overcome these shortcomings by explicitly representing fracture, i.e. arbitrar-
ily non-planar evolution of geometrical facets (fracture surfaces) typically driven by highly
non-linear material response. The focus of this paper is on accurate geometrical represen-
tation of fracture through local topology and mesh adaption, and subsequent mapping of
history-dependent variables.

1.1 Background

The main hypothesis overarching this approach is that accurate fracture modeling can be
achieved by combining three high fidelity modeling capabilities: local damage modeling,
strain localization elements, and geometrically explicit fracture surface representation with
adaptive remeshing.

Local damage models, such as those incorporated in the BCJ plasticity model [1], are
commonly used by analysts, because the fracture process is included in the constitutive re-
sponse, thus avoiding the implementation complexities of explicit fracture representation.
However, local damage models are substantially limited in accuracy due to mesh size depen-
dency and post-peak softening leading to bifurcation of the solution and corruption of the
partial differential equation.

Strain localization elements are surface elements that construct a deformation gradient
with a user-specified thickness [17]. Implementing these elements in combination with lo-
cal damage models regularizes the fracture representation via the localization length scale.
However, this combination is still insufficient for modeling fracture in a generalized manner
without a technique for adaptively representing an arbitrary, predicted crack path along
which to place localization elements.

9



To facilitate this need, a geometrically explicit fracture representation with adaptive
remeshing scheme is implemented in this study. Such a scheme consists of a database of
geometry and/or topology information describing the solid model and the fracture surfaces
and a robust meshing algorithm for generating high quality volume meshes that conform
to arbitrary crack shapes1 [8]. Many flavors of geometrical and non-geometrical fracture
representation methods are available [7], but the method proposed here is one of the few
that is geometrically accurate and independent of the mesh topology. The mesh conforms to
the crack rather than the crack conforming to the mesh. Inherently, this approach requires
the ability to appropriately map history-dependent variables at each crack adaption step.

1.2 Overview

Accordingly, the work summarized in this paper consists of two main steps: Chapter 2 –
integrating a crack geometry adaption approach into Sandia’s finite element analysis envi-
ronment, and enhancing the approach as necessary to model quasi-static, ductile fracture;
and, Chapter 3 – developing a variable mapping approach that robustly maps fields and
material state data for models with large deformations and gradients, e.g. models of cracks
in ductile materials. Chapter 4 summarizes the current state of the approach and outlines
the path forward.

1Arbitrary crack shapes include non-planarities, multiple crack tips (e.g. branching), and coalescense.
For the purposes of simplifying the initial implementation, this study focuses on arbitrarily non-planar cracks
without branching or coalescence.
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Chapter 2

Geometry Adaptive Crack Modeling

The first objective of this project was to implement a geometrically explicit, adaptive crack
modeling approach. The flowchart in Figure 2.1 depicts this implementation. The steps
outlined and written in green are performed by the crack and mesh adaption software.
FRANC3D [15] is used for crack and mesh adaption, because it is specifically designed for the
application and the authors of this paper have extensive prior experience with its capabilities
and source code. Commercial license agreements will have to be negotiated for future usage
of FRANC3D. The steps outlined and written in blue are performed by the finite element
analysis software, i.e. SIERRA/SM [11]. Currently, all steps outlined and written in black
are neither performed by FRANC3D nor SIERRA/SM, so separate codes, scripts, and/or
user interactions are required to perform these steps. The gray-colored region indicates the
tasks automated during this project by implementation of a Python [4] scripting interface.
All steps outlined and written in bold were created or modified during this project; a bold,
solid outline indicates a newly created capability, and a bold, dashed outline indicates a
modified capability. The steps shown in Figure 2.1 are sequentially detailed in Section 2.1.
Individual components of the Python scripting interface are described, as appropriate, in each
section. The overall structure of the scripting interface is then summarized in Section 2.2.

Section 2.3 concludes this chapter with three adaptive crack modeling examples: uniaxial
tension, simple shear, and thermal strain. The latter is intended to represent a realistic
application: a crack nucleating and propagating near a glass-metal interface in a thermally
loaded component.

2.1 Modeling Steps

The following is a description of each step shown in Figure 2.1.

2.1.1 UPDATE FIELDS?

The UPDATE FIELDS? decision operator is required to determine:

1. whether finite element analyses need to be performed prior to crack insertion; and, if
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so,

2. when crack nucleation is predicted by the finite element analysis.

These are currently user determinations that could be automated in the future, either by
externally wrapping the finite element analysis code or by embedding the decision operator
into the analysis code. Both types of automation require the ability to terminate an analysis
when a crack should be inserted. If the crack is an initial flaw, i.e. existing prior to loading,
then fields do not need to be computed prior to crack insertion. Otherwise, one or more
iterations of finite element analyses are performed to calculate the fields governing nucleation.

Accurately predicting when, where, and how a crack nucleates is fundamental to fracture
modeling, but it is still an area of active research with yet many unknowns. The authors of
this paper envision future research projects that utilize the geometrically explicit modeling
approach to:

1. explicitly model fracture processes at the lower length scale(s), prior to ‘nucleation’ at
the component scale, so that nucleation can be more accurately predicted; and/or,

2. computationally calibrate and validate models that predict nucleation.

2.1.2 RUN FEA (prior to crack insertion)

The first RUN FEA step is associated with the UPDATE FIELDS? decision operator, as
described in the previous section.

2.1.3 READ FEM

READ FEM is the first step performed by FRANC3D. A finite element model can be read
from either a file or a FemModel class instance; the latter is the internal data structure used by
FRANC3D to represent a finite element model. FRANC3D can read multiple finite element
file formats, including those from ABAQUSTM and ANSYSTM. Initially, this study sought
to use an EXODUS II [9] reader in FRANC3D for compatibility with SIERRA/SM. How-
ever, this reader is not maintained by the FRANC3D developers, thus leading to potential
incompatibilities as FRANC3D is updated.

Thus, a Python module was written for this study to translate between an EXODUS II
file and a FemModel class instance. Although FRANC3D is being actively developed, the
FemModel class is mature; therefore, an EXODUS II – FemModel translator requires little
maintenance. The translator utilizes the FRANC3D Python API and a Python wrapper of
the EXODUS II API. Both of these Python applications had to be extensively augmented
during this study, so that all communication between FRANC3D and EXODUS II could

13



be in memory. The procedure for converting an EXODUS II file to a FemModel instance is
encapsulated in one translator function call, exoToFemModel.

A subsequent Python function call creates a FRANC3D F3DApp class instance from a
FemModel instance. The function, createF3DAppFromFemModel, reads a FemModel and re-
turns a F3DApp, the main driver of all FRANC3D operations. When the F3DApp is created,
all nodesets and sidesets from the original EXODUS II file are flagged as groups of nodes and
element sides, respectively, that must not be removed during crack insertion and remesh-
ing. This guarantees that any definitions applied to the nodesets and sidesets by another
application, such as the boundary conditions defined in a SIERRA/SM input deck, will still
function properly.

2.1.4 CREATE FLAW

After the finite element model is read in, the CREATE FLAW step generates and inserts a
nucleated crack into the model. FRANC3D can create two types of flaws: voids or cracks.
The former has volume and the latter does not. Void insertion and adaption was not inves-
tigated for this project; herein, a flaw and a crack are synonymous. Flaw creation follows
two sub-steps: flaw definition and flaw insertion.

A flaw can be defined by any one of three methods: graphically, parametrically, or by
file. The graphical approach uses the FRANC3D flaw insertion Graphical User Interface
(GUI), which allows the user to interactively define the crack insertion parameters. The
parametric approach defines these same parameters directly inside the FRANC3D Python
API. Both the GUI and parametric approaches create an instance of the FRANC3D Flaw

class – a faceted, geometrical description of the crack that can be saved to a text file. The
file approach creates a Flaw from one of these text files.

The reader is referred to the FRANC3D manual [14] for descriptions of the types of flaw
shapes that can be created, and how they can be adapted. Virtually any crack shape, size,
and location, and mesh density can be defined. One powerful capability of FRANC3D is
the ability to define a well-structured template of volumetric elements around a crack front
that lend to better resolution of near-crack singularities, thus giving optimal computations
of crack driving forces, such as stress intesity factors and J-integral values. However, this
template currently cannot be used by SIERRA/SM due to the element types utilized in the
template1.

In this project, the Python interface wraps all three of the crack definition methods. The
function calls are createFlaw and insertFlaw. The first command defines the flaw by any
of the three methods described above. The second command, insertFlaw, inserts the Flaw

1The crack front template in FRANC3D utilizes multiple element types, including quadratic wedges. To
be compatible with the EXODUS II file format, code will have to be added to the Python interface that
generates a unique element block for each element type in the template. Also, a quadratic wedge element
will have to be added to the element library in SIERRA/SM.
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into the finite element model.

The insertion process follows four steps: construct a geometry model (i.e. a boundary
representation) from the original FemModel; delete the mesh in a region local to where the
crack is being inserted; update the geometry model to include the crack; and, remesh the
local region with the crack included. The default remeshing routine has very few controls for
mesh density at and nearby the crack, especially when the crack front template is not used.
However, FRANC3D has been extended to external meshing programs, such as ABAQUS and
ANSYS, as an alternative for remeshing so that users can have more control on mesh density.
This approach would be especially useful for mesh convergence studies. The insertFlaw

call automatically updates the F3DApp and FemModel to include the crack and new mesh.

2.1.5 WRITE FEM

The WRITE FEM step is iteratively called, after each crack adaption, by FRANC3D. As
stated in the description of the READ FEM step, a Python module has been written to
translate between an EXODUS II file and a FemModel. The Python function femModelToExo

was written for this project to translate a FemModel to an EXODUS II file.

2.1.6 MAP STATE

The MAP STATE step is required to map history-dependent variables, such as material
state information, after each crack adaption. FRANC3D only updates the finite element
model geometry and mesh, so analysis variables are not carried forward to the updated mesh.
Variable mapping is a challenging problem that demands careful attention to both algorithms
and theory. This is a continuously developing area of research and application, at Sandia
and in the entire finite element modeling community, that has many extensions beyond the
scope of this project. However, it was deemed necessary for completion of this project to
implement a new mapping framework that could work robustly for large deformation and
fracture modeling. This framework is intended to significantly evolve in maturity through
future research and development activities. Given the complexity of the problem and the
significant effort already focused on mapping in this project, a separate chapter of this report,
Chapter 3, is dedicated to summarizing this step. Thus, in this chapter, the MAP STATE
step is treated as a black box that transfers all history dependent variables from a source
finite element model (prior to crack adaption) to a target finite element model (after crack
adaption).

2.1.7 RUN FEA (during crack growth)

The second RUN FEA step in the flowchart is required to analyze fields after each increment
of crack growth. This step is performed by the finite element analysis code, i.e. SIERRA/SM.
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Finite analyses for adaptive crack modeling must be closely linked with decision operators
that determine when a crack has reached a critical length or when the crack is predicted
to continue propagation. These decision operators, FINISHED? and FLAW GROWTH?,
respectively, are described in the following two sections.

2.1.8 FINISHED?

The FINISHED? decision operator is a determination of when the entire fracture analysis is
complete. This is currently a user decision that could be automated in the future, either by
externally wrapping the finite element analysis code or by embedding the decision operator
into the analysis code. Both types of automation require the ability to terminate code
execution when the fracture analysis is determined to be complete. For example, termination
could be signified by the crack reaching a critical length or by one of the near-crack fields
reaching a critical value that indicates unstable crack growth. If the analysis is considered
to be complete, then the finite element analysis results are written to file. Subsequently,
FRANC3D can be called as a post-processor to evaluate histories of crack parameters, such
as stress intensity factors, J-integral values, and crack displacements. If the analysis is not
complete, then a decision must be made as to when the crack will propagate.

2.1.9 FLAW GROWTH?

The FLAW GROWTH? decision operator determines whether a crack should be propa-
gated. Like the other decision operators, this is currentlty a user decision that could be
automated in the future, which would require the abilities to periodically evaluate the fields
governing crack growth and to interrupt an analysis once the crack should be grown. This
decision operator could become an interaction between FRANC3D and the analysis code,
utilizing the crack growth calculation capabilities of the former. While the crack is not
predicted to grow, the finite element analysis continues to increment in time. Once crack
growth is predicted, the finite element analysis results governing crack growth are read into
FRANC3D for automated crack propagation. This exchange of analysis results is further
explained in the following section.

2.1.10 READ FIELDS

The READ FIELDS step transfers the finite element analysis fields governing crack growth
from the analysis code to FRANC3D. These fields are currently the most recently computed
nodal displacements, which FRANC3D then uses to compute crack growth parameters via
displacement correlation (see Section 2.1.11). The finite element analysis results can either
be read in by file or by a FemResults class instance.

For this project, a Python module was written that translates finite element results from
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an EXODUS II file to a FRANC3D FemResults class instance. Like the model translator
described in Section 2.1.3, the results translator utilizes the FRANC3D Python API and
a Python wrapper of the EXODUS II API. This translation procedure is wrapped in one
Python function call, readFemResultsFromExo. See Section 2.2 for an example that calls
this function. When an analysis is driven by the Python interface, one F3DApp exists for
the entire fracture analysis procedure; at each crack growth increment, new FemResults

instances are added to the F3DApp.

Also for this project, methods had to be added to the F3DApp for processing field data for
a model without a crack front template. Many of the methods required for computing crack
growth distances and directions were designed for displacement correlation calculations on a
model with a template. These calculations, as described in the following section, have now
been successfully extended to a model without a template. Most importantly, methods were
added for computing a correct, consistent local basis at each point along a crack front, which
is used to compute many derived fields, including crack opening/sliding displacements, crack
growth distances, and crack growth rates.

2.1.11 GROW FLAW

The GROW FLAW step is the main FRANC3D driver for propagating a crack, which
consists of four sub-steps: determination of new crack front locations, local mesh deletion,
crack geometry insertion, and local remeshing. The methods for determining the new crack
front locations are briefly described here. The final three steps are not discussed here; they
are performed automatically by FRANC3D.

New crack front locations can be determined by numerous methods in FRANC3D, as
described in the FRANC3D manual [14]. The most versatile method is reading the new
front locations from file. However, this requires user interaction or separate programs to
calculate or define the new front locations. Such an approach is required when employing a
crack growth rule that is not programmed in FRANC3D. Currently, multiple growth rules
are available, several for fatigue and one for quasi-static propagation.

For the example problems shown in Section 2.3, the quasi-static rule, following linear
elastic fracture mechanics, is employed. This methodology is given in the FRANC3D manual,
but briefly described here for completeness. First, the modes I, II, and III stress intensity
factors, KI , KII , and KIII , respectively, are calculated by displacement correlation via the
plane-strain K-field,

KI =
E

8(1 − ν2)

COD(r)√
r
2π

(2.1)

KII =
E

8(1 − ν2)

CSD(r)√
r
2π

(2.2)
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KIII =
E

8(1 + ν)

CTD(r)√
r
2π

(2.3)

where r is distance from the crack tip (crack front in 3D), E is Young’s modulus, ν is Poisson’s
ratio, and COD(r), CSD(r), and CTD(r), are the crack opening, sliding, and tangential
(screw) displacements, respectively, at r. The crack displacement components are computed
at r = 2Lel behind the crack front, where Lel is the average characteristic element length
along the crack front. The crack direction then follows the maximum tensile stress (MTS)
theory, i.e the direction that maximizes the magnitude of the near-crack tensile stress,

σθθ

√
2πr = cos

θ

2

[
KI cos2 θ

2
− 3

2
KII sin θ

]
(2.4)

where θ is angle with respect to the local crack axes. θ = 0 degrees is equivalent to planar
crack growth and θ = 90 degrees is equivalent to a perpendicular kink in the crack growth
direction. Equation 2.4 is evaluated at a series of points along the crack front, so the crack
shape for each step of growth can be arbitrarily non-planar. The crack propagation distance
is calculated by a median distance formula,

∆ai = ∆amedian

[
Ki

Kmedian

]
(2.5)

where ∆ai and Ki are the crack growth distance and KI , respectively, at crack front point i,
and ∆amedian and Kmedian are the crack growth distance and KI , respectively, at the crack
front point that has the median KI value. ∆amedian is currently a user input, but this could
be replaced by a crack growth distance predicted by the finite element analysis.

The envisioned approach, as mentioned in Section 1.1, is to virtually propagate the crack
a distance by similar steps to those described here, so that surface elements, such as strain
localization elements, could be inserted along the virtual crack growth increment. Subsequent
analyses would allow the crack to naturally propagate by separation of the surface elements.
Future research is intended to evaluate this approach.

Although the aforementioned methodology is limited to linear elastic fracture mechanics
assumptions, the user can grow cracks for virtually any fracture regime, including ductile
fracture. For example, the capability is currently in place for performing the following
procedure to model ductile fracture:

1. Read results fields into FRANC3D.

2. Call FRANC3D methods for computing J-integral values and/or crack displacement
components (opening/sliding) at points along the crack front.

3. Call FRANC3D methods to output the J-integral or crack displacement values.
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4. Use an external procedure for computing new crack front points based on the J-integral
or crack displacement values.

5. Call FRANC3D methods that read in the externally computed crack front points and
grow the crack in a manner that best fits these new points.

As previously mentioned, the last step listed here gives the user the freedom to apply virtually
any method to predict crack growth. For such cases, FRANC3D is used solely to adapt the
geometry and mesh to fit the user’s input set of crack front locations.

2.1.12 WRITE RESULTS

The WRITE RESULTS step signifies the end of a fracture analysis, where the end result is
a results database, i.e. an EXODUS II file, containing the entire history of computed fields
for all time steps, from crack nucleation to failure. As mentioned in Section 2.1.8, FRANC3D
can also be used to compute histories of crack fields. Examples of these computed fields are
plotted in Section 2.3.

2.2 Python Scripting Interface

The following is an example usage of the Python scripting interface delineated in Figure 2.1.
Our fictitious model has an elliptical initial crack with a radius of 0.1 in both principal
directions and a median crack crack growth increment of 0.01.

line 1: import franc3DMethods

line 2: import exoFranc3DMethods

line 3: #

line 4: # create a FemModel from an Exodus file

line 5: inputFile = ‘myModelName.g’

line 6: exoFranc3DMethods.exoToFemModel( inputFile )

line 7: #

line 8: # initialize an F3DApp with this FemModel

line 9: f3dApp = franc3DMethods.createF3DAppFromFemModel( femModel )

line 10: #

line 11: # insert a parametrically defined flaw

line 12: f3dApp.InsertParamFlaw( ‘flaw type’ = ’CRACK’,

line 13: ‘crack type’ = ’ELLIPSE’,

line 14: ‘flaw params’ = [0.1, 0.1],

line 15: ‘translation’ = [0.5, 0.5, 0.5],

line 16: ‘x axis’ = [1.0, 0.0, 0.0],
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line 17: ‘y axis’ = [0.0, 0.0, -1.0],

line 18: ‘refinement level’ = 2,

line 19: ‘do template’ = False )

line 20: #

line 21: # output the initially cracked model for analysis

line 22: step = 1

line 23: outputFile = ‘myModelName.step%i.g’ % step

line 24: exoFranc3DMethods.femModelToExo( femModel,

line 25: outputFile )

line 26: #

line 27: # tell user to map & analyze, then continue

line 28: exoFranc3DMethods.userAnalyze()

line 29: #

line 30: # grow crack until user indicates completion

line 31: while exoFranc3DMethods.notFinished():

line 32: #

line 33: # read in current nodal displacements

line 34: resultFile = ‘myModelName.step%i.e’ % step

line 35: exoFranc3DMethods.readFemResultsFromExo( f3dApp,

line 36: resultsFile )

line 37: #

line 38: # use displacement correlation to grow the crack

line 39: f3dApp.GrowCrack( sif method = ‘DISP CORR’,

line 40: const median step = 0.01,

line 41: use template = False )

line 42: #

line 43: # output the updated cracked model for analysis

line 44: step = step + 1

line 45: outputFile = ‘myModelName.step%i.g’ % step

line 46: exoFranc3DMethods.femModelToExo( femModel,

line 47: outputFile )

line 48: #

line 49: # tell user to map & analyze, then continue

line 50: exoFranc3DMethods.userAnalyze()

line 51: #

line 52: # crack growth simulation complete!

The franc3DMethods module, imported on line 1, originated from this project and it is
designed to provide a clear set of functions that interact solely with the FRANC3D Python
API. Only one method from the franc3DMethods module is used in this example, the call
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to createF3DAppFromFemModel on line 9, but other methods are available. For example,
there is a wrapper of the process for inserting a parametric flaw that reads parameters from
a file, rather than explicitly defining them in the script, as is done here on line 12. There
are additional methods for inserting flaws from the FRANC3D flaw insertion GUI and from
a flaw description file.

The exoFranc3DMethods module, imported on line 2, also originated from this project
and it is designed to provide a clear set of methods that interact between the Python wrapper
of the EXODUS II API and the FRANC3D Python API. These methods include those
for translating between EXODUS II and FemModel instances, i.e the exoToFemModel and
femModelToExo commands on line 6 and line 24, respectively. In addition, the userAnalyze
method, on line 28, signifies to the user that a model with an updated crack state is
available for material state mapping and analysis, both of which are currently performed
outside of the script. userAnalyze pauses the script until the user indicates that a new
set of results are available for growing a crack. Every time userAnalyze is called, the
notFinished method, on line 31, is called to determine whether the user wants to continue
with the crack growth process. If the crack growth process is signified to continue, then the
readFemResultsFromExo command, on line 35, is called to apply the current analysis results
information relevant to crack growth, e.g. nodal displacements, to the F3DApp instance.

A few methods shown here are calls made directly on a f3dApp instance. The reader is
referred to the FRANC3D command language manual [13] for further description of these
methods. FRANC3D is a versatile, modular tool with many functionalities not described
here, and most of these functionalities are exposed through the Python API. Thus, the
script shown here is just one example of many ways to utilize the Python interface shown in
Figure 2.1.

2.3 Examples

The following are three examples of geometrically explicit fracture analyses following the
procedure given in Figure 2.1. The first two examples are idealized configurations where the
crack path is known a priori, and the final example is derived from a user application where
the crack path is unknown.

2.3.1 Uniaxial Tension

This example, shown in Figure 2.2, is a plate with a crack loaded in uniaxial tension. The
model, illustrated in Figure 2.2(a), is square in the x-y plane with length and width equal
to 5.0. The initial crack length, 2a, and the depth in the z-direction are both equal to
1.0. The material is elastic, with a Young’s modulus of 100000.0 and a Poisson’s ratio
of 0.3. Since the material is elastic, no mapping is performed and the model starts from
the unloaded state at each crack increment. At maximum load, a displacement of 0.01 is
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applied in the y-direction on the ymax surface. Figure 2.2(b) and Figure 2.2(c) show the
displaced shape, magnified by 10X for visualization purposes, at maximum applied load for
the crack at the first and fifth crack growth steps, respectively. Figure 2.2(d) shows the crack
surface at the first step, i.e. for the initial crack, and illustrates the normalized distance,
L, along which FRANC3D computes crack propagation parameters. There are two crack
fronts for a through-crack. L < 0.5 represents one crack front and L > 0.5 represents the
other. Figure 2.2(e) shows the crack opening and sliding displacements, COD and CSD,
respectively, for the initial crack. These values are expected to be identical between the two
crack fronts and symmetric along each crack front, due to the x- and z-direction symmetries
of the problem. However, these symmetries are not precisely represented due to the lack
of structure and coarseness of the mesh. As seen upon close inspection of Figure 2.2(c),
the inaccuracy of the solution eventually leads to slight crack kinking. The stress intensity
factors computed by FRANC3D, Figure 2.2(f), match the crack displacements, as expected
for their relationships given in Section 2.1.11. KI is much higher than KII since this is a
mode I fracture problem.

2.3.2 Simple Shear

This example, summarized in Figure 2.3, is a plate with a crack loaded in simple shear.
The initial dimensions and material parameters are the same as the uniaxial tension prob-
lem, so the reader is referred to Section 2.3.1 for these dimensions and parameters. At
maximum load, a displacement of 0.01 is applied in the positive x-direction on the ymax

surface. Figure 2.3(b) and Figure 2.3(c) show the displaced shape at maximum applied load
for the crack at the first and fifth crack growth steps, respectively. Figure 2.3(e) shows the
crack opening and sliding displacements, COD and CSD, respectively, for the initial crack.
These values are expected to be asymetric between the two crack fronts. This asymmetry
is approximately represented; slight inaccuracies in the solution are due to a combination of
mesh coarseness and an unstructured mesh. Figure 2.3(c) shows that the simulated crack
kinking qualitatively matches the expected result for shear loading. Figure 2.3(f) shows the
computed stress intensity factors for the initial crack. As expected, KII is much higher than
KI since this is a mode II fracture problem.

2.3.3 Glass-Metal Seal

This final example, shown in Figure 2.4, is a cylindrical glass-to-metal seal with thermal
strains as the only loads and a prescribed initial crack in the glass. The model, illustrated
in Figure 2.4(a), is an axisymmetric wedge representing a 10-degree section of the seal. The
initial crack is semi-circular, with a representing its radius. The crack plane is parallel to the
glass-metal interface and located a distance of 2a from the interface. The glass is modeled as
elastic and the metal is modeled as thermo-elastic-plastic. Figure 2.4(b) shows the xx-stress
contours and deformed shape for half of the model, which is sliced through the middle of
the crack to better show the near-crack stresses and deformation. The x- and r-directions
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Figure 2.2. Uniaxial tension fracture example: (a) Model
configuration; (b) Displaced shape (10X magnification) and
displacement contours at the first crack growth step; (c) Dis-
placed shape (10X magnification) and displacement contours
at the fifth crack growth step; (d) Crack geometry and mesh
at the first crack growth step; (e) COD and CSD at the first
crack growth step; and, (f) KI and KII at the first crack
growth step.

are approximately the same at the crack location; thus, the stress shown is approximately
the rr-stress. The metal is more ductile than the glass, which increases stress in the glass at
the assumed crack location. Figure 2.4(c) shows the shape of the initial crack and illustrates
the normalized distance, L, along which FRANC3D computes crack propagation parameters.
Figure 2.4(d) shows the crack opening and sliding displacements, and Figure 2.4(e) shows the
modes I and II stress intensity factors. Substitution of the plotted KI values into Equation 2.5
suggests that the next step of crack growth would not be self-similar; the crack would grow
faster at the surface than at its maximum depth. Furthermore, the KI and KII values were
found to be non-zero along the entire crack front, so Equation 2.4 suggests that the crack
will grow in a non-planar fashion; the crack will have a near-zero kink angle at the surface
and a sharp kink at its maximum depth.
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Figure 2.3. Simple shear fracture example: (a) Model
configuration; (b) Displaced shape (10X magnification) and
displacement contours at the first crack growth step; (c) Dis-
placed shape (10X magnification) and displacement contours
at the fifth crack growth step; (d) Crack geometry and mesh
at the first crack growth step; (e) COD and CSD at the first
crack growth step; and, (f) KI and KII at the first crack
growth step.

Accurately modeling subsequent steps of crack growth for this problem likely requires
variable mapping due to the non-linear response of the metal. This is just one of the many
modeling applications that motivates the need for a robust variable mapping framework that
transfers state data and fields as accurately as possible, especially for localized regions with
high gradients (e.g. cracks). The following chapter presents a framework that is designed to
address this need.
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Figure 2.4. Example of a thermal strain driven crack in
a glass-to-metal seal: (a) Model configuration; (b) Displaced
shape (magnified) and xx-stress contours near the crack at
the first crack growth step; (d) Crack geometry and mesh at
the first crack growth step; (e) COD and CSD at the first
crack growth step; and, (f) KI and KII at the first crack
growth step.
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Chapter 3

Variable Mapping

Mesh adaption applications, such as geometry adaptive crack modeling, necessarily require
the ability to transfer all information defining the state of a finite element analysis from the
original model (the source) to the adapted model (the target). Field variable mapping is just
one component of a transfer. Defining equivalent mesh sets and attributes, global variables,
and time steps are just some of the many other transfer components. For many common
modeling applications, such as contact, transfer of these other components is a non-trivial
task. Furthermore, the type, complexity, and robustness of the transfer routines depend
greatly on the application. For example, adaptive mesh refinement can be treated as a series
of local, independent transfers, each from a single element in the source to its subdivisions in
the target, whereas arbitrary mesh adaption must treat the problem more globally since the
mesh topology of the target generally does not depend on the mesh topology of the source.
Geometry adaption is even more complex than arbitary mesh adaption, because surfaces
and sub-domains can exist in the target that do not exist in the source, and vice-versa.
The transfer routines required for geometry adaptive crack modeling are some of the most
complex, and many of the assumptions made by other types of transfers are invalid.

The work described in this chapter is motivated by the need to perform transfers for
geometry adaptive crack modeling; the immediate focus is on creating a transfer routine
that can be researched and developed for this and similar applications – large deformations
and sharp gradients in history-dependent materials. This work is influenced by similar
transfer routines developed at Sandia, such as MAPVAR [16]. MAPVAR is designed for
mesh adaption, but the current version has limitations that prevent transfers for geometry
adaptive crack modeling. The following are the most substantial currently known limitations:

1. Solid elements are limited to 8-noded hexahedra, 8-noded tetrahedra, or 4-noded tetra-
hedra. Geometry adaptive crack modeling codes, such as FRANC3D, rely on unstruc-
tured tetrahedral meshing, for which a 10-noded tetrahedral element formulation is
required to obtain accurate solutions. Therefore, a mapping capability is needed for
10-noded tetrahedra.

2. Element quantities in the source mesh are assumed to be volume-averaged values.
Modeling of gradients within elements, such as those present in crack modeling, requires
multi-point integration to get an accurate solution. Therefore, a capability to map from
integration points is required.
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3. Coincedent crack surfaces are not uniquely considered. To accurately map fields at
crack surfaces, especially discontinuities, the mapping must interpret which nodes and
elements lie on each of the coincident surfaces in both the source and target meshes.

4. Identical element types are required between the source and target meshes. Model-
ing applications commonly use hexahedral meshes, in which cases crack insertion and
propagation will replace hexahedral meshes with tetrahedral meshes. Therefore, the
mapping must be extended to process different element types between the source and
target meshes.

One avenue for this work could have focused on extending MAPVAR to eliminate these
limitations. However, writing a new code was determined to be more efficient and flexible.
The initial implementation of the new code, as described here, does not address the last two
items, but it is structured to efficiently include and test these capabilities in the future. The
authors would like to thank the developers of MAPVAR and its precursors, MERLIN [5] and
MERLIN II [6], for the valuable insight. The authors acknowledge that transfer routines are
also available in SIERRA [3], but a stand-alone code was deemed more appropriate for this
project.

The remainder of this chapter describes and exemplifies the new transfer code, with
particular focus on variable mapping. Section 3.1 details the mapping approach, Section 3.2
describes features that are uniquely considered during the transfer process, and Section 3.3
gives examples of the current transfer capabilities.

3.1 Mapping Approach

A flowchart of the steps generally required for transfers with variable mapping is shown
in Figure 3.1. The mapping routine begins by reading finite element databases for both
the source and target meshes, the OPEN SOURCE FEM and OPEN TARGET FEM
steps, respectively. The source database has the source finite element model and the analysis
state(s) necessary for a restart. The target database has the target finite element model. The
INITIALIZE TRANSFER step transfers all information that does not have to be mapped,
i.e. everything except the nodal and element variables. The CREATE SEARCH TREE
step creates a spatial search tree of the source mesh, which greatly reduces the computational
cost of the spatial searches performed during the mapping. Finally, the field variables are
mapped in the MAP NODE VARIABLES and MAP ELEMENT VARIABLES steps.

Specifics of this procedure and high-level code structures are given in the following three
sections. The code is developed in C++ and in an object-oriented manner to allow for
efficient development of future capabilities and portability of individual components into
other finite element codes. Section 3.1.1 describes the finite element model class, including
the driver methods for all of the steps shown in Figure 3.1. Section 3.1.2 describes the spatial
search tree and Section 3.1.3 describes the element classes and the methods implemented
therein to perform the mapping.
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Figure 3.1. Flowchart of the framework for variable map-
ping after mesh adaption.

3.1.1 Finite Element Model

A high-level class diagram of the finite element model data structure used by the mapping
code is shown in Figure 3.2. Only public methods are shown for brevity; all member variables
and private methods are omitted. The construct consists of a base class, fem, and derived
classes. Only one derived class is currently available, exoFem, which is compatible with
EXODUS II files through calls to the EXODUS II C++ API. The idea, however, is to allow
for multiple derived classes, so that other finite element database formats can be interpreted.
The methods shown here for the fem base class are virtual, because each is redefined by the
derived classes.

An exoFem has two constructors, the first for reading the source model and the second
for reading the target model. The source’s constructor has one input, the name of the
EXODUS II file to which it is stored. The target’s constructor has two inputs, the name of
the EXODUS II file to which its mesh is stored and the name of the new EXODUS II file
that will be created after the transfer.

After the source and target exoFem classes are constructed, the readMtrlsMap, copyAppropriate,
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fem

+copyAppropriate( target : fem )
+doMapFromDefShape( )
+createSearchTree( )
+transferNodeVariables( target : fem )
+transferElemVariables( target : fem )

exoFem

+constructor( fileName : string )
+constructor( fileName : string,
                       newFileName : string )
+readMtrlsMapFile( fileName : string )
+destructor( )

Figure 3.2. Class diagram of the finite element model data
structure implemented for the mapping code.

and doMapFromDefShape methods are called. These three steps combined represent the INI-
TIALIZE TRANSFER step in Figure 3.1. The first method reads further information about
the model required for mapping that is not accessible in the EXODUS II database. This
is further explained in Section 3.2.1. The next method, copyAppropriate, performs all
of the steps of the transfer that do not require mapping. For EXODUS II databases, the
copyAppropriate method copies the following components from the source to the target:
QA records, information records, numbers of variables, variable truth tables, variable names,
time steps, and global variables. The reader is referred to the EXODUS II manual [10] for
descriptions of each component. The doMapFromDefShape method simply sets a flag indi-
cating that the mapping is to be performed in the deformed configuration. This means that
the displacements from the last time step stored in the source database will be applied prior
to creating the spatial search tree and mapping variables. The target mesh is assumed to
have been created on the equivalent deformed configuration.

The createSearchTree method is only called on the source fem. This method creates a
member variable that stores a spatial search tree, which is described in Section 3.1.2.

The transferNodeVariables method is then called to map all node variables defined
on the source mesh over to the target mesh. The call is made on the source fem, with the
target fem as the input. The intention is to allow for multiple algorithms to be available
for performing this mapping. Currently, however, only an inverse isoparametric mapping
is available. For every node in the target, the search tree is called to get a list of source
elements in the neighborhood of the target node. Each of these elements is then queried to
determine which element actually contains the node. Also returned by this query are the
source element’s shape functions evaluated at the coordinates of the target node. The process
for determining these element shape functions follows an inverse isoparametric mapping, i.e.
Newton’s method is applied to the isoparametric mapping,

X =
n∑

i=1

Ni(ξ, η, ζ)Xi (3.1)

to solve for the natural coordinates (ξ, η, ζ) of the global coordinates X, where n is the
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number of nodes per element, Ni are the nodal shape functions evaluated at (ξ, η, ζ), and
Xi are the nodal global coordinates. Nodal variables, Ui, are then transferred from source
to target by the isoparametric mapping,

U =
n∑

i=1

Ni(ξ, η, ζ)Ui (3.2)

where U is the interpolated value at the global coordinates X. Note that this is an element-
by-element mapping.

The transferElemVariables method is similar to transferNodeVariables method in
both the way it is called and the type of mapping currently programmed – inverse isopara-
metric. Prior to mapping, however, an additional step is required to extrapolate element
variables to the nodes. For every integration point in the target, the search tree and inverse
isoparametric mapping are called to find the source element and its shape functions at the
integration point’s global coordinates. For each element variable, its values stored at the
integration points of the source element are then extrapolated to that element’s nodes. Ele-
ment quantities that are stored on the source mesh as a volume-averaged value are assumed
to be stored at one integration point, the centroid of the element, in both the source and
target. The extrapolation procedure is further explained in Section 3.1.3. The extrapolated
values are interpolated to the target integration points by Equation 3.2. Consideration of
variables stored at multiple integration points within the element is a capability that is
currently unavailable in MAPVAR, which treats all element variables as volume-averages.
Specifically, the capability added here is a consideration of element variable gradients within
each element. This is particularly important for mapping within regions known to have
element field gradients within the elements, such as regions near crack fronts.

Admittedly, an element-by-element extrapolation procedure has its limitations, some of
which are given in the MAPVAR manual [16]. The current method was chosen as a starting
point; future research and development efforts are expected.

3.1.2 Search Tree

A high-level class diagram of the spatial search tree data structure is shown in Figure 3.3.
The femElemTree is the class called and stored by the createSearchTree method of the fem
class. Either of the two femElemTree constructors can be called to create a search tree. The
first constructor builds a tree directly from the fem class instance. The second constructor
builds a tree from vectors of: element identifiers, nodal connectivities of each element, and
the global coordinates of each node. The latter constructor is required to create a search
tree from the deformed configuration of a mesh, by passing in the deformed coordinates of
each node. The first constructor only processes the model coordinates of each node. Each
constructor creates bounding boxes of each element and stores them to an efficient search
tree, the adt. The search tree is queried by passing a query point, i.e. the global coordinates
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of a node or integration point in the target mesh, to the query method of the femElemTree.
The query returns the ID’s of all elements whose bounding boxes contain the query point.

adt

+constructor( 
   nodeVecs : vector<vector<double>>,
   nodeRefs : vector<int> )
+addNode( nodeVec : vector<double>,
                   nodeRef : int )
+query( minQuery : vector<double>,
              maxQuery : vector<double> )
+destructor( )

femElemTree

+constructor( feModel : fem )
+constructor( 
    elemIds : vector<int>,
    xCoords : vector<double>,
    yCoords : vector<double>,
    zCoords : vector<double>,
    elemConns : vector<vector<int>> )
+query( queryPt : vector<double> )
+destructor( )

0..1 1..1
adtNode

+constructor( 
    position : vector<double>,
    ref : int )
+addLeftChild( index : int )
+addRightChild( index : int )
+getLeftChild( )
+getRightChild( )
+destructor( )

0..1 1..^

Figure 3.3. Class diagram of the spatial search tree data
structure implemented for the mapping code.

The search tree algorithm adopted here is an alternating digital tree, following from the
work of Bonet and Peraire [2]. This algorithm, when implemented for spatial searches, has a
computational cost of O(n(log(n))) where n is the number of items (elements). The methods
shown in Figure 3.3 for the adt and adtNode classes are not described here since they follow
the algorithms in Reference [2]. A adtNode instance is a node in the alternating digital tree,
which represents the bounding box of a single element.

3.1.3 Element Types

A high-level class diagram of the data structure used to represent elements, and the various
types thereof, is shown in Figure 3.4. Some of the methods shown for the element base class
are defined or re-defined for each element type, but the details of which are skipped here for
brevity. Each derived class is a singleton – they are called by the instance method instead
of a constructor.

The following methods perform essentially as suggested by their names:

• numNodes returns the number of element nodes.

• numGaussPts returns the number of element integration points.

• numModelCoordDims returns the number of dimensions of the element, i.e. 2 or 3.

• integrationWeights returns the weights applied at each integration point.

• gaussPtShapeFunction returns the nodal shape functions evaluated at each integra-
tion point.
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element
+numNodes( )
+numGaussPts( )
+numModelCoordDims( )
+integrationWeights( )
+gaussPtShapeFunctions( )
+gaussPtShapeFunctionDerivatives( )
+extrapolationMatrix( )
+isInside( 
    nodeCrds : vector<vector<double>>,
    queryPt : vector<double>,
    &status : int,
    &shapeFuncs : vector<double>,
    &distance : double )
+extrapolate(
    gaussPtVals : vector<double>,
    &nodeVals : vector<double> )
+interpolate(
    nodeVals : vector<double>,
    shapeFuncs : vector<double>,
    &interpVal : vector<double> )
+gaussPtCoords(
    nodeCrds : vector<vector<double>>,
    &gpCrds : vector<vector<double>> )
+computeJacobian(
    derivs : vector<vector<double>>,
    nodeCrds : vector<vector<double>>,
    &jac : vector<vector<double>>,
    &determinant : double )

compTet

tet4

hex8

compTet_5gp

+instance( )

tet4_4gp

+instance( )

tet4_1gp

+instance( )

hex8_8gp

+instance( )

hex8_1gp

+instance( )

tet10 tet10_4gp

+instance( )

Figure 3.4. Class diagram of the element data structures
implemented for the mapping code.

• gaussPtShapeFunctionDerivatives returns the nodal shape function derivatives eval-
uated at each integration point.

• extrapolationMatrix returns the extrapolation matrix. See subsequent discussion of
the extrapolate method.

• gaussPtCoords returns the global coordinates of an element’s gauss points for the
input global nodal coordinates.

The isInside method performs the iterative routines for the inverse isoparametric map-
ping, solving Equation 3.1 for the natural coordinates (ξ, η, ζ). The inputs are the global
coordinates of an element’s nodes and the global coordinates of the query point. The routine
returns a status binary, with 1 indicating that the query point is inside or on the surface of
the element, and 0 indicating otherwise. Also returned by the routine are the shape func-
tion values at that query point and the distance from the element to the query point. This
distance is zero if the query point is inside the element.
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The interpolate method performs the interpolation by solving Equation 3.2 for given
shape function values and nodal values.

The extrapolate method extrapolates element variables to the nodes. For volume-
averaged element variables or single integration point elements, this is simply a copy of a
scalar value to each of the nodes. For integration point variables stored in multiply in-
tegrated elements, an extrapolation matrix has to be constructed to project variables out
to the nodes. Each element type has an extrapolation matrix which is returned by the
extrapolationMatrix method. This matrix is constructed by virtually creating an element
that has nodes at the natural coordinates of each of the real element’s integration points. The
matrix is the shape functions of this virtual element evaluated at each of the real element’s
nodes. Thus, the matrix is as follows,

E =


N v

11 N v
12 · · · N v

1n

N v
21 N v

22 · · · N v
2n

. . . . . . . . . . . . . . . . . . . . .
N v

m1 N v
m2 · · · N v

mn

 (3.3)

where the superscript v indicates the virtual element, m is the number of element integration
points, n is the number of element nodes, and N v

ji is the jth shape function of the virtual
element evaluated at the ith node of the real element. The extrapolation equation is then

Ui =
m∑

j=1

EijUj (3.4)

where Uj are the integration point values and Ui are the extrapolated values. Note, once
again, that this is an element-by-element extrapolation, without averaging at or projection
to the nodes. This technique can be less accurate than other techniques [16], but it is robust
and easy to implement as an initial approach. A primary intention of this code is to have
a framework in place for efficient implementation and research of mapping techniques that
promise to be more accurate.

The computeJacobian method is used mostly by the Newton iterations performed in
the isInside method, but it is also made public for computing some element variables, as
explained in Section 3.2.2 and Section 3.2.3. This method computes the Jacobian matrix,
J , and its determinant, |J |, for

J =


∑n

i=1
δNi

δξ
xi

∑n
i=1

δNi

δη
xi

∑n
i=1

δNi

δζ
xi∑n

i=1
δNi

δξ
yi

∑n
i=1

δNi

δη
yi

∑n
i=1

δNi

δζ
yi∑n

i=1
δNi

δξ
zi

∑n
i=1

δNi

δη
zi

∑n
i=1

δNi

δζ
zi

 (3.5)

where n is the number of nodes per element, δNi

δξ
, δNi

δη
, and δNi

δζ
are the partial derivatives of

the nodal shape functions with respect to the natural coordinates evaluated at a point, and
(xi, yi, zi) are the global nodal coordinates, Xi.
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The following element types are currently programmed into the mapping code:

• hex8 1gp: The mean quadrature, 8-noded hexahedral element.

• hex8 8gp: The standard 8-point integration, 8-noded hexahedal element, which can
be used for both the selective deviatoric and fully-integrated formulations.

• tet4 1gp: The mean quadrature, 4-noded tetrahedral element.

• tet4 4gp: The fully-integrated, 4-noded tetrahedral element.

• tet10 4gp: The fully-integrated, 10-noded tetrahedral element.

• compTet 5gp: The composite tetrahedral finite element formulation from reference [12].
Further explanation of this element, including motivation for including it in this study,
is given in Section 3.2.3.

3.2 Unique Considerations

The implemented mapping code follows largely the aforementioned code structure. However,
some modifications were necessary to properly handle the structure of the EXODUS II finite
element model database and element variables that had to be computed rather than mapped.
The following three sub-sections highlight these nuances.

3.2.1 Exodus II Databases

EXODUS II databases created from SIERRA/SM do not have a construct for integration
point variables. Integration point variables are stored as an element variable. SIERRA/SM
does use a consistent naming convention to indicate unique integration points, by adding
an ‘ i’ to the end of a variable name, where ‘i’ is an integer representing the integration
point. For example, the xx-component of the unrotated stress stored on an element with
four integration points will have four separate variable names: unrotated stress xx 1,
unrotated stress xx 2, unrotated stress xx 3, and unrotated stress xx 4. However,
this nomenclature of adding ‘ i’ at the end of a variable name is not unique to integration
point variables. To overcome this ambiguity, the names of all volume-averaged element
variables are stored in the exoFem class, using the nomenclature from SIERRA/SM. This
obviously relies on the mapping code having a complete list of volume-averaged element
variable names for the version of SIERRA/SM used during finite element analyses. Currently,
this list is known to be complete for the 4.24 release version of SIERRA/SM and the following
material models: elastic, multi-linear elastic plastic failure, and BCJ mem.

Material model names are not required to be stored in an EXODUS II database, so the
user must provide a separate text file for both the source and target meshes that indicate
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the material model name and the number of integration points per element for each block in
the mesh. The name of this text file is passed through the readMtrlsMapFile command, as
shown in Figure 3.2. For example, if a mesh has two blocks, blocks 1 with 4-point integration
and an elastic material model and block 11 with 8-point integration and a BCJ mem material
model, then the text file would have the following two lines:
1 4 ELASTIC

11 8 BCJ MEM

A more permanent, robust solution should be implemented in the future to overcome this
problem.

3.2.2 Element Volumes

One of the element variables stored in an EXODUS II database for a SIERRA/SM restart
file is the volume of the element in the undeformed configuration. Mapping this variable is
obviously incorrect. Instead, the target element volumes are computed as

Velem =
m∑

j=1

wj |Jj| (3.6)

where m is the number of element integration points, wj are the weights of each inte-
gration point, and |Jj| are the determinants of the Jacobian matrices at each integration
point computed by Equation 3.5. The public element class methods computeJacobian and
integrationWeights (see Figure 3.4) are called to compute |Jj| and wj, respectively.

3.2.3 Composite Tetrahedral Elements

The composite tetrahedral element from Thoutireddy et al. [12] is implemented in this study
because of its purported advantages. Previous discussions have emphasized that only tetra-
hedral meshes can be reliably generated for the arbitrary geometries of explicitly represented
cracks. Higher order tetrahedral elements are preferred over simplicial 4-noded tetrahedra
due to the volumetric locking of the latter. Furthermore, reference [12] suggests that the
composite tetrahedral elements behave better in the near incompressible regime and have
well-defined nodal masses as compared to simplicial 10-noded tetrahedral elements. All of
the aforementioned tetrahedral element formulations are implemented herein with the fu-
ture intent to investigate their relative performance in geometry adaptive, ductile fracture
modeling.

Unlike the other commonly utilized element formulations implemented in SIERRA/SM,
the composite tetrahedral element is implemented with the total Lagrangian approach1.

1The authors would like to thank Jake Ostien for implementing the composite tetrahedral element in
SIERRA/SM and giving us valuable insight into its formulation.
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Therefore, the Jacobian determinant and the gradient operator are only computed once,
during initialization, and then stored as element variables. For restarts, these variables are
read from the database rather than being recomputed. Therefore, the mapping code must be
responsible for supplying the correct values for these variables in the target mesh. Obviously,
mapping is incorrect for both of these variables, so they must be computed for each target
element. The Jacobian determinant is already available from the element volume calculation,
as described in the previous section. The gradient operator, L̄aJ(X) follows from [12],

L̄aJ(X) =
4∑

b=1

4∑
c=1

λc(X)M−1
cb

∫
Ω0

λbNa,JdV0 (3.7)

where λa is the barycentric coordinates of integration point a, Ω0 is the undeformed domain
of the element, Na,J are the shape function derivatives with respect to the global coordinates,
and M is a mass-like matrix evaluated by

Mbc =
∫
Ω0

λbλcdV0; (3.8)

3.3 Examples

The mapping code is intended for ongoing research and development to properly address,
among other applications, mapping for geometry adaptive crack modeling. In its current
state, the code is functioning for some common applications, as shown in the following three
examples. All analyses were performed by SIERRA/SM.

3.3.1 Mapping in the Undeformed Configuration

One common application is arbitrary mesh refinement, where the modeler is required to
create a new mesh that is structured independently from the source mesh. Figure 3.5 shows
two examples of this application where the mapping is performed in the undeformed con-
figuration. The model, as shown in Figure 3.5(a), is two cubes, each with a length L = 1.
The top cube is elastic, isotropic with a Young’s modulus E1 = 10000 and a Poisson’s ratio
ν = 0.33. The bottom cube is also elastic, isotropic with a Young’s modulus E2 = 100000
and a Poisson’s ratio ν = 0.33. The model is loaded in uniaxial tension in the y-direction to
25% strain, and then the mapping is performed. The first example, Figure 3.5(b) and (c),
is a mapping between meshes with selective deviatoric hexes – 8 nodes, 8 integration points.
The second example, Figure 3.5(d) and (e), is a mapping between meshes with compos-
ite tetrahedral elements – 10 nodes, 5 integration points. Mapping to (and from) 10-noded
tetrahedral elements is important for accurately modeling complex evolving geometries, such
as cracks, and it is a capability that is unavailable in MAPVAR. Nodal y-displacements are
shown for both examples. Mapping on the undeformed configuration works well for smaller
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deformations, but as the region becomes highly deformed, it becomes increasingly difficult,
if not impossible, to create a new target mesh on the undeformed body that has desired
element quality in the deformed configuration. In these two examples, it is evident that
the target mesh elements are distorted in the y-direction in the deformed configuration.
One can logically conclude that mapping in the undeformed configuration will not suffice
for modeling the large deformations near the crack front in many ductile fracture problems.
This motivates remeshing and mapping on the deformed configuration, as shown in the next
example.

x

y

L=1

L=1

E

E

1

2 E1=10

(a)

(b) (c)

(d) (e)

Figure 3.5. Example of nodal variable mapping in the
undeformed configuration. (a) Illustration of model setup.
(b) Computed displacements on source mesh with selective
deviatoric hexahedral elements. (c) Mapped displacements
on target mesh with selective deviatoric hexahedral elements.
(d) Computed displacements on source mesh with composite
tetrahedral elements. (e) Mapped displacements on target
mesh with composite tetrahedral elements.
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3.3.2 Mapping in the Deformed Configuration

This example, shown in Figure 3.6, is the same problem setup as the previous examples, but
here remeshing and mapping are performed in the deformed configuration. The selective
deviatoric hexahedral element is shown in this example. A comparison of this mapping,
Figure 3.6(b), to mapping on the undeformed configuration, Figure 3.5(e), immediately
reveals two differences:

1. The elements for the deformed configuration mapping are less distorted in the y-
direction, because the model was remeshed in the deformed configuration; and,

2. The displacements are zero for the deformed configuration mapping. For obvious rea-
sons, the mapping code does not map over nodal displacements when the mapping is
performed on the deformed configuration2. All other variables, although not shown
here, are mapped.

Figure 3.6(c) shows that the target mesh was restarted and loaded out to an additional 25%
strain. A hypo-elastic material model was used for all examples shown here, so this problem
demonstrates the ability to successfully continue an analysis after mapping history-dependent
variables. Similar success was achieved for this problem setup with the multi-linear elastic-
plastic failure (MLEPF) and BCJ mem material models.

3.3.3 Mapping Element Variables at Integration Points

There are many applications that have stress gradients within elements, such as the beam-
bending example shown in Figure 3.7. The model, illustrated in Figure 3.7(a), is a rectan-
gular beam, with length L = 10, and equal base and height, b = h = 1. The material is
elastic, isotropic with a Young’s modulus E = 100000 and a Poisson’s ratio ν = 0.33, and
the element type is the selective deviatoric hexahedron – 8 nodes, 8 integration points. The
model is fixed at one end and displaced downward at the other, to ∆y = 0.1 when mapping
is performed. Figure 3.7(b) shows the xx-component of the unrotated stress on the source
mesh, and Figure 3.7 (c) shows the mapping of this solution onto the target mesh. For
plotting purposes, the unrotated stress values at each integration point within an element
were averaged by a filtering tool in the visualization software; the mapping actually operated
on individual integration points. The target mesh shown here was created by dividing each
source element into eight equally sized elements. Close inspection of regions with sharp stress
gradients reveals that the mapped solution varies among target elements that lie within the
same source element. This results directly from stress gradients within the source elements.

2The user must beware that boundary conditions applied in their restart immmediately after mapping
should be updated accordingly to reflect that the displacements begin from zero.
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(a) (b) (c)

Figure 3.6. Example of nodal variable mapping in the
deformed configuration. (a) Computed displacements on
source mesh with selective deviatoric hexahedral elements.
(b) Mapped displacements on target mesh with selective de-
viatoric hexahedral elements. (c) Computed displacements
after further loading subsequent to mapping.
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Figure 3.7. Example of element variable mapping from
elements with multiple integration points. (a) Illustration of
model setup. (b) Computed xx-component of the unrotated
stress on the source mesh with selective deviatoric hexahedral
elements. (c) Mapped xx-component of the unrotated stress
on the target mesh with selective deviatoric hexahedral ele-
ments.
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Chapter 4

Summary and Future Work

This work is motivated by the need to accurately quantify the cause and uncertainty of
failure for applications that involve the nucleation and propagation of dominant cracks.
Two capabilities have been developed: a semi-automated, geometry adaptive crack modeling
procedure; and, a variable mapping code designed for large deformations and element field
gradients.

The geometry adaptive crack modeling capability is implemented as a loose coupling
between a commercial geometry adaptive crack representation code, FRANC3D, and the
SIERRA/SM finite element analysis code. A FRANC3D application is kept in memory dur-
ing incremental calls to the finite analysis code to evolve fields that drive crack evolution.
Finite element model data are transferred to and from the FRANC3D application by access-
ing EXODUS II databases. FRANC3D updates the geometry of a model and remeshes to
represent the nucleation and evolution of arbitrarily non-planar crack surfaces. The accom-
plishments of this project for geometry adaptive crack modeling procedure include:

1. An interface, all in memory, of FRANC3D with EXODUS II databases.

2. Extension of the crack growth capabilities in FRANC3D to correctly compute crack
growth increments and directions for models that do not have FRANC3D’s standard
template of crack front elements since the template cannot be modeled in SIERRA/SM.

3. A semi-automated, scripting interface for geometrically modeling crack evolution, from
nucleation to failure.

4. Demonstration of capabilities for examples with well-known crack paths and for an
example of a potential user application.

This approach is currently ready for some user applications, such as brittle fracture modeling.
However, future work is still intended, including:

1. Research and development of methods for accurately predicting crack nucleation and
propagation in both the brittle and ductile fracture regimes. The implemented geome-
try adaptive approach should aid to improve calibration and validation for such R&D
efforts.
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2. Inclusion of strain localization elements with physically justified damage models along
geometrically adapted crack paths.

3. Improvement of the ability to control mesh size at the crack front and evaluation of
appropriate mesh sizes for convergence.

4. Full coupling between the geometry adaption algorithms and the finite element analysis.

5. Evaluation and extension of the approach’s limits, e.g. crack branching and coalescense.

6. Development of the ability to map fields after crack adaption and continue an analysis
with history-dependent material response.

The latter is known as one of the largest, most risky tasks to address for this modeling
approach.

Accordingly, this project also focused on variable mapping for history-dependent materi-
als. A new variable mapping procedure has been implemented that is motivated by the need
to overcome some of the limitations of existing mapping capabilities. The current procedure
is structured to:

1. Interface with multiple finite element model formats, with the proof-test format being
EXODUS II.

2. Perform efficient spatial searches via an Alternating Digital Tree (ADT) algorithm.

3. Operate on an entire suite of element types. Current element types include: mean
quadrature, fully-integrated, and selective deviatoric 8-noded hexahedra; mean quadra-
ture and fully-integrated 4-noded tetrahedra; and, fully-integrated and composite 10-
noded tetrahedra.

4. Map field gradients within elements by mapping element variables to and from the
appropriate integration points.

5. Map on both the deformed and undeformed configurations.

6. Be easily adaptable for research, development, and testing of multiple mapping ap-
proaches. The initial approach is an inverse isoparametric mapping from the nodes;
element variables are first extrapolated to the nodes.

Several areas of future work are intended for variable mapping, including:

1. Proper mapping of discontinuous fields, e.g. displacements, at crack surfaces.

2. Development and testing of more robust mapping approaches.

3. Mapping between meshes with dissimilar element types.
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4. Demonstration of capabilities for geometry adaptive crack modeling.

5. Full coupling with crack adaption and finite element analysis procedures.
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